alpha: nautilus - fix hang on boot
[linux-2.6/mini2440.git] / drivers / mtd / mtdconcat.c
blob3dbb1b38db666cf4294047ec8cac5f8610c19525
1 /*
2 * MTD device concatenation layer
4 * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
6 * NAND support by Christian Gan <cgan@iders.ca>
8 * This code is GPL
9 */
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/types.h>
17 #include <linux/mtd/mtd.h>
18 #include <linux/mtd/concat.h>
20 #include <asm/div64.h>
23 * Our storage structure:
24 * Subdev points to an array of pointers to struct mtd_info objects
25 * which is allocated along with this structure
28 struct mtd_concat {
29 struct mtd_info mtd;
30 int num_subdev;
31 struct mtd_info **subdev;
35 * how to calculate the size required for the above structure,
36 * including the pointer array subdev points to:
38 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
39 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
42 * Given a pointer to the MTD object in the mtd_concat structure,
43 * we can retrieve the pointer to that structure with this macro.
45 #define CONCAT(x) ((struct mtd_concat *)(x))
48 * MTD methods which look up the relevant subdevice, translate the
49 * effective address and pass through to the subdevice.
52 static int
53 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
54 size_t * retlen, u_char * buf)
56 struct mtd_concat *concat = CONCAT(mtd);
57 int ret = 0, err;
58 int i;
60 *retlen = 0;
62 for (i = 0; i < concat->num_subdev; i++) {
63 struct mtd_info *subdev = concat->subdev[i];
64 size_t size, retsize;
66 if (from >= subdev->size) {
67 /* Not destined for this subdev */
68 size = 0;
69 from -= subdev->size;
70 continue;
72 if (from + len > subdev->size)
73 /* First part goes into this subdev */
74 size = subdev->size - from;
75 else
76 /* Entire transaction goes into this subdev */
77 size = len;
79 err = subdev->read(subdev, from, size, &retsize, buf);
81 /* Save information about bitflips! */
82 if (unlikely(err)) {
83 if (err == -EBADMSG) {
84 mtd->ecc_stats.failed++;
85 ret = err;
86 } else if (err == -EUCLEAN) {
87 mtd->ecc_stats.corrected++;
88 /* Do not overwrite -EBADMSG !! */
89 if (!ret)
90 ret = err;
91 } else
92 return err;
95 *retlen += retsize;
96 len -= size;
97 if (len == 0)
98 return ret;
100 buf += size;
101 from = 0;
103 return -EINVAL;
106 static int
107 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
108 size_t * retlen, const u_char * buf)
110 struct mtd_concat *concat = CONCAT(mtd);
111 int err = -EINVAL;
112 int i;
114 if (!(mtd->flags & MTD_WRITEABLE))
115 return -EROFS;
117 *retlen = 0;
119 for (i = 0; i < concat->num_subdev; i++) {
120 struct mtd_info *subdev = concat->subdev[i];
121 size_t size, retsize;
123 if (to >= subdev->size) {
124 size = 0;
125 to -= subdev->size;
126 continue;
128 if (to + len > subdev->size)
129 size = subdev->size - to;
130 else
131 size = len;
133 if (!(subdev->flags & MTD_WRITEABLE))
134 err = -EROFS;
135 else
136 err = subdev->write(subdev, to, size, &retsize, buf);
138 if (err)
139 break;
141 *retlen += retsize;
142 len -= size;
143 if (len == 0)
144 break;
146 err = -EINVAL;
147 buf += size;
148 to = 0;
150 return err;
153 static int
154 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
155 unsigned long count, loff_t to, size_t * retlen)
157 struct mtd_concat *concat = CONCAT(mtd);
158 struct kvec *vecs_copy;
159 unsigned long entry_low, entry_high;
160 size_t total_len = 0;
161 int i;
162 int err = -EINVAL;
164 if (!(mtd->flags & MTD_WRITEABLE))
165 return -EROFS;
167 *retlen = 0;
169 /* Calculate total length of data */
170 for (i = 0; i < count; i++)
171 total_len += vecs[i].iov_len;
173 /* Do not allow write past end of device */
174 if ((to + total_len) > mtd->size)
175 return -EINVAL;
177 /* Check alignment */
178 if (mtd->writesize > 1) {
179 uint64_t __to = to;
180 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
181 return -EINVAL;
184 /* make a copy of vecs */
185 vecs_copy = kmalloc(sizeof(struct kvec) * count, GFP_KERNEL);
186 if (!vecs_copy)
187 return -ENOMEM;
188 memcpy(vecs_copy, vecs, sizeof(struct kvec) * count);
190 entry_low = 0;
191 for (i = 0; i < concat->num_subdev; i++) {
192 struct mtd_info *subdev = concat->subdev[i];
193 size_t size, wsize, retsize, old_iov_len;
195 if (to >= subdev->size) {
196 to -= subdev->size;
197 continue;
200 size = min_t(uint64_t, total_len, subdev->size - to);
201 wsize = size; /* store for future use */
203 entry_high = entry_low;
204 while (entry_high < count) {
205 if (size <= vecs_copy[entry_high].iov_len)
206 break;
207 size -= vecs_copy[entry_high++].iov_len;
210 old_iov_len = vecs_copy[entry_high].iov_len;
211 vecs_copy[entry_high].iov_len = size;
213 if (!(subdev->flags & MTD_WRITEABLE))
214 err = -EROFS;
215 else
216 err = subdev->writev(subdev, &vecs_copy[entry_low],
217 entry_high - entry_low + 1, to, &retsize);
219 vecs_copy[entry_high].iov_len = old_iov_len - size;
220 vecs_copy[entry_high].iov_base += size;
222 entry_low = entry_high;
224 if (err)
225 break;
227 *retlen += retsize;
228 total_len -= wsize;
230 if (total_len == 0)
231 break;
233 err = -EINVAL;
234 to = 0;
237 kfree(vecs_copy);
238 return err;
241 static int
242 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
244 struct mtd_concat *concat = CONCAT(mtd);
245 struct mtd_oob_ops devops = *ops;
246 int i, err, ret = 0;
248 ops->retlen = ops->oobretlen = 0;
250 for (i = 0; i < concat->num_subdev; i++) {
251 struct mtd_info *subdev = concat->subdev[i];
253 if (from >= subdev->size) {
254 from -= subdev->size;
255 continue;
258 /* partial read ? */
259 if (from + devops.len > subdev->size)
260 devops.len = subdev->size - from;
262 err = subdev->read_oob(subdev, from, &devops);
263 ops->retlen += devops.retlen;
264 ops->oobretlen += devops.oobretlen;
266 /* Save information about bitflips! */
267 if (unlikely(err)) {
268 if (err == -EBADMSG) {
269 mtd->ecc_stats.failed++;
270 ret = err;
271 } else if (err == -EUCLEAN) {
272 mtd->ecc_stats.corrected++;
273 /* Do not overwrite -EBADMSG !! */
274 if (!ret)
275 ret = err;
276 } else
277 return err;
280 if (devops.datbuf) {
281 devops.len = ops->len - ops->retlen;
282 if (!devops.len)
283 return ret;
284 devops.datbuf += devops.retlen;
286 if (devops.oobbuf) {
287 devops.ooblen = ops->ooblen - ops->oobretlen;
288 if (!devops.ooblen)
289 return ret;
290 devops.oobbuf += ops->oobretlen;
293 from = 0;
295 return -EINVAL;
298 static int
299 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
301 struct mtd_concat *concat = CONCAT(mtd);
302 struct mtd_oob_ops devops = *ops;
303 int i, err;
305 if (!(mtd->flags & MTD_WRITEABLE))
306 return -EROFS;
308 ops->retlen = 0;
310 for (i = 0; i < concat->num_subdev; i++) {
311 struct mtd_info *subdev = concat->subdev[i];
313 if (to >= subdev->size) {
314 to -= subdev->size;
315 continue;
318 /* partial write ? */
319 if (to + devops.len > subdev->size)
320 devops.len = subdev->size - to;
322 err = subdev->write_oob(subdev, to, &devops);
323 ops->retlen += devops.retlen;
324 if (err)
325 return err;
327 if (devops.datbuf) {
328 devops.len = ops->len - ops->retlen;
329 if (!devops.len)
330 return 0;
331 devops.datbuf += devops.retlen;
333 if (devops.oobbuf) {
334 devops.ooblen = ops->ooblen - ops->oobretlen;
335 if (!devops.ooblen)
336 return 0;
337 devops.oobbuf += devops.oobretlen;
339 to = 0;
341 return -EINVAL;
344 static void concat_erase_callback(struct erase_info *instr)
346 wake_up((wait_queue_head_t *) instr->priv);
349 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
351 int err;
352 wait_queue_head_t waitq;
353 DECLARE_WAITQUEUE(wait, current);
356 * This code was stol^H^H^H^Hinspired by mtdchar.c
358 init_waitqueue_head(&waitq);
360 erase->mtd = mtd;
361 erase->callback = concat_erase_callback;
362 erase->priv = (unsigned long) &waitq;
365 * FIXME: Allow INTERRUPTIBLE. Which means
366 * not having the wait_queue head on the stack.
368 err = mtd->erase(mtd, erase);
369 if (!err) {
370 set_current_state(TASK_UNINTERRUPTIBLE);
371 add_wait_queue(&waitq, &wait);
372 if (erase->state != MTD_ERASE_DONE
373 && erase->state != MTD_ERASE_FAILED)
374 schedule();
375 remove_wait_queue(&waitq, &wait);
376 set_current_state(TASK_RUNNING);
378 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
380 return err;
383 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
385 struct mtd_concat *concat = CONCAT(mtd);
386 struct mtd_info *subdev;
387 int i, err;
388 uint64_t length, offset = 0;
389 struct erase_info *erase;
391 if (!(mtd->flags & MTD_WRITEABLE))
392 return -EROFS;
394 if (instr->addr > concat->mtd.size)
395 return -EINVAL;
397 if (instr->len + instr->addr > concat->mtd.size)
398 return -EINVAL;
401 * Check for proper erase block alignment of the to-be-erased area.
402 * It is easier to do this based on the super device's erase
403 * region info rather than looking at each particular sub-device
404 * in turn.
406 if (!concat->mtd.numeraseregions) {
407 /* the easy case: device has uniform erase block size */
408 if (instr->addr & (concat->mtd.erasesize - 1))
409 return -EINVAL;
410 if (instr->len & (concat->mtd.erasesize - 1))
411 return -EINVAL;
412 } else {
413 /* device has variable erase size */
414 struct mtd_erase_region_info *erase_regions =
415 concat->mtd.eraseregions;
418 * Find the erase region where the to-be-erased area begins:
420 for (i = 0; i < concat->mtd.numeraseregions &&
421 instr->addr >= erase_regions[i].offset; i++) ;
422 --i;
425 * Now erase_regions[i] is the region in which the
426 * to-be-erased area begins. Verify that the starting
427 * offset is aligned to this region's erase size:
429 if (instr->addr & (erase_regions[i].erasesize - 1))
430 return -EINVAL;
433 * now find the erase region where the to-be-erased area ends:
435 for (; i < concat->mtd.numeraseregions &&
436 (instr->addr + instr->len) >= erase_regions[i].offset;
437 ++i) ;
438 --i;
440 * check if the ending offset is aligned to this region's erase size
442 if ((instr->addr + instr->len) & (erase_regions[i].erasesize -
444 return -EINVAL;
447 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
449 /* make a local copy of instr to avoid modifying the caller's struct */
450 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
452 if (!erase)
453 return -ENOMEM;
455 *erase = *instr;
456 length = instr->len;
459 * find the subdevice where the to-be-erased area begins, adjust
460 * starting offset to be relative to the subdevice start
462 for (i = 0; i < concat->num_subdev; i++) {
463 subdev = concat->subdev[i];
464 if (subdev->size <= erase->addr) {
465 erase->addr -= subdev->size;
466 offset += subdev->size;
467 } else {
468 break;
472 /* must never happen since size limit has been verified above */
473 BUG_ON(i >= concat->num_subdev);
475 /* now do the erase: */
476 err = 0;
477 for (; length > 0; i++) {
478 /* loop for all subdevices affected by this request */
479 subdev = concat->subdev[i]; /* get current subdevice */
481 /* limit length to subdevice's size: */
482 if (erase->addr + length > subdev->size)
483 erase->len = subdev->size - erase->addr;
484 else
485 erase->len = length;
487 if (!(subdev->flags & MTD_WRITEABLE)) {
488 err = -EROFS;
489 break;
491 length -= erase->len;
492 if ((err = concat_dev_erase(subdev, erase))) {
493 /* sanity check: should never happen since
494 * block alignment has been checked above */
495 BUG_ON(err == -EINVAL);
496 if (erase->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
497 instr->fail_addr = erase->fail_addr + offset;
498 break;
501 * erase->addr specifies the offset of the area to be
502 * erased *within the current subdevice*. It can be
503 * non-zero only the first time through this loop, i.e.
504 * for the first subdevice where blocks need to be erased.
505 * All the following erases must begin at the start of the
506 * current subdevice, i.e. at offset zero.
508 erase->addr = 0;
509 offset += subdev->size;
511 instr->state = erase->state;
512 kfree(erase);
513 if (err)
514 return err;
516 if (instr->callback)
517 instr->callback(instr);
518 return 0;
521 static int concat_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
523 struct mtd_concat *concat = CONCAT(mtd);
524 int i, err = -EINVAL;
526 if ((len + ofs) > mtd->size)
527 return -EINVAL;
529 for (i = 0; i < concat->num_subdev; i++) {
530 struct mtd_info *subdev = concat->subdev[i];
531 uint64_t size;
533 if (ofs >= subdev->size) {
534 size = 0;
535 ofs -= subdev->size;
536 continue;
538 if (ofs + len > subdev->size)
539 size = subdev->size - ofs;
540 else
541 size = len;
543 err = subdev->lock(subdev, ofs, size);
545 if (err)
546 break;
548 len -= size;
549 if (len == 0)
550 break;
552 err = -EINVAL;
553 ofs = 0;
556 return err;
559 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
561 struct mtd_concat *concat = CONCAT(mtd);
562 int i, err = 0;
564 if ((len + ofs) > mtd->size)
565 return -EINVAL;
567 for (i = 0; i < concat->num_subdev; i++) {
568 struct mtd_info *subdev = concat->subdev[i];
569 uint64_t size;
571 if (ofs >= subdev->size) {
572 size = 0;
573 ofs -= subdev->size;
574 continue;
576 if (ofs + len > subdev->size)
577 size = subdev->size - ofs;
578 else
579 size = len;
581 err = subdev->unlock(subdev, ofs, size);
583 if (err)
584 break;
586 len -= size;
587 if (len == 0)
588 break;
590 err = -EINVAL;
591 ofs = 0;
594 return err;
597 static void concat_sync(struct mtd_info *mtd)
599 struct mtd_concat *concat = CONCAT(mtd);
600 int i;
602 for (i = 0; i < concat->num_subdev; i++) {
603 struct mtd_info *subdev = concat->subdev[i];
604 subdev->sync(subdev);
608 static int concat_suspend(struct mtd_info *mtd)
610 struct mtd_concat *concat = CONCAT(mtd);
611 int i, rc = 0;
613 for (i = 0; i < concat->num_subdev; i++) {
614 struct mtd_info *subdev = concat->subdev[i];
615 if ((rc = subdev->suspend(subdev)) < 0)
616 return rc;
618 return rc;
621 static void concat_resume(struct mtd_info *mtd)
623 struct mtd_concat *concat = CONCAT(mtd);
624 int i;
626 for (i = 0; i < concat->num_subdev; i++) {
627 struct mtd_info *subdev = concat->subdev[i];
628 subdev->resume(subdev);
632 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
634 struct mtd_concat *concat = CONCAT(mtd);
635 int i, res = 0;
637 if (!concat->subdev[0]->block_isbad)
638 return res;
640 if (ofs > mtd->size)
641 return -EINVAL;
643 for (i = 0; i < concat->num_subdev; i++) {
644 struct mtd_info *subdev = concat->subdev[i];
646 if (ofs >= subdev->size) {
647 ofs -= subdev->size;
648 continue;
651 res = subdev->block_isbad(subdev, ofs);
652 break;
655 return res;
658 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
660 struct mtd_concat *concat = CONCAT(mtd);
661 int i, err = -EINVAL;
663 if (!concat->subdev[0]->block_markbad)
664 return 0;
666 if (ofs > mtd->size)
667 return -EINVAL;
669 for (i = 0; i < concat->num_subdev; i++) {
670 struct mtd_info *subdev = concat->subdev[i];
672 if (ofs >= subdev->size) {
673 ofs -= subdev->size;
674 continue;
677 err = subdev->block_markbad(subdev, ofs);
678 if (!err)
679 mtd->ecc_stats.badblocks++;
680 break;
683 return err;
687 * This function constructs a virtual MTD device by concatenating
688 * num_devs MTD devices. A pointer to the new device object is
689 * stored to *new_dev upon success. This function does _not_
690 * register any devices: this is the caller's responsibility.
692 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
693 int num_devs, /* number of subdevices */
694 const char *name)
695 { /* name for the new device */
696 int i;
697 size_t size;
698 struct mtd_concat *concat;
699 uint32_t max_erasesize, curr_erasesize;
700 int num_erase_region;
702 printk(KERN_NOTICE "Concatenating MTD devices:\n");
703 for (i = 0; i < num_devs; i++)
704 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
705 printk(KERN_NOTICE "into device \"%s\"\n", name);
707 /* allocate the device structure */
708 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
709 concat = kzalloc(size, GFP_KERNEL);
710 if (!concat) {
711 printk
712 ("memory allocation error while creating concatenated device \"%s\"\n",
713 name);
714 return NULL;
716 concat->subdev = (struct mtd_info **) (concat + 1);
719 * Set up the new "super" device's MTD object structure, check for
720 * incompatibilites between the subdevices.
722 concat->mtd.type = subdev[0]->type;
723 concat->mtd.flags = subdev[0]->flags;
724 concat->mtd.size = subdev[0]->size;
725 concat->mtd.erasesize = subdev[0]->erasesize;
726 concat->mtd.writesize = subdev[0]->writesize;
727 concat->mtd.subpage_sft = subdev[0]->subpage_sft;
728 concat->mtd.oobsize = subdev[0]->oobsize;
729 concat->mtd.oobavail = subdev[0]->oobavail;
730 if (subdev[0]->writev)
731 concat->mtd.writev = concat_writev;
732 if (subdev[0]->read_oob)
733 concat->mtd.read_oob = concat_read_oob;
734 if (subdev[0]->write_oob)
735 concat->mtd.write_oob = concat_write_oob;
736 if (subdev[0]->block_isbad)
737 concat->mtd.block_isbad = concat_block_isbad;
738 if (subdev[0]->block_markbad)
739 concat->mtd.block_markbad = concat_block_markbad;
741 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
743 concat->subdev[0] = subdev[0];
745 for (i = 1; i < num_devs; i++) {
746 if (concat->mtd.type != subdev[i]->type) {
747 kfree(concat);
748 printk("Incompatible device type on \"%s\"\n",
749 subdev[i]->name);
750 return NULL;
752 if (concat->mtd.flags != subdev[i]->flags) {
754 * Expect all flags except MTD_WRITEABLE to be
755 * equal on all subdevices.
757 if ((concat->mtd.flags ^ subdev[i]->
758 flags) & ~MTD_WRITEABLE) {
759 kfree(concat);
760 printk("Incompatible device flags on \"%s\"\n",
761 subdev[i]->name);
762 return NULL;
763 } else
764 /* if writeable attribute differs,
765 make super device writeable */
766 concat->mtd.flags |=
767 subdev[i]->flags & MTD_WRITEABLE;
769 concat->mtd.size += subdev[i]->size;
770 concat->mtd.ecc_stats.badblocks +=
771 subdev[i]->ecc_stats.badblocks;
772 if (concat->mtd.writesize != subdev[i]->writesize ||
773 concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
774 concat->mtd.oobsize != subdev[i]->oobsize ||
775 !concat->mtd.read_oob != !subdev[i]->read_oob ||
776 !concat->mtd.write_oob != !subdev[i]->write_oob) {
777 kfree(concat);
778 printk("Incompatible OOB or ECC data on \"%s\"\n",
779 subdev[i]->name);
780 return NULL;
782 concat->subdev[i] = subdev[i];
786 concat->mtd.ecclayout = subdev[0]->ecclayout;
788 concat->num_subdev = num_devs;
789 concat->mtd.name = name;
791 concat->mtd.erase = concat_erase;
792 concat->mtd.read = concat_read;
793 concat->mtd.write = concat_write;
794 concat->mtd.sync = concat_sync;
795 concat->mtd.lock = concat_lock;
796 concat->mtd.unlock = concat_unlock;
797 concat->mtd.suspend = concat_suspend;
798 concat->mtd.resume = concat_resume;
801 * Combine the erase block size info of the subdevices:
803 * first, walk the map of the new device and see how
804 * many changes in erase size we have
806 max_erasesize = curr_erasesize = subdev[0]->erasesize;
807 num_erase_region = 1;
808 for (i = 0; i < num_devs; i++) {
809 if (subdev[i]->numeraseregions == 0) {
810 /* current subdevice has uniform erase size */
811 if (subdev[i]->erasesize != curr_erasesize) {
812 /* if it differs from the last subdevice's erase size, count it */
813 ++num_erase_region;
814 curr_erasesize = subdev[i]->erasesize;
815 if (curr_erasesize > max_erasesize)
816 max_erasesize = curr_erasesize;
818 } else {
819 /* current subdevice has variable erase size */
820 int j;
821 for (j = 0; j < subdev[i]->numeraseregions; j++) {
823 /* walk the list of erase regions, count any changes */
824 if (subdev[i]->eraseregions[j].erasesize !=
825 curr_erasesize) {
826 ++num_erase_region;
827 curr_erasesize =
828 subdev[i]->eraseregions[j].
829 erasesize;
830 if (curr_erasesize > max_erasesize)
831 max_erasesize = curr_erasesize;
837 if (num_erase_region == 1) {
839 * All subdevices have the same uniform erase size.
840 * This is easy:
842 concat->mtd.erasesize = curr_erasesize;
843 concat->mtd.numeraseregions = 0;
844 } else {
845 uint64_t tmp64;
848 * erase block size varies across the subdevices: allocate
849 * space to store the data describing the variable erase regions
851 struct mtd_erase_region_info *erase_region_p;
852 uint64_t begin, position;
854 concat->mtd.erasesize = max_erasesize;
855 concat->mtd.numeraseregions = num_erase_region;
856 concat->mtd.eraseregions = erase_region_p =
857 kmalloc(num_erase_region *
858 sizeof (struct mtd_erase_region_info), GFP_KERNEL);
859 if (!erase_region_p) {
860 kfree(concat);
861 printk
862 ("memory allocation error while creating erase region list"
863 " for device \"%s\"\n", name);
864 return NULL;
868 * walk the map of the new device once more and fill in
869 * in erase region info:
871 curr_erasesize = subdev[0]->erasesize;
872 begin = position = 0;
873 for (i = 0; i < num_devs; i++) {
874 if (subdev[i]->numeraseregions == 0) {
875 /* current subdevice has uniform erase size */
876 if (subdev[i]->erasesize != curr_erasesize) {
878 * fill in an mtd_erase_region_info structure for the area
879 * we have walked so far:
881 erase_region_p->offset = begin;
882 erase_region_p->erasesize =
883 curr_erasesize;
884 tmp64 = position - begin;
885 do_div(tmp64, curr_erasesize);
886 erase_region_p->numblocks = tmp64;
887 begin = position;
889 curr_erasesize = subdev[i]->erasesize;
890 ++erase_region_p;
892 position += subdev[i]->size;
893 } else {
894 /* current subdevice has variable erase size */
895 int j;
896 for (j = 0; j < subdev[i]->numeraseregions; j++) {
897 /* walk the list of erase regions, count any changes */
898 if (subdev[i]->eraseregions[j].
899 erasesize != curr_erasesize) {
900 erase_region_p->offset = begin;
901 erase_region_p->erasesize =
902 curr_erasesize;
903 tmp64 = position - begin;
904 do_div(tmp64, curr_erasesize);
905 erase_region_p->numblocks = tmp64;
906 begin = position;
908 curr_erasesize =
909 subdev[i]->eraseregions[j].
910 erasesize;
911 ++erase_region_p;
913 position +=
914 subdev[i]->eraseregions[j].
915 numblocks * (uint64_t)curr_erasesize;
919 /* Now write the final entry */
920 erase_region_p->offset = begin;
921 erase_region_p->erasesize = curr_erasesize;
922 tmp64 = position - begin;
923 do_div(tmp64, curr_erasesize);
924 erase_region_p->numblocks = tmp64;
927 return &concat->mtd;
931 * This function destroys an MTD object obtained from concat_mtd_devs()
934 void mtd_concat_destroy(struct mtd_info *mtd)
936 struct mtd_concat *concat = CONCAT(mtd);
937 if (concat->mtd.numeraseregions)
938 kfree(concat->mtd.eraseregions);
939 kfree(concat);
942 EXPORT_SYMBOL(mtd_concat_create);
943 EXPORT_SYMBOL(mtd_concat_destroy);
945 MODULE_LICENSE("GPL");
946 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
947 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");