2 * linux/net/sunrpc/svcsock.c
4 * These are the RPC server socket internals.
6 * The server scheduling algorithm does not always distribute the load
7 * evenly when servicing a single client. May need to modify the
8 * svc_sock_enqueue procedure...
10 * TCP support is largely untested and may be a little slow. The problem
11 * is that we currently do two separate recvfrom's, one for the 4-byte
12 * record length, and the second for the actual record. This could possibly
13 * be improved by always reading a minimum size of around 100 bytes and
14 * tucking any superfluous bytes away in a temporary store. Still, that
15 * leaves write requests out in the rain. An alternative may be to peek at
16 * the first skb in the queue, and if it matches the next TCP sequence
17 * number, to extract the record marker. Yuck.
19 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
22 #include <linux/kernel.h>
23 #include <linux/sched.h>
24 #include <linux/errno.h>
25 #include <linux/fcntl.h>
26 #include <linux/net.h>
28 #include <linux/inet.h>
29 #include <linux/udp.h>
30 #include <linux/tcp.h>
31 #include <linux/unistd.h>
32 #include <linux/slab.h>
33 #include <linux/netdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/file.h>
36 #include <linux/freezer.h>
38 #include <net/checksum.h>
41 #include <net/tcp_states.h>
42 #include <asm/uaccess.h>
43 #include <asm/ioctls.h>
45 #include <linux/sunrpc/types.h>
46 #include <linux/sunrpc/clnt.h>
47 #include <linux/sunrpc/xdr.h>
48 #include <linux/sunrpc/svcsock.h>
49 #include <linux/sunrpc/stats.h>
51 /* SMP locking strategy:
53 * svc_pool->sp_lock protects most of the fields of that pool.
54 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
55 * when both need to be taken (rare), svc_serv->sv_lock is first.
56 * BKL protects svc_serv->sv_nrthread.
57 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
58 * and the ->sk_info_authunix cache.
59 * svc_sock->sk_flags.SK_BUSY prevents a svc_sock being enqueued multiply.
61 * Some flags can be set to certain values at any time
62 * providing that certain rules are followed:
64 * SK_CONN, SK_DATA, can be set or cleared at any time.
65 * after a set, svc_sock_enqueue must be called.
66 * after a clear, the socket must be read/accepted
67 * if this succeeds, it must be set again.
68 * SK_CLOSE can set at any time. It is never cleared.
69 * sk_inuse contains a bias of '1' until SK_DEAD is set.
70 * so when sk_inuse hits zero, we know the socket is dead
71 * and no-one is using it.
72 * SK_DEAD can only be set while SK_BUSY is held which ensures
73 * no other thread will be using the socket or will try to
78 #define RPCDBG_FACILITY RPCDBG_SVCSOCK
81 static struct svc_sock
*svc_setup_socket(struct svc_serv
*, struct socket
*,
82 int *errp
, int flags
);
83 static void svc_delete_socket(struct svc_sock
*svsk
);
84 static void svc_udp_data_ready(struct sock
*, int);
85 static int svc_udp_recvfrom(struct svc_rqst
*);
86 static int svc_udp_sendto(struct svc_rqst
*);
87 static void svc_close_socket(struct svc_sock
*svsk
);
89 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_sock
*svsk
);
90 static int svc_deferred_recv(struct svc_rqst
*rqstp
);
91 static struct cache_deferred_req
*svc_defer(struct cache_req
*req
);
93 /* apparently the "standard" is that clients close
94 * idle connections after 5 minutes, servers after
96 * http://www.connectathon.org/talks96/nfstcp.pdf
98 static int svc_conn_age_period
= 6*60;
100 #ifdef CONFIG_DEBUG_LOCK_ALLOC
101 static struct lock_class_key svc_key
[2];
102 static struct lock_class_key svc_slock_key
[2];
104 static inline void svc_reclassify_socket(struct socket
*sock
)
106 struct sock
*sk
= sock
->sk
;
107 BUG_ON(sock_owned_by_user(sk
));
108 switch (sk
->sk_family
) {
110 sock_lock_init_class_and_name(sk
, "slock-AF_INET-NFSD",
111 &svc_slock_key
[0], "sk_lock-AF_INET-NFSD", &svc_key
[0]);
115 sock_lock_init_class_and_name(sk
, "slock-AF_INET6-NFSD",
116 &svc_slock_key
[1], "sk_lock-AF_INET6-NFSD", &svc_key
[1]);
124 static inline void svc_reclassify_socket(struct socket
*sock
)
129 static char *__svc_print_addr(struct sockaddr
*addr
, char *buf
, size_t len
)
131 switch (addr
->sa_family
) {
133 snprintf(buf
, len
, "%u.%u.%u.%u, port=%u",
134 NIPQUAD(((struct sockaddr_in
*) addr
)->sin_addr
),
135 ntohs(((struct sockaddr_in
*) addr
)->sin_port
));
139 snprintf(buf
, len
, "%x:%x:%x:%x:%x:%x:%x:%x, port=%u",
140 NIP6(((struct sockaddr_in6
*) addr
)->sin6_addr
),
141 ntohs(((struct sockaddr_in6
*) addr
)->sin6_port
));
145 snprintf(buf
, len
, "unknown address type: %d", addr
->sa_family
);
152 * svc_print_addr - Format rq_addr field for printing
153 * @rqstp: svc_rqst struct containing address to print
154 * @buf: target buffer for formatted address
155 * @len: length of target buffer
158 char *svc_print_addr(struct svc_rqst
*rqstp
, char *buf
, size_t len
)
160 return __svc_print_addr(svc_addr(rqstp
), buf
, len
);
162 EXPORT_SYMBOL_GPL(svc_print_addr
);
165 * Queue up an idle server thread. Must have pool->sp_lock held.
166 * Note: this is really a stack rather than a queue, so that we only
167 * use as many different threads as we need, and the rest don't pollute
171 svc_thread_enqueue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
173 list_add(&rqstp
->rq_list
, &pool
->sp_threads
);
177 * Dequeue an nfsd thread. Must have pool->sp_lock held.
180 svc_thread_dequeue(struct svc_pool
*pool
, struct svc_rqst
*rqstp
)
182 list_del(&rqstp
->rq_list
);
186 * Release an skbuff after use
189 svc_release_skb(struct svc_rqst
*rqstp
)
191 struct sk_buff
*skb
= rqstp
->rq_skbuff
;
192 struct svc_deferred_req
*dr
= rqstp
->rq_deferred
;
195 rqstp
->rq_skbuff
= NULL
;
197 dprintk("svc: service %p, releasing skb %p\n", rqstp
, skb
);
198 skb_free_datagram(rqstp
->rq_sock
->sk_sk
, skb
);
201 rqstp
->rq_deferred
= NULL
;
207 * Any space to write?
209 static inline unsigned long
210 svc_sock_wspace(struct svc_sock
*svsk
)
214 if (svsk
->sk_sock
->type
== SOCK_STREAM
)
215 wspace
= sk_stream_wspace(svsk
->sk_sk
);
217 wspace
= sock_wspace(svsk
->sk_sk
);
223 * Queue up a socket with data pending. If there are idle nfsd
224 * processes, wake 'em up.
228 svc_sock_enqueue(struct svc_sock
*svsk
)
230 struct svc_serv
*serv
= svsk
->sk_server
;
231 struct svc_pool
*pool
;
232 struct svc_rqst
*rqstp
;
235 if (!(svsk
->sk_flags
&
236 ( (1<<SK_CONN
)|(1<<SK_DATA
)|(1<<SK_CLOSE
)|(1<<SK_DEFERRED
)) ))
238 if (test_bit(SK_DEAD
, &svsk
->sk_flags
))
242 pool
= svc_pool_for_cpu(svsk
->sk_server
, cpu
);
245 spin_lock_bh(&pool
->sp_lock
);
247 if (!list_empty(&pool
->sp_threads
) &&
248 !list_empty(&pool
->sp_sockets
))
250 "svc_sock_enqueue: threads and sockets both waiting??\n");
252 if (test_bit(SK_DEAD
, &svsk
->sk_flags
)) {
253 /* Don't enqueue dead sockets */
254 dprintk("svc: socket %p is dead, not enqueued\n", svsk
->sk_sk
);
258 /* Mark socket as busy. It will remain in this state until the
259 * server has processed all pending data and put the socket back
260 * on the idle list. We update SK_BUSY atomically because
261 * it also guards against trying to enqueue the svc_sock twice.
263 if (test_and_set_bit(SK_BUSY
, &svsk
->sk_flags
)) {
264 /* Don't enqueue socket while already enqueued */
265 dprintk("svc: socket %p busy, not enqueued\n", svsk
->sk_sk
);
268 BUG_ON(svsk
->sk_pool
!= NULL
);
269 svsk
->sk_pool
= pool
;
271 set_bit(SOCK_NOSPACE
, &svsk
->sk_sock
->flags
);
272 if (((atomic_read(&svsk
->sk_reserved
) + serv
->sv_max_mesg
)*2
273 > svc_sock_wspace(svsk
))
274 && !test_bit(SK_CLOSE
, &svsk
->sk_flags
)
275 && !test_bit(SK_CONN
, &svsk
->sk_flags
)) {
276 /* Don't enqueue while not enough space for reply */
277 dprintk("svc: socket %p no space, %d*2 > %ld, not enqueued\n",
278 svsk
->sk_sk
, atomic_read(&svsk
->sk_reserved
)+serv
->sv_max_mesg
,
279 svc_sock_wspace(svsk
));
280 svsk
->sk_pool
= NULL
;
281 clear_bit(SK_BUSY
, &svsk
->sk_flags
);
284 clear_bit(SOCK_NOSPACE
, &svsk
->sk_sock
->flags
);
287 if (!list_empty(&pool
->sp_threads
)) {
288 rqstp
= list_entry(pool
->sp_threads
.next
,
291 dprintk("svc: socket %p served by daemon %p\n",
293 svc_thread_dequeue(pool
, rqstp
);
296 "svc_sock_enqueue: server %p, rq_sock=%p!\n",
297 rqstp
, rqstp
->rq_sock
);
298 rqstp
->rq_sock
= svsk
;
299 atomic_inc(&svsk
->sk_inuse
);
300 rqstp
->rq_reserved
= serv
->sv_max_mesg
;
301 atomic_add(rqstp
->rq_reserved
, &svsk
->sk_reserved
);
302 BUG_ON(svsk
->sk_pool
!= pool
);
303 wake_up(&rqstp
->rq_wait
);
305 dprintk("svc: socket %p put into queue\n", svsk
->sk_sk
);
306 list_add_tail(&svsk
->sk_ready
, &pool
->sp_sockets
);
307 BUG_ON(svsk
->sk_pool
!= pool
);
311 spin_unlock_bh(&pool
->sp_lock
);
315 * Dequeue the first socket. Must be called with the pool->sp_lock held.
317 static inline struct svc_sock
*
318 svc_sock_dequeue(struct svc_pool
*pool
)
320 struct svc_sock
*svsk
;
322 if (list_empty(&pool
->sp_sockets
))
325 svsk
= list_entry(pool
->sp_sockets
.next
,
326 struct svc_sock
, sk_ready
);
327 list_del_init(&svsk
->sk_ready
);
329 dprintk("svc: socket %p dequeued, inuse=%d\n",
330 svsk
->sk_sk
, atomic_read(&svsk
->sk_inuse
));
336 * Having read something from a socket, check whether it
337 * needs to be re-enqueued.
338 * Note: SK_DATA only gets cleared when a read-attempt finds
339 * no (or insufficient) data.
342 svc_sock_received(struct svc_sock
*svsk
)
344 svsk
->sk_pool
= NULL
;
345 clear_bit(SK_BUSY
, &svsk
->sk_flags
);
346 svc_sock_enqueue(svsk
);
351 * svc_reserve - change the space reserved for the reply to a request.
352 * @rqstp: The request in question
353 * @space: new max space to reserve
355 * Each request reserves some space on the output queue of the socket
356 * to make sure the reply fits. This function reduces that reserved
357 * space to be the amount of space used already, plus @space.
360 void svc_reserve(struct svc_rqst
*rqstp
, int space
)
362 space
+= rqstp
->rq_res
.head
[0].iov_len
;
364 if (space
< rqstp
->rq_reserved
) {
365 struct svc_sock
*svsk
= rqstp
->rq_sock
;
366 atomic_sub((rqstp
->rq_reserved
- space
), &svsk
->sk_reserved
);
367 rqstp
->rq_reserved
= space
;
369 svc_sock_enqueue(svsk
);
374 * Release a socket after use.
377 svc_sock_put(struct svc_sock
*svsk
)
379 if (atomic_dec_and_test(&svsk
->sk_inuse
)) {
380 BUG_ON(! test_bit(SK_DEAD
, &svsk
->sk_flags
));
382 dprintk("svc: releasing dead socket\n");
383 if (svsk
->sk_sock
->file
)
384 sockfd_put(svsk
->sk_sock
);
386 sock_release(svsk
->sk_sock
);
387 if (svsk
->sk_info_authunix
!= NULL
)
388 svcauth_unix_info_release(svsk
->sk_info_authunix
);
394 svc_sock_release(struct svc_rqst
*rqstp
)
396 struct svc_sock
*svsk
= rqstp
->rq_sock
;
398 svc_release_skb(rqstp
);
400 svc_free_res_pages(rqstp
);
401 rqstp
->rq_res
.page_len
= 0;
402 rqstp
->rq_res
.page_base
= 0;
405 /* Reset response buffer and release
407 * But first, check that enough space was reserved
408 * for the reply, otherwise we have a bug!
410 if ((rqstp
->rq_res
.len
) > rqstp
->rq_reserved
)
411 printk(KERN_ERR
"RPC request reserved %d but used %d\n",
415 rqstp
->rq_res
.head
[0].iov_len
= 0;
416 svc_reserve(rqstp
, 0);
417 rqstp
->rq_sock
= NULL
;
423 * External function to wake up a server waiting for data
424 * This really only makes sense for services like lockd
425 * which have exactly one thread anyway.
428 svc_wake_up(struct svc_serv
*serv
)
430 struct svc_rqst
*rqstp
;
432 struct svc_pool
*pool
;
434 for (i
= 0; i
< serv
->sv_nrpools
; i
++) {
435 pool
= &serv
->sv_pools
[i
];
437 spin_lock_bh(&pool
->sp_lock
);
438 if (!list_empty(&pool
->sp_threads
)) {
439 rqstp
= list_entry(pool
->sp_threads
.next
,
442 dprintk("svc: daemon %p woken up.\n", rqstp
);
444 svc_thread_dequeue(pool, rqstp);
445 rqstp->rq_sock = NULL;
447 wake_up(&rqstp
->rq_wait
);
449 spin_unlock_bh(&pool
->sp_lock
);
453 union svc_pktinfo_u
{
454 struct in_pktinfo pkti
;
455 struct in6_pktinfo pkti6
;
457 #define SVC_PKTINFO_SPACE \
458 CMSG_SPACE(sizeof(union svc_pktinfo_u))
460 static void svc_set_cmsg_data(struct svc_rqst
*rqstp
, struct cmsghdr
*cmh
)
462 switch (rqstp
->rq_sock
->sk_sk
->sk_family
) {
464 struct in_pktinfo
*pki
= CMSG_DATA(cmh
);
466 cmh
->cmsg_level
= SOL_IP
;
467 cmh
->cmsg_type
= IP_PKTINFO
;
468 pki
->ipi_ifindex
= 0;
469 pki
->ipi_spec_dst
.s_addr
= rqstp
->rq_daddr
.addr
.s_addr
;
470 cmh
->cmsg_len
= CMSG_LEN(sizeof(*pki
));
475 struct in6_pktinfo
*pki
= CMSG_DATA(cmh
);
477 cmh
->cmsg_level
= SOL_IPV6
;
478 cmh
->cmsg_type
= IPV6_PKTINFO
;
479 pki
->ipi6_ifindex
= 0;
480 ipv6_addr_copy(&pki
->ipi6_addr
,
481 &rqstp
->rq_daddr
.addr6
);
482 cmh
->cmsg_len
= CMSG_LEN(sizeof(*pki
));
490 * Generic sendto routine
493 svc_sendto(struct svc_rqst
*rqstp
, struct xdr_buf
*xdr
)
495 struct svc_sock
*svsk
= rqstp
->rq_sock
;
496 struct socket
*sock
= svsk
->sk_sock
;
500 long all
[SVC_PKTINFO_SPACE
/ sizeof(long)];
502 struct cmsghdr
*cmh
= &buffer
.hdr
;
506 struct page
**ppage
= xdr
->pages
;
507 size_t base
= xdr
->page_base
;
508 unsigned int pglen
= xdr
->page_len
;
509 unsigned int flags
= MSG_MORE
;
510 char buf
[RPC_MAX_ADDRBUFLEN
];
514 if (rqstp
->rq_prot
== IPPROTO_UDP
) {
515 struct msghdr msg
= {
516 .msg_name
= &rqstp
->rq_addr
,
517 .msg_namelen
= rqstp
->rq_addrlen
,
519 .msg_controllen
= sizeof(buffer
),
520 .msg_flags
= MSG_MORE
,
523 svc_set_cmsg_data(rqstp
, cmh
);
525 if (sock_sendmsg(sock
, &msg
, 0) < 0)
530 if (slen
== xdr
->head
[0].iov_len
)
532 len
= kernel_sendpage(sock
, rqstp
->rq_respages
[0], 0,
533 xdr
->head
[0].iov_len
, flags
);
534 if (len
!= xdr
->head
[0].iov_len
)
536 slen
-= xdr
->head
[0].iov_len
;
541 size
= PAGE_SIZE
- base
< pglen
? PAGE_SIZE
- base
: pglen
;
545 result
= kernel_sendpage(sock
, *ppage
, base
, size
, flags
);
552 size
= PAGE_SIZE
< pglen
? PAGE_SIZE
: pglen
;
557 if (xdr
->tail
[0].iov_len
) {
558 result
= kernel_sendpage(sock
, rqstp
->rq_respages
[0],
559 ((unsigned long)xdr
->tail
[0].iov_base
)
561 xdr
->tail
[0].iov_len
, 0);
567 dprintk("svc: socket %p sendto([%p %Zu... ], %d) = %d (addr %s)\n",
568 rqstp
->rq_sock
, xdr
->head
[0].iov_base
, xdr
->head
[0].iov_len
,
569 xdr
->len
, len
, svc_print_addr(rqstp
, buf
, sizeof(buf
)));
575 * Report socket names for nfsdfs
577 static int one_sock_name(char *buf
, struct svc_sock
*svsk
)
581 switch(svsk
->sk_sk
->sk_family
) {
583 len
= sprintf(buf
, "ipv4 %s %u.%u.%u.%u %d\n",
584 svsk
->sk_sk
->sk_protocol
==IPPROTO_UDP
?
586 NIPQUAD(inet_sk(svsk
->sk_sk
)->rcv_saddr
),
587 inet_sk(svsk
->sk_sk
)->num
);
590 len
= sprintf(buf
, "*unknown-%d*\n",
591 svsk
->sk_sk
->sk_family
);
597 svc_sock_names(char *buf
, struct svc_serv
*serv
, char *toclose
)
599 struct svc_sock
*svsk
, *closesk
= NULL
;
604 spin_lock_bh(&serv
->sv_lock
);
605 list_for_each_entry(svsk
, &serv
->sv_permsocks
, sk_list
) {
606 int onelen
= one_sock_name(buf
+len
, svsk
);
607 if (toclose
&& strcmp(toclose
, buf
+len
) == 0)
612 spin_unlock_bh(&serv
->sv_lock
);
614 /* Should unregister with portmap, but you cannot
615 * unregister just one protocol...
617 svc_close_socket(closesk
);
622 EXPORT_SYMBOL(svc_sock_names
);
625 * Check input queue length
628 svc_recv_available(struct svc_sock
*svsk
)
630 struct socket
*sock
= svsk
->sk_sock
;
633 err
= kernel_sock_ioctl(sock
, TIOCINQ
, (unsigned long) &avail
);
635 return (err
>= 0)? avail
: err
;
639 * Generic recvfrom routine.
642 svc_recvfrom(struct svc_rqst
*rqstp
, struct kvec
*iov
, int nr
, int buflen
)
644 struct svc_sock
*svsk
= rqstp
->rq_sock
;
645 struct msghdr msg
= {
646 .msg_flags
= MSG_DONTWAIT
,
648 struct sockaddr
*sin
;
651 len
= kernel_recvmsg(svsk
->sk_sock
, &msg
, iov
, nr
, buflen
,
654 /* sock_recvmsg doesn't fill in the name/namelen, so we must..
656 memcpy(&rqstp
->rq_addr
, &svsk
->sk_remote
, svsk
->sk_remotelen
);
657 rqstp
->rq_addrlen
= svsk
->sk_remotelen
;
659 /* Destination address in request is needed for binding the
660 * source address in RPC callbacks later.
662 sin
= (struct sockaddr
*)&svsk
->sk_local
;
663 switch (sin
->sa_family
) {
665 rqstp
->rq_daddr
.addr
= ((struct sockaddr_in
*)sin
)->sin_addr
;
668 rqstp
->rq_daddr
.addr6
= ((struct sockaddr_in6
*)sin
)->sin6_addr
;
672 dprintk("svc: socket %p recvfrom(%p, %Zu) = %d\n",
673 svsk
, iov
[0].iov_base
, iov
[0].iov_len
, len
);
679 * Set socket snd and rcv buffer lengths
682 svc_sock_setbufsize(struct socket
*sock
, unsigned int snd
, unsigned int rcv
)
686 oldfs
= get_fs(); set_fs(KERNEL_DS
);
687 sock_setsockopt(sock
, SOL_SOCKET
, SO_SNDBUF
,
688 (char*)&snd
, sizeof(snd
));
689 sock_setsockopt(sock
, SOL_SOCKET
, SO_RCVBUF
,
690 (char*)&rcv
, sizeof(rcv
));
692 /* sock_setsockopt limits use to sysctl_?mem_max,
693 * which isn't acceptable. Until that is made conditional
694 * on not having CAP_SYS_RESOURCE or similar, we go direct...
695 * DaveM said I could!
698 sock
->sk
->sk_sndbuf
= snd
* 2;
699 sock
->sk
->sk_rcvbuf
= rcv
* 2;
700 sock
->sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
|SOCK_RCVBUF_LOCK
;
701 release_sock(sock
->sk
);
705 * INET callback when data has been received on the socket.
708 svc_udp_data_ready(struct sock
*sk
, int count
)
710 struct svc_sock
*svsk
= (struct svc_sock
*)sk
->sk_user_data
;
713 dprintk("svc: socket %p(inet %p), count=%d, busy=%d\n",
714 svsk
, sk
, count
, test_bit(SK_BUSY
, &svsk
->sk_flags
));
715 set_bit(SK_DATA
, &svsk
->sk_flags
);
716 svc_sock_enqueue(svsk
);
718 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
719 wake_up_interruptible(sk
->sk_sleep
);
723 * INET callback when space is newly available on the socket.
726 svc_write_space(struct sock
*sk
)
728 struct svc_sock
*svsk
= (struct svc_sock
*)(sk
->sk_user_data
);
731 dprintk("svc: socket %p(inet %p), write_space busy=%d\n",
732 svsk
, sk
, test_bit(SK_BUSY
, &svsk
->sk_flags
));
733 svc_sock_enqueue(svsk
);
736 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
)) {
737 dprintk("RPC svc_write_space: someone sleeping on %p\n",
739 wake_up_interruptible(sk
->sk_sleep
);
743 static inline void svc_udp_get_dest_address(struct svc_rqst
*rqstp
,
746 switch (rqstp
->rq_sock
->sk_sk
->sk_family
) {
748 struct in_pktinfo
*pki
= CMSG_DATA(cmh
);
749 rqstp
->rq_daddr
.addr
.s_addr
= pki
->ipi_spec_dst
.s_addr
;
753 struct in6_pktinfo
*pki
= CMSG_DATA(cmh
);
754 ipv6_addr_copy(&rqstp
->rq_daddr
.addr6
, &pki
->ipi6_addr
);
761 * Receive a datagram from a UDP socket.
764 svc_udp_recvfrom(struct svc_rqst
*rqstp
)
766 struct svc_sock
*svsk
= rqstp
->rq_sock
;
767 struct svc_serv
*serv
= svsk
->sk_server
;
771 long all
[SVC_PKTINFO_SPACE
/ sizeof(long)];
773 struct cmsghdr
*cmh
= &buffer
.hdr
;
775 struct msghdr msg
= {
776 .msg_name
= svc_addr(rqstp
),
778 .msg_controllen
= sizeof(buffer
),
779 .msg_flags
= MSG_DONTWAIT
,
782 if (test_and_clear_bit(SK_CHNGBUF
, &svsk
->sk_flags
))
783 /* udp sockets need large rcvbuf as all pending
784 * requests are still in that buffer. sndbuf must
785 * also be large enough that there is enough space
786 * for one reply per thread. We count all threads
787 * rather than threads in a particular pool, which
788 * provides an upper bound on the number of threads
789 * which will access the socket.
791 svc_sock_setbufsize(svsk
->sk_sock
,
792 (serv
->sv_nrthreads
+3) * serv
->sv_max_mesg
,
793 (serv
->sv_nrthreads
+3) * serv
->sv_max_mesg
);
795 if ((rqstp
->rq_deferred
= svc_deferred_dequeue(svsk
))) {
796 svc_sock_received(svsk
);
797 return svc_deferred_recv(rqstp
);
800 if (test_bit(SK_CLOSE
, &svsk
->sk_flags
)) {
801 svc_delete_socket(svsk
);
805 clear_bit(SK_DATA
, &svsk
->sk_flags
);
807 err
= kernel_recvmsg(svsk
->sk_sock
, &msg
, NULL
,
808 0, 0, MSG_PEEK
| MSG_DONTWAIT
);
810 skb
= skb_recv_datagram(svsk
->sk_sk
, 0, 1, &err
);
813 if (err
!= -EAGAIN
) {
814 /* possibly an icmp error */
815 dprintk("svc: recvfrom returned error %d\n", -err
);
816 set_bit(SK_DATA
, &svsk
->sk_flags
);
818 svc_sock_received(svsk
);
821 rqstp
->rq_addrlen
= sizeof(rqstp
->rq_addr
);
822 if (skb
->tstamp
.tv64
== 0) {
823 skb
->tstamp
= ktime_get_real();
824 /* Don't enable netstamp, sunrpc doesn't
825 need that much accuracy */
827 svsk
->sk_sk
->sk_stamp
= skb
->tstamp
;
828 set_bit(SK_DATA
, &svsk
->sk_flags
); /* there may be more data... */
831 * Maybe more packets - kick another thread ASAP.
833 svc_sock_received(svsk
);
835 len
= skb
->len
- sizeof(struct udphdr
);
836 rqstp
->rq_arg
.len
= len
;
838 rqstp
->rq_prot
= IPPROTO_UDP
;
840 if (cmh
->cmsg_level
!= IPPROTO_IP
||
841 cmh
->cmsg_type
!= IP_PKTINFO
) {
843 printk("rpcsvc: received unknown control message:"
845 cmh
->cmsg_level
, cmh
->cmsg_type
);
846 skb_free_datagram(svsk
->sk_sk
, skb
);
849 svc_udp_get_dest_address(rqstp
, cmh
);
851 if (skb_is_nonlinear(skb
)) {
852 /* we have to copy */
854 if (csum_partial_copy_to_xdr(&rqstp
->rq_arg
, skb
)) {
857 skb_free_datagram(svsk
->sk_sk
, skb
);
861 skb_free_datagram(svsk
->sk_sk
, skb
);
863 /* we can use it in-place */
864 rqstp
->rq_arg
.head
[0].iov_base
= skb
->data
+ sizeof(struct udphdr
);
865 rqstp
->rq_arg
.head
[0].iov_len
= len
;
866 if (skb_checksum_complete(skb
)) {
867 skb_free_datagram(svsk
->sk_sk
, skb
);
870 rqstp
->rq_skbuff
= skb
;
873 rqstp
->rq_arg
.page_base
= 0;
874 if (len
<= rqstp
->rq_arg
.head
[0].iov_len
) {
875 rqstp
->rq_arg
.head
[0].iov_len
= len
;
876 rqstp
->rq_arg
.page_len
= 0;
877 rqstp
->rq_respages
= rqstp
->rq_pages
+1;
879 rqstp
->rq_arg
.page_len
= len
- rqstp
->rq_arg
.head
[0].iov_len
;
880 rqstp
->rq_respages
= rqstp
->rq_pages
+ 1 +
881 DIV_ROUND_UP(rqstp
->rq_arg
.page_len
, PAGE_SIZE
);
885 serv
->sv_stats
->netudpcnt
++;
891 svc_udp_sendto(struct svc_rqst
*rqstp
)
895 error
= svc_sendto(rqstp
, &rqstp
->rq_res
);
896 if (error
== -ECONNREFUSED
)
897 /* ICMP error on earlier request. */
898 error
= svc_sendto(rqstp
, &rqstp
->rq_res
);
904 svc_udp_init(struct svc_sock
*svsk
)
909 svsk
->sk_sk
->sk_data_ready
= svc_udp_data_ready
;
910 svsk
->sk_sk
->sk_write_space
= svc_write_space
;
911 svsk
->sk_recvfrom
= svc_udp_recvfrom
;
912 svsk
->sk_sendto
= svc_udp_sendto
;
914 /* initialise setting must have enough space to
915 * receive and respond to one request.
916 * svc_udp_recvfrom will re-adjust if necessary
918 svc_sock_setbufsize(svsk
->sk_sock
,
919 3 * svsk
->sk_server
->sv_max_mesg
,
920 3 * svsk
->sk_server
->sv_max_mesg
);
922 set_bit(SK_DATA
, &svsk
->sk_flags
); /* might have come in before data_ready set up */
923 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
927 /* make sure we get destination address info */
928 svsk
->sk_sock
->ops
->setsockopt(svsk
->sk_sock
, IPPROTO_IP
, IP_PKTINFO
,
929 (char __user
*)&one
, sizeof(one
));
934 * A data_ready event on a listening socket means there's a connection
935 * pending. Do not use state_change as a substitute for it.
938 svc_tcp_listen_data_ready(struct sock
*sk
, int count_unused
)
940 struct svc_sock
*svsk
= (struct svc_sock
*)sk
->sk_user_data
;
942 dprintk("svc: socket %p TCP (listen) state change %d\n",
946 * This callback may called twice when a new connection
947 * is established as a child socket inherits everything
948 * from a parent LISTEN socket.
949 * 1) data_ready method of the parent socket will be called
950 * when one of child sockets become ESTABLISHED.
951 * 2) data_ready method of the child socket may be called
952 * when it receives data before the socket is accepted.
953 * In case of 2, we should ignore it silently.
955 if (sk
->sk_state
== TCP_LISTEN
) {
957 set_bit(SK_CONN
, &svsk
->sk_flags
);
958 svc_sock_enqueue(svsk
);
960 printk("svc: socket %p: no user data\n", sk
);
963 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
964 wake_up_interruptible_all(sk
->sk_sleep
);
968 * A state change on a connected socket means it's dying or dead.
971 svc_tcp_state_change(struct sock
*sk
)
973 struct svc_sock
*svsk
= (struct svc_sock
*)sk
->sk_user_data
;
975 dprintk("svc: socket %p TCP (connected) state change %d (svsk %p)\n",
976 sk
, sk
->sk_state
, sk
->sk_user_data
);
979 printk("svc: socket %p: no user data\n", sk
);
981 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
982 svc_sock_enqueue(svsk
);
984 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
985 wake_up_interruptible_all(sk
->sk_sleep
);
989 svc_tcp_data_ready(struct sock
*sk
, int count
)
991 struct svc_sock
*svsk
= (struct svc_sock
*)sk
->sk_user_data
;
993 dprintk("svc: socket %p TCP data ready (svsk %p)\n",
994 sk
, sk
->sk_user_data
);
996 set_bit(SK_DATA
, &svsk
->sk_flags
);
997 svc_sock_enqueue(svsk
);
999 if (sk
->sk_sleep
&& waitqueue_active(sk
->sk_sleep
))
1000 wake_up_interruptible(sk
->sk_sleep
);
1003 static inline int svc_port_is_privileged(struct sockaddr
*sin
)
1005 switch (sin
->sa_family
) {
1007 return ntohs(((struct sockaddr_in
*)sin
)->sin_port
)
1010 return ntohs(((struct sockaddr_in6
*)sin
)->sin6_port
)
1018 * Accept a TCP connection
1021 svc_tcp_accept(struct svc_sock
*svsk
)
1023 struct sockaddr_storage addr
;
1024 struct sockaddr
*sin
= (struct sockaddr
*) &addr
;
1025 struct svc_serv
*serv
= svsk
->sk_server
;
1026 struct socket
*sock
= svsk
->sk_sock
;
1027 struct socket
*newsock
;
1028 struct svc_sock
*newsvsk
;
1030 char buf
[RPC_MAX_ADDRBUFLEN
];
1032 dprintk("svc: tcp_accept %p sock %p\n", svsk
, sock
);
1036 clear_bit(SK_CONN
, &svsk
->sk_flags
);
1037 err
= kernel_accept(sock
, &newsock
, O_NONBLOCK
);
1040 printk(KERN_WARNING
"%s: no more sockets!\n",
1042 else if (err
!= -EAGAIN
&& net_ratelimit())
1043 printk(KERN_WARNING
"%s: accept failed (err %d)!\n",
1044 serv
->sv_name
, -err
);
1048 set_bit(SK_CONN
, &svsk
->sk_flags
);
1049 svc_sock_enqueue(svsk
);
1051 err
= kernel_getpeername(newsock
, sin
, &slen
);
1053 if (net_ratelimit())
1054 printk(KERN_WARNING
"%s: peername failed (err %d)!\n",
1055 serv
->sv_name
, -err
);
1056 goto failed
; /* aborted connection or whatever */
1059 /* Ideally, we would want to reject connections from unauthorized
1060 * hosts here, but when we get encryption, the IP of the host won't
1061 * tell us anything. For now just warn about unpriv connections.
1063 if (!svc_port_is_privileged(sin
)) {
1064 dprintk(KERN_WARNING
1065 "%s: connect from unprivileged port: %s\n",
1067 __svc_print_addr(sin
, buf
, sizeof(buf
)));
1069 dprintk("%s: connect from %s\n", serv
->sv_name
,
1070 __svc_print_addr(sin
, buf
, sizeof(buf
)));
1072 /* make sure that a write doesn't block forever when
1075 newsock
->sk
->sk_sndtimeo
= HZ
*30;
1077 if (!(newsvsk
= svc_setup_socket(serv
, newsock
, &err
,
1078 (SVC_SOCK_ANONYMOUS
| SVC_SOCK_TEMPORARY
))))
1080 memcpy(&newsvsk
->sk_remote
, sin
, slen
);
1081 newsvsk
->sk_remotelen
= slen
;
1082 err
= kernel_getsockname(newsock
, sin
, &slen
);
1083 if (unlikely(err
< 0)) {
1084 dprintk("svc_tcp_accept: kernel_getsockname error %d\n", -err
);
1085 slen
= offsetof(struct sockaddr
, sa_data
);
1087 memcpy(&newsvsk
->sk_local
, sin
, slen
);
1089 svc_sock_received(newsvsk
);
1091 /* make sure that we don't have too many active connections.
1092 * If we have, something must be dropped.
1094 * There's no point in trying to do random drop here for
1095 * DoS prevention. The NFS clients does 1 reconnect in 15
1096 * seconds. An attacker can easily beat that.
1098 * The only somewhat efficient mechanism would be if drop
1099 * old connections from the same IP first. But right now
1100 * we don't even record the client IP in svc_sock.
1102 if (serv
->sv_tmpcnt
> (serv
->sv_nrthreads
+3)*20) {
1103 struct svc_sock
*svsk
= NULL
;
1104 spin_lock_bh(&serv
->sv_lock
);
1105 if (!list_empty(&serv
->sv_tempsocks
)) {
1106 if (net_ratelimit()) {
1107 /* Try to help the admin */
1108 printk(KERN_NOTICE
"%s: too many open TCP "
1109 "sockets, consider increasing the "
1110 "number of nfsd threads\n",
1113 "%s: last TCP connect from %s\n",
1114 serv
->sv_name
, __svc_print_addr(sin
,
1118 * Always select the oldest socket. It's not fair,
1121 svsk
= list_entry(serv
->sv_tempsocks
.prev
,
1124 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1125 atomic_inc(&svsk
->sk_inuse
);
1127 spin_unlock_bh(&serv
->sv_lock
);
1130 svc_sock_enqueue(svsk
);
1137 serv
->sv_stats
->nettcpconn
++;
1142 sock_release(newsock
);
1147 * Receive data from a TCP socket.
1150 svc_tcp_recvfrom(struct svc_rqst
*rqstp
)
1152 struct svc_sock
*svsk
= rqstp
->rq_sock
;
1153 struct svc_serv
*serv
= svsk
->sk_server
;
1158 dprintk("svc: tcp_recv %p data %d conn %d close %d\n",
1159 svsk
, test_bit(SK_DATA
, &svsk
->sk_flags
),
1160 test_bit(SK_CONN
, &svsk
->sk_flags
),
1161 test_bit(SK_CLOSE
, &svsk
->sk_flags
));
1163 if ((rqstp
->rq_deferred
= svc_deferred_dequeue(svsk
))) {
1164 svc_sock_received(svsk
);
1165 return svc_deferred_recv(rqstp
);
1168 if (test_bit(SK_CLOSE
, &svsk
->sk_flags
)) {
1169 svc_delete_socket(svsk
);
1173 if (svsk
->sk_sk
->sk_state
== TCP_LISTEN
) {
1174 svc_tcp_accept(svsk
);
1175 svc_sock_received(svsk
);
1179 if (test_and_clear_bit(SK_CHNGBUF
, &svsk
->sk_flags
))
1180 /* sndbuf needs to have room for one request
1181 * per thread, otherwise we can stall even when the
1182 * network isn't a bottleneck.
1184 * We count all threads rather than threads in a
1185 * particular pool, which provides an upper bound
1186 * on the number of threads which will access the socket.
1188 * rcvbuf just needs to be able to hold a few requests.
1189 * Normally they will be removed from the queue
1190 * as soon a a complete request arrives.
1192 svc_sock_setbufsize(svsk
->sk_sock
,
1193 (serv
->sv_nrthreads
+3) * serv
->sv_max_mesg
,
1194 3 * serv
->sv_max_mesg
);
1196 clear_bit(SK_DATA
, &svsk
->sk_flags
);
1198 /* Receive data. If we haven't got the record length yet, get
1199 * the next four bytes. Otherwise try to gobble up as much as
1200 * possible up to the complete record length.
1202 if (svsk
->sk_tcplen
< 4) {
1203 unsigned long want
= 4 - svsk
->sk_tcplen
;
1206 iov
.iov_base
= ((char *) &svsk
->sk_reclen
) + svsk
->sk_tcplen
;
1208 if ((len
= svc_recvfrom(rqstp
, &iov
, 1, want
)) < 0)
1210 svsk
->sk_tcplen
+= len
;
1213 dprintk("svc: short recvfrom while reading record length (%d of %lu)\n",
1215 svc_sock_received(svsk
);
1216 return -EAGAIN
; /* record header not complete */
1219 svsk
->sk_reclen
= ntohl(svsk
->sk_reclen
);
1220 if (!(svsk
->sk_reclen
& 0x80000000)) {
1221 /* FIXME: technically, a record can be fragmented,
1222 * and non-terminal fragments will not have the top
1223 * bit set in the fragment length header.
1224 * But apparently no known nfs clients send fragmented
1226 if (net_ratelimit())
1227 printk(KERN_NOTICE
"RPC: bad TCP reclen 0x%08lx"
1228 " (non-terminal)\n",
1229 (unsigned long) svsk
->sk_reclen
);
1232 svsk
->sk_reclen
&= 0x7fffffff;
1233 dprintk("svc: TCP record, %d bytes\n", svsk
->sk_reclen
);
1234 if (svsk
->sk_reclen
> serv
->sv_max_mesg
) {
1235 if (net_ratelimit())
1236 printk(KERN_NOTICE
"RPC: bad TCP reclen 0x%08lx"
1238 (unsigned long) svsk
->sk_reclen
);
1243 /* Check whether enough data is available */
1244 len
= svc_recv_available(svsk
);
1248 if (len
< svsk
->sk_reclen
) {
1249 dprintk("svc: incomplete TCP record (%d of %d)\n",
1250 len
, svsk
->sk_reclen
);
1251 svc_sock_received(svsk
);
1252 return -EAGAIN
; /* record not complete */
1254 len
= svsk
->sk_reclen
;
1255 set_bit(SK_DATA
, &svsk
->sk_flags
);
1257 vec
= rqstp
->rq_vec
;
1258 vec
[0] = rqstp
->rq_arg
.head
[0];
1261 while (vlen
< len
) {
1262 vec
[pnum
].iov_base
= page_address(rqstp
->rq_pages
[pnum
]);
1263 vec
[pnum
].iov_len
= PAGE_SIZE
;
1267 rqstp
->rq_respages
= &rqstp
->rq_pages
[pnum
];
1269 /* Now receive data */
1270 len
= svc_recvfrom(rqstp
, vec
, pnum
, len
);
1274 dprintk("svc: TCP complete record (%d bytes)\n", len
);
1275 rqstp
->rq_arg
.len
= len
;
1276 rqstp
->rq_arg
.page_base
= 0;
1277 if (len
<= rqstp
->rq_arg
.head
[0].iov_len
) {
1278 rqstp
->rq_arg
.head
[0].iov_len
= len
;
1279 rqstp
->rq_arg
.page_len
= 0;
1281 rqstp
->rq_arg
.page_len
= len
- rqstp
->rq_arg
.head
[0].iov_len
;
1284 rqstp
->rq_skbuff
= NULL
;
1285 rqstp
->rq_prot
= IPPROTO_TCP
;
1287 /* Reset TCP read info */
1288 svsk
->sk_reclen
= 0;
1289 svsk
->sk_tcplen
= 0;
1291 svc_sock_received(svsk
);
1293 serv
->sv_stats
->nettcpcnt
++;
1298 svc_delete_socket(svsk
);
1302 if (len
== -EAGAIN
) {
1303 dprintk("RPC: TCP recvfrom got EAGAIN\n");
1304 svc_sock_received(svsk
);
1306 printk(KERN_NOTICE
"%s: recvfrom returned errno %d\n",
1307 svsk
->sk_server
->sv_name
, -len
);
1315 * Send out data on TCP socket.
1318 svc_tcp_sendto(struct svc_rqst
*rqstp
)
1320 struct xdr_buf
*xbufp
= &rqstp
->rq_res
;
1324 /* Set up the first element of the reply kvec.
1325 * Any other kvecs that may be in use have been taken
1326 * care of by the server implementation itself.
1328 reclen
= htonl(0x80000000|((xbufp
->len
) - 4));
1329 memcpy(xbufp
->head
[0].iov_base
, &reclen
, 4);
1331 if (test_bit(SK_DEAD
, &rqstp
->rq_sock
->sk_flags
))
1334 sent
= svc_sendto(rqstp
, &rqstp
->rq_res
);
1335 if (sent
!= xbufp
->len
) {
1336 printk(KERN_NOTICE
"rpc-srv/tcp: %s: %s %d when sending %d bytes - shutting down socket\n",
1337 rqstp
->rq_sock
->sk_server
->sv_name
,
1338 (sent
<0)?"got error":"sent only",
1340 set_bit(SK_CLOSE
, &rqstp
->rq_sock
->sk_flags
);
1341 svc_sock_enqueue(rqstp
->rq_sock
);
1348 svc_tcp_init(struct svc_sock
*svsk
)
1350 struct sock
*sk
= svsk
->sk_sk
;
1351 struct tcp_sock
*tp
= tcp_sk(sk
);
1353 svsk
->sk_recvfrom
= svc_tcp_recvfrom
;
1354 svsk
->sk_sendto
= svc_tcp_sendto
;
1356 if (sk
->sk_state
== TCP_LISTEN
) {
1357 dprintk("setting up TCP socket for listening\n");
1358 sk
->sk_data_ready
= svc_tcp_listen_data_ready
;
1359 set_bit(SK_CONN
, &svsk
->sk_flags
);
1361 dprintk("setting up TCP socket for reading\n");
1362 sk
->sk_state_change
= svc_tcp_state_change
;
1363 sk
->sk_data_ready
= svc_tcp_data_ready
;
1364 sk
->sk_write_space
= svc_write_space
;
1366 svsk
->sk_reclen
= 0;
1367 svsk
->sk_tcplen
= 0;
1369 tp
->nonagle
= 1; /* disable Nagle's algorithm */
1371 /* initialise setting must have enough space to
1372 * receive and respond to one request.
1373 * svc_tcp_recvfrom will re-adjust if necessary
1375 svc_sock_setbufsize(svsk
->sk_sock
,
1376 3 * svsk
->sk_server
->sv_max_mesg
,
1377 3 * svsk
->sk_server
->sv_max_mesg
);
1379 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
1380 set_bit(SK_DATA
, &svsk
->sk_flags
);
1381 if (sk
->sk_state
!= TCP_ESTABLISHED
)
1382 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1387 svc_sock_update_bufs(struct svc_serv
*serv
)
1390 * The number of server threads has changed. Update
1391 * rcvbuf and sndbuf accordingly on all sockets
1393 struct list_head
*le
;
1395 spin_lock_bh(&serv
->sv_lock
);
1396 list_for_each(le
, &serv
->sv_permsocks
) {
1397 struct svc_sock
*svsk
=
1398 list_entry(le
, struct svc_sock
, sk_list
);
1399 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
1401 list_for_each(le
, &serv
->sv_tempsocks
) {
1402 struct svc_sock
*svsk
=
1403 list_entry(le
, struct svc_sock
, sk_list
);
1404 set_bit(SK_CHNGBUF
, &svsk
->sk_flags
);
1406 spin_unlock_bh(&serv
->sv_lock
);
1410 * Receive the next request on any socket. This code is carefully
1411 * organised not to touch any cachelines in the shared svc_serv
1412 * structure, only cachelines in the local svc_pool.
1415 svc_recv(struct svc_rqst
*rqstp
, long timeout
)
1417 struct svc_sock
*svsk
= NULL
;
1418 struct svc_serv
*serv
= rqstp
->rq_server
;
1419 struct svc_pool
*pool
= rqstp
->rq_pool
;
1422 struct xdr_buf
*arg
;
1423 DECLARE_WAITQUEUE(wait
, current
);
1425 dprintk("svc: server %p waiting for data (to = %ld)\n",
1430 "svc_recv: service %p, socket not NULL!\n",
1432 if (waitqueue_active(&rqstp
->rq_wait
))
1434 "svc_recv: service %p, wait queue active!\n",
1438 /* now allocate needed pages. If we get a failure, sleep briefly */
1439 pages
= (serv
->sv_max_mesg
+ PAGE_SIZE
) / PAGE_SIZE
;
1440 for (i
=0; i
< pages
; i
++)
1441 while (rqstp
->rq_pages
[i
] == NULL
) {
1442 struct page
*p
= alloc_page(GFP_KERNEL
);
1444 schedule_timeout_uninterruptible(msecs_to_jiffies(500));
1445 rqstp
->rq_pages
[i
] = p
;
1447 rqstp
->rq_pages
[i
++] = NULL
; /* this might be seen in nfs_read_actor */
1448 BUG_ON(pages
>= RPCSVC_MAXPAGES
);
1450 /* Make arg->head point to first page and arg->pages point to rest */
1451 arg
= &rqstp
->rq_arg
;
1452 arg
->head
[0].iov_base
= page_address(rqstp
->rq_pages
[0]);
1453 arg
->head
[0].iov_len
= PAGE_SIZE
;
1454 arg
->pages
= rqstp
->rq_pages
+ 1;
1456 /* save at least one page for response */
1457 arg
->page_len
= (pages
-2)*PAGE_SIZE
;
1458 arg
->len
= (pages
-1)*PAGE_SIZE
;
1459 arg
->tail
[0].iov_len
= 0;
1466 spin_lock_bh(&pool
->sp_lock
);
1467 if ((svsk
= svc_sock_dequeue(pool
)) != NULL
) {
1468 rqstp
->rq_sock
= svsk
;
1469 atomic_inc(&svsk
->sk_inuse
);
1470 rqstp
->rq_reserved
= serv
->sv_max_mesg
;
1471 atomic_add(rqstp
->rq_reserved
, &svsk
->sk_reserved
);
1473 /* No data pending. Go to sleep */
1474 svc_thread_enqueue(pool
, rqstp
);
1477 * We have to be able to interrupt this wait
1478 * to bring down the daemons ...
1480 set_current_state(TASK_INTERRUPTIBLE
);
1481 add_wait_queue(&rqstp
->rq_wait
, &wait
);
1482 spin_unlock_bh(&pool
->sp_lock
);
1484 schedule_timeout(timeout
);
1488 spin_lock_bh(&pool
->sp_lock
);
1489 remove_wait_queue(&rqstp
->rq_wait
, &wait
);
1491 if (!(svsk
= rqstp
->rq_sock
)) {
1492 svc_thread_dequeue(pool
, rqstp
);
1493 spin_unlock_bh(&pool
->sp_lock
);
1494 dprintk("svc: server %p, no data yet\n", rqstp
);
1495 return signalled()? -EINTR
: -EAGAIN
;
1498 spin_unlock_bh(&pool
->sp_lock
);
1500 dprintk("svc: server %p, pool %u, socket %p, inuse=%d\n",
1501 rqstp
, pool
->sp_id
, svsk
, atomic_read(&svsk
->sk_inuse
));
1502 len
= svsk
->sk_recvfrom(rqstp
);
1503 dprintk("svc: got len=%d\n", len
);
1505 /* No data, incomplete (TCP) read, or accept() */
1506 if (len
== 0 || len
== -EAGAIN
) {
1507 rqstp
->rq_res
.len
= 0;
1508 svc_sock_release(rqstp
);
1511 svsk
->sk_lastrecv
= get_seconds();
1512 clear_bit(SK_OLD
, &svsk
->sk_flags
);
1514 rqstp
->rq_secure
= svc_port_is_privileged(svc_addr(rqstp
));
1515 rqstp
->rq_chandle
.defer
= svc_defer
;
1518 serv
->sv_stats
->netcnt
++;
1526 svc_drop(struct svc_rqst
*rqstp
)
1528 dprintk("svc: socket %p dropped request\n", rqstp
->rq_sock
);
1529 svc_sock_release(rqstp
);
1533 * Return reply to client.
1536 svc_send(struct svc_rqst
*rqstp
)
1538 struct svc_sock
*svsk
;
1542 if ((svsk
= rqstp
->rq_sock
) == NULL
) {
1543 printk(KERN_WARNING
"NULL socket pointer in %s:%d\n",
1544 __FILE__
, __LINE__
);
1548 /* release the receive skb before sending the reply */
1549 svc_release_skb(rqstp
);
1551 /* calculate over-all length */
1552 xb
= & rqstp
->rq_res
;
1553 xb
->len
= xb
->head
[0].iov_len
+
1555 xb
->tail
[0].iov_len
;
1557 /* Grab svsk->sk_mutex to serialize outgoing data. */
1558 mutex_lock(&svsk
->sk_mutex
);
1559 if (test_bit(SK_DEAD
, &svsk
->sk_flags
))
1562 len
= svsk
->sk_sendto(rqstp
);
1563 mutex_unlock(&svsk
->sk_mutex
);
1564 svc_sock_release(rqstp
);
1566 if (len
== -ECONNREFUSED
|| len
== -ENOTCONN
|| len
== -EAGAIN
)
1572 * Timer function to close old temporary sockets, using
1573 * a mark-and-sweep algorithm.
1576 svc_age_temp_sockets(unsigned long closure
)
1578 struct svc_serv
*serv
= (struct svc_serv
*)closure
;
1579 struct svc_sock
*svsk
;
1580 struct list_head
*le
, *next
;
1581 LIST_HEAD(to_be_aged
);
1583 dprintk("svc_age_temp_sockets\n");
1585 if (!spin_trylock_bh(&serv
->sv_lock
)) {
1586 /* busy, try again 1 sec later */
1587 dprintk("svc_age_temp_sockets: busy\n");
1588 mod_timer(&serv
->sv_temptimer
, jiffies
+ HZ
);
1592 list_for_each_safe(le
, next
, &serv
->sv_tempsocks
) {
1593 svsk
= list_entry(le
, struct svc_sock
, sk_list
);
1595 if (!test_and_set_bit(SK_OLD
, &svsk
->sk_flags
))
1597 if (atomic_read(&svsk
->sk_inuse
) > 1 || test_bit(SK_BUSY
, &svsk
->sk_flags
))
1599 atomic_inc(&svsk
->sk_inuse
);
1600 list_move(le
, &to_be_aged
);
1601 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1602 set_bit(SK_DETACHED
, &svsk
->sk_flags
);
1604 spin_unlock_bh(&serv
->sv_lock
);
1606 while (!list_empty(&to_be_aged
)) {
1607 le
= to_be_aged
.next
;
1608 /* fiddling the sk_list node is safe 'cos we're SK_DETACHED */
1610 svsk
= list_entry(le
, struct svc_sock
, sk_list
);
1612 dprintk("queuing svsk %p for closing, %lu seconds old\n",
1613 svsk
, get_seconds() - svsk
->sk_lastrecv
);
1615 /* a thread will dequeue and close it soon */
1616 svc_sock_enqueue(svsk
);
1620 mod_timer(&serv
->sv_temptimer
, jiffies
+ svc_conn_age_period
* HZ
);
1624 * Initialize socket for RPC use and create svc_sock struct
1625 * XXX: May want to setsockopt SO_SNDBUF and SO_RCVBUF.
1627 static struct svc_sock
*svc_setup_socket(struct svc_serv
*serv
,
1628 struct socket
*sock
,
1629 int *errp
, int flags
)
1631 struct svc_sock
*svsk
;
1633 int pmap_register
= !(flags
& SVC_SOCK_ANONYMOUS
);
1634 int is_temporary
= flags
& SVC_SOCK_TEMPORARY
;
1636 dprintk("svc: svc_setup_socket %p\n", sock
);
1637 if (!(svsk
= kzalloc(sizeof(*svsk
), GFP_KERNEL
))) {
1644 /* Register socket with portmapper */
1645 if (*errp
>= 0 && pmap_register
)
1646 *errp
= svc_register(serv
, inet
->sk_protocol
,
1647 ntohs(inet_sk(inet
)->sport
));
1654 set_bit(SK_BUSY
, &svsk
->sk_flags
);
1655 inet
->sk_user_data
= svsk
;
1656 svsk
->sk_sock
= sock
;
1658 svsk
->sk_ostate
= inet
->sk_state_change
;
1659 svsk
->sk_odata
= inet
->sk_data_ready
;
1660 svsk
->sk_owspace
= inet
->sk_write_space
;
1661 svsk
->sk_server
= serv
;
1662 atomic_set(&svsk
->sk_inuse
, 1);
1663 svsk
->sk_lastrecv
= get_seconds();
1664 spin_lock_init(&svsk
->sk_lock
);
1665 INIT_LIST_HEAD(&svsk
->sk_deferred
);
1666 INIT_LIST_HEAD(&svsk
->sk_ready
);
1667 mutex_init(&svsk
->sk_mutex
);
1669 /* Initialize the socket */
1670 if (sock
->type
== SOCK_DGRAM
)
1675 spin_lock_bh(&serv
->sv_lock
);
1677 set_bit(SK_TEMP
, &svsk
->sk_flags
);
1678 list_add(&svsk
->sk_list
, &serv
->sv_tempsocks
);
1680 if (serv
->sv_temptimer
.function
== NULL
) {
1681 /* setup timer to age temp sockets */
1682 setup_timer(&serv
->sv_temptimer
, svc_age_temp_sockets
,
1683 (unsigned long)serv
);
1684 mod_timer(&serv
->sv_temptimer
,
1685 jiffies
+ svc_conn_age_period
* HZ
);
1688 clear_bit(SK_TEMP
, &svsk
->sk_flags
);
1689 list_add(&svsk
->sk_list
, &serv
->sv_permsocks
);
1691 spin_unlock_bh(&serv
->sv_lock
);
1693 dprintk("svc: svc_setup_socket created %p (inet %p)\n",
1699 int svc_addsock(struct svc_serv
*serv
,
1705 struct socket
*so
= sockfd_lookup(fd
, &err
);
1706 struct svc_sock
*svsk
= NULL
;
1710 if (so
->sk
->sk_family
!= AF_INET
)
1711 err
= -EAFNOSUPPORT
;
1712 else if (so
->sk
->sk_protocol
!= IPPROTO_TCP
&&
1713 so
->sk
->sk_protocol
!= IPPROTO_UDP
)
1714 err
= -EPROTONOSUPPORT
;
1715 else if (so
->state
> SS_UNCONNECTED
)
1718 svsk
= svc_setup_socket(serv
, so
, &err
, SVC_SOCK_DEFAULTS
);
1720 svc_sock_received(svsk
);
1728 if (proto
) *proto
= so
->sk
->sk_protocol
;
1729 return one_sock_name(name_return
, svsk
);
1731 EXPORT_SYMBOL_GPL(svc_addsock
);
1734 * Create socket for RPC service.
1736 static int svc_create_socket(struct svc_serv
*serv
, int protocol
,
1737 struct sockaddr
*sin
, int len
, int flags
)
1739 struct svc_sock
*svsk
;
1740 struct socket
*sock
;
1743 char buf
[RPC_MAX_ADDRBUFLEN
];
1745 dprintk("svc: svc_create_socket(%s, %d, %s)\n",
1746 serv
->sv_program
->pg_name
, protocol
,
1747 __svc_print_addr(sin
, buf
, sizeof(buf
)));
1749 if (protocol
!= IPPROTO_UDP
&& protocol
!= IPPROTO_TCP
) {
1750 printk(KERN_WARNING
"svc: only UDP and TCP "
1751 "sockets supported\n");
1754 type
= (protocol
== IPPROTO_UDP
)? SOCK_DGRAM
: SOCK_STREAM
;
1756 error
= sock_create_kern(sin
->sa_family
, type
, protocol
, &sock
);
1760 svc_reclassify_socket(sock
);
1762 if (type
== SOCK_STREAM
)
1763 sock
->sk
->sk_reuse
= 1; /* allow address reuse */
1764 error
= kernel_bind(sock
, sin
, len
);
1768 if (protocol
== IPPROTO_TCP
) {
1769 if ((error
= kernel_listen(sock
, 64)) < 0)
1773 if ((svsk
= svc_setup_socket(serv
, sock
, &error
, flags
)) != NULL
) {
1774 svc_sock_received(svsk
);
1775 return ntohs(inet_sk(svsk
->sk_sk
)->sport
);
1779 dprintk("svc: svc_create_socket error = %d\n", -error
);
1785 * Remove a dead socket
1788 svc_delete_socket(struct svc_sock
*svsk
)
1790 struct svc_serv
*serv
;
1793 dprintk("svc: svc_delete_socket(%p)\n", svsk
);
1795 serv
= svsk
->sk_server
;
1798 sk
->sk_state_change
= svsk
->sk_ostate
;
1799 sk
->sk_data_ready
= svsk
->sk_odata
;
1800 sk
->sk_write_space
= svsk
->sk_owspace
;
1802 spin_lock_bh(&serv
->sv_lock
);
1804 if (!test_and_set_bit(SK_DETACHED
, &svsk
->sk_flags
))
1805 list_del_init(&svsk
->sk_list
);
1807 * We used to delete the svc_sock from whichever list
1808 * it's sk_ready node was on, but we don't actually
1809 * need to. This is because the only time we're called
1810 * while still attached to a queue, the queue itself
1811 * is about to be destroyed (in svc_destroy).
1813 if (!test_and_set_bit(SK_DEAD
, &svsk
->sk_flags
)) {
1814 BUG_ON(atomic_read(&svsk
->sk_inuse
)<2);
1815 atomic_dec(&svsk
->sk_inuse
);
1816 if (test_bit(SK_TEMP
, &svsk
->sk_flags
))
1820 spin_unlock_bh(&serv
->sv_lock
);
1823 static void svc_close_socket(struct svc_sock
*svsk
)
1825 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1826 if (test_and_set_bit(SK_BUSY
, &svsk
->sk_flags
))
1827 /* someone else will have to effect the close */
1830 atomic_inc(&svsk
->sk_inuse
);
1831 svc_delete_socket(svsk
);
1832 clear_bit(SK_BUSY
, &svsk
->sk_flags
);
1836 void svc_force_close_socket(struct svc_sock
*svsk
)
1838 set_bit(SK_CLOSE
, &svsk
->sk_flags
);
1839 if (test_bit(SK_BUSY
, &svsk
->sk_flags
)) {
1840 /* Waiting to be processed, but no threads left,
1841 * So just remove it from the waiting list
1843 list_del_init(&svsk
->sk_ready
);
1844 clear_bit(SK_BUSY
, &svsk
->sk_flags
);
1846 svc_close_socket(svsk
);
1850 * svc_makesock - Make a socket for nfsd and lockd
1851 * @serv: RPC server structure
1852 * @protocol: transport protocol to use
1853 * @port: port to use
1854 * @flags: requested socket characteristics
1857 int svc_makesock(struct svc_serv
*serv
, int protocol
, unsigned short port
,
1860 struct sockaddr_in sin
= {
1861 .sin_family
= AF_INET
,
1862 .sin_addr
.s_addr
= INADDR_ANY
,
1863 .sin_port
= htons(port
),
1866 dprintk("svc: creating socket proto = %d\n", protocol
);
1867 return svc_create_socket(serv
, protocol
, (struct sockaddr
*) &sin
,
1868 sizeof(sin
), flags
);
1872 * Handle defer and revisit of requests
1875 static void svc_revisit(struct cache_deferred_req
*dreq
, int too_many
)
1877 struct svc_deferred_req
*dr
= container_of(dreq
, struct svc_deferred_req
, handle
);
1878 struct svc_sock
*svsk
;
1881 svc_sock_put(dr
->svsk
);
1885 dprintk("revisit queued\n");
1888 spin_lock(&svsk
->sk_lock
);
1889 list_add(&dr
->handle
.recent
, &svsk
->sk_deferred
);
1890 spin_unlock(&svsk
->sk_lock
);
1891 set_bit(SK_DEFERRED
, &svsk
->sk_flags
);
1892 svc_sock_enqueue(svsk
);
1896 static struct cache_deferred_req
*
1897 svc_defer(struct cache_req
*req
)
1899 struct svc_rqst
*rqstp
= container_of(req
, struct svc_rqst
, rq_chandle
);
1900 int size
= sizeof(struct svc_deferred_req
) + (rqstp
->rq_arg
.len
);
1901 struct svc_deferred_req
*dr
;
1903 if (rqstp
->rq_arg
.page_len
)
1904 return NULL
; /* if more than a page, give up FIXME */
1905 if (rqstp
->rq_deferred
) {
1906 dr
= rqstp
->rq_deferred
;
1907 rqstp
->rq_deferred
= NULL
;
1909 int skip
= rqstp
->rq_arg
.len
- rqstp
->rq_arg
.head
[0].iov_len
;
1910 /* FIXME maybe discard if size too large */
1911 dr
= kmalloc(size
, GFP_KERNEL
);
1915 dr
->handle
.owner
= rqstp
->rq_server
;
1916 dr
->prot
= rqstp
->rq_prot
;
1917 memcpy(&dr
->addr
, &rqstp
->rq_addr
, rqstp
->rq_addrlen
);
1918 dr
->addrlen
= rqstp
->rq_addrlen
;
1919 dr
->daddr
= rqstp
->rq_daddr
;
1920 dr
->argslen
= rqstp
->rq_arg
.len
>> 2;
1921 memcpy(dr
->args
, rqstp
->rq_arg
.head
[0].iov_base
-skip
, dr
->argslen
<<2);
1923 atomic_inc(&rqstp
->rq_sock
->sk_inuse
);
1924 dr
->svsk
= rqstp
->rq_sock
;
1926 dr
->handle
.revisit
= svc_revisit
;
1931 * recv data from a deferred request into an active one
1933 static int svc_deferred_recv(struct svc_rqst
*rqstp
)
1935 struct svc_deferred_req
*dr
= rqstp
->rq_deferred
;
1937 rqstp
->rq_arg
.head
[0].iov_base
= dr
->args
;
1938 rqstp
->rq_arg
.head
[0].iov_len
= dr
->argslen
<<2;
1939 rqstp
->rq_arg
.page_len
= 0;
1940 rqstp
->rq_arg
.len
= dr
->argslen
<<2;
1941 rqstp
->rq_prot
= dr
->prot
;
1942 memcpy(&rqstp
->rq_addr
, &dr
->addr
, dr
->addrlen
);
1943 rqstp
->rq_addrlen
= dr
->addrlen
;
1944 rqstp
->rq_daddr
= dr
->daddr
;
1945 rqstp
->rq_respages
= rqstp
->rq_pages
;
1946 return dr
->argslen
<<2;
1950 static struct svc_deferred_req
*svc_deferred_dequeue(struct svc_sock
*svsk
)
1952 struct svc_deferred_req
*dr
= NULL
;
1954 if (!test_bit(SK_DEFERRED
, &svsk
->sk_flags
))
1956 spin_lock(&svsk
->sk_lock
);
1957 clear_bit(SK_DEFERRED
, &svsk
->sk_flags
);
1958 if (!list_empty(&svsk
->sk_deferred
)) {
1959 dr
= list_entry(svsk
->sk_deferred
.next
,
1960 struct svc_deferred_req
,
1962 list_del_init(&dr
->handle
.recent
);
1963 set_bit(SK_DEFERRED
, &svsk
->sk_flags
);
1965 spin_unlock(&svsk
->sk_lock
);