2 * SuperH On-Chip RTC Support
4 * Copyright (C) 2006 - 2009 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
6 * Copyright (C) 2008 Angelo Castello
8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
31 #define DRV_NAME "sh-rtc"
32 #define DRV_VERSION "0.2.3"
34 #define RTC_REG(r) ((r) * rtc_reg_size)
36 #define R64CNT RTC_REG(0)
38 #define RSECCNT RTC_REG(1) /* RTC sec */
39 #define RMINCNT RTC_REG(2) /* RTC min */
40 #define RHRCNT RTC_REG(3) /* RTC hour */
41 #define RWKCNT RTC_REG(4) /* RTC week */
42 #define RDAYCNT RTC_REG(5) /* RTC day */
43 #define RMONCNT RTC_REG(6) /* RTC month */
44 #define RYRCNT RTC_REG(7) /* RTC year */
45 #define RSECAR RTC_REG(8) /* ALARM sec */
46 #define RMINAR RTC_REG(9) /* ALARM min */
47 #define RHRAR RTC_REG(10) /* ALARM hour */
48 #define RWKAR RTC_REG(11) /* ALARM week */
49 #define RDAYAR RTC_REG(12) /* ALARM day */
50 #define RMONAR RTC_REG(13) /* ALARM month */
51 #define RCR1 RTC_REG(14) /* Control */
52 #define RCR2 RTC_REG(15) /* Control */
55 * Note on RYRAR and RCR3: Up until this point most of the register
56 * definitions are consistent across all of the available parts. However,
57 * the placement of the optional RYRAR and RCR3 (the RYRAR control
58 * register used to control RYRCNT/RYRAR compare) varies considerably
59 * across various parts, occasionally being mapped in to a completely
60 * unrelated address space. For proper RYRAR support a separate resource
61 * would have to be handed off, but as this is purely optional in
62 * practice, we simply opt not to support it, thereby keeping the code
63 * quite a bit more simplified.
66 /* ALARM Bits - or with BCD encoded value */
67 #define AR_ENB 0x80 /* Enable for alarm cmp */
70 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
71 #define PF_COUNT 0x200 /* Half periodic counter */
72 #define PF_OXS 0x400 /* Periodic One x Second */
73 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
77 #define RCR1_CF 0x80 /* Carry Flag */
78 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
79 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
80 #define RCR1_AF 0x01 /* Alarm Flag */
83 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
84 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
85 #define RCR2_RTCEN 0x08 /* ENable RTC */
86 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
87 #define RCR2_RESET 0x02 /* Reset bit */
88 #define RCR2_START 0x01 /* Start bit */
91 void __iomem
*regbase
;
92 unsigned long regsize
;
98 struct rtc_device
*rtc_dev
;
100 unsigned long capabilities
; /* See asm/rtc.h for cap bits */
101 unsigned short periodic_freq
;
104 static int __sh_rtc_interrupt(struct sh_rtc
*rtc
)
106 unsigned int tmp
, pending
;
108 tmp
= readb(rtc
->regbase
+ RCR1
);
109 pending
= tmp
& RCR1_CF
;
111 writeb(tmp
, rtc
->regbase
+ RCR1
);
113 /* Users have requested One x Second IRQ */
114 if (pending
&& rtc
->periodic_freq
& PF_OXS
)
115 rtc_update_irq(rtc
->rtc_dev
, 1, RTC_UF
| RTC_IRQF
);
120 static int __sh_rtc_alarm(struct sh_rtc
*rtc
)
122 unsigned int tmp
, pending
;
124 tmp
= readb(rtc
->regbase
+ RCR1
);
125 pending
= tmp
& RCR1_AF
;
126 tmp
&= ~(RCR1_AF
| RCR1_AIE
);
127 writeb(tmp
, rtc
->regbase
+ RCR1
);
130 rtc_update_irq(rtc
->rtc_dev
, 1, RTC_AF
| RTC_IRQF
);
135 static int __sh_rtc_periodic(struct sh_rtc
*rtc
)
137 struct rtc_device
*rtc_dev
= rtc
->rtc_dev
;
138 struct rtc_task
*irq_task
;
139 unsigned int tmp
, pending
;
141 tmp
= readb(rtc
->regbase
+ RCR2
);
142 pending
= tmp
& RCR2_PEF
;
144 writeb(tmp
, rtc
->regbase
+ RCR2
);
149 /* Half period enabled than one skipped and the next notified */
150 if ((rtc
->periodic_freq
& PF_HP
) && (rtc
->periodic_freq
& PF_COUNT
))
151 rtc
->periodic_freq
&= ~PF_COUNT
;
153 if (rtc
->periodic_freq
& PF_HP
)
154 rtc
->periodic_freq
|= PF_COUNT
;
155 if (rtc
->periodic_freq
& PF_KOU
) {
156 spin_lock(&rtc_dev
->irq_task_lock
);
157 irq_task
= rtc_dev
->irq_task
;
159 irq_task
->func(irq_task
->private_data
);
160 spin_unlock(&rtc_dev
->irq_task_lock
);
162 rtc_update_irq(rtc
->rtc_dev
, 1, RTC_PF
| RTC_IRQF
);
168 static irqreturn_t
sh_rtc_interrupt(int irq
, void *dev_id
)
170 struct sh_rtc
*rtc
= dev_id
;
173 spin_lock(&rtc
->lock
);
174 ret
= __sh_rtc_interrupt(rtc
);
175 spin_unlock(&rtc
->lock
);
177 return IRQ_RETVAL(ret
);
180 static irqreturn_t
sh_rtc_alarm(int irq
, void *dev_id
)
182 struct sh_rtc
*rtc
= dev_id
;
185 spin_lock(&rtc
->lock
);
186 ret
= __sh_rtc_alarm(rtc
);
187 spin_unlock(&rtc
->lock
);
189 return IRQ_RETVAL(ret
);
192 static irqreturn_t
sh_rtc_periodic(int irq
, void *dev_id
)
194 struct sh_rtc
*rtc
= dev_id
;
197 spin_lock(&rtc
->lock
);
198 ret
= __sh_rtc_periodic(rtc
);
199 spin_unlock(&rtc
->lock
);
201 return IRQ_RETVAL(ret
);
204 static irqreturn_t
sh_rtc_shared(int irq
, void *dev_id
)
206 struct sh_rtc
*rtc
= dev_id
;
209 spin_lock(&rtc
->lock
);
210 ret
= __sh_rtc_interrupt(rtc
);
211 ret
|= __sh_rtc_alarm(rtc
);
212 ret
|= __sh_rtc_periodic(rtc
);
213 spin_unlock(&rtc
->lock
);
215 return IRQ_RETVAL(ret
);
218 static int sh_rtc_irq_set_state(struct device
*dev
, int enable
)
220 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
223 spin_lock_irq(&rtc
->lock
);
225 tmp
= readb(rtc
->regbase
+ RCR2
);
228 rtc
->periodic_freq
|= PF_KOU
;
229 tmp
&= ~RCR2_PEF
; /* Clear PES bit */
230 tmp
|= (rtc
->periodic_freq
& ~PF_HP
); /* Set PES2-0 */
232 rtc
->periodic_freq
&= ~PF_KOU
;
233 tmp
&= ~(RCR2_PESMASK
| RCR2_PEF
);
236 writeb(tmp
, rtc
->regbase
+ RCR2
);
238 spin_unlock_irq(&rtc
->lock
);
243 static int sh_rtc_irq_set_freq(struct device
*dev
, int freq
)
245 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
248 spin_lock_irq(&rtc
->lock
);
249 tmp
= rtc
->periodic_freq
& PF_MASK
;
253 rtc
->periodic_freq
= 0x00;
256 rtc
->periodic_freq
= 0x60;
259 rtc
->periodic_freq
= 0x50;
262 rtc
->periodic_freq
= 0x40;
265 rtc
->periodic_freq
= 0x30 | PF_HP
;
268 rtc
->periodic_freq
= 0x30;
271 rtc
->periodic_freq
= 0x20 | PF_HP
;
274 rtc
->periodic_freq
= 0x20;
277 rtc
->periodic_freq
= 0x10 | PF_HP
;
280 rtc
->periodic_freq
= 0x10;
287 rtc
->periodic_freq
|= tmp
;
289 spin_unlock_irq(&rtc
->lock
);
293 static inline void sh_rtc_setaie(struct device
*dev
, unsigned int enable
)
295 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
298 spin_lock_irq(&rtc
->lock
);
300 tmp
= readb(rtc
->regbase
+ RCR1
);
307 writeb(tmp
, rtc
->regbase
+ RCR1
);
309 spin_unlock_irq(&rtc
->lock
);
312 static int sh_rtc_proc(struct device
*dev
, struct seq_file
*seq
)
314 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
317 tmp
= readb(rtc
->regbase
+ RCR1
);
318 seq_printf(seq
, "carry_IRQ\t: %s\n", (tmp
& RCR1_CIE
) ? "yes" : "no");
320 tmp
= readb(rtc
->regbase
+ RCR2
);
321 seq_printf(seq
, "periodic_IRQ\t: %s\n",
322 (tmp
& RCR2_PESMASK
) ? "yes" : "no");
327 static inline void sh_rtc_setcie(struct device
*dev
, unsigned int enable
)
329 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
332 spin_lock_irq(&rtc
->lock
);
334 tmp
= readb(rtc
->regbase
+ RCR1
);
341 writeb(tmp
, rtc
->regbase
+ RCR1
);
343 spin_unlock_irq(&rtc
->lock
);
346 static int sh_rtc_ioctl(struct device
*dev
, unsigned int cmd
, unsigned long arg
)
348 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
349 unsigned int ret
= 0;
354 sh_rtc_setaie(dev
, cmd
== RTC_AIE_ON
);
357 rtc
->periodic_freq
&= ~PF_OXS
;
358 sh_rtc_setcie(dev
, 0);
361 rtc
->periodic_freq
|= PF_OXS
;
362 sh_rtc_setcie(dev
, 1);
371 static int sh_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
373 struct platform_device
*pdev
= to_platform_device(dev
);
374 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
375 unsigned int sec128
, sec2
, yr
, yr100
, cf_bit
;
380 spin_lock_irq(&rtc
->lock
);
382 tmp
= readb(rtc
->regbase
+ RCR1
);
383 tmp
&= ~RCR1_CF
; /* Clear CF-bit */
385 writeb(tmp
, rtc
->regbase
+ RCR1
);
387 sec128
= readb(rtc
->regbase
+ R64CNT
);
389 tm
->tm_sec
= bcd2bin(readb(rtc
->regbase
+ RSECCNT
));
390 tm
->tm_min
= bcd2bin(readb(rtc
->regbase
+ RMINCNT
));
391 tm
->tm_hour
= bcd2bin(readb(rtc
->regbase
+ RHRCNT
));
392 tm
->tm_wday
= bcd2bin(readb(rtc
->regbase
+ RWKCNT
));
393 tm
->tm_mday
= bcd2bin(readb(rtc
->regbase
+ RDAYCNT
));
394 tm
->tm_mon
= bcd2bin(readb(rtc
->regbase
+ RMONCNT
)) - 1;
396 if (rtc
->capabilities
& RTC_CAP_4_DIGIT_YEAR
) {
397 yr
= readw(rtc
->regbase
+ RYRCNT
);
398 yr100
= bcd2bin(yr
>> 8);
401 yr
= readb(rtc
->regbase
+ RYRCNT
);
402 yr100
= bcd2bin((yr
== 0x99) ? 0x19 : 0x20);
405 tm
->tm_year
= (yr100
* 100 + bcd2bin(yr
)) - 1900;
407 sec2
= readb(rtc
->regbase
+ R64CNT
);
408 cf_bit
= readb(rtc
->regbase
+ RCR1
) & RCR1_CF
;
410 spin_unlock_irq(&rtc
->lock
);
411 } while (cf_bit
!= 0 || ((sec128
^ sec2
) & RTC_BIT_INVERTED
) != 0);
413 #if RTC_BIT_INVERTED != 0
414 if ((sec128
& RTC_BIT_INVERTED
))
418 /* only keep the carry interrupt enabled if UIE is on */
419 if (!(rtc
->periodic_freq
& PF_OXS
))
420 sh_rtc_setcie(dev
, 0);
422 dev_dbg(dev
, "%s: tm is secs=%d, mins=%d, hours=%d, "
423 "mday=%d, mon=%d, year=%d, wday=%d\n",
425 tm
->tm_sec
, tm
->tm_min
, tm
->tm_hour
,
426 tm
->tm_mday
, tm
->tm_mon
+ 1, tm
->tm_year
, tm
->tm_wday
);
428 return rtc_valid_tm(tm
);
431 static int sh_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
433 struct platform_device
*pdev
= to_platform_device(dev
);
434 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
438 spin_lock_irq(&rtc
->lock
);
440 /* Reset pre-scaler & stop RTC */
441 tmp
= readb(rtc
->regbase
+ RCR2
);
444 writeb(tmp
, rtc
->regbase
+ RCR2
);
446 writeb(bin2bcd(tm
->tm_sec
), rtc
->regbase
+ RSECCNT
);
447 writeb(bin2bcd(tm
->tm_min
), rtc
->regbase
+ RMINCNT
);
448 writeb(bin2bcd(tm
->tm_hour
), rtc
->regbase
+ RHRCNT
);
449 writeb(bin2bcd(tm
->tm_wday
), rtc
->regbase
+ RWKCNT
);
450 writeb(bin2bcd(tm
->tm_mday
), rtc
->regbase
+ RDAYCNT
);
451 writeb(bin2bcd(tm
->tm_mon
+ 1), rtc
->regbase
+ RMONCNT
);
453 if (rtc
->capabilities
& RTC_CAP_4_DIGIT_YEAR
) {
454 year
= (bin2bcd((tm
->tm_year
+ 1900) / 100) << 8) |
455 bin2bcd(tm
->tm_year
% 100);
456 writew(year
, rtc
->regbase
+ RYRCNT
);
458 year
= tm
->tm_year
% 100;
459 writeb(bin2bcd(year
), rtc
->regbase
+ RYRCNT
);
463 tmp
= readb(rtc
->regbase
+ RCR2
);
465 tmp
|= RCR2_RTCEN
| RCR2_START
;
466 writeb(tmp
, rtc
->regbase
+ RCR2
);
468 spin_unlock_irq(&rtc
->lock
);
473 static inline int sh_rtc_read_alarm_value(struct sh_rtc
*rtc
, int reg_off
)
476 int value
= 0xff; /* return 0xff for ignored values */
478 byte
= readb(rtc
->regbase
+ reg_off
);
480 byte
&= ~AR_ENB
; /* strip the enable bit */
481 value
= bcd2bin(byte
);
487 static int sh_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*wkalrm
)
489 struct platform_device
*pdev
= to_platform_device(dev
);
490 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
491 struct rtc_time
*tm
= &wkalrm
->time
;
493 spin_lock_irq(&rtc
->lock
);
495 tm
->tm_sec
= sh_rtc_read_alarm_value(rtc
, RSECAR
);
496 tm
->tm_min
= sh_rtc_read_alarm_value(rtc
, RMINAR
);
497 tm
->tm_hour
= sh_rtc_read_alarm_value(rtc
, RHRAR
);
498 tm
->tm_wday
= sh_rtc_read_alarm_value(rtc
, RWKAR
);
499 tm
->tm_mday
= sh_rtc_read_alarm_value(rtc
, RDAYAR
);
500 tm
->tm_mon
= sh_rtc_read_alarm_value(rtc
, RMONAR
);
502 tm
->tm_mon
-= 1; /* RTC is 1-12, tm_mon is 0-11 */
503 tm
->tm_year
= 0xffff;
505 wkalrm
->enabled
= (readb(rtc
->regbase
+ RCR1
) & RCR1_AIE
) ? 1 : 0;
507 spin_unlock_irq(&rtc
->lock
);
512 static inline void sh_rtc_write_alarm_value(struct sh_rtc
*rtc
,
513 int value
, int reg_off
)
515 /* < 0 for a value that is ignored */
517 writeb(0, rtc
->regbase
+ reg_off
);
519 writeb(bin2bcd(value
) | AR_ENB
, rtc
->regbase
+ reg_off
);
522 static int sh_rtc_check_alarm(struct rtc_time
*tm
)
525 * The original rtc says anything > 0xc0 is "don't care" or "match
526 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
527 * The original rtc doesn't support years - some things use -1 and
528 * some 0xffff. We use -1 to make out tests easier.
530 if (tm
->tm_year
== 0xffff)
532 if (tm
->tm_mon
>= 0xff)
534 if (tm
->tm_mday
>= 0xff)
536 if (tm
->tm_wday
>= 0xff)
538 if (tm
->tm_hour
>= 0xff)
540 if (tm
->tm_min
>= 0xff)
542 if (tm
->tm_sec
>= 0xff)
545 if (tm
->tm_year
> 9999 ||
547 tm
->tm_mday
== 0 || tm
->tm_mday
>= 32 ||
557 static int sh_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*wkalrm
)
559 struct platform_device
*pdev
= to_platform_device(dev
);
560 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
562 struct rtc_time
*tm
= &wkalrm
->time
;
565 err
= sh_rtc_check_alarm(tm
);
566 if (unlikely(err
< 0))
569 spin_lock_irq(&rtc
->lock
);
571 /* disable alarm interrupt and clear the alarm flag */
572 rcr1
= readb(rtc
->regbase
+ RCR1
);
573 rcr1
&= ~(RCR1_AF
| RCR1_AIE
);
574 writeb(rcr1
, rtc
->regbase
+ RCR1
);
577 sh_rtc_write_alarm_value(rtc
, tm
->tm_sec
, RSECAR
);
578 sh_rtc_write_alarm_value(rtc
, tm
->tm_min
, RMINAR
);
579 sh_rtc_write_alarm_value(rtc
, tm
->tm_hour
, RHRAR
);
580 sh_rtc_write_alarm_value(rtc
, tm
->tm_wday
, RWKAR
);
581 sh_rtc_write_alarm_value(rtc
, tm
->tm_mday
, RDAYAR
);
585 sh_rtc_write_alarm_value(rtc
, mon
, RMONAR
);
587 if (wkalrm
->enabled
) {
589 writeb(rcr1
, rtc
->regbase
+ RCR1
);
592 spin_unlock_irq(&rtc
->lock
);
597 static struct rtc_class_ops sh_rtc_ops
= {
598 .ioctl
= sh_rtc_ioctl
,
599 .read_time
= sh_rtc_read_time
,
600 .set_time
= sh_rtc_set_time
,
601 .read_alarm
= sh_rtc_read_alarm
,
602 .set_alarm
= sh_rtc_set_alarm
,
603 .irq_set_state
= sh_rtc_irq_set_state
,
604 .irq_set_freq
= sh_rtc_irq_set_freq
,
608 static int __init
sh_rtc_probe(struct platform_device
*pdev
)
611 struct resource
*res
;
616 rtc
= kzalloc(sizeof(struct sh_rtc
), GFP_KERNEL
);
620 spin_lock_init(&rtc
->lock
);
622 /* get periodic/carry/alarm irqs */
623 ret
= platform_get_irq(pdev
, 0);
624 if (unlikely(ret
<= 0)) {
626 dev_err(&pdev
->dev
, "No IRQ resource\n");
630 rtc
->periodic_irq
= ret
;
631 rtc
->carry_irq
= platform_get_irq(pdev
, 1);
632 rtc
->alarm_irq
= platform_get_irq(pdev
, 2);
634 res
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
635 if (unlikely(res
== NULL
)) {
637 dev_err(&pdev
->dev
, "No IO resource\n");
641 rtc
->regsize
= resource_size(res
);
643 rtc
->res
= request_mem_region(res
->start
, rtc
->regsize
, pdev
->name
);
644 if (unlikely(!rtc
->res
)) {
649 rtc
->regbase
= ioremap_nocache(rtc
->res
->start
, rtc
->regsize
);
650 if (unlikely(!rtc
->regbase
)) {
656 /* With a single device, the clock id is still "rtc0" */
660 snprintf(clk_name
, sizeof(clk_name
), "rtc%d", clk_id
);
662 rtc
->clk
= clk_get(&pdev
->dev
, clk_name
);
663 if (IS_ERR(rtc
->clk
)) {
665 * No error handling for rtc->clk intentionally, not all
666 * platforms will have a unique clock for the RTC, and
667 * the clk API can handle the struct clk pointer being
673 clk_enable(rtc
->clk
);
675 rtc
->capabilities
= RTC_DEF_CAPABILITIES
;
676 if (pdev
->dev
.platform_data
) {
677 struct sh_rtc_platform_info
*pinfo
= pdev
->dev
.platform_data
;
680 * Some CPUs have special capabilities in addition to the
681 * default set. Add those in here.
683 rtc
->capabilities
|= pinfo
->capabilities
;
686 if (rtc
->carry_irq
<= 0) {
687 /* register shared periodic/carry/alarm irq */
688 ret
= request_irq(rtc
->periodic_irq
, sh_rtc_shared
,
689 IRQF_DISABLED
, "sh-rtc", rtc
);
692 "request IRQ failed with %d, IRQ %d\n", ret
,
697 /* register periodic/carry/alarm irqs */
698 ret
= request_irq(rtc
->periodic_irq
, sh_rtc_periodic
,
699 IRQF_DISABLED
, "sh-rtc period", rtc
);
702 "request period IRQ failed with %d, IRQ %d\n",
703 ret
, rtc
->periodic_irq
);
707 ret
= request_irq(rtc
->carry_irq
, sh_rtc_interrupt
,
708 IRQF_DISABLED
, "sh-rtc carry", rtc
);
711 "request carry IRQ failed with %d, IRQ %d\n",
712 ret
, rtc
->carry_irq
);
713 free_irq(rtc
->periodic_irq
, rtc
);
717 ret
= request_irq(rtc
->alarm_irq
, sh_rtc_alarm
,
718 IRQF_DISABLED
, "sh-rtc alarm", rtc
);
721 "request alarm IRQ failed with %d, IRQ %d\n",
722 ret
, rtc
->alarm_irq
);
723 free_irq(rtc
->carry_irq
, rtc
);
724 free_irq(rtc
->periodic_irq
, rtc
);
729 platform_set_drvdata(pdev
, rtc
);
731 /* everything disabled by default */
732 sh_rtc_irq_set_freq(&pdev
->dev
, 0);
733 sh_rtc_irq_set_state(&pdev
->dev
, 0);
734 sh_rtc_setaie(&pdev
->dev
, 0);
735 sh_rtc_setcie(&pdev
->dev
, 0);
737 rtc
->rtc_dev
= rtc_device_register("sh", &pdev
->dev
,
738 &sh_rtc_ops
, THIS_MODULE
);
739 if (IS_ERR(rtc
->rtc_dev
)) {
740 ret
= PTR_ERR(rtc
->rtc_dev
);
741 free_irq(rtc
->periodic_irq
, rtc
);
742 free_irq(rtc
->carry_irq
, rtc
);
743 free_irq(rtc
->alarm_irq
, rtc
);
747 rtc
->rtc_dev
->max_user_freq
= 256;
749 /* reset rtc to epoch 0 if time is invalid */
750 if (rtc_read_time(rtc
->rtc_dev
, &r
) < 0) {
751 rtc_time_to_tm(0, &r
);
752 rtc_set_time(rtc
->rtc_dev
, &r
);
755 device_init_wakeup(&pdev
->dev
, 1);
759 clk_disable(rtc
->clk
);
761 iounmap(rtc
->regbase
);
763 release_resource(rtc
->res
);
770 static int __exit
sh_rtc_remove(struct platform_device
*pdev
)
772 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
774 rtc_device_unregister(rtc
->rtc_dev
);
775 sh_rtc_irq_set_state(&pdev
->dev
, 0);
777 sh_rtc_setaie(&pdev
->dev
, 0);
778 sh_rtc_setcie(&pdev
->dev
, 0);
780 free_irq(rtc
->periodic_irq
, rtc
);
782 if (rtc
->carry_irq
> 0) {
783 free_irq(rtc
->carry_irq
, rtc
);
784 free_irq(rtc
->alarm_irq
, rtc
);
787 iounmap(rtc
->regbase
);
788 release_resource(rtc
->res
);
790 clk_disable(rtc
->clk
);
793 platform_set_drvdata(pdev
, NULL
);
800 static void sh_rtc_set_irq_wake(struct device
*dev
, int enabled
)
802 struct platform_device
*pdev
= to_platform_device(dev
);
803 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
805 set_irq_wake(rtc
->periodic_irq
, enabled
);
807 if (rtc
->carry_irq
> 0) {
808 set_irq_wake(rtc
->carry_irq
, enabled
);
809 set_irq_wake(rtc
->alarm_irq
, enabled
);
813 static int sh_rtc_suspend(struct device
*dev
)
815 if (device_may_wakeup(dev
))
816 sh_rtc_set_irq_wake(dev
, 1);
821 static int sh_rtc_resume(struct device
*dev
)
823 if (device_may_wakeup(dev
))
824 sh_rtc_set_irq_wake(dev
, 0);
829 static struct dev_pm_ops sh_rtc_dev_pm_ops
= {
830 .suspend
= sh_rtc_suspend
,
831 .resume
= sh_rtc_resume
,
834 static struct platform_driver sh_rtc_platform_driver
= {
837 .owner
= THIS_MODULE
,
838 .pm
= &sh_rtc_dev_pm_ops
,
840 .remove
= __exit_p(sh_rtc_remove
),
843 static int __init
sh_rtc_init(void)
845 return platform_driver_probe(&sh_rtc_platform_driver
, sh_rtc_probe
);
848 static void __exit
sh_rtc_exit(void)
850 platform_driver_unregister(&sh_rtc_platform_driver
);
853 module_init(sh_rtc_init
);
854 module_exit(sh_rtc_exit
);
856 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
857 MODULE_VERSION(DRV_VERSION
);
858 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
859 "Jamie Lenehan <lenehan@twibble.org>, "
860 "Angelo Castello <angelo.castello@st.com>");
861 MODULE_LICENSE("GPL");
862 MODULE_ALIAS("platform:" DRV_NAME
);