4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
20 #include <linux/fdtable.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
37 int sysctl_vfs_cache_pressure __read_mostly
= 100;
38 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
40 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
41 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
43 EXPORT_SYMBOL(dcache_lock
);
45 static struct kmem_cache
*dentry_cache __read_mostly
;
47 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
50 * This is the single most critical data structure when it comes
51 * to the dcache: the hashtable for lookups. Somebody should try
52 * to make this good - I've just made it work.
54 * This hash-function tries to avoid losing too many bits of hash
55 * information, yet avoid using a prime hash-size or similar.
57 #define D_HASHBITS d_hash_shift
58 #define D_HASHMASK d_hash_mask
60 static unsigned int d_hash_mask __read_mostly
;
61 static unsigned int d_hash_shift __read_mostly
;
62 static struct hlist_head
*dentry_hashtable __read_mostly
;
64 /* Statistics gathering. */
65 struct dentry_stat_t dentry_stat
= {
69 static void __d_free(struct dentry
*dentry
)
71 WARN_ON(!list_empty(&dentry
->d_alias
));
72 if (dname_external(dentry
))
73 kfree(dentry
->d_name
.name
);
74 kmem_cache_free(dentry_cache
, dentry
);
77 static void d_callback(struct rcu_head
*head
)
79 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
84 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
87 static void d_free(struct dentry
*dentry
)
89 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
90 dentry
->d_op
->d_release(dentry
);
91 /* if dentry was never inserted into hash, immediate free is OK */
92 if (hlist_unhashed(&dentry
->d_hash
))
95 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
99 * Release the dentry's inode, using the filesystem
100 * d_iput() operation if defined.
102 static void dentry_iput(struct dentry
* dentry
)
103 __releases(dentry
->d_lock
)
104 __releases(dcache_lock
)
106 struct inode
*inode
= dentry
->d_inode
;
108 dentry
->d_inode
= NULL
;
109 list_del_init(&dentry
->d_alias
);
110 spin_unlock(&dentry
->d_lock
);
111 spin_unlock(&dcache_lock
);
113 fsnotify_inoderemove(inode
);
114 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
115 dentry
->d_op
->d_iput(dentry
, inode
);
119 spin_unlock(&dentry
->d_lock
);
120 spin_unlock(&dcache_lock
);
125 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127 static void dentry_lru_add(struct dentry
*dentry
)
129 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
130 dentry
->d_sb
->s_nr_dentry_unused
++;
131 dentry_stat
.nr_unused
++;
134 static void dentry_lru_add_tail(struct dentry
*dentry
)
136 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
137 dentry
->d_sb
->s_nr_dentry_unused
++;
138 dentry_stat
.nr_unused
++;
141 static void dentry_lru_del(struct dentry
*dentry
)
143 if (!list_empty(&dentry
->d_lru
)) {
144 list_del(&dentry
->d_lru
);
145 dentry
->d_sb
->s_nr_dentry_unused
--;
146 dentry_stat
.nr_unused
--;
150 static void dentry_lru_del_init(struct dentry
*dentry
)
152 if (likely(!list_empty(&dentry
->d_lru
))) {
153 list_del_init(&dentry
->d_lru
);
154 dentry
->d_sb
->s_nr_dentry_unused
--;
155 dentry_stat
.nr_unused
--;
160 * d_kill - kill dentry and return parent
161 * @dentry: dentry to kill
163 * The dentry must already be unhashed and removed from the LRU.
165 * If this is the root of the dentry tree, return NULL.
167 static struct dentry
*d_kill(struct dentry
*dentry
)
168 __releases(dentry
->d_lock
)
169 __releases(dcache_lock
)
171 struct dentry
*parent
;
173 list_del(&dentry
->d_u
.d_child
);
174 dentry_stat
.nr_dentry
--; /* For d_free, below */
175 /*drops the locks, at that point nobody can reach this dentry */
180 parent
= dentry
->d_parent
;
188 * This is complicated by the fact that we do not want to put
189 * dentries that are no longer on any hash chain on the unused
190 * list: we'd much rather just get rid of them immediately.
192 * However, that implies that we have to traverse the dentry
193 * tree upwards to the parents which might _also_ now be
194 * scheduled for deletion (it may have been only waiting for
195 * its last child to go away).
197 * This tail recursion is done by hand as we don't want to depend
198 * on the compiler to always get this right (gcc generally doesn't).
199 * Real recursion would eat up our stack space.
203 * dput - release a dentry
204 * @dentry: dentry to release
206 * Release a dentry. This will drop the usage count and if appropriate
207 * call the dentry unlink method as well as removing it from the queues and
208 * releasing its resources. If the parent dentries were scheduled for release
209 * they too may now get deleted.
211 * no dcache lock, please.
214 void dput(struct dentry
*dentry
)
220 if (atomic_read(&dentry
->d_count
) == 1)
222 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
225 spin_lock(&dentry
->d_lock
);
226 if (atomic_read(&dentry
->d_count
)) {
227 spin_unlock(&dentry
->d_lock
);
228 spin_unlock(&dcache_lock
);
233 * AV: ->d_delete() is _NOT_ allowed to block now.
235 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
236 if (dentry
->d_op
->d_delete(dentry
))
239 /* Unreachable? Get rid of it */
240 if (d_unhashed(dentry
))
242 if (list_empty(&dentry
->d_lru
)) {
243 dentry
->d_flags
|= DCACHE_REFERENCED
;
244 dentry_lru_add(dentry
);
246 spin_unlock(&dentry
->d_lock
);
247 spin_unlock(&dcache_lock
);
253 /* if dentry was on the d_lru list delete it from there */
254 dentry_lru_del(dentry
);
255 dentry
= d_kill(dentry
);
261 * d_invalidate - invalidate a dentry
262 * @dentry: dentry to invalidate
264 * Try to invalidate the dentry if it turns out to be
265 * possible. If there are other dentries that can be
266 * reached through this one we can't delete it and we
267 * return -EBUSY. On success we return 0.
272 int d_invalidate(struct dentry
* dentry
)
275 * If it's already been dropped, return OK.
277 spin_lock(&dcache_lock
);
278 if (d_unhashed(dentry
)) {
279 spin_unlock(&dcache_lock
);
283 * Check whether to do a partial shrink_dcache
284 * to get rid of unused child entries.
286 if (!list_empty(&dentry
->d_subdirs
)) {
287 spin_unlock(&dcache_lock
);
288 shrink_dcache_parent(dentry
);
289 spin_lock(&dcache_lock
);
293 * Somebody else still using it?
295 * If it's a directory, we can't drop it
296 * for fear of somebody re-populating it
297 * with children (even though dropping it
298 * would make it unreachable from the root,
299 * we might still populate it if it was a
300 * working directory or similar).
302 spin_lock(&dentry
->d_lock
);
303 if (atomic_read(&dentry
->d_count
) > 1) {
304 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
305 spin_unlock(&dentry
->d_lock
);
306 spin_unlock(&dcache_lock
);
312 spin_unlock(&dentry
->d_lock
);
313 spin_unlock(&dcache_lock
);
317 /* This should be called _only_ with dcache_lock held */
319 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
321 atomic_inc(&dentry
->d_count
);
322 dentry_lru_del_init(dentry
);
326 struct dentry
* dget_locked(struct dentry
*dentry
)
328 return __dget_locked(dentry
);
332 * d_find_alias - grab a hashed alias of inode
333 * @inode: inode in question
334 * @want_discon: flag, used by d_splice_alias, to request
335 * that only a DISCONNECTED alias be returned.
337 * If inode has a hashed alias, or is a directory and has any alias,
338 * acquire the reference to alias and return it. Otherwise return NULL.
339 * Notice that if inode is a directory there can be only one alias and
340 * it can be unhashed only if it has no children, or if it is the root
343 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
344 * any other hashed alias over that one unless @want_discon is set,
345 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
348 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
350 struct list_head
*head
, *next
, *tmp
;
351 struct dentry
*alias
, *discon_alias
=NULL
;
353 head
= &inode
->i_dentry
;
354 next
= inode
->i_dentry
.next
;
355 while (next
!= head
) {
359 alias
= list_entry(tmp
, struct dentry
, d_alias
);
360 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
361 if (IS_ROOT(alias
) &&
362 (alias
->d_flags
& DCACHE_DISCONNECTED
))
363 discon_alias
= alias
;
364 else if (!want_discon
) {
365 __dget_locked(alias
);
371 __dget_locked(discon_alias
);
375 struct dentry
* d_find_alias(struct inode
*inode
)
377 struct dentry
*de
= NULL
;
379 if (!list_empty(&inode
->i_dentry
)) {
380 spin_lock(&dcache_lock
);
381 de
= __d_find_alias(inode
, 0);
382 spin_unlock(&dcache_lock
);
388 * Try to kill dentries associated with this inode.
389 * WARNING: you must own a reference to inode.
391 void d_prune_aliases(struct inode
*inode
)
393 struct dentry
*dentry
;
395 spin_lock(&dcache_lock
);
396 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
397 spin_lock(&dentry
->d_lock
);
398 if (!atomic_read(&dentry
->d_count
)) {
399 __dget_locked(dentry
);
401 spin_unlock(&dentry
->d_lock
);
402 spin_unlock(&dcache_lock
);
406 spin_unlock(&dentry
->d_lock
);
408 spin_unlock(&dcache_lock
);
412 * Throw away a dentry - free the inode, dput the parent. This requires that
413 * the LRU list has already been removed.
415 * Try to prune ancestors as well. This is necessary to prevent
416 * quadratic behavior of shrink_dcache_parent(), but is also expected
417 * to be beneficial in reducing dentry cache fragmentation.
419 static void prune_one_dentry(struct dentry
* dentry
)
420 __releases(dentry
->d_lock
)
421 __releases(dcache_lock
)
422 __acquires(dcache_lock
)
425 dentry
= d_kill(dentry
);
428 * Prune ancestors. Locking is simpler than in dput(),
429 * because dcache_lock needs to be taken anyway.
431 spin_lock(&dcache_lock
);
433 if (!atomic_dec_and_lock(&dentry
->d_count
, &dentry
->d_lock
))
436 if (dentry
->d_op
&& dentry
->d_op
->d_delete
)
437 dentry
->d_op
->d_delete(dentry
);
438 dentry_lru_del_init(dentry
);
440 dentry
= d_kill(dentry
);
441 spin_lock(&dcache_lock
);
446 * Shrink the dentry LRU on a given superblock.
447 * @sb : superblock to shrink dentry LRU.
448 * @count: If count is NULL, we prune all dentries on superblock.
449 * @flags: If flags is non-zero, we need to do special processing based on
450 * which flags are set. This means we don't need to maintain multiple
451 * similar copies of this loop.
453 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
455 LIST_HEAD(referenced
);
457 struct dentry
*dentry
;
461 BUG_ON((flags
& DCACHE_REFERENCED
) && count
== NULL
);
462 spin_lock(&dcache_lock
);
464 /* called from prune_dcache() and shrink_dcache_parent() */
468 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
470 while (!list_empty(&sb
->s_dentry_lru
)) {
471 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
472 struct dentry
, d_lru
);
473 BUG_ON(dentry
->d_sb
!= sb
);
475 spin_lock(&dentry
->d_lock
);
477 * If we are honouring the DCACHE_REFERENCED flag and
478 * the dentry has this flag set, don't free it. Clear
479 * the flag and put it back on the LRU.
481 if ((flags
& DCACHE_REFERENCED
)
482 && (dentry
->d_flags
& DCACHE_REFERENCED
)) {
483 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
484 list_move_tail(&dentry
->d_lru
, &referenced
);
485 spin_unlock(&dentry
->d_lock
);
487 list_move_tail(&dentry
->d_lru
, &tmp
);
488 spin_unlock(&dentry
->d_lock
);
493 cond_resched_lock(&dcache_lock
);
496 while (!list_empty(&tmp
)) {
497 dentry
= list_entry(tmp
.prev
, struct dentry
, d_lru
);
498 dentry_lru_del_init(dentry
);
499 spin_lock(&dentry
->d_lock
);
501 * We found an inuse dentry which was not removed from
502 * the LRU because of laziness during lookup. Do not free
503 * it - just keep it off the LRU list.
505 if (atomic_read(&dentry
->d_count
)) {
506 spin_unlock(&dentry
->d_lock
);
509 prune_one_dentry(dentry
);
510 /* dentry->d_lock was dropped in prune_one_dentry() */
511 cond_resched_lock(&dcache_lock
);
513 if (count
== NULL
&& !list_empty(&sb
->s_dentry_lru
))
517 if (!list_empty(&referenced
))
518 list_splice(&referenced
, &sb
->s_dentry_lru
);
519 spin_unlock(&dcache_lock
);
523 * prune_dcache - shrink the dcache
524 * @count: number of entries to try to free
526 * Shrink the dcache. This is done when we need more memory, or simply when we
527 * need to unmount something (at which point we need to unuse all dentries).
529 * This function may fail to free any resources if all the dentries are in use.
531 static void prune_dcache(int count
)
533 struct super_block
*sb
;
535 int unused
= dentry_stat
.nr_unused
;
539 if (unused
== 0 || count
== 0)
541 spin_lock(&dcache_lock
);
546 prune_ratio
= unused
/ count
;
548 list_for_each_entry(sb
, &super_blocks
, s_list
) {
549 if (sb
->s_nr_dentry_unused
== 0)
552 /* Now, we reclaim unused dentrins with fairness.
553 * We reclaim them same percentage from each superblock.
554 * We calculate number of dentries to scan on this sb
555 * as follows, but the implementation is arranged to avoid
557 * number of dentries to scan on this sb =
558 * count * (number of dentries on this sb /
559 * number of dentries in the machine)
561 spin_unlock(&sb_lock
);
562 if (prune_ratio
!= 1)
563 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
565 w_count
= sb
->s_nr_dentry_unused
;
568 * We need to be sure this filesystem isn't being unmounted,
569 * otherwise we could race with generic_shutdown_super(), and
570 * end up holding a reference to an inode while the filesystem
571 * is unmounted. So we try to get s_umount, and make sure
574 if (down_read_trylock(&sb
->s_umount
)) {
575 if ((sb
->s_root
!= NULL
) &&
576 (!list_empty(&sb
->s_dentry_lru
))) {
577 spin_unlock(&dcache_lock
);
578 __shrink_dcache_sb(sb
, &w_count
,
581 spin_lock(&dcache_lock
);
583 up_read(&sb
->s_umount
);
588 * restart only when sb is no longer on the list and
589 * we have more work to do.
591 if (__put_super_and_need_restart(sb
) && count
> 0) {
592 spin_unlock(&sb_lock
);
596 spin_unlock(&sb_lock
);
597 spin_unlock(&dcache_lock
);
601 * shrink_dcache_sb - shrink dcache for a superblock
604 * Shrink the dcache for the specified super block. This
605 * is used to free the dcache before unmounting a file
608 void shrink_dcache_sb(struct super_block
* sb
)
610 __shrink_dcache_sb(sb
, NULL
, 0);
614 * destroy a single subtree of dentries for unmount
615 * - see the comments on shrink_dcache_for_umount() for a description of the
618 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
620 struct dentry
*parent
;
621 unsigned detached
= 0;
623 BUG_ON(!IS_ROOT(dentry
));
625 /* detach this root from the system */
626 spin_lock(&dcache_lock
);
627 dentry_lru_del_init(dentry
);
629 spin_unlock(&dcache_lock
);
632 /* descend to the first leaf in the current subtree */
633 while (!list_empty(&dentry
->d_subdirs
)) {
636 /* this is a branch with children - detach all of them
637 * from the system in one go */
638 spin_lock(&dcache_lock
);
639 list_for_each_entry(loop
, &dentry
->d_subdirs
,
641 dentry_lru_del_init(loop
);
643 cond_resched_lock(&dcache_lock
);
645 spin_unlock(&dcache_lock
);
647 /* move to the first child */
648 dentry
= list_entry(dentry
->d_subdirs
.next
,
649 struct dentry
, d_u
.d_child
);
652 /* consume the dentries from this leaf up through its parents
653 * until we find one with children or run out altogether */
657 if (atomic_read(&dentry
->d_count
) != 0) {
659 "BUG: Dentry %p{i=%lx,n=%s}"
661 " [unmount of %s %s]\n",
664 dentry
->d_inode
->i_ino
: 0UL,
666 atomic_read(&dentry
->d_count
),
667 dentry
->d_sb
->s_type
->name
,
675 parent
= dentry
->d_parent
;
676 atomic_dec(&parent
->d_count
);
679 list_del(&dentry
->d_u
.d_child
);
682 inode
= dentry
->d_inode
;
684 dentry
->d_inode
= NULL
;
685 list_del_init(&dentry
->d_alias
);
686 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
687 dentry
->d_op
->d_iput(dentry
, inode
);
694 /* finished when we fall off the top of the tree,
695 * otherwise we ascend to the parent and move to the
696 * next sibling if there is one */
702 } while (list_empty(&dentry
->d_subdirs
));
704 dentry
= list_entry(dentry
->d_subdirs
.next
,
705 struct dentry
, d_u
.d_child
);
708 /* several dentries were freed, need to correct nr_dentry */
709 spin_lock(&dcache_lock
);
710 dentry_stat
.nr_dentry
-= detached
;
711 spin_unlock(&dcache_lock
);
715 * destroy the dentries attached to a superblock on unmounting
716 * - we don't need to use dentry->d_lock, and only need dcache_lock when
717 * removing the dentry from the system lists and hashes because:
718 * - the superblock is detached from all mountings and open files, so the
719 * dentry trees will not be rearranged by the VFS
720 * - s_umount is write-locked, so the memory pressure shrinker will ignore
721 * any dentries belonging to this superblock that it comes across
722 * - the filesystem itself is no longer permitted to rearrange the dentries
725 void shrink_dcache_for_umount(struct super_block
*sb
)
727 struct dentry
*dentry
;
729 if (down_read_trylock(&sb
->s_umount
))
734 atomic_dec(&dentry
->d_count
);
735 shrink_dcache_for_umount_subtree(dentry
);
737 while (!hlist_empty(&sb
->s_anon
)) {
738 dentry
= hlist_entry(sb
->s_anon
.first
, struct dentry
, d_hash
);
739 shrink_dcache_for_umount_subtree(dentry
);
744 * Search for at least 1 mount point in the dentry's subdirs.
745 * We descend to the next level whenever the d_subdirs
746 * list is non-empty and continue searching.
750 * have_submounts - check for mounts over a dentry
751 * @parent: dentry to check.
753 * Return true if the parent or its subdirectories contain
757 int have_submounts(struct dentry
*parent
)
759 struct dentry
*this_parent
= parent
;
760 struct list_head
*next
;
762 spin_lock(&dcache_lock
);
763 if (d_mountpoint(parent
))
766 next
= this_parent
->d_subdirs
.next
;
768 while (next
!= &this_parent
->d_subdirs
) {
769 struct list_head
*tmp
= next
;
770 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
772 /* Have we found a mount point ? */
773 if (d_mountpoint(dentry
))
775 if (!list_empty(&dentry
->d_subdirs
)) {
776 this_parent
= dentry
;
781 * All done at this level ... ascend and resume the search.
783 if (this_parent
!= parent
) {
784 next
= this_parent
->d_u
.d_child
.next
;
785 this_parent
= this_parent
->d_parent
;
788 spin_unlock(&dcache_lock
);
789 return 0; /* No mount points found in tree */
791 spin_unlock(&dcache_lock
);
796 * Search the dentry child list for the specified parent,
797 * and move any unused dentries to the end of the unused
798 * list for prune_dcache(). We descend to the next level
799 * whenever the d_subdirs list is non-empty and continue
802 * It returns zero iff there are no unused children,
803 * otherwise it returns the number of children moved to
804 * the end of the unused list. This may not be the total
805 * number of unused children, because select_parent can
806 * drop the lock and return early due to latency
809 static int select_parent(struct dentry
* parent
)
811 struct dentry
*this_parent
= parent
;
812 struct list_head
*next
;
815 spin_lock(&dcache_lock
);
817 next
= this_parent
->d_subdirs
.next
;
819 while (next
!= &this_parent
->d_subdirs
) {
820 struct list_head
*tmp
= next
;
821 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
824 dentry_lru_del_init(dentry
);
826 * move only zero ref count dentries to the end
827 * of the unused list for prune_dcache
829 if (!atomic_read(&dentry
->d_count
)) {
830 dentry_lru_add_tail(dentry
);
835 * We can return to the caller if we have found some (this
836 * ensures forward progress). We'll be coming back to find
839 if (found
&& need_resched())
843 * Descend a level if the d_subdirs list is non-empty.
845 if (!list_empty(&dentry
->d_subdirs
)) {
846 this_parent
= dentry
;
851 * All done at this level ... ascend and resume the search.
853 if (this_parent
!= parent
) {
854 next
= this_parent
->d_u
.d_child
.next
;
855 this_parent
= this_parent
->d_parent
;
859 spin_unlock(&dcache_lock
);
864 * shrink_dcache_parent - prune dcache
865 * @parent: parent of entries to prune
867 * Prune the dcache to remove unused children of the parent dentry.
870 void shrink_dcache_parent(struct dentry
* parent
)
872 struct super_block
*sb
= parent
->d_sb
;
875 while ((found
= select_parent(parent
)) != 0)
876 __shrink_dcache_sb(sb
, &found
, 0);
880 * Scan `nr' dentries and return the number which remain.
882 * We need to avoid reentering the filesystem if the caller is performing a
883 * GFP_NOFS allocation attempt. One example deadlock is:
885 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
886 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
887 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
889 * In this case we return -1 to tell the caller that we baled.
891 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
894 if (!(gfp_mask
& __GFP_FS
))
898 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
901 static struct shrinker dcache_shrinker
= {
902 .shrink
= shrink_dcache_memory
,
903 .seeks
= DEFAULT_SEEKS
,
907 * d_alloc - allocate a dcache entry
908 * @parent: parent of entry to allocate
909 * @name: qstr of the name
911 * Allocates a dentry. It returns %NULL if there is insufficient memory
912 * available. On a success the dentry is returned. The name passed in is
913 * copied and the copy passed in may be reused after this call.
916 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
918 struct dentry
*dentry
;
921 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
925 if (name
->len
> DNAME_INLINE_LEN
-1) {
926 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
928 kmem_cache_free(dentry_cache
, dentry
);
932 dname
= dentry
->d_iname
;
934 dentry
->d_name
.name
= dname
;
936 dentry
->d_name
.len
= name
->len
;
937 dentry
->d_name
.hash
= name
->hash
;
938 memcpy(dname
, name
->name
, name
->len
);
939 dname
[name
->len
] = 0;
941 atomic_set(&dentry
->d_count
, 1);
942 dentry
->d_flags
= DCACHE_UNHASHED
;
943 spin_lock_init(&dentry
->d_lock
);
944 dentry
->d_inode
= NULL
;
945 dentry
->d_parent
= NULL
;
948 dentry
->d_fsdata
= NULL
;
949 dentry
->d_mounted
= 0;
950 INIT_HLIST_NODE(&dentry
->d_hash
);
951 INIT_LIST_HEAD(&dentry
->d_lru
);
952 INIT_LIST_HEAD(&dentry
->d_subdirs
);
953 INIT_LIST_HEAD(&dentry
->d_alias
);
956 dentry
->d_parent
= dget(parent
);
957 dentry
->d_sb
= parent
->d_sb
;
959 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
962 spin_lock(&dcache_lock
);
964 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
965 dentry_stat
.nr_dentry
++;
966 spin_unlock(&dcache_lock
);
971 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
976 q
.len
= strlen(name
);
977 q
.hash
= full_name_hash(q
.name
, q
.len
);
978 return d_alloc(parent
, &q
);
981 /* the caller must hold dcache_lock */
982 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
985 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
986 dentry
->d_inode
= inode
;
987 fsnotify_d_instantiate(dentry
, inode
);
991 * d_instantiate - fill in inode information for a dentry
992 * @entry: dentry to complete
993 * @inode: inode to attach to this dentry
995 * Fill in inode information in the entry.
997 * This turns negative dentries into productive full members
1000 * NOTE! This assumes that the inode count has been incremented
1001 * (or otherwise set) by the caller to indicate that it is now
1002 * in use by the dcache.
1005 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1007 BUG_ON(!list_empty(&entry
->d_alias
));
1008 spin_lock(&dcache_lock
);
1009 __d_instantiate(entry
, inode
);
1010 spin_unlock(&dcache_lock
);
1011 security_d_instantiate(entry
, inode
);
1015 * d_instantiate_unique - instantiate a non-aliased dentry
1016 * @entry: dentry to instantiate
1017 * @inode: inode to attach to this dentry
1019 * Fill in inode information in the entry. On success, it returns NULL.
1020 * If an unhashed alias of "entry" already exists, then we return the
1021 * aliased dentry instead and drop one reference to inode.
1023 * Note that in order to avoid conflicts with rename() etc, the caller
1024 * had better be holding the parent directory semaphore.
1026 * This also assumes that the inode count has been incremented
1027 * (or otherwise set) by the caller to indicate that it is now
1028 * in use by the dcache.
1030 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1031 struct inode
*inode
)
1033 struct dentry
*alias
;
1034 int len
= entry
->d_name
.len
;
1035 const char *name
= entry
->d_name
.name
;
1036 unsigned int hash
= entry
->d_name
.hash
;
1039 __d_instantiate(entry
, NULL
);
1043 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1044 struct qstr
*qstr
= &alias
->d_name
;
1046 if (qstr
->hash
!= hash
)
1048 if (alias
->d_parent
!= entry
->d_parent
)
1050 if (qstr
->len
!= len
)
1052 if (memcmp(qstr
->name
, name
, len
))
1058 __d_instantiate(entry
, inode
);
1062 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1064 struct dentry
*result
;
1066 BUG_ON(!list_empty(&entry
->d_alias
));
1068 spin_lock(&dcache_lock
);
1069 result
= __d_instantiate_unique(entry
, inode
);
1070 spin_unlock(&dcache_lock
);
1073 security_d_instantiate(entry
, inode
);
1077 BUG_ON(!d_unhashed(result
));
1082 EXPORT_SYMBOL(d_instantiate_unique
);
1085 * d_alloc_root - allocate root dentry
1086 * @root_inode: inode to allocate the root for
1088 * Allocate a root ("/") dentry for the inode given. The inode is
1089 * instantiated and returned. %NULL is returned if there is insufficient
1090 * memory or the inode passed is %NULL.
1093 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1095 struct dentry
*res
= NULL
;
1098 static const struct qstr name
= { .name
= "/", .len
= 1 };
1100 res
= d_alloc(NULL
, &name
);
1102 res
->d_sb
= root_inode
->i_sb
;
1103 res
->d_parent
= res
;
1104 d_instantiate(res
, root_inode
);
1110 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
1113 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
1114 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
1115 return dentry_hashtable
+ (hash
& D_HASHMASK
);
1119 * d_obtain_alias - find or allocate a dentry for a given inode
1120 * @inode: inode to allocate the dentry for
1122 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1123 * similar open by handle operations. The returned dentry may be anonymous,
1124 * or may have a full name (if the inode was already in the cache).
1126 * When called on a directory inode, we must ensure that the inode only ever
1127 * has one dentry. If a dentry is found, that is returned instead of
1128 * allocating a new one.
1130 * On successful return, the reference to the inode has been transferred
1131 * to the dentry. In case of an error the reference on the inode is released.
1132 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1133 * be passed in and will be the error will be propagate to the return value,
1134 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1136 struct dentry
*d_obtain_alias(struct inode
*inode
)
1138 static const struct qstr anonstring
= { .name
= "" };
1143 return ERR_PTR(-ESTALE
);
1145 return ERR_CAST(inode
);
1147 res
= d_find_alias(inode
);
1151 tmp
= d_alloc(NULL
, &anonstring
);
1153 res
= ERR_PTR(-ENOMEM
);
1156 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1158 spin_lock(&dcache_lock
);
1159 res
= __d_find_alias(inode
, 0);
1161 spin_unlock(&dcache_lock
);
1166 /* attach a disconnected dentry */
1167 spin_lock(&tmp
->d_lock
);
1168 tmp
->d_sb
= inode
->i_sb
;
1169 tmp
->d_inode
= inode
;
1170 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1171 tmp
->d_flags
&= ~DCACHE_UNHASHED
;
1172 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1173 hlist_add_head(&tmp
->d_hash
, &inode
->i_sb
->s_anon
);
1174 spin_unlock(&tmp
->d_lock
);
1176 spin_unlock(&dcache_lock
);
1183 EXPORT_SYMBOL(d_obtain_alias
);
1186 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1187 * @inode: the inode which may have a disconnected dentry
1188 * @dentry: a negative dentry which we want to point to the inode.
1190 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1191 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1192 * and return it, else simply d_add the inode to the dentry and return NULL.
1194 * This is needed in the lookup routine of any filesystem that is exportable
1195 * (via knfsd) so that we can build dcache paths to directories effectively.
1197 * If a dentry was found and moved, then it is returned. Otherwise NULL
1198 * is returned. This matches the expected return value of ->lookup.
1201 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1203 struct dentry
*new = NULL
;
1205 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1206 spin_lock(&dcache_lock
);
1207 new = __d_find_alias(inode
, 1);
1209 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1210 spin_unlock(&dcache_lock
);
1211 security_d_instantiate(new, inode
);
1213 d_move(new, dentry
);
1216 /* already taking dcache_lock, so d_add() by hand */
1217 __d_instantiate(dentry
, inode
);
1218 spin_unlock(&dcache_lock
);
1219 security_d_instantiate(dentry
, inode
);
1223 d_add(dentry
, inode
);
1228 * d_add_ci - lookup or allocate new dentry with case-exact name
1229 * @inode: the inode case-insensitive lookup has found
1230 * @dentry: the negative dentry that was passed to the parent's lookup func
1231 * @name: the case-exact name to be associated with the returned dentry
1233 * This is to avoid filling the dcache with case-insensitive names to the
1234 * same inode, only the actual correct case is stored in the dcache for
1235 * case-insensitive filesystems.
1237 * For a case-insensitive lookup match and if the the case-exact dentry
1238 * already exists in in the dcache, use it and return it.
1240 * If no entry exists with the exact case name, allocate new dentry with
1241 * the exact case, and return the spliced entry.
1243 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1247 struct dentry
*found
;
1250 /* Does a dentry matching the name exist already? */
1251 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1252 /* If not, create it now and return */
1254 new = d_alloc(dentry
->d_parent
, name
);
1259 found
= d_splice_alias(inode
, new);
1266 /* Matching dentry exists, check if it is negative. */
1267 if (found
->d_inode
) {
1268 if (unlikely(found
->d_inode
!= inode
)) {
1269 /* This can't happen because bad inodes are unhashed. */
1270 BUG_ON(!is_bad_inode(inode
));
1271 BUG_ON(!is_bad_inode(found
->d_inode
));
1274 * Already have the inode and the dentry attached, decrement
1275 * the reference count to balance the iget() done
1276 * earlier on. We found the dentry using d_lookup() so it
1277 * cannot be disconnected and thus we do not need to worry
1278 * about any NFS/disconnectedness issues here.
1284 * Negative dentry: instantiate it unless the inode is a directory and
1285 * has a 'disconnected' dentry (i.e. IS_ROOT and DCACHE_DISCONNECTED),
1286 * in which case d_move() that in place of the found dentry.
1288 if (!S_ISDIR(inode
->i_mode
)) {
1289 /* Not a directory; everything is easy. */
1290 d_instantiate(found
, inode
);
1293 spin_lock(&dcache_lock
);
1294 if (list_empty(&inode
->i_dentry
)) {
1296 * Directory without a 'disconnected' dentry; we need to do
1297 * d_instantiate() by hand because it takes dcache_lock which
1300 __d_instantiate(found
, inode
);
1301 spin_unlock(&dcache_lock
);
1302 security_d_instantiate(found
, inode
);
1306 * Directory with a 'disconnected' dentry; get a reference to the
1307 * 'disconnected' dentry.
1309 new = list_entry(inode
->i_dentry
.next
, struct dentry
, d_alias
);
1311 spin_unlock(&dcache_lock
);
1312 /* Do security vodoo. */
1313 security_d_instantiate(found
, inode
);
1314 /* Move new in place of found. */
1316 /* Balance the iget() we did above. */
1318 /* Throw away found. */
1320 /* Use new as the actual dentry. */
1325 return ERR_PTR(error
);
1329 * d_lookup - search for a dentry
1330 * @parent: parent dentry
1331 * @name: qstr of name we wish to find
1333 * Searches the children of the parent dentry for the name in question. If
1334 * the dentry is found its reference count is incremented and the dentry
1335 * is returned. The caller must use dput to free the entry when it has
1336 * finished using it. %NULL is returned on failure.
1338 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1339 * Memory barriers are used while updating and doing lockless traversal.
1340 * To avoid races with d_move while rename is happening, d_lock is used.
1342 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1343 * and name pointer in one structure pointed by d_qstr.
1345 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1346 * lookup is going on.
1348 * The dentry unused LRU is not updated even if lookup finds the required dentry
1349 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1350 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1353 * d_lookup() is protected against the concurrent renames in some unrelated
1354 * directory using the seqlockt_t rename_lock.
1357 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1359 struct dentry
* dentry
= NULL
;
1363 seq
= read_seqbegin(&rename_lock
);
1364 dentry
= __d_lookup(parent
, name
);
1367 } while (read_seqretry(&rename_lock
, seq
));
1371 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1373 unsigned int len
= name
->len
;
1374 unsigned int hash
= name
->hash
;
1375 const unsigned char *str
= name
->name
;
1376 struct hlist_head
*head
= d_hash(parent
,hash
);
1377 struct dentry
*found
= NULL
;
1378 struct hlist_node
*node
;
1379 struct dentry
*dentry
;
1383 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1386 if (dentry
->d_name
.hash
!= hash
)
1388 if (dentry
->d_parent
!= parent
)
1391 spin_lock(&dentry
->d_lock
);
1394 * Recheck the dentry after taking the lock - d_move may have
1395 * changed things. Don't bother checking the hash because we're
1396 * about to compare the whole name anyway.
1398 if (dentry
->d_parent
!= parent
)
1401 /* non-existing due to RCU? */
1402 if (d_unhashed(dentry
))
1406 * It is safe to compare names since d_move() cannot
1407 * change the qstr (protected by d_lock).
1409 qstr
= &dentry
->d_name
;
1410 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1411 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1414 if (qstr
->len
!= len
)
1416 if (memcmp(qstr
->name
, str
, len
))
1420 atomic_inc(&dentry
->d_count
);
1422 spin_unlock(&dentry
->d_lock
);
1425 spin_unlock(&dentry
->d_lock
);
1433 * d_hash_and_lookup - hash the qstr then search for a dentry
1434 * @dir: Directory to search in
1435 * @name: qstr of name we wish to find
1437 * On hash failure or on lookup failure NULL is returned.
1439 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1441 struct dentry
*dentry
= NULL
;
1444 * Check for a fs-specific hash function. Note that we must
1445 * calculate the standard hash first, as the d_op->d_hash()
1446 * routine may choose to leave the hash value unchanged.
1448 name
->hash
= full_name_hash(name
->name
, name
->len
);
1449 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1450 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1453 dentry
= d_lookup(dir
, name
);
1459 * d_validate - verify dentry provided from insecure source
1460 * @dentry: The dentry alleged to be valid child of @dparent
1461 * @dparent: The parent dentry (known to be valid)
1463 * An insecure source has sent us a dentry, here we verify it and dget() it.
1464 * This is used by ncpfs in its readdir implementation.
1465 * Zero is returned in the dentry is invalid.
1468 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1470 struct hlist_head
*base
;
1471 struct hlist_node
*lhp
;
1473 /* Check whether the ptr might be valid at all.. */
1474 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1477 if (dentry
->d_parent
!= dparent
)
1480 spin_lock(&dcache_lock
);
1481 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1482 hlist_for_each(lhp
,base
) {
1483 /* hlist_for_each_entry_rcu() not required for d_hash list
1484 * as it is parsed under dcache_lock
1486 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1487 __dget_locked(dentry
);
1488 spin_unlock(&dcache_lock
);
1492 spin_unlock(&dcache_lock
);
1498 * When a file is deleted, we have two options:
1499 * - turn this dentry into a negative dentry
1500 * - unhash this dentry and free it.
1502 * Usually, we want to just turn this into
1503 * a negative dentry, but if anybody else is
1504 * currently using the dentry or the inode
1505 * we can't do that and we fall back on removing
1506 * it from the hash queues and waiting for
1507 * it to be deleted later when it has no users
1511 * d_delete - delete a dentry
1512 * @dentry: The dentry to delete
1514 * Turn the dentry into a negative dentry if possible, otherwise
1515 * remove it from the hash queues so it can be deleted later
1518 void d_delete(struct dentry
* dentry
)
1522 * Are we the only user?
1524 spin_lock(&dcache_lock
);
1525 spin_lock(&dentry
->d_lock
);
1526 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1527 if (atomic_read(&dentry
->d_count
) == 1) {
1528 dentry_iput(dentry
);
1529 fsnotify_nameremove(dentry
, isdir
);
1533 if (!d_unhashed(dentry
))
1536 spin_unlock(&dentry
->d_lock
);
1537 spin_unlock(&dcache_lock
);
1539 fsnotify_nameremove(dentry
, isdir
);
1542 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1545 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1546 hlist_add_head_rcu(&entry
->d_hash
, list
);
1549 static void _d_rehash(struct dentry
* entry
)
1551 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
1555 * d_rehash - add an entry back to the hash
1556 * @entry: dentry to add to the hash
1558 * Adds a dentry to the hash according to its name.
1561 void d_rehash(struct dentry
* entry
)
1563 spin_lock(&dcache_lock
);
1564 spin_lock(&entry
->d_lock
);
1566 spin_unlock(&entry
->d_lock
);
1567 spin_unlock(&dcache_lock
);
1571 * When switching names, the actual string doesn't strictly have to
1572 * be preserved in the target - because we're dropping the target
1573 * anyway. As such, we can just do a simple memcpy() to copy over
1574 * the new name before we switch.
1576 * Note that we have to be a lot more careful about getting the hash
1577 * switched - we have to switch the hash value properly even if it
1578 * then no longer matches the actual (corrupted) string of the target.
1579 * The hash value has to match the hash queue that the dentry is on..
1581 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1583 if (dname_external(target
)) {
1584 if (dname_external(dentry
)) {
1586 * Both external: swap the pointers
1588 swap(target
->d_name
.name
, dentry
->d_name
.name
);
1591 * dentry:internal, target:external. Steal target's
1592 * storage and make target internal.
1594 memcpy(target
->d_iname
, dentry
->d_name
.name
,
1595 dentry
->d_name
.len
+ 1);
1596 dentry
->d_name
.name
= target
->d_name
.name
;
1597 target
->d_name
.name
= target
->d_iname
;
1600 if (dname_external(dentry
)) {
1602 * dentry:external, target:internal. Give dentry's
1603 * storage to target and make dentry internal
1605 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1606 target
->d_name
.len
+ 1);
1607 target
->d_name
.name
= dentry
->d_name
.name
;
1608 dentry
->d_name
.name
= dentry
->d_iname
;
1611 * Both are internal. Just copy target to dentry
1613 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1614 target
->d_name
.len
+ 1);
1615 dentry
->d_name
.len
= target
->d_name
.len
;
1619 swap(dentry
->d_name
.len
, target
->d_name
.len
);
1623 * We cannibalize "target" when moving dentry on top of it,
1624 * because it's going to be thrown away anyway. We could be more
1625 * polite about it, though.
1627 * This forceful removal will result in ugly /proc output if
1628 * somebody holds a file open that got deleted due to a rename.
1629 * We could be nicer about the deleted file, and let it show
1630 * up under the name it had before it was deleted rather than
1631 * under the original name of the file that was moved on top of it.
1635 * d_move_locked - move a dentry
1636 * @dentry: entry to move
1637 * @target: new dentry
1639 * Update the dcache to reflect the move of a file name. Negative
1640 * dcache entries should not be moved in this way.
1642 static void d_move_locked(struct dentry
* dentry
, struct dentry
* target
)
1644 struct hlist_head
*list
;
1646 if (!dentry
->d_inode
)
1647 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1649 write_seqlock(&rename_lock
);
1651 * XXXX: do we really need to take target->d_lock?
1653 if (target
< dentry
) {
1654 spin_lock(&target
->d_lock
);
1655 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1657 spin_lock(&dentry
->d_lock
);
1658 spin_lock_nested(&target
->d_lock
, DENTRY_D_LOCK_NESTED
);
1661 /* Move the dentry to the target hash queue, if on different bucket */
1662 if (d_unhashed(dentry
))
1663 goto already_unhashed
;
1665 hlist_del_rcu(&dentry
->d_hash
);
1668 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1669 __d_rehash(dentry
, list
);
1671 /* Unhash the target: dput() will then get rid of it */
1674 list_del(&dentry
->d_u
.d_child
);
1675 list_del(&target
->d_u
.d_child
);
1677 /* Switch the names.. */
1678 switch_names(dentry
, target
);
1679 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
1681 /* ... and switch the parents */
1682 if (IS_ROOT(dentry
)) {
1683 dentry
->d_parent
= target
->d_parent
;
1684 target
->d_parent
= target
;
1685 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1687 swap(dentry
->d_parent
, target
->d_parent
);
1689 /* And add them back to the (new) parent lists */
1690 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1693 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1694 spin_unlock(&target
->d_lock
);
1695 fsnotify_d_move(dentry
);
1696 spin_unlock(&dentry
->d_lock
);
1697 write_sequnlock(&rename_lock
);
1701 * d_move - move a dentry
1702 * @dentry: entry to move
1703 * @target: new dentry
1705 * Update the dcache to reflect the move of a file name. Negative
1706 * dcache entries should not be moved in this way.
1709 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1711 spin_lock(&dcache_lock
);
1712 d_move_locked(dentry
, target
);
1713 spin_unlock(&dcache_lock
);
1717 * d_ancestor - search for an ancestor
1718 * @p1: ancestor dentry
1721 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1722 * an ancestor of p2, else NULL.
1724 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
1728 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
1729 if (p
->d_parent
== p1
)
1736 * This helper attempts to cope with remotely renamed directories
1738 * It assumes that the caller is already holding
1739 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1741 * Note: If ever the locking in lock_rename() changes, then please
1742 * remember to update this too...
1744 static struct dentry
*__d_unalias(struct dentry
*dentry
, struct dentry
*alias
)
1745 __releases(dcache_lock
)
1747 struct mutex
*m1
= NULL
, *m2
= NULL
;
1750 /* If alias and dentry share a parent, then no extra locks required */
1751 if (alias
->d_parent
== dentry
->d_parent
)
1754 /* Check for loops */
1755 ret
= ERR_PTR(-ELOOP
);
1756 if (d_ancestor(alias
, dentry
))
1759 /* See lock_rename() */
1760 ret
= ERR_PTR(-EBUSY
);
1761 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
1763 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
1764 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
1766 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
1768 d_move_locked(alias
, dentry
);
1771 spin_unlock(&dcache_lock
);
1780 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1781 * named dentry in place of the dentry to be replaced.
1783 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
1785 struct dentry
*dparent
, *aparent
;
1787 switch_names(dentry
, anon
);
1788 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
1790 dparent
= dentry
->d_parent
;
1791 aparent
= anon
->d_parent
;
1793 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
1794 list_del(&dentry
->d_u
.d_child
);
1795 if (!IS_ROOT(dentry
))
1796 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1798 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1800 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
1801 list_del(&anon
->d_u
.d_child
);
1803 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
1805 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
1807 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
1811 * d_materialise_unique - introduce an inode into the tree
1812 * @dentry: candidate dentry
1813 * @inode: inode to bind to the dentry, to which aliases may be attached
1815 * Introduces an dentry into the tree, substituting an extant disconnected
1816 * root directory alias in its place if there is one
1818 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
1820 struct dentry
*actual
;
1822 BUG_ON(!d_unhashed(dentry
));
1824 spin_lock(&dcache_lock
);
1828 __d_instantiate(dentry
, NULL
);
1832 if (S_ISDIR(inode
->i_mode
)) {
1833 struct dentry
*alias
;
1835 /* Does an aliased dentry already exist? */
1836 alias
= __d_find_alias(inode
, 0);
1839 /* Is this an anonymous mountpoint that we could splice
1841 if (IS_ROOT(alias
)) {
1842 spin_lock(&alias
->d_lock
);
1843 __d_materialise_dentry(dentry
, alias
);
1847 /* Nope, but we must(!) avoid directory aliasing */
1848 actual
= __d_unalias(dentry
, alias
);
1855 /* Add a unique reference */
1856 actual
= __d_instantiate_unique(dentry
, inode
);
1859 else if (unlikely(!d_unhashed(actual
)))
1860 goto shouldnt_be_hashed
;
1863 spin_lock(&actual
->d_lock
);
1866 spin_unlock(&actual
->d_lock
);
1867 spin_unlock(&dcache_lock
);
1869 if (actual
== dentry
) {
1870 security_d_instantiate(dentry
, inode
);
1878 spin_unlock(&dcache_lock
);
1882 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
1886 return -ENAMETOOLONG
;
1888 memcpy(*buffer
, str
, namelen
);
1892 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
1894 return prepend(buffer
, buflen
, name
->name
, name
->len
);
1898 * __d_path - return the path of a dentry
1899 * @path: the dentry/vfsmount to report
1900 * @root: root vfsmnt/dentry (may be modified by this function)
1901 * @buffer: buffer to return value in
1902 * @buflen: buffer length
1904 * Convert a dentry into an ASCII path name. If the entry has been deleted
1905 * the string " (deleted)" is appended. Note that this is ambiguous.
1907 * Returns a pointer into the buffer or an error code if the
1908 * path was too long.
1910 * "buflen" should be positive. Caller holds the dcache_lock.
1912 * If path is not reachable from the supplied root, then the value of
1913 * root is changed (without modifying refcounts).
1915 char *__d_path(const struct path
*path
, struct path
*root
,
1916 char *buffer
, int buflen
)
1918 struct dentry
*dentry
= path
->dentry
;
1919 struct vfsmount
*vfsmnt
= path
->mnt
;
1920 char *end
= buffer
+ buflen
;
1923 spin_lock(&vfsmount_lock
);
1924 prepend(&end
, &buflen
, "\0", 1);
1925 if (!IS_ROOT(dentry
) && d_unhashed(dentry
) &&
1926 (prepend(&end
, &buflen
, " (deleted)", 10) != 0))
1936 struct dentry
* parent
;
1938 if (dentry
== root
->dentry
&& vfsmnt
== root
->mnt
)
1940 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1942 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1945 dentry
= vfsmnt
->mnt_mountpoint
;
1946 vfsmnt
= vfsmnt
->mnt_parent
;
1949 parent
= dentry
->d_parent
;
1951 if ((prepend_name(&end
, &buflen
, &dentry
->d_name
) != 0) ||
1952 (prepend(&end
, &buflen
, "/", 1) != 0))
1959 spin_unlock(&vfsmount_lock
);
1963 retval
+= 1; /* hit the slash */
1964 if (prepend_name(&retval
, &buflen
, &dentry
->d_name
) != 0)
1967 root
->dentry
= dentry
;
1971 retval
= ERR_PTR(-ENAMETOOLONG
);
1976 * d_path - return the path of a dentry
1977 * @path: path to report
1978 * @buf: buffer to return value in
1979 * @buflen: buffer length
1981 * Convert a dentry into an ASCII path name. If the entry has been deleted
1982 * the string " (deleted)" is appended. Note that this is ambiguous.
1984 * Returns a pointer into the buffer or an error code if the path was
1985 * too long. Note: Callers should use the returned pointer, not the passed
1986 * in buffer, to use the name! The implementation often starts at an offset
1987 * into the buffer, and may leave 0 bytes at the start.
1989 * "buflen" should be positive.
1991 char *d_path(const struct path
*path
, char *buf
, int buflen
)
1998 * We have various synthetic filesystems that never get mounted. On
1999 * these filesystems dentries are never used for lookup purposes, and
2000 * thus don't need to be hashed. They also don't need a name until a
2001 * user wants to identify the object in /proc/pid/fd/. The little hack
2002 * below allows us to generate a name for these objects on demand:
2004 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2005 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2007 read_lock(¤t
->fs
->lock
);
2008 root
= current
->fs
->root
;
2010 read_unlock(¤t
->fs
->lock
);
2011 spin_lock(&dcache_lock
);
2013 res
= __d_path(path
, &tmp
, buf
, buflen
);
2014 spin_unlock(&dcache_lock
);
2020 * Helper function for dentry_operations.d_dname() members
2022 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2023 const char *fmt
, ...)
2029 va_start(args
, fmt
);
2030 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2033 if (sz
> sizeof(temp
) || sz
> buflen
)
2034 return ERR_PTR(-ENAMETOOLONG
);
2036 buffer
+= buflen
- sz
;
2037 return memcpy(buffer
, temp
, sz
);
2041 * Write full pathname from the root of the filesystem into the buffer.
2043 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2045 char *end
= buf
+ buflen
;
2048 spin_lock(&dcache_lock
);
2049 prepend(&end
, &buflen
, "\0", 1);
2050 if (!IS_ROOT(dentry
) && d_unhashed(dentry
) &&
2051 (prepend(&end
, &buflen
, "//deleted", 9) != 0))
2059 while (!IS_ROOT(dentry
)) {
2060 struct dentry
*parent
= dentry
->d_parent
;
2063 if ((prepend_name(&end
, &buflen
, &dentry
->d_name
) != 0) ||
2064 (prepend(&end
, &buflen
, "/", 1) != 0))
2070 spin_unlock(&dcache_lock
);
2073 spin_unlock(&dcache_lock
);
2074 return ERR_PTR(-ENAMETOOLONG
);
2078 * NOTE! The user-level library version returns a
2079 * character pointer. The kernel system call just
2080 * returns the length of the buffer filled (which
2081 * includes the ending '\0' character), or a negative
2082 * error value. So libc would do something like
2084 * char *getcwd(char * buf, size_t size)
2088 * retval = sys_getcwd(buf, size);
2095 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2098 struct path pwd
, root
;
2099 char *page
= (char *) __get_free_page(GFP_USER
);
2104 read_lock(¤t
->fs
->lock
);
2105 pwd
= current
->fs
->pwd
;
2107 root
= current
->fs
->root
;
2109 read_unlock(¤t
->fs
->lock
);
2112 /* Has the current directory has been unlinked? */
2113 spin_lock(&dcache_lock
);
2114 if (IS_ROOT(pwd
.dentry
) || !d_unhashed(pwd
.dentry
)) {
2116 struct path tmp
= root
;
2119 cwd
= __d_path(&pwd
, &tmp
, page
, PAGE_SIZE
);
2120 spin_unlock(&dcache_lock
);
2122 error
= PTR_ERR(cwd
);
2127 len
= PAGE_SIZE
+ page
- cwd
;
2130 if (copy_to_user(buf
, cwd
, len
))
2134 spin_unlock(&dcache_lock
);
2139 free_page((unsigned long) page
);
2144 * Test whether new_dentry is a subdirectory of old_dentry.
2146 * Trivially implemented using the dcache structure
2150 * is_subdir - is new dentry a subdirectory of old_dentry
2151 * @new_dentry: new dentry
2152 * @old_dentry: old dentry
2154 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2155 * Returns 0 otherwise.
2156 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2159 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2164 /* FIXME: This is old behavior, needed? Please check callers. */
2165 if (new_dentry
== old_dentry
)
2169 * Need rcu_readlock to protect against the d_parent trashing
2174 /* for restarting inner loop in case of seq retry */
2175 seq
= read_seqbegin(&rename_lock
);
2176 if (d_ancestor(old_dentry
, new_dentry
))
2180 } while (read_seqretry(&rename_lock
, seq
));
2186 void d_genocide(struct dentry
*root
)
2188 struct dentry
*this_parent
= root
;
2189 struct list_head
*next
;
2191 spin_lock(&dcache_lock
);
2193 next
= this_parent
->d_subdirs
.next
;
2195 while (next
!= &this_parent
->d_subdirs
) {
2196 struct list_head
*tmp
= next
;
2197 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2199 if (d_unhashed(dentry
)||!dentry
->d_inode
)
2201 if (!list_empty(&dentry
->d_subdirs
)) {
2202 this_parent
= dentry
;
2205 atomic_dec(&dentry
->d_count
);
2207 if (this_parent
!= root
) {
2208 next
= this_parent
->d_u
.d_child
.next
;
2209 atomic_dec(&this_parent
->d_count
);
2210 this_parent
= this_parent
->d_parent
;
2213 spin_unlock(&dcache_lock
);
2217 * find_inode_number - check for dentry with name
2218 * @dir: directory to check
2219 * @name: Name to find.
2221 * Check whether a dentry already exists for the given name,
2222 * and return the inode number if it has an inode. Otherwise
2225 * This routine is used to post-process directory listings for
2226 * filesystems using synthetic inode numbers, and is necessary
2227 * to keep getcwd() working.
2230 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2232 struct dentry
* dentry
;
2235 dentry
= d_hash_and_lookup(dir
, name
);
2237 if (dentry
->d_inode
)
2238 ino
= dentry
->d_inode
->i_ino
;
2244 static __initdata
unsigned long dhash_entries
;
2245 static int __init
set_dhash_entries(char *str
)
2249 dhash_entries
= simple_strtoul(str
, &str
, 0);
2252 __setup("dhash_entries=", set_dhash_entries
);
2254 static void __init
dcache_init_early(void)
2258 /* If hashes are distributed across NUMA nodes, defer
2259 * hash allocation until vmalloc space is available.
2265 alloc_large_system_hash("Dentry cache",
2266 sizeof(struct hlist_head
),
2274 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2275 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2278 static void __init
dcache_init(void)
2283 * A constructor could be added for stable state like the lists,
2284 * but it is probably not worth it because of the cache nature
2287 dentry_cache
= KMEM_CACHE(dentry
,
2288 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
2290 register_shrinker(&dcache_shrinker
);
2292 /* Hash may have been set up in dcache_init_early */
2297 alloc_large_system_hash("Dentry cache",
2298 sizeof(struct hlist_head
),
2306 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2307 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2310 /* SLAB cache for __getname() consumers */
2311 struct kmem_cache
*names_cachep __read_mostly
;
2313 EXPORT_SYMBOL(d_genocide
);
2315 void __init
vfs_caches_init_early(void)
2317 dcache_init_early();
2321 void __init
vfs_caches_init(unsigned long mempages
)
2323 unsigned long reserve
;
2325 /* Base hash sizes on available memory, with a reserve equal to
2326 150% of current kernel size */
2328 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
2329 mempages
-= reserve
;
2331 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
2332 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2336 files_init(mempages
);
2342 EXPORT_SYMBOL(d_alloc
);
2343 EXPORT_SYMBOL(d_alloc_root
);
2344 EXPORT_SYMBOL(d_delete
);
2345 EXPORT_SYMBOL(d_find_alias
);
2346 EXPORT_SYMBOL(d_instantiate
);
2347 EXPORT_SYMBOL(d_invalidate
);
2348 EXPORT_SYMBOL(d_lookup
);
2349 EXPORT_SYMBOL(d_move
);
2350 EXPORT_SYMBOL_GPL(d_materialise_unique
);
2351 EXPORT_SYMBOL(d_path
);
2352 EXPORT_SYMBOL(d_prune_aliases
);
2353 EXPORT_SYMBOL(d_rehash
);
2354 EXPORT_SYMBOL(d_splice_alias
);
2355 EXPORT_SYMBOL(d_add_ci
);
2356 EXPORT_SYMBOL(d_validate
);
2357 EXPORT_SYMBOL(dget_locked
);
2358 EXPORT_SYMBOL(dput
);
2359 EXPORT_SYMBOL(find_inode_number
);
2360 EXPORT_SYMBOL(have_submounts
);
2361 EXPORT_SYMBOL(names_cachep
);
2362 EXPORT_SYMBOL(shrink_dcache_parent
);
2363 EXPORT_SYMBOL(shrink_dcache_sb
);