2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21 #include <linux/hrtimer.h>
22 #include <linux/tick.h>
23 #include <linux/ktime.h>
24 #include <linux/sched.h>
27 * dbs is used in this file as a shortform for demandbased switching
28 * It helps to keep variable names smaller, simpler
31 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
34 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
35 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
36 #define MIN_FREQUENCY_UP_THRESHOLD (11)
37 #define MAX_FREQUENCY_UP_THRESHOLD (100)
40 * The polling frequency of this governor depends on the capability of
41 * the processor. Default polling frequency is 1000 times the transition
42 * latency of the processor. The governor will work on any processor with
43 * transition latency <= 10mS, using appropriate sampling
45 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
46 * this governor will not work.
47 * All times here are in uS.
49 #define MIN_SAMPLING_RATE_RATIO (2)
51 static unsigned int min_sampling_rate
;
53 #define LATENCY_MULTIPLIER (1000)
54 #define MIN_LATENCY_MULTIPLIER (100)
55 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
57 static void do_dbs_timer(struct work_struct
*work
);
58 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
61 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
64 struct cpufreq_governor cpufreq_gov_ondemand
= {
66 .governor
= cpufreq_governor_dbs
,
67 .max_transition_latency
= TRANSITION_LATENCY_LIMIT
,
72 enum {DBS_NORMAL_SAMPLE
, DBS_SUB_SAMPLE
};
74 struct cpu_dbs_info_s
{
75 cputime64_t prev_cpu_idle
;
76 cputime64_t prev_cpu_wall
;
77 cputime64_t prev_cpu_nice
;
78 struct cpufreq_policy
*cur_policy
;
79 struct delayed_work work
;
80 struct cpufreq_frequency_table
*freq_table
;
82 unsigned int freq_lo_jiffies
;
83 unsigned int freq_hi_jiffies
;
85 unsigned int sample_type
:1;
87 * percpu mutex that serializes governor limit change with
88 * do_dbs_timer invocation. We do not want do_dbs_timer to run
89 * when user is changing the governor or limits.
91 struct mutex timer_mutex
;
93 static DEFINE_PER_CPU(struct cpu_dbs_info_s
, od_cpu_dbs_info
);
95 static unsigned int dbs_enable
; /* number of CPUs using this policy */
98 * dbs_mutex protects data in dbs_tuners_ins from concurrent changes on
99 * different CPUs. It protects dbs_enable in governor start/stop.
101 static DEFINE_MUTEX(dbs_mutex
);
103 static struct workqueue_struct
*kondemand_wq
;
105 static struct dbs_tuners
{
106 unsigned int sampling_rate
;
107 unsigned int up_threshold
;
108 unsigned int down_differential
;
109 unsigned int ignore_nice
;
110 unsigned int powersave_bias
;
112 .up_threshold
= DEF_FREQUENCY_UP_THRESHOLD
,
113 .down_differential
= DEF_FREQUENCY_DOWN_DIFFERENTIAL
,
118 static inline cputime64_t
get_cpu_idle_time_jiffy(unsigned int cpu
,
121 cputime64_t idle_time
;
122 cputime64_t cur_wall_time
;
123 cputime64_t busy_time
;
125 cur_wall_time
= jiffies64_to_cputime64(get_jiffies_64());
126 busy_time
= cputime64_add(kstat_cpu(cpu
).cpustat
.user
,
127 kstat_cpu(cpu
).cpustat
.system
);
129 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.irq
);
130 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.softirq
);
131 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.steal
);
132 busy_time
= cputime64_add(busy_time
, kstat_cpu(cpu
).cpustat
.nice
);
134 idle_time
= cputime64_sub(cur_wall_time
, busy_time
);
136 *wall
= cur_wall_time
;
141 static inline cputime64_t
get_cpu_idle_time(unsigned int cpu
, cputime64_t
*wall
)
143 u64 idle_time
= get_cpu_idle_time_us(cpu
, wall
);
145 if (idle_time
== -1ULL)
146 return get_cpu_idle_time_jiffy(cpu
, wall
);
152 * Find right freq to be set now with powersave_bias on.
153 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
154 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
156 static unsigned int powersave_bias_target(struct cpufreq_policy
*policy
,
157 unsigned int freq_next
,
158 unsigned int relation
)
160 unsigned int freq_req
, freq_reduc
, freq_avg
;
161 unsigned int freq_hi
, freq_lo
;
162 unsigned int index
= 0;
163 unsigned int jiffies_total
, jiffies_hi
, jiffies_lo
;
164 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(od_cpu_dbs_info
,
167 if (!dbs_info
->freq_table
) {
168 dbs_info
->freq_lo
= 0;
169 dbs_info
->freq_lo_jiffies
= 0;
173 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_next
,
175 freq_req
= dbs_info
->freq_table
[index
].frequency
;
176 freq_reduc
= freq_req
* dbs_tuners_ins
.powersave_bias
/ 1000;
177 freq_avg
= freq_req
- freq_reduc
;
179 /* Find freq bounds for freq_avg in freq_table */
181 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
182 CPUFREQ_RELATION_H
, &index
);
183 freq_lo
= dbs_info
->freq_table
[index
].frequency
;
185 cpufreq_frequency_table_target(policy
, dbs_info
->freq_table
, freq_avg
,
186 CPUFREQ_RELATION_L
, &index
);
187 freq_hi
= dbs_info
->freq_table
[index
].frequency
;
189 /* Find out how long we have to be in hi and lo freqs */
190 if (freq_hi
== freq_lo
) {
191 dbs_info
->freq_lo
= 0;
192 dbs_info
->freq_lo_jiffies
= 0;
195 jiffies_total
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
196 jiffies_hi
= (freq_avg
- freq_lo
) * jiffies_total
;
197 jiffies_hi
+= ((freq_hi
- freq_lo
) / 2);
198 jiffies_hi
/= (freq_hi
- freq_lo
);
199 jiffies_lo
= jiffies_total
- jiffies_hi
;
200 dbs_info
->freq_lo
= freq_lo
;
201 dbs_info
->freq_lo_jiffies
= jiffies_lo
;
202 dbs_info
->freq_hi_jiffies
= jiffies_hi
;
206 static void ondemand_powersave_bias_init_cpu(int cpu
)
208 struct cpu_dbs_info_s
*dbs_info
= &per_cpu(od_cpu_dbs_info
, cpu
);
209 dbs_info
->freq_table
= cpufreq_frequency_get_table(cpu
);
210 dbs_info
->freq_lo
= 0;
213 static void ondemand_powersave_bias_init(void)
216 for_each_online_cpu(i
) {
217 ondemand_powersave_bias_init_cpu(i
);
221 /************************** sysfs interface ************************/
223 static ssize_t
show_sampling_rate_max(struct kobject
*kobj
,
224 struct attribute
*attr
, char *buf
)
226 printk_once(KERN_INFO
"CPUFREQ: ondemand sampling_rate_max "
227 "sysfs file is deprecated - used by: %s\n", current
->comm
);
228 return sprintf(buf
, "%u\n", -1U);
231 static ssize_t
show_sampling_rate_min(struct kobject
*kobj
,
232 struct attribute
*attr
, char *buf
)
234 return sprintf(buf
, "%u\n", min_sampling_rate
);
237 #define define_one_ro(_name) \
238 static struct global_attr _name = \
239 __ATTR(_name, 0444, show_##_name, NULL)
241 define_one_ro(sampling_rate_max
);
242 define_one_ro(sampling_rate_min
);
244 /* cpufreq_ondemand Governor Tunables */
245 #define show_one(file_name, object) \
246 static ssize_t show_##file_name \
247 (struct kobject *kobj, struct attribute *attr, char *buf) \
249 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
251 show_one(sampling_rate
, sampling_rate
);
252 show_one(up_threshold
, up_threshold
);
253 show_one(ignore_nice_load
, ignore_nice
);
254 show_one(powersave_bias
, powersave_bias
);
256 /*** delete after deprecation time ***/
258 #define DEPRECATION_MSG(file_name) \
259 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
260 "interface is deprecated - " #file_name "\n");
262 #define show_one_old(file_name) \
263 static ssize_t show_##file_name##_old \
264 (struct cpufreq_policy *unused, char *buf) \
266 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
267 "interface is deprecated - " #file_name "\n"); \
268 return show_##file_name(NULL, NULL, buf); \
270 show_one_old(sampling_rate
);
271 show_one_old(up_threshold
);
272 show_one_old(ignore_nice_load
);
273 show_one_old(powersave_bias
);
274 show_one_old(sampling_rate_min
);
275 show_one_old(sampling_rate_max
);
277 #define define_one_ro_old(object, _name) \
278 static struct freq_attr object = \
279 __ATTR(_name, 0444, show_##_name##_old, NULL)
281 define_one_ro_old(sampling_rate_min_old
, sampling_rate_min
);
282 define_one_ro_old(sampling_rate_max_old
, sampling_rate_max
);
284 /*** delete after deprecation time ***/
286 static ssize_t
store_sampling_rate(struct kobject
*a
, struct attribute
*b
,
287 const char *buf
, size_t count
)
291 ret
= sscanf(buf
, "%u", &input
);
295 mutex_lock(&dbs_mutex
);
296 dbs_tuners_ins
.sampling_rate
= max(input
, min_sampling_rate
);
297 mutex_unlock(&dbs_mutex
);
302 static ssize_t
store_up_threshold(struct kobject
*a
, struct attribute
*b
,
303 const char *buf
, size_t count
)
307 ret
= sscanf(buf
, "%u", &input
);
309 if (ret
!= 1 || input
> MAX_FREQUENCY_UP_THRESHOLD
||
310 input
< MIN_FREQUENCY_UP_THRESHOLD
) {
314 mutex_lock(&dbs_mutex
);
315 dbs_tuners_ins
.up_threshold
= input
;
316 mutex_unlock(&dbs_mutex
);
321 static ssize_t
store_ignore_nice_load(struct kobject
*a
, struct attribute
*b
,
322 const char *buf
, size_t count
)
329 ret
= sscanf(buf
, "%u", &input
);
336 mutex_lock(&dbs_mutex
);
337 if (input
== dbs_tuners_ins
.ignore_nice
) { /* nothing to do */
338 mutex_unlock(&dbs_mutex
);
341 dbs_tuners_ins
.ignore_nice
= input
;
343 /* we need to re-evaluate prev_cpu_idle */
344 for_each_online_cpu(j
) {
345 struct cpu_dbs_info_s
*dbs_info
;
346 dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
347 dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
348 &dbs_info
->prev_cpu_wall
);
349 if (dbs_tuners_ins
.ignore_nice
)
350 dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
353 mutex_unlock(&dbs_mutex
);
358 static ssize_t
store_powersave_bias(struct kobject
*a
, struct attribute
*b
,
359 const char *buf
, size_t count
)
363 ret
= sscanf(buf
, "%u", &input
);
371 mutex_lock(&dbs_mutex
);
372 dbs_tuners_ins
.powersave_bias
= input
;
373 ondemand_powersave_bias_init();
374 mutex_unlock(&dbs_mutex
);
379 #define define_one_rw(_name) \
380 static struct global_attr _name = \
381 __ATTR(_name, 0644, show_##_name, store_##_name)
383 define_one_rw(sampling_rate
);
384 define_one_rw(up_threshold
);
385 define_one_rw(ignore_nice_load
);
386 define_one_rw(powersave_bias
);
388 static struct attribute
*dbs_attributes
[] = {
389 &sampling_rate_max
.attr
,
390 &sampling_rate_min
.attr
,
393 &ignore_nice_load
.attr
,
394 &powersave_bias
.attr
,
398 static struct attribute_group dbs_attr_group
= {
399 .attrs
= dbs_attributes
,
403 /*** delete after deprecation time ***/
405 #define write_one_old(file_name) \
406 static ssize_t store_##file_name##_old \
407 (struct cpufreq_policy *unused, const char *buf, size_t count) \
409 printk_once(KERN_INFO "CPUFREQ: Per core ondemand sysfs " \
410 "interface is deprecated - " #file_name "\n"); \
411 return store_##file_name(NULL, NULL, buf, count); \
413 write_one_old(sampling_rate
);
414 write_one_old(up_threshold
);
415 write_one_old(ignore_nice_load
);
416 write_one_old(powersave_bias
);
418 #define define_one_rw_old(object, _name) \
419 static struct freq_attr object = \
420 __ATTR(_name, 0644, show_##_name##_old, store_##_name##_old)
422 define_one_rw_old(sampling_rate_old
, sampling_rate
);
423 define_one_rw_old(up_threshold_old
, up_threshold
);
424 define_one_rw_old(ignore_nice_load_old
, ignore_nice_load
);
425 define_one_rw_old(powersave_bias_old
, powersave_bias
);
427 static struct attribute
*dbs_attributes_old
[] = {
428 &sampling_rate_max_old
.attr
,
429 &sampling_rate_min_old
.attr
,
430 &sampling_rate_old
.attr
,
431 &up_threshold_old
.attr
,
432 &ignore_nice_load_old
.attr
,
433 &powersave_bias_old
.attr
,
437 static struct attribute_group dbs_attr_group_old
= {
438 .attrs
= dbs_attributes_old
,
442 /*** delete after deprecation time ***/
444 /************************** sysfs end ************************/
446 static void dbs_check_cpu(struct cpu_dbs_info_s
*this_dbs_info
)
448 unsigned int max_load_freq
;
450 struct cpufreq_policy
*policy
;
453 this_dbs_info
->freq_lo
= 0;
454 policy
= this_dbs_info
->cur_policy
;
457 * Every sampling_rate, we check, if current idle time is less
458 * than 20% (default), then we try to increase frequency
459 * Every sampling_rate, we look for a the lowest
460 * frequency which can sustain the load while keeping idle time over
461 * 30%. If such a frequency exist, we try to decrease to this frequency.
463 * Any frequency increase takes it to the maximum frequency.
464 * Frequency reduction happens at minimum steps of
465 * 5% (default) of current frequency
468 /* Get Absolute Load - in terms of freq */
471 for_each_cpu(j
, policy
->cpus
) {
472 struct cpu_dbs_info_s
*j_dbs_info
;
473 cputime64_t cur_wall_time
, cur_idle_time
;
474 unsigned int idle_time
, wall_time
;
475 unsigned int load
, load_freq
;
478 j_dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
480 cur_idle_time
= get_cpu_idle_time(j
, &cur_wall_time
);
482 wall_time
= (unsigned int) cputime64_sub(cur_wall_time
,
483 j_dbs_info
->prev_cpu_wall
);
484 j_dbs_info
->prev_cpu_wall
= cur_wall_time
;
486 idle_time
= (unsigned int) cputime64_sub(cur_idle_time
,
487 j_dbs_info
->prev_cpu_idle
);
488 j_dbs_info
->prev_cpu_idle
= cur_idle_time
;
490 if (dbs_tuners_ins
.ignore_nice
) {
491 cputime64_t cur_nice
;
492 unsigned long cur_nice_jiffies
;
494 cur_nice
= cputime64_sub(kstat_cpu(j
).cpustat
.nice
,
495 j_dbs_info
->prev_cpu_nice
);
497 * Assumption: nice time between sampling periods will
498 * be less than 2^32 jiffies for 32 bit sys
500 cur_nice_jiffies
= (unsigned long)
501 cputime64_to_jiffies64(cur_nice
);
503 j_dbs_info
->prev_cpu_nice
= kstat_cpu(j
).cpustat
.nice
;
504 idle_time
+= jiffies_to_usecs(cur_nice_jiffies
);
507 if (unlikely(!wall_time
|| wall_time
< idle_time
))
510 load
= 100 * (wall_time
- idle_time
) / wall_time
;
512 freq_avg
= __cpufreq_driver_getavg(policy
, j
);
514 freq_avg
= policy
->cur
;
516 load_freq
= load
* freq_avg
;
517 if (load_freq
> max_load_freq
)
518 max_load_freq
= load_freq
;
521 /* Check for frequency increase */
522 if (max_load_freq
> dbs_tuners_ins
.up_threshold
* policy
->cur
) {
523 /* if we are already at full speed then break out early */
524 if (!dbs_tuners_ins
.powersave_bias
) {
525 if (policy
->cur
== policy
->max
)
528 __cpufreq_driver_target(policy
, policy
->max
,
531 int freq
= powersave_bias_target(policy
, policy
->max
,
533 __cpufreq_driver_target(policy
, freq
,
539 /* Check for frequency decrease */
540 /* if we cannot reduce the frequency anymore, break out early */
541 if (policy
->cur
== policy
->min
)
545 * The optimal frequency is the frequency that is the lowest that
546 * can support the current CPU usage without triggering the up
547 * policy. To be safe, we focus 10 points under the threshold.
550 (dbs_tuners_ins
.up_threshold
- dbs_tuners_ins
.down_differential
) *
552 unsigned int freq_next
;
553 freq_next
= max_load_freq
/
554 (dbs_tuners_ins
.up_threshold
-
555 dbs_tuners_ins
.down_differential
);
557 if (!dbs_tuners_ins
.powersave_bias
) {
558 __cpufreq_driver_target(policy
, freq_next
,
561 int freq
= powersave_bias_target(policy
, freq_next
,
563 __cpufreq_driver_target(policy
, freq
,
569 static void do_dbs_timer(struct work_struct
*work
)
571 struct cpu_dbs_info_s
*dbs_info
=
572 container_of(work
, struct cpu_dbs_info_s
, work
.work
);
573 unsigned int cpu
= dbs_info
->cpu
;
574 int sample_type
= dbs_info
->sample_type
;
576 /* We want all CPUs to do sampling nearly on same jiffy */
577 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
579 delay
-= jiffies
% delay
;
580 mutex_lock(&dbs_info
->timer_mutex
);
582 /* Common NORMAL_SAMPLE setup */
583 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
584 if (!dbs_tuners_ins
.powersave_bias
||
585 sample_type
== DBS_NORMAL_SAMPLE
) {
586 dbs_check_cpu(dbs_info
);
587 if (dbs_info
->freq_lo
) {
588 /* Setup timer for SUB_SAMPLE */
589 dbs_info
->sample_type
= DBS_SUB_SAMPLE
;
590 delay
= dbs_info
->freq_hi_jiffies
;
593 __cpufreq_driver_target(dbs_info
->cur_policy
,
594 dbs_info
->freq_lo
, CPUFREQ_RELATION_H
);
596 queue_delayed_work_on(cpu
, kondemand_wq
, &dbs_info
->work
, delay
);
597 mutex_unlock(&dbs_info
->timer_mutex
);
600 static inline void dbs_timer_init(struct cpu_dbs_info_s
*dbs_info
)
602 /* We want all CPUs to do sampling nearly on same jiffy */
603 int delay
= usecs_to_jiffies(dbs_tuners_ins
.sampling_rate
);
604 delay
-= jiffies
% delay
;
606 dbs_info
->sample_type
= DBS_NORMAL_SAMPLE
;
607 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info
->work
, do_dbs_timer
);
608 queue_delayed_work_on(dbs_info
->cpu
, kondemand_wq
, &dbs_info
->work
,
612 static inline void dbs_timer_exit(struct cpu_dbs_info_s
*dbs_info
)
614 cancel_delayed_work_sync(&dbs_info
->work
);
617 static int cpufreq_governor_dbs(struct cpufreq_policy
*policy
,
620 unsigned int cpu
= policy
->cpu
;
621 struct cpu_dbs_info_s
*this_dbs_info
;
625 this_dbs_info
= &per_cpu(od_cpu_dbs_info
, cpu
);
628 case CPUFREQ_GOV_START
:
629 if ((!cpu_online(cpu
)) || (!policy
->cur
))
632 mutex_lock(&dbs_mutex
);
634 rc
= sysfs_create_group(&policy
->kobj
, &dbs_attr_group_old
);
636 mutex_unlock(&dbs_mutex
);
641 for_each_cpu(j
, policy
->cpus
) {
642 struct cpu_dbs_info_s
*j_dbs_info
;
643 j_dbs_info
= &per_cpu(od_cpu_dbs_info
, j
);
644 j_dbs_info
->cur_policy
= policy
;
646 j_dbs_info
->prev_cpu_idle
= get_cpu_idle_time(j
,
647 &j_dbs_info
->prev_cpu_wall
);
648 if (dbs_tuners_ins
.ignore_nice
) {
649 j_dbs_info
->prev_cpu_nice
=
650 kstat_cpu(j
).cpustat
.nice
;
653 this_dbs_info
->cpu
= cpu
;
654 ondemand_powersave_bias_init_cpu(cpu
);
656 * Start the timerschedule work, when this governor
657 * is used for first time
659 if (dbs_enable
== 1) {
660 unsigned int latency
;
662 rc
= sysfs_create_group(cpufreq_global_kobject
,
665 mutex_unlock(&dbs_mutex
);
669 /* policy latency is in nS. Convert it to uS first */
670 latency
= policy
->cpuinfo
.transition_latency
/ 1000;
673 /* Bring kernel and HW constraints together */
674 min_sampling_rate
= max(min_sampling_rate
,
675 MIN_LATENCY_MULTIPLIER
* latency
);
676 dbs_tuners_ins
.sampling_rate
=
677 max(min_sampling_rate
,
678 latency
* LATENCY_MULTIPLIER
);
680 mutex_unlock(&dbs_mutex
);
682 mutex_init(&this_dbs_info
->timer_mutex
);
683 dbs_timer_init(this_dbs_info
);
686 case CPUFREQ_GOV_STOP
:
687 dbs_timer_exit(this_dbs_info
);
689 mutex_lock(&dbs_mutex
);
690 sysfs_remove_group(&policy
->kobj
, &dbs_attr_group_old
);
691 mutex_destroy(&this_dbs_info
->timer_mutex
);
693 mutex_unlock(&dbs_mutex
);
695 sysfs_remove_group(cpufreq_global_kobject
,
700 case CPUFREQ_GOV_LIMITS
:
701 mutex_lock(&this_dbs_info
->timer_mutex
);
702 if (policy
->max
< this_dbs_info
->cur_policy
->cur
)
703 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
704 policy
->max
, CPUFREQ_RELATION_H
);
705 else if (policy
->min
> this_dbs_info
->cur_policy
->cur
)
706 __cpufreq_driver_target(this_dbs_info
->cur_policy
,
707 policy
->min
, CPUFREQ_RELATION_L
);
708 mutex_unlock(&this_dbs_info
->timer_mutex
);
714 static int __init
cpufreq_gov_dbs_init(void)
721 idle_time
= get_cpu_idle_time_us(cpu
, &wall
);
723 if (idle_time
!= -1ULL) {
724 /* Idle micro accounting is supported. Use finer thresholds */
725 dbs_tuners_ins
.up_threshold
= MICRO_FREQUENCY_UP_THRESHOLD
;
726 dbs_tuners_ins
.down_differential
=
727 MICRO_FREQUENCY_DOWN_DIFFERENTIAL
;
729 * In no_hz/micro accounting case we set the minimum frequency
730 * not depending on HZ, but fixed (very low). The deferred
731 * timer might skip some samples if idle/sleeping as needed.
733 min_sampling_rate
= MICRO_FREQUENCY_MIN_SAMPLE_RATE
;
735 /* For correct statistics, we need 10 ticks for each measure */
737 MIN_SAMPLING_RATE_RATIO
* jiffies_to_usecs(10);
740 kondemand_wq
= create_workqueue("kondemand");
742 printk(KERN_ERR
"Creation of kondemand failed\n");
745 err
= cpufreq_register_governor(&cpufreq_gov_ondemand
);
747 destroy_workqueue(kondemand_wq
);
752 static void __exit
cpufreq_gov_dbs_exit(void)
754 cpufreq_unregister_governor(&cpufreq_gov_ondemand
);
755 destroy_workqueue(kondemand_wq
);
759 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
760 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
761 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
762 "Low Latency Frequency Transition capable processors");
763 MODULE_LICENSE("GPL");
765 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
766 fs_initcall(cpufreq_gov_dbs_init
);
768 module_init(cpufreq_gov_dbs_init
);
770 module_exit(cpufreq_gov_dbs_exit
);