page-allocator: change migratetype for all pageblocks within a high-order page during...
[linux-2.6/mini2440.git] / mm / page_alloc.c
blob20759803a64ad151ef7d49f85308ff99b2b5c073
1 /*
2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
52 #include <asm/tlbflush.h>
53 #include <asm/div64.h>
54 #include "internal.h"
57 * Array of node states.
59 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62 #ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64 #ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66 #endif
67 [N_CPU] = { { [0] = 1UL } },
68 #endif /* NUMA */
70 EXPORT_SYMBOL(node_states);
72 unsigned long totalram_pages __read_mostly;
73 unsigned long totalreserve_pages __read_mostly;
74 unsigned long highest_memmap_pfn __read_mostly;
75 int percpu_pagelist_fraction;
76 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
78 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79 int pageblock_order __read_mostly;
80 #endif
82 static void __free_pages_ok(struct page *page, unsigned int order);
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
95 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
96 #ifdef CONFIG_ZONE_DMA
97 256,
98 #endif
99 #ifdef CONFIG_ZONE_DMA32
100 256,
101 #endif
102 #ifdef CONFIG_HIGHMEM
104 #endif
108 EXPORT_SYMBOL(totalram_pages);
110 static char * const zone_names[MAX_NR_ZONES] = {
111 #ifdef CONFIG_ZONE_DMA
112 "DMA",
113 #endif
114 #ifdef CONFIG_ZONE_DMA32
115 "DMA32",
116 #endif
117 "Normal",
118 #ifdef CONFIG_HIGHMEM
119 "HighMem",
120 #endif
121 "Movable",
124 int min_free_kbytes = 1024;
126 unsigned long __meminitdata nr_kernel_pages;
127 unsigned long __meminitdata nr_all_pages;
128 static unsigned long __meminitdata dma_reserve;
130 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __initdata required_kernelcore;
156 static unsigned long __initdata required_movablecore;
157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 int nr_online_nodes __read_mostly = 1;
167 EXPORT_SYMBOL(nr_node_ids);
168 EXPORT_SYMBOL(nr_online_nodes);
169 #endif
171 int page_group_by_mobility_disabled __read_mostly;
173 static void set_pageblock_migratetype(struct page *page, int migratetype)
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
183 bool oom_killer_disabled __read_mostly;
185 #ifdef CONFIG_DEBUG_VM
186 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
200 return ret;
203 static int page_is_consistent(struct zone *zone, struct page *page)
205 if (!pfn_valid_within(page_to_pfn(page)))
206 return 0;
207 if (zone != page_zone(page))
208 return 0;
210 return 1;
213 * Temporary debugging check for pages not lying within a given zone.
215 static int bad_range(struct zone *zone, struct page *page)
217 if (page_outside_zone_boundaries(zone, page))
218 return 1;
219 if (!page_is_consistent(zone, page))
220 return 1;
222 return 0;
224 #else
225 static inline int bad_range(struct zone *zone, struct page *page)
227 return 0;
229 #endif
231 static void bad_page(struct page *page)
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
241 if (nr_shown == 60) {
242 if (time_before(jiffies, resume)) {
243 nr_unshown++;
244 goto out;
246 if (nr_unshown) {
247 printk(KERN_ALERT
248 "BUG: Bad page state: %lu messages suppressed\n",
249 nr_unshown);
250 nr_unshown = 0;
252 nr_shown = 0;
254 if (nr_shown++ == 0)
255 resume = jiffies + 60 * HZ;
257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
258 current->comm, page_to_pfn(page));
259 printk(KERN_ALERT
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page, (void *)page->flags, page_count(page),
262 page_mapcount(page), page->mapping, page->index);
264 dump_stack();
265 out:
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page);
268 add_taint(TAINT_BAD_PAGE);
272 * Higher-order pages are called "compound pages". They are structured thusly:
274 * The first PAGE_SIZE page is called the "head page".
276 * The remaining PAGE_SIZE pages are called "tail pages".
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
286 static void free_compound_page(struct page *page)
288 __free_pages_ok(page, compound_order(page));
291 void prep_compound_page(struct page *page, unsigned long order)
293 int i;
294 int nr_pages = 1 << order;
296 set_compound_page_dtor(page, free_compound_page);
297 set_compound_order(page, order);
298 __SetPageHead(page);
299 for (i = 1; i < nr_pages; i++) {
300 struct page *p = page + i;
302 __SetPageTail(p);
303 p->first_page = page;
307 static int destroy_compound_page(struct page *page, unsigned long order)
309 int i;
310 int nr_pages = 1 << order;
311 int bad = 0;
313 if (unlikely(compound_order(page) != order) ||
314 unlikely(!PageHead(page))) {
315 bad_page(page);
316 bad++;
319 __ClearPageHead(page);
321 for (i = 1; i < nr_pages; i++) {
322 struct page *p = page + i;
324 if (unlikely(!PageTail(p) || (p->first_page != page))) {
325 bad_page(page);
326 bad++;
328 __ClearPageTail(p);
331 return bad;
334 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
336 int i;
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
343 for (i = 0; i < (1 << order); i++)
344 clear_highpage(page + i);
347 static inline void set_page_order(struct page *page, int order)
349 set_page_private(page, order);
350 __SetPageBuddy(page);
353 static inline void rmv_page_order(struct page *page)
355 __ClearPageBuddy(page);
356 set_page_private(page, 0);
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
376 static inline struct page *
377 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
379 unsigned long buddy_idx = page_idx ^ (1 << order);
381 return page + (buddy_idx - page_idx);
384 static inline unsigned long
385 __find_combined_index(unsigned long page_idx, unsigned int order)
387 return (page_idx & ~(1 << order));
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
393 * (a) the buddy is not in a hole &&
394 * (b) the buddy is in the buddy system &&
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
401 * For recording page's order, we use page_private(page).
403 static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
406 if (!pfn_valid_within(page_to_pfn(buddy)))
407 return 0;
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
413 VM_BUG_ON(page_count(buddy) != 0);
414 return 1;
416 return 0;
420 * Freeing function for a buddy system allocator.
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
433 * order is recorded in page_private(page) field.
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
440 * -- wli
443 static inline void __free_one_page(struct page *page,
444 struct zone *zone, unsigned int order,
445 int migratetype)
447 unsigned long page_idx;
449 if (unlikely(PageCompound(page)))
450 if (unlikely(destroy_compound_page(page, order)))
451 return;
453 VM_BUG_ON(migratetype == -1);
455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
457 VM_BUG_ON(page_idx & ((1 << order) - 1));
458 VM_BUG_ON(bad_range(zone, page));
460 while (order < MAX_ORDER-1) {
461 unsigned long combined_idx;
462 struct page *buddy;
464 buddy = __page_find_buddy(page, page_idx, order);
465 if (!page_is_buddy(page, buddy, order))
466 break;
468 /* Our buddy is free, merge with it and move up one order. */
469 list_del(&buddy->lru);
470 zone->free_area[order].nr_free--;
471 rmv_page_order(buddy);
472 combined_idx = __find_combined_index(page_idx, order);
473 page = page + (combined_idx - page_idx);
474 page_idx = combined_idx;
475 order++;
477 set_page_order(page, order);
478 list_add(&page->lru,
479 &zone->free_area[order].free_list[migratetype]);
480 zone->free_area[order].nr_free++;
483 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
489 static inline void free_page_mlock(struct page *page)
491 __dec_zone_page_state(page, NR_MLOCK);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED);
494 #else
495 static void free_page_mlock(struct page *page) { }
496 #endif
498 static inline int free_pages_check(struct page *page)
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
502 (atomic_read(&page->_count) != 0) |
503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
504 bad_page(page);
505 return 1;
507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 return 0;
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
515 * count is the number of pages to free.
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
523 static void free_pages_bulk(struct zone *zone, int count,
524 struct list_head *list, int order)
526 spin_lock(&zone->lock);
527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
528 zone->pages_scanned = 0;
530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
531 while (count--) {
532 struct page *page;
534 VM_BUG_ON(list_empty(list));
535 page = list_entry(list->prev, struct page, lru);
536 /* have to delete it as __free_one_page list manipulates */
537 list_del(&page->lru);
538 __free_one_page(page, zone, order, page_private(page));
540 spin_unlock(&zone->lock);
543 static void free_one_page(struct zone *zone, struct page *page, int order,
544 int migratetype)
546 spin_lock(&zone->lock);
547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
548 zone->pages_scanned = 0;
550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
551 __free_one_page(page, zone, order, migratetype);
552 spin_unlock(&zone->lock);
555 static void __free_pages_ok(struct page *page, unsigned int order)
557 unsigned long flags;
558 int i;
559 int bad = 0;
560 int wasMlocked = __TestClearPageMlocked(page);
562 kmemcheck_free_shadow(page, order);
564 for (i = 0 ; i < (1 << order) ; ++i)
565 bad += free_pages_check(page + i);
566 if (bad)
567 return;
569 if (!PageHighMem(page)) {
570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
571 debug_check_no_obj_freed(page_address(page),
572 PAGE_SIZE << order);
574 arch_free_page(page, order);
575 kernel_map_pages(page, 1 << order, 0);
577 local_irq_save(flags);
578 if (unlikely(wasMlocked))
579 free_page_mlock(page);
580 __count_vm_events(PGFREE, 1 << order);
581 free_one_page(page_zone(page), page, order,
582 get_pageblock_migratetype(page));
583 local_irq_restore(flags);
587 * permit the bootmem allocator to evade page validation on high-order frees
589 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
591 if (order == 0) {
592 __ClearPageReserved(page);
593 set_page_count(page, 0);
594 set_page_refcounted(page);
595 __free_page(page);
596 } else {
597 int loop;
599 prefetchw(page);
600 for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 struct page *p = &page[loop];
603 if (loop + 1 < BITS_PER_LONG)
604 prefetchw(p + 1);
605 __ClearPageReserved(p);
606 set_page_count(p, 0);
609 set_page_refcounted(page);
610 __free_pages(page, order);
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
627 * -- wli
629 static inline void expand(struct zone *zone, struct page *page,
630 int low, int high, struct free_area *area,
631 int migratetype)
633 unsigned long size = 1 << high;
635 while (high > low) {
636 area--;
637 high--;
638 size >>= 1;
639 VM_BUG_ON(bad_range(zone, &page[size]));
640 list_add(&page[size].lru, &area->free_list[migratetype]);
641 area->nr_free++;
642 set_page_order(&page[size], high);
647 * This page is about to be returned from the page allocator
649 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
651 if (unlikely(page_mapcount(page) |
652 (page->mapping != NULL) |
653 (atomic_read(&page->_count) != 0) |
654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
655 bad_page(page);
656 return 1;
659 set_page_private(page, 0);
660 set_page_refcounted(page);
662 arch_alloc_page(page, order);
663 kernel_map_pages(page, 1 << order, 1);
665 if (gfp_flags & __GFP_ZERO)
666 prep_zero_page(page, order, gfp_flags);
668 if (order && (gfp_flags & __GFP_COMP))
669 prep_compound_page(page, order);
671 return 0;
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
678 static inline
679 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
680 int migratetype)
682 unsigned int current_order;
683 struct free_area * area;
684 struct page *page;
686 /* Find a page of the appropriate size in the preferred list */
687 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 area = &(zone->free_area[current_order]);
689 if (list_empty(&area->free_list[migratetype]))
690 continue;
692 page = list_entry(area->free_list[migratetype].next,
693 struct page, lru);
694 list_del(&page->lru);
695 rmv_page_order(page);
696 area->nr_free--;
697 expand(zone, page, order, current_order, area, migratetype);
698 return page;
701 return NULL;
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
709 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
717 * Move the free pages in a range to the free lists of the requested type.
718 * Note that start_page and end_pages are not aligned on a pageblock
719 * boundary. If alignment is required, use move_freepages_block()
721 static int move_freepages(struct zone *zone,
722 struct page *start_page, struct page *end_page,
723 int migratetype)
725 struct page *page;
726 unsigned long order;
727 int pages_moved = 0;
729 #ifndef CONFIG_HOLES_IN_ZONE
731 * page_zone is not safe to call in this context when
732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 * anyway as we check zone boundaries in move_freepages_block().
734 * Remove at a later date when no bug reports exist related to
735 * grouping pages by mobility
737 BUG_ON(page_zone(start_page) != page_zone(end_page));
738 #endif
740 for (page = start_page; page <= end_page;) {
741 /* Make sure we are not inadvertently changing nodes */
742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
744 if (!pfn_valid_within(page_to_pfn(page))) {
745 page++;
746 continue;
749 if (!PageBuddy(page)) {
750 page++;
751 continue;
754 order = page_order(page);
755 list_del(&page->lru);
756 list_add(&page->lru,
757 &zone->free_area[order].free_list[migratetype]);
758 page += 1 << order;
759 pages_moved += 1 << order;
762 return pages_moved;
765 static int move_freepages_block(struct zone *zone, struct page *page,
766 int migratetype)
768 unsigned long start_pfn, end_pfn;
769 struct page *start_page, *end_page;
771 start_pfn = page_to_pfn(page);
772 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
773 start_page = pfn_to_page(start_pfn);
774 end_page = start_page + pageblock_nr_pages - 1;
775 end_pfn = start_pfn + pageblock_nr_pages - 1;
777 /* Do not cross zone boundaries */
778 if (start_pfn < zone->zone_start_pfn)
779 start_page = page;
780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 return 0;
783 return move_freepages(zone, start_page, end_page, migratetype);
786 static void change_pageblock_range(struct page *pageblock_page,
787 int start_order, int migratetype)
789 int nr_pageblocks = 1 << (start_order - pageblock_order);
791 while (nr_pageblocks--) {
792 set_pageblock_migratetype(pageblock_page, migratetype);
793 pageblock_page += pageblock_nr_pages;
797 /* Remove an element from the buddy allocator from the fallback list */
798 static inline struct page *
799 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
801 struct free_area * area;
802 int current_order;
803 struct page *page;
804 int migratetype, i;
806 /* Find the largest possible block of pages in the other list */
807 for (current_order = MAX_ORDER-1; current_order >= order;
808 --current_order) {
809 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
810 migratetype = fallbacks[start_migratetype][i];
812 /* MIGRATE_RESERVE handled later if necessary */
813 if (migratetype == MIGRATE_RESERVE)
814 continue;
816 area = &(zone->free_area[current_order]);
817 if (list_empty(&area->free_list[migratetype]))
818 continue;
820 page = list_entry(area->free_list[migratetype].next,
821 struct page, lru);
822 area->nr_free--;
825 * If breaking a large block of pages, move all free
826 * pages to the preferred allocation list. If falling
827 * back for a reclaimable kernel allocation, be more
828 * agressive about taking ownership of free pages
830 if (unlikely(current_order >= (pageblock_order >> 1)) ||
831 start_migratetype == MIGRATE_RECLAIMABLE ||
832 page_group_by_mobility_disabled) {
833 unsigned long pages;
834 pages = move_freepages_block(zone, page,
835 start_migratetype);
837 /* Claim the whole block if over half of it is free */
838 if (pages >= (1 << (pageblock_order-1)) ||
839 page_group_by_mobility_disabled)
840 set_pageblock_migratetype(page,
841 start_migratetype);
843 migratetype = start_migratetype;
846 /* Remove the page from the freelists */
847 list_del(&page->lru);
848 rmv_page_order(page);
850 /* Take ownership for orders >= pageblock_order */
851 if (current_order >= pageblock_order)
852 change_pageblock_range(page, current_order,
853 start_migratetype);
855 expand(zone, page, order, current_order, area, migratetype);
856 return page;
860 return NULL;
864 * Do the hard work of removing an element from the buddy allocator.
865 * Call me with the zone->lock already held.
867 static struct page *__rmqueue(struct zone *zone, unsigned int order,
868 int migratetype)
870 struct page *page;
872 retry_reserve:
873 page = __rmqueue_smallest(zone, order, migratetype);
875 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
876 page = __rmqueue_fallback(zone, order, migratetype);
879 * Use MIGRATE_RESERVE rather than fail an allocation. goto
880 * is used because __rmqueue_smallest is an inline function
881 * and we want just one call site
883 if (!page) {
884 migratetype = MIGRATE_RESERVE;
885 goto retry_reserve;
889 return page;
893 * Obtain a specified number of elements from the buddy allocator, all under
894 * a single hold of the lock, for efficiency. Add them to the supplied list.
895 * Returns the number of new pages which were placed at *list.
897 static int rmqueue_bulk(struct zone *zone, unsigned int order,
898 unsigned long count, struct list_head *list,
899 int migratetype, int cold)
901 int i;
903 spin_lock(&zone->lock);
904 for (i = 0; i < count; ++i) {
905 struct page *page = __rmqueue(zone, order, migratetype);
906 if (unlikely(page == NULL))
907 break;
910 * Split buddy pages returned by expand() are received here
911 * in physical page order. The page is added to the callers and
912 * list and the list head then moves forward. From the callers
913 * perspective, the linked list is ordered by page number in
914 * some conditions. This is useful for IO devices that can
915 * merge IO requests if the physical pages are ordered
916 * properly.
918 if (likely(cold == 0))
919 list_add(&page->lru, list);
920 else
921 list_add_tail(&page->lru, list);
922 set_page_private(page, migratetype);
923 list = &page->lru;
925 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
926 spin_unlock(&zone->lock);
927 return i;
930 #ifdef CONFIG_NUMA
932 * Called from the vmstat counter updater to drain pagesets of this
933 * currently executing processor on remote nodes after they have
934 * expired.
936 * Note that this function must be called with the thread pinned to
937 * a single processor.
939 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
941 unsigned long flags;
942 int to_drain;
944 local_irq_save(flags);
945 if (pcp->count >= pcp->batch)
946 to_drain = pcp->batch;
947 else
948 to_drain = pcp->count;
949 free_pages_bulk(zone, to_drain, &pcp->list, 0);
950 pcp->count -= to_drain;
951 local_irq_restore(flags);
953 #endif
956 * Drain pages of the indicated processor.
958 * The processor must either be the current processor and the
959 * thread pinned to the current processor or a processor that
960 * is not online.
962 static void drain_pages(unsigned int cpu)
964 unsigned long flags;
965 struct zone *zone;
967 for_each_populated_zone(zone) {
968 struct per_cpu_pageset *pset;
969 struct per_cpu_pages *pcp;
971 pset = zone_pcp(zone, cpu);
973 pcp = &pset->pcp;
974 local_irq_save(flags);
975 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
976 pcp->count = 0;
977 local_irq_restore(flags);
982 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
984 void drain_local_pages(void *arg)
986 drain_pages(smp_processor_id());
990 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
992 void drain_all_pages(void)
994 on_each_cpu(drain_local_pages, NULL, 1);
997 #ifdef CONFIG_HIBERNATION
999 void mark_free_pages(struct zone *zone)
1001 unsigned long pfn, max_zone_pfn;
1002 unsigned long flags;
1003 int order, t;
1004 struct list_head *curr;
1006 if (!zone->spanned_pages)
1007 return;
1009 spin_lock_irqsave(&zone->lock, flags);
1011 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1012 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1013 if (pfn_valid(pfn)) {
1014 struct page *page = pfn_to_page(pfn);
1016 if (!swsusp_page_is_forbidden(page))
1017 swsusp_unset_page_free(page);
1020 for_each_migratetype_order(order, t) {
1021 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1022 unsigned long i;
1024 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1025 for (i = 0; i < (1UL << order); i++)
1026 swsusp_set_page_free(pfn_to_page(pfn + i));
1029 spin_unlock_irqrestore(&zone->lock, flags);
1031 #endif /* CONFIG_PM */
1034 * Free a 0-order page
1036 static void free_hot_cold_page(struct page *page, int cold)
1038 struct zone *zone = page_zone(page);
1039 struct per_cpu_pages *pcp;
1040 unsigned long flags;
1041 int wasMlocked = __TestClearPageMlocked(page);
1043 kmemcheck_free_shadow(page, 0);
1045 if (PageAnon(page))
1046 page->mapping = NULL;
1047 if (free_pages_check(page))
1048 return;
1050 if (!PageHighMem(page)) {
1051 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1052 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1054 arch_free_page(page, 0);
1055 kernel_map_pages(page, 1, 0);
1057 pcp = &zone_pcp(zone, get_cpu())->pcp;
1058 set_page_private(page, get_pageblock_migratetype(page));
1059 local_irq_save(flags);
1060 if (unlikely(wasMlocked))
1061 free_page_mlock(page);
1062 __count_vm_event(PGFREE);
1064 if (cold)
1065 list_add_tail(&page->lru, &pcp->list);
1066 else
1067 list_add(&page->lru, &pcp->list);
1068 pcp->count++;
1069 if (pcp->count >= pcp->high) {
1070 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1071 pcp->count -= pcp->batch;
1073 local_irq_restore(flags);
1074 put_cpu();
1077 void free_hot_page(struct page *page)
1079 free_hot_cold_page(page, 0);
1082 void free_cold_page(struct page *page)
1084 free_hot_cold_page(page, 1);
1088 * split_page takes a non-compound higher-order page, and splits it into
1089 * n (1<<order) sub-pages: page[0..n]
1090 * Each sub-page must be freed individually.
1092 * Note: this is probably too low level an operation for use in drivers.
1093 * Please consult with lkml before using this in your driver.
1095 void split_page(struct page *page, unsigned int order)
1097 int i;
1099 VM_BUG_ON(PageCompound(page));
1100 VM_BUG_ON(!page_count(page));
1102 #ifdef CONFIG_KMEMCHECK
1104 * Split shadow pages too, because free(page[0]) would
1105 * otherwise free the whole shadow.
1107 if (kmemcheck_page_is_tracked(page))
1108 split_page(virt_to_page(page[0].shadow), order);
1109 #endif
1111 for (i = 1; i < (1 << order); i++)
1112 set_page_refcounted(page + i);
1116 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1117 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1118 * or two.
1120 static inline
1121 struct page *buffered_rmqueue(struct zone *preferred_zone,
1122 struct zone *zone, int order, gfp_t gfp_flags,
1123 int migratetype)
1125 unsigned long flags;
1126 struct page *page;
1127 int cold = !!(gfp_flags & __GFP_COLD);
1128 int cpu;
1130 again:
1131 cpu = get_cpu();
1132 if (likely(order == 0)) {
1133 struct per_cpu_pages *pcp;
1135 pcp = &zone_pcp(zone, cpu)->pcp;
1136 local_irq_save(flags);
1137 if (!pcp->count) {
1138 pcp->count = rmqueue_bulk(zone, 0,
1139 pcp->batch, &pcp->list,
1140 migratetype, cold);
1141 if (unlikely(!pcp->count))
1142 goto failed;
1145 /* Find a page of the appropriate migrate type */
1146 if (cold) {
1147 list_for_each_entry_reverse(page, &pcp->list, lru)
1148 if (page_private(page) == migratetype)
1149 break;
1150 } else {
1151 list_for_each_entry(page, &pcp->list, lru)
1152 if (page_private(page) == migratetype)
1153 break;
1156 /* Allocate more to the pcp list if necessary */
1157 if (unlikely(&page->lru == &pcp->list)) {
1158 int get_one_page = 0;
1160 pcp->count += rmqueue_bulk(zone, 0,
1161 pcp->batch, &pcp->list,
1162 migratetype, cold);
1163 list_for_each_entry(page, &pcp->list, lru) {
1164 if (get_pageblock_migratetype(page) !=
1165 MIGRATE_ISOLATE) {
1166 get_one_page = 1;
1167 break;
1170 if (!get_one_page)
1171 goto failed;
1174 list_del(&page->lru);
1175 pcp->count--;
1176 } else {
1177 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1179 * __GFP_NOFAIL is not to be used in new code.
1181 * All __GFP_NOFAIL callers should be fixed so that they
1182 * properly detect and handle allocation failures.
1184 * We most definitely don't want callers attempting to
1185 * allocate greater than order-1 page units with
1186 * __GFP_NOFAIL.
1188 WARN_ON_ONCE(order > 1);
1190 spin_lock_irqsave(&zone->lock, flags);
1191 page = __rmqueue(zone, order, migratetype);
1192 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1193 spin_unlock(&zone->lock);
1194 if (!page)
1195 goto failed;
1198 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1199 zone_statistics(preferred_zone, zone);
1200 local_irq_restore(flags);
1201 put_cpu();
1203 VM_BUG_ON(bad_range(zone, page));
1204 if (prep_new_page(page, order, gfp_flags))
1205 goto again;
1206 return page;
1208 failed:
1209 local_irq_restore(flags);
1210 put_cpu();
1211 return NULL;
1214 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1215 #define ALLOC_WMARK_MIN WMARK_MIN
1216 #define ALLOC_WMARK_LOW WMARK_LOW
1217 #define ALLOC_WMARK_HIGH WMARK_HIGH
1218 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1220 /* Mask to get the watermark bits */
1221 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1223 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1224 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1225 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1227 #ifdef CONFIG_FAIL_PAGE_ALLOC
1229 static struct fail_page_alloc_attr {
1230 struct fault_attr attr;
1232 u32 ignore_gfp_highmem;
1233 u32 ignore_gfp_wait;
1234 u32 min_order;
1236 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1238 struct dentry *ignore_gfp_highmem_file;
1239 struct dentry *ignore_gfp_wait_file;
1240 struct dentry *min_order_file;
1242 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1244 } fail_page_alloc = {
1245 .attr = FAULT_ATTR_INITIALIZER,
1246 .ignore_gfp_wait = 1,
1247 .ignore_gfp_highmem = 1,
1248 .min_order = 1,
1251 static int __init setup_fail_page_alloc(char *str)
1253 return setup_fault_attr(&fail_page_alloc.attr, str);
1255 __setup("fail_page_alloc=", setup_fail_page_alloc);
1257 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1259 if (order < fail_page_alloc.min_order)
1260 return 0;
1261 if (gfp_mask & __GFP_NOFAIL)
1262 return 0;
1263 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1264 return 0;
1265 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1266 return 0;
1268 return should_fail(&fail_page_alloc.attr, 1 << order);
1271 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1273 static int __init fail_page_alloc_debugfs(void)
1275 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1276 struct dentry *dir;
1277 int err;
1279 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1280 "fail_page_alloc");
1281 if (err)
1282 return err;
1283 dir = fail_page_alloc.attr.dentries.dir;
1285 fail_page_alloc.ignore_gfp_wait_file =
1286 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1287 &fail_page_alloc.ignore_gfp_wait);
1289 fail_page_alloc.ignore_gfp_highmem_file =
1290 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1291 &fail_page_alloc.ignore_gfp_highmem);
1292 fail_page_alloc.min_order_file =
1293 debugfs_create_u32("min-order", mode, dir,
1294 &fail_page_alloc.min_order);
1296 if (!fail_page_alloc.ignore_gfp_wait_file ||
1297 !fail_page_alloc.ignore_gfp_highmem_file ||
1298 !fail_page_alloc.min_order_file) {
1299 err = -ENOMEM;
1300 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1301 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1302 debugfs_remove(fail_page_alloc.min_order_file);
1303 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1306 return err;
1309 late_initcall(fail_page_alloc_debugfs);
1311 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1313 #else /* CONFIG_FAIL_PAGE_ALLOC */
1315 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1317 return 0;
1320 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1323 * Return 1 if free pages are above 'mark'. This takes into account the order
1324 * of the allocation.
1326 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1327 int classzone_idx, int alloc_flags)
1329 /* free_pages my go negative - that's OK */
1330 long min = mark;
1331 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1332 int o;
1334 if (alloc_flags & ALLOC_HIGH)
1335 min -= min / 2;
1336 if (alloc_flags & ALLOC_HARDER)
1337 min -= min / 4;
1339 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1340 return 0;
1341 for (o = 0; o < order; o++) {
1342 /* At the next order, this order's pages become unavailable */
1343 free_pages -= z->free_area[o].nr_free << o;
1345 /* Require fewer higher order pages to be free */
1346 min >>= 1;
1348 if (free_pages <= min)
1349 return 0;
1351 return 1;
1354 #ifdef CONFIG_NUMA
1356 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1357 * skip over zones that are not allowed by the cpuset, or that have
1358 * been recently (in last second) found to be nearly full. See further
1359 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1360 * that have to skip over a lot of full or unallowed zones.
1362 * If the zonelist cache is present in the passed in zonelist, then
1363 * returns a pointer to the allowed node mask (either the current
1364 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1366 * If the zonelist cache is not available for this zonelist, does
1367 * nothing and returns NULL.
1369 * If the fullzones BITMAP in the zonelist cache is stale (more than
1370 * a second since last zap'd) then we zap it out (clear its bits.)
1372 * We hold off even calling zlc_setup, until after we've checked the
1373 * first zone in the zonelist, on the theory that most allocations will
1374 * be satisfied from that first zone, so best to examine that zone as
1375 * quickly as we can.
1377 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1379 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1380 nodemask_t *allowednodes; /* zonelist_cache approximation */
1382 zlc = zonelist->zlcache_ptr;
1383 if (!zlc)
1384 return NULL;
1386 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1387 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1388 zlc->last_full_zap = jiffies;
1391 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1392 &cpuset_current_mems_allowed :
1393 &node_states[N_HIGH_MEMORY];
1394 return allowednodes;
1398 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1399 * if it is worth looking at further for free memory:
1400 * 1) Check that the zone isn't thought to be full (doesn't have its
1401 * bit set in the zonelist_cache fullzones BITMAP).
1402 * 2) Check that the zones node (obtained from the zonelist_cache
1403 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1404 * Return true (non-zero) if zone is worth looking at further, or
1405 * else return false (zero) if it is not.
1407 * This check -ignores- the distinction between various watermarks,
1408 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1409 * found to be full for any variation of these watermarks, it will
1410 * be considered full for up to one second by all requests, unless
1411 * we are so low on memory on all allowed nodes that we are forced
1412 * into the second scan of the zonelist.
1414 * In the second scan we ignore this zonelist cache and exactly
1415 * apply the watermarks to all zones, even it is slower to do so.
1416 * We are low on memory in the second scan, and should leave no stone
1417 * unturned looking for a free page.
1419 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1420 nodemask_t *allowednodes)
1422 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1423 int i; /* index of *z in zonelist zones */
1424 int n; /* node that zone *z is on */
1426 zlc = zonelist->zlcache_ptr;
1427 if (!zlc)
1428 return 1;
1430 i = z - zonelist->_zonerefs;
1431 n = zlc->z_to_n[i];
1433 /* This zone is worth trying if it is allowed but not full */
1434 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1438 * Given 'z' scanning a zonelist, set the corresponding bit in
1439 * zlc->fullzones, so that subsequent attempts to allocate a page
1440 * from that zone don't waste time re-examining it.
1442 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1444 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1445 int i; /* index of *z in zonelist zones */
1447 zlc = zonelist->zlcache_ptr;
1448 if (!zlc)
1449 return;
1451 i = z - zonelist->_zonerefs;
1453 set_bit(i, zlc->fullzones);
1456 #else /* CONFIG_NUMA */
1458 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1460 return NULL;
1463 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1464 nodemask_t *allowednodes)
1466 return 1;
1469 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1472 #endif /* CONFIG_NUMA */
1475 * get_page_from_freelist goes through the zonelist trying to allocate
1476 * a page.
1478 static struct page *
1479 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1480 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1481 struct zone *preferred_zone, int migratetype)
1483 struct zoneref *z;
1484 struct page *page = NULL;
1485 int classzone_idx;
1486 struct zone *zone;
1487 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1488 int zlc_active = 0; /* set if using zonelist_cache */
1489 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1491 classzone_idx = zone_idx(preferred_zone);
1492 zonelist_scan:
1494 * Scan zonelist, looking for a zone with enough free.
1495 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1497 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1498 high_zoneidx, nodemask) {
1499 if (NUMA_BUILD && zlc_active &&
1500 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1501 continue;
1502 if ((alloc_flags & ALLOC_CPUSET) &&
1503 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1504 goto try_next_zone;
1506 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1507 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1508 unsigned long mark;
1509 int ret;
1511 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1512 if (zone_watermark_ok(zone, order, mark,
1513 classzone_idx, alloc_flags))
1514 goto try_this_zone;
1516 if (zone_reclaim_mode == 0)
1517 goto this_zone_full;
1519 ret = zone_reclaim(zone, gfp_mask, order);
1520 switch (ret) {
1521 case ZONE_RECLAIM_NOSCAN:
1522 /* did not scan */
1523 goto try_next_zone;
1524 case ZONE_RECLAIM_FULL:
1525 /* scanned but unreclaimable */
1526 goto this_zone_full;
1527 default:
1528 /* did we reclaim enough */
1529 if (!zone_watermark_ok(zone, order, mark,
1530 classzone_idx, alloc_flags))
1531 goto this_zone_full;
1535 try_this_zone:
1536 page = buffered_rmqueue(preferred_zone, zone, order,
1537 gfp_mask, migratetype);
1538 if (page)
1539 break;
1540 this_zone_full:
1541 if (NUMA_BUILD)
1542 zlc_mark_zone_full(zonelist, z);
1543 try_next_zone:
1544 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1546 * we do zlc_setup after the first zone is tried but only
1547 * if there are multiple nodes make it worthwhile
1549 allowednodes = zlc_setup(zonelist, alloc_flags);
1550 zlc_active = 1;
1551 did_zlc_setup = 1;
1555 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1556 /* Disable zlc cache for second zonelist scan */
1557 zlc_active = 0;
1558 goto zonelist_scan;
1560 return page;
1563 static inline int
1564 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1565 unsigned long pages_reclaimed)
1567 /* Do not loop if specifically requested */
1568 if (gfp_mask & __GFP_NORETRY)
1569 return 0;
1572 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1573 * means __GFP_NOFAIL, but that may not be true in other
1574 * implementations.
1576 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1577 return 1;
1580 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1581 * specified, then we retry until we no longer reclaim any pages
1582 * (above), or we've reclaimed an order of pages at least as
1583 * large as the allocation's order. In both cases, if the
1584 * allocation still fails, we stop retrying.
1586 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1587 return 1;
1590 * Don't let big-order allocations loop unless the caller
1591 * explicitly requests that.
1593 if (gfp_mask & __GFP_NOFAIL)
1594 return 1;
1596 return 0;
1599 static inline struct page *
1600 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1601 struct zonelist *zonelist, enum zone_type high_zoneidx,
1602 nodemask_t *nodemask, struct zone *preferred_zone,
1603 int migratetype)
1605 struct page *page;
1607 /* Acquire the OOM killer lock for the zones in zonelist */
1608 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1609 schedule_timeout_uninterruptible(1);
1610 return NULL;
1614 * Go through the zonelist yet one more time, keep very high watermark
1615 * here, this is only to catch a parallel oom killing, we must fail if
1616 * we're still under heavy pressure.
1618 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1619 order, zonelist, high_zoneidx,
1620 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1621 preferred_zone, migratetype);
1622 if (page)
1623 goto out;
1625 /* The OOM killer will not help higher order allocs */
1626 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
1627 goto out;
1629 /* Exhausted what can be done so it's blamo time */
1630 out_of_memory(zonelist, gfp_mask, order);
1632 out:
1633 clear_zonelist_oom(zonelist, gfp_mask);
1634 return page;
1637 /* The really slow allocator path where we enter direct reclaim */
1638 static inline struct page *
1639 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1640 struct zonelist *zonelist, enum zone_type high_zoneidx,
1641 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1642 int migratetype, unsigned long *did_some_progress)
1644 struct page *page = NULL;
1645 struct reclaim_state reclaim_state;
1646 struct task_struct *p = current;
1648 cond_resched();
1650 /* We now go into synchronous reclaim */
1651 cpuset_memory_pressure_bump();
1652 p->flags |= PF_MEMALLOC;
1653 lockdep_set_current_reclaim_state(gfp_mask);
1654 reclaim_state.reclaimed_slab = 0;
1655 p->reclaim_state = &reclaim_state;
1657 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1659 p->reclaim_state = NULL;
1660 lockdep_clear_current_reclaim_state();
1661 p->flags &= ~PF_MEMALLOC;
1663 cond_resched();
1665 if (order != 0)
1666 drain_all_pages();
1668 if (likely(*did_some_progress))
1669 page = get_page_from_freelist(gfp_mask, nodemask, order,
1670 zonelist, high_zoneidx,
1671 alloc_flags, preferred_zone,
1672 migratetype);
1673 return page;
1677 * This is called in the allocator slow-path if the allocation request is of
1678 * sufficient urgency to ignore watermarks and take other desperate measures
1680 static inline struct page *
1681 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1682 struct zonelist *zonelist, enum zone_type high_zoneidx,
1683 nodemask_t *nodemask, struct zone *preferred_zone,
1684 int migratetype)
1686 struct page *page;
1688 do {
1689 page = get_page_from_freelist(gfp_mask, nodemask, order,
1690 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1691 preferred_zone, migratetype);
1693 if (!page && gfp_mask & __GFP_NOFAIL)
1694 congestion_wait(BLK_RW_ASYNC, HZ/50);
1695 } while (!page && (gfp_mask & __GFP_NOFAIL));
1697 return page;
1700 static inline
1701 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1702 enum zone_type high_zoneidx)
1704 struct zoneref *z;
1705 struct zone *zone;
1707 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1708 wakeup_kswapd(zone, order);
1711 static inline int
1712 gfp_to_alloc_flags(gfp_t gfp_mask)
1714 struct task_struct *p = current;
1715 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1716 const gfp_t wait = gfp_mask & __GFP_WAIT;
1718 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1719 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1722 * The caller may dip into page reserves a bit more if the caller
1723 * cannot run direct reclaim, or if the caller has realtime scheduling
1724 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1725 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1727 alloc_flags |= (gfp_mask & __GFP_HIGH);
1729 if (!wait) {
1730 alloc_flags |= ALLOC_HARDER;
1732 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1733 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1735 alloc_flags &= ~ALLOC_CPUSET;
1736 } else if (unlikely(rt_task(p)))
1737 alloc_flags |= ALLOC_HARDER;
1739 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1740 if (!in_interrupt() &&
1741 ((p->flags & PF_MEMALLOC) ||
1742 unlikely(test_thread_flag(TIF_MEMDIE))))
1743 alloc_flags |= ALLOC_NO_WATERMARKS;
1746 return alloc_flags;
1749 static inline struct page *
1750 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1751 struct zonelist *zonelist, enum zone_type high_zoneidx,
1752 nodemask_t *nodemask, struct zone *preferred_zone,
1753 int migratetype)
1755 const gfp_t wait = gfp_mask & __GFP_WAIT;
1756 struct page *page = NULL;
1757 int alloc_flags;
1758 unsigned long pages_reclaimed = 0;
1759 unsigned long did_some_progress;
1760 struct task_struct *p = current;
1763 * In the slowpath, we sanity check order to avoid ever trying to
1764 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1765 * be using allocators in order of preference for an area that is
1766 * too large.
1768 if (order >= MAX_ORDER) {
1769 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1770 return NULL;
1774 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1775 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1776 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1777 * using a larger set of nodes after it has established that the
1778 * allowed per node queues are empty and that nodes are
1779 * over allocated.
1781 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1782 goto nopage;
1784 wake_all_kswapd(order, zonelist, high_zoneidx);
1786 restart:
1788 * OK, we're below the kswapd watermark and have kicked background
1789 * reclaim. Now things get more complex, so set up alloc_flags according
1790 * to how we want to proceed.
1792 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1794 /* This is the last chance, in general, before the goto nopage. */
1795 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1796 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1797 preferred_zone, migratetype);
1798 if (page)
1799 goto got_pg;
1801 rebalance:
1802 /* Allocate without watermarks if the context allows */
1803 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1804 page = __alloc_pages_high_priority(gfp_mask, order,
1805 zonelist, high_zoneidx, nodemask,
1806 preferred_zone, migratetype);
1807 if (page)
1808 goto got_pg;
1811 /* Atomic allocations - we can't balance anything */
1812 if (!wait)
1813 goto nopage;
1815 /* Avoid recursion of direct reclaim */
1816 if (p->flags & PF_MEMALLOC)
1817 goto nopage;
1819 /* Avoid allocations with no watermarks from looping endlessly */
1820 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1821 goto nopage;
1823 /* Try direct reclaim and then allocating */
1824 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1825 zonelist, high_zoneidx,
1826 nodemask,
1827 alloc_flags, preferred_zone,
1828 migratetype, &did_some_progress);
1829 if (page)
1830 goto got_pg;
1833 * If we failed to make any progress reclaiming, then we are
1834 * running out of options and have to consider going OOM
1836 if (!did_some_progress) {
1837 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1838 if (oom_killer_disabled)
1839 goto nopage;
1840 page = __alloc_pages_may_oom(gfp_mask, order,
1841 zonelist, high_zoneidx,
1842 nodemask, preferred_zone,
1843 migratetype);
1844 if (page)
1845 goto got_pg;
1848 * The OOM killer does not trigger for high-order
1849 * ~__GFP_NOFAIL allocations so if no progress is being
1850 * made, there are no other options and retrying is
1851 * unlikely to help.
1853 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1854 !(gfp_mask & __GFP_NOFAIL))
1855 goto nopage;
1857 goto restart;
1861 /* Check if we should retry the allocation */
1862 pages_reclaimed += did_some_progress;
1863 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1864 /* Wait for some write requests to complete then retry */
1865 congestion_wait(BLK_RW_ASYNC, HZ/50);
1866 goto rebalance;
1869 nopage:
1870 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1871 printk(KERN_WARNING "%s: page allocation failure."
1872 " order:%d, mode:0x%x\n",
1873 p->comm, order, gfp_mask);
1874 dump_stack();
1875 show_mem();
1877 return page;
1878 got_pg:
1879 if (kmemcheck_enabled)
1880 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1881 return page;
1886 * This is the 'heart' of the zoned buddy allocator.
1888 struct page *
1889 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1890 struct zonelist *zonelist, nodemask_t *nodemask)
1892 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1893 struct zone *preferred_zone;
1894 struct page *page;
1895 int migratetype = allocflags_to_migratetype(gfp_mask);
1897 gfp_mask &= gfp_allowed_mask;
1899 lockdep_trace_alloc(gfp_mask);
1901 might_sleep_if(gfp_mask & __GFP_WAIT);
1903 if (should_fail_alloc_page(gfp_mask, order))
1904 return NULL;
1907 * Check the zones suitable for the gfp_mask contain at least one
1908 * valid zone. It's possible to have an empty zonelist as a result
1909 * of GFP_THISNODE and a memoryless node
1911 if (unlikely(!zonelist->_zonerefs->zone))
1912 return NULL;
1914 /* The preferred zone is used for statistics later */
1915 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1916 if (!preferred_zone)
1917 return NULL;
1919 /* First allocation attempt */
1920 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1921 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
1922 preferred_zone, migratetype);
1923 if (unlikely(!page))
1924 page = __alloc_pages_slowpath(gfp_mask, order,
1925 zonelist, high_zoneidx, nodemask,
1926 preferred_zone, migratetype);
1928 return page;
1930 EXPORT_SYMBOL(__alloc_pages_nodemask);
1933 * Common helper functions.
1935 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1937 struct page *page;
1940 * __get_free_pages() returns a 32-bit address, which cannot represent
1941 * a highmem page
1943 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1945 page = alloc_pages(gfp_mask, order);
1946 if (!page)
1947 return 0;
1948 return (unsigned long) page_address(page);
1950 EXPORT_SYMBOL(__get_free_pages);
1952 unsigned long get_zeroed_page(gfp_t gfp_mask)
1954 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1956 EXPORT_SYMBOL(get_zeroed_page);
1958 void __pagevec_free(struct pagevec *pvec)
1960 int i = pagevec_count(pvec);
1962 while (--i >= 0)
1963 free_hot_cold_page(pvec->pages[i], pvec->cold);
1966 void __free_pages(struct page *page, unsigned int order)
1968 if (put_page_testzero(page)) {
1969 if (order == 0)
1970 free_hot_page(page);
1971 else
1972 __free_pages_ok(page, order);
1976 EXPORT_SYMBOL(__free_pages);
1978 void free_pages(unsigned long addr, unsigned int order)
1980 if (addr != 0) {
1981 VM_BUG_ON(!virt_addr_valid((void *)addr));
1982 __free_pages(virt_to_page((void *)addr), order);
1986 EXPORT_SYMBOL(free_pages);
1989 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1990 * @size: the number of bytes to allocate
1991 * @gfp_mask: GFP flags for the allocation
1993 * This function is similar to alloc_pages(), except that it allocates the
1994 * minimum number of pages to satisfy the request. alloc_pages() can only
1995 * allocate memory in power-of-two pages.
1997 * This function is also limited by MAX_ORDER.
1999 * Memory allocated by this function must be released by free_pages_exact().
2001 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2003 unsigned int order = get_order(size);
2004 unsigned long addr;
2006 addr = __get_free_pages(gfp_mask, order);
2007 if (addr) {
2008 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2009 unsigned long used = addr + PAGE_ALIGN(size);
2011 split_page(virt_to_page((void *)addr), order);
2012 while (used < alloc_end) {
2013 free_page(used);
2014 used += PAGE_SIZE;
2018 return (void *)addr;
2020 EXPORT_SYMBOL(alloc_pages_exact);
2023 * free_pages_exact - release memory allocated via alloc_pages_exact()
2024 * @virt: the value returned by alloc_pages_exact.
2025 * @size: size of allocation, same value as passed to alloc_pages_exact().
2027 * Release the memory allocated by a previous call to alloc_pages_exact.
2029 void free_pages_exact(void *virt, size_t size)
2031 unsigned long addr = (unsigned long)virt;
2032 unsigned long end = addr + PAGE_ALIGN(size);
2034 while (addr < end) {
2035 free_page(addr);
2036 addr += PAGE_SIZE;
2039 EXPORT_SYMBOL(free_pages_exact);
2041 static unsigned int nr_free_zone_pages(int offset)
2043 struct zoneref *z;
2044 struct zone *zone;
2046 /* Just pick one node, since fallback list is circular */
2047 unsigned int sum = 0;
2049 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2051 for_each_zone_zonelist(zone, z, zonelist, offset) {
2052 unsigned long size = zone->present_pages;
2053 unsigned long high = high_wmark_pages(zone);
2054 if (size > high)
2055 sum += size - high;
2058 return sum;
2062 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2064 unsigned int nr_free_buffer_pages(void)
2066 return nr_free_zone_pages(gfp_zone(GFP_USER));
2068 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2071 * Amount of free RAM allocatable within all zones
2073 unsigned int nr_free_pagecache_pages(void)
2075 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2078 static inline void show_node(struct zone *zone)
2080 if (NUMA_BUILD)
2081 printk("Node %d ", zone_to_nid(zone));
2084 void si_meminfo(struct sysinfo *val)
2086 val->totalram = totalram_pages;
2087 val->sharedram = 0;
2088 val->freeram = global_page_state(NR_FREE_PAGES);
2089 val->bufferram = nr_blockdev_pages();
2090 val->totalhigh = totalhigh_pages;
2091 val->freehigh = nr_free_highpages();
2092 val->mem_unit = PAGE_SIZE;
2095 EXPORT_SYMBOL(si_meminfo);
2097 #ifdef CONFIG_NUMA
2098 void si_meminfo_node(struct sysinfo *val, int nid)
2100 pg_data_t *pgdat = NODE_DATA(nid);
2102 val->totalram = pgdat->node_present_pages;
2103 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2104 #ifdef CONFIG_HIGHMEM
2105 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2106 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2107 NR_FREE_PAGES);
2108 #else
2109 val->totalhigh = 0;
2110 val->freehigh = 0;
2111 #endif
2112 val->mem_unit = PAGE_SIZE;
2114 #endif
2116 #define K(x) ((x) << (PAGE_SHIFT-10))
2119 * Show free area list (used inside shift_scroll-lock stuff)
2120 * We also calculate the percentage fragmentation. We do this by counting the
2121 * memory on each free list with the exception of the first item on the list.
2123 void show_free_areas(void)
2125 int cpu;
2126 struct zone *zone;
2128 for_each_populated_zone(zone) {
2129 show_node(zone);
2130 printk("%s per-cpu:\n", zone->name);
2132 for_each_online_cpu(cpu) {
2133 struct per_cpu_pageset *pageset;
2135 pageset = zone_pcp(zone, cpu);
2137 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2138 cpu, pageset->pcp.high,
2139 pageset->pcp.batch, pageset->pcp.count);
2143 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2144 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2145 " unevictable:%lu"
2146 " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
2147 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2148 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2149 global_page_state(NR_ACTIVE_ANON),
2150 global_page_state(NR_INACTIVE_ANON),
2151 global_page_state(NR_ISOLATED_ANON),
2152 global_page_state(NR_ACTIVE_FILE),
2153 global_page_state(NR_INACTIVE_FILE),
2154 global_page_state(NR_ISOLATED_FILE),
2155 global_page_state(NR_UNEVICTABLE),
2156 global_page_state(NR_FILE_DIRTY),
2157 global_page_state(NR_WRITEBACK),
2158 global_page_state(NR_UNSTABLE_NFS),
2159 nr_blockdev_pages(),
2160 global_page_state(NR_FREE_PAGES),
2161 global_page_state(NR_SLAB_RECLAIMABLE),
2162 global_page_state(NR_SLAB_UNRECLAIMABLE),
2163 global_page_state(NR_FILE_MAPPED),
2164 global_page_state(NR_SHMEM),
2165 global_page_state(NR_PAGETABLE),
2166 global_page_state(NR_BOUNCE));
2168 for_each_populated_zone(zone) {
2169 int i;
2171 show_node(zone);
2172 printk("%s"
2173 " free:%lukB"
2174 " min:%lukB"
2175 " low:%lukB"
2176 " high:%lukB"
2177 " active_anon:%lukB"
2178 " inactive_anon:%lukB"
2179 " active_file:%lukB"
2180 " inactive_file:%lukB"
2181 " unevictable:%lukB"
2182 " isolated(anon):%lukB"
2183 " isolated(file):%lukB"
2184 " present:%lukB"
2185 " mlocked:%lukB"
2186 " dirty:%lukB"
2187 " writeback:%lukB"
2188 " mapped:%lukB"
2189 " shmem:%lukB"
2190 " slab_reclaimable:%lukB"
2191 " slab_unreclaimable:%lukB"
2192 " kernel_stack:%lukB"
2193 " pagetables:%lukB"
2194 " unstable:%lukB"
2195 " bounce:%lukB"
2196 " writeback_tmp:%lukB"
2197 " pages_scanned:%lu"
2198 " all_unreclaimable? %s"
2199 "\n",
2200 zone->name,
2201 K(zone_page_state(zone, NR_FREE_PAGES)),
2202 K(min_wmark_pages(zone)),
2203 K(low_wmark_pages(zone)),
2204 K(high_wmark_pages(zone)),
2205 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2206 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2207 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2208 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2209 K(zone_page_state(zone, NR_UNEVICTABLE)),
2210 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2211 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2212 K(zone->present_pages),
2213 K(zone_page_state(zone, NR_MLOCK)),
2214 K(zone_page_state(zone, NR_FILE_DIRTY)),
2215 K(zone_page_state(zone, NR_WRITEBACK)),
2216 K(zone_page_state(zone, NR_FILE_MAPPED)),
2217 K(zone_page_state(zone, NR_SHMEM)),
2218 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2219 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2220 zone_page_state(zone, NR_KERNEL_STACK) *
2221 THREAD_SIZE / 1024,
2222 K(zone_page_state(zone, NR_PAGETABLE)),
2223 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2224 K(zone_page_state(zone, NR_BOUNCE)),
2225 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2226 zone->pages_scanned,
2227 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
2229 printk("lowmem_reserve[]:");
2230 for (i = 0; i < MAX_NR_ZONES; i++)
2231 printk(" %lu", zone->lowmem_reserve[i]);
2232 printk("\n");
2235 for_each_populated_zone(zone) {
2236 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2238 show_node(zone);
2239 printk("%s: ", zone->name);
2241 spin_lock_irqsave(&zone->lock, flags);
2242 for (order = 0; order < MAX_ORDER; order++) {
2243 nr[order] = zone->free_area[order].nr_free;
2244 total += nr[order] << order;
2246 spin_unlock_irqrestore(&zone->lock, flags);
2247 for (order = 0; order < MAX_ORDER; order++)
2248 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2249 printk("= %lukB\n", K(total));
2252 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2254 show_swap_cache_info();
2257 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2259 zoneref->zone = zone;
2260 zoneref->zone_idx = zone_idx(zone);
2264 * Builds allocation fallback zone lists.
2266 * Add all populated zones of a node to the zonelist.
2268 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2269 int nr_zones, enum zone_type zone_type)
2271 struct zone *zone;
2273 BUG_ON(zone_type >= MAX_NR_ZONES);
2274 zone_type++;
2276 do {
2277 zone_type--;
2278 zone = pgdat->node_zones + zone_type;
2279 if (populated_zone(zone)) {
2280 zoneref_set_zone(zone,
2281 &zonelist->_zonerefs[nr_zones++]);
2282 check_highest_zone(zone_type);
2285 } while (zone_type);
2286 return nr_zones;
2291 * zonelist_order:
2292 * 0 = automatic detection of better ordering.
2293 * 1 = order by ([node] distance, -zonetype)
2294 * 2 = order by (-zonetype, [node] distance)
2296 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2297 * the same zonelist. So only NUMA can configure this param.
2299 #define ZONELIST_ORDER_DEFAULT 0
2300 #define ZONELIST_ORDER_NODE 1
2301 #define ZONELIST_ORDER_ZONE 2
2303 /* zonelist order in the kernel.
2304 * set_zonelist_order() will set this to NODE or ZONE.
2306 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2307 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2310 #ifdef CONFIG_NUMA
2311 /* The value user specified ....changed by config */
2312 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2313 /* string for sysctl */
2314 #define NUMA_ZONELIST_ORDER_LEN 16
2315 char numa_zonelist_order[16] = "default";
2318 * interface for configure zonelist ordering.
2319 * command line option "numa_zonelist_order"
2320 * = "[dD]efault - default, automatic configuration.
2321 * = "[nN]ode - order by node locality, then by zone within node
2322 * = "[zZ]one - order by zone, then by locality within zone
2325 static int __parse_numa_zonelist_order(char *s)
2327 if (*s == 'd' || *s == 'D') {
2328 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2329 } else if (*s == 'n' || *s == 'N') {
2330 user_zonelist_order = ZONELIST_ORDER_NODE;
2331 } else if (*s == 'z' || *s == 'Z') {
2332 user_zonelist_order = ZONELIST_ORDER_ZONE;
2333 } else {
2334 printk(KERN_WARNING
2335 "Ignoring invalid numa_zonelist_order value: "
2336 "%s\n", s);
2337 return -EINVAL;
2339 return 0;
2342 static __init int setup_numa_zonelist_order(char *s)
2344 if (s)
2345 return __parse_numa_zonelist_order(s);
2346 return 0;
2348 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2351 * sysctl handler for numa_zonelist_order
2353 int numa_zonelist_order_handler(ctl_table *table, int write,
2354 struct file *file, void __user *buffer, size_t *length,
2355 loff_t *ppos)
2357 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2358 int ret;
2360 if (write)
2361 strncpy(saved_string, (char*)table->data,
2362 NUMA_ZONELIST_ORDER_LEN);
2363 ret = proc_dostring(table, write, file, buffer, length, ppos);
2364 if (ret)
2365 return ret;
2366 if (write) {
2367 int oldval = user_zonelist_order;
2368 if (__parse_numa_zonelist_order((char*)table->data)) {
2370 * bogus value. restore saved string
2372 strncpy((char*)table->data, saved_string,
2373 NUMA_ZONELIST_ORDER_LEN);
2374 user_zonelist_order = oldval;
2375 } else if (oldval != user_zonelist_order)
2376 build_all_zonelists();
2378 return 0;
2382 #define MAX_NODE_LOAD (nr_online_nodes)
2383 static int node_load[MAX_NUMNODES];
2386 * find_next_best_node - find the next node that should appear in a given node's fallback list
2387 * @node: node whose fallback list we're appending
2388 * @used_node_mask: nodemask_t of already used nodes
2390 * We use a number of factors to determine which is the next node that should
2391 * appear on a given node's fallback list. The node should not have appeared
2392 * already in @node's fallback list, and it should be the next closest node
2393 * according to the distance array (which contains arbitrary distance values
2394 * from each node to each node in the system), and should also prefer nodes
2395 * with no CPUs, since presumably they'll have very little allocation pressure
2396 * on them otherwise.
2397 * It returns -1 if no node is found.
2399 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2401 int n, val;
2402 int min_val = INT_MAX;
2403 int best_node = -1;
2404 const struct cpumask *tmp = cpumask_of_node(0);
2406 /* Use the local node if we haven't already */
2407 if (!node_isset(node, *used_node_mask)) {
2408 node_set(node, *used_node_mask);
2409 return node;
2412 for_each_node_state(n, N_HIGH_MEMORY) {
2414 /* Don't want a node to appear more than once */
2415 if (node_isset(n, *used_node_mask))
2416 continue;
2418 /* Use the distance array to find the distance */
2419 val = node_distance(node, n);
2421 /* Penalize nodes under us ("prefer the next node") */
2422 val += (n < node);
2424 /* Give preference to headless and unused nodes */
2425 tmp = cpumask_of_node(n);
2426 if (!cpumask_empty(tmp))
2427 val += PENALTY_FOR_NODE_WITH_CPUS;
2429 /* Slight preference for less loaded node */
2430 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2431 val += node_load[n];
2433 if (val < min_val) {
2434 min_val = val;
2435 best_node = n;
2439 if (best_node >= 0)
2440 node_set(best_node, *used_node_mask);
2442 return best_node;
2447 * Build zonelists ordered by node and zones within node.
2448 * This results in maximum locality--normal zone overflows into local
2449 * DMA zone, if any--but risks exhausting DMA zone.
2451 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2453 int j;
2454 struct zonelist *zonelist;
2456 zonelist = &pgdat->node_zonelists[0];
2457 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2459 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2460 MAX_NR_ZONES - 1);
2461 zonelist->_zonerefs[j].zone = NULL;
2462 zonelist->_zonerefs[j].zone_idx = 0;
2466 * Build gfp_thisnode zonelists
2468 static void build_thisnode_zonelists(pg_data_t *pgdat)
2470 int j;
2471 struct zonelist *zonelist;
2473 zonelist = &pgdat->node_zonelists[1];
2474 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2475 zonelist->_zonerefs[j].zone = NULL;
2476 zonelist->_zonerefs[j].zone_idx = 0;
2480 * Build zonelists ordered by zone and nodes within zones.
2481 * This results in conserving DMA zone[s] until all Normal memory is
2482 * exhausted, but results in overflowing to remote node while memory
2483 * may still exist in local DMA zone.
2485 static int node_order[MAX_NUMNODES];
2487 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2489 int pos, j, node;
2490 int zone_type; /* needs to be signed */
2491 struct zone *z;
2492 struct zonelist *zonelist;
2494 zonelist = &pgdat->node_zonelists[0];
2495 pos = 0;
2496 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2497 for (j = 0; j < nr_nodes; j++) {
2498 node = node_order[j];
2499 z = &NODE_DATA(node)->node_zones[zone_type];
2500 if (populated_zone(z)) {
2501 zoneref_set_zone(z,
2502 &zonelist->_zonerefs[pos++]);
2503 check_highest_zone(zone_type);
2507 zonelist->_zonerefs[pos].zone = NULL;
2508 zonelist->_zonerefs[pos].zone_idx = 0;
2511 static int default_zonelist_order(void)
2513 int nid, zone_type;
2514 unsigned long low_kmem_size,total_size;
2515 struct zone *z;
2516 int average_size;
2518 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2519 * If they are really small and used heavily, the system can fall
2520 * into OOM very easily.
2521 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2523 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2524 low_kmem_size = 0;
2525 total_size = 0;
2526 for_each_online_node(nid) {
2527 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2528 z = &NODE_DATA(nid)->node_zones[zone_type];
2529 if (populated_zone(z)) {
2530 if (zone_type < ZONE_NORMAL)
2531 low_kmem_size += z->present_pages;
2532 total_size += z->present_pages;
2536 if (!low_kmem_size || /* there are no DMA area. */
2537 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2538 return ZONELIST_ORDER_NODE;
2540 * look into each node's config.
2541 * If there is a node whose DMA/DMA32 memory is very big area on
2542 * local memory, NODE_ORDER may be suitable.
2544 average_size = total_size /
2545 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2546 for_each_online_node(nid) {
2547 low_kmem_size = 0;
2548 total_size = 0;
2549 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2550 z = &NODE_DATA(nid)->node_zones[zone_type];
2551 if (populated_zone(z)) {
2552 if (zone_type < ZONE_NORMAL)
2553 low_kmem_size += z->present_pages;
2554 total_size += z->present_pages;
2557 if (low_kmem_size &&
2558 total_size > average_size && /* ignore small node */
2559 low_kmem_size > total_size * 70/100)
2560 return ZONELIST_ORDER_NODE;
2562 return ZONELIST_ORDER_ZONE;
2565 static void set_zonelist_order(void)
2567 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2568 current_zonelist_order = default_zonelist_order();
2569 else
2570 current_zonelist_order = user_zonelist_order;
2573 static void build_zonelists(pg_data_t *pgdat)
2575 int j, node, load;
2576 enum zone_type i;
2577 nodemask_t used_mask;
2578 int local_node, prev_node;
2579 struct zonelist *zonelist;
2580 int order = current_zonelist_order;
2582 /* initialize zonelists */
2583 for (i = 0; i < MAX_ZONELISTS; i++) {
2584 zonelist = pgdat->node_zonelists + i;
2585 zonelist->_zonerefs[0].zone = NULL;
2586 zonelist->_zonerefs[0].zone_idx = 0;
2589 /* NUMA-aware ordering of nodes */
2590 local_node = pgdat->node_id;
2591 load = nr_online_nodes;
2592 prev_node = local_node;
2593 nodes_clear(used_mask);
2595 memset(node_order, 0, sizeof(node_order));
2596 j = 0;
2598 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2599 int distance = node_distance(local_node, node);
2602 * If another node is sufficiently far away then it is better
2603 * to reclaim pages in a zone before going off node.
2605 if (distance > RECLAIM_DISTANCE)
2606 zone_reclaim_mode = 1;
2609 * We don't want to pressure a particular node.
2610 * So adding penalty to the first node in same
2611 * distance group to make it round-robin.
2613 if (distance != node_distance(local_node, prev_node))
2614 node_load[node] = load;
2616 prev_node = node;
2617 load--;
2618 if (order == ZONELIST_ORDER_NODE)
2619 build_zonelists_in_node_order(pgdat, node);
2620 else
2621 node_order[j++] = node; /* remember order */
2624 if (order == ZONELIST_ORDER_ZONE) {
2625 /* calculate node order -- i.e., DMA last! */
2626 build_zonelists_in_zone_order(pgdat, j);
2629 build_thisnode_zonelists(pgdat);
2632 /* Construct the zonelist performance cache - see further mmzone.h */
2633 static void build_zonelist_cache(pg_data_t *pgdat)
2635 struct zonelist *zonelist;
2636 struct zonelist_cache *zlc;
2637 struct zoneref *z;
2639 zonelist = &pgdat->node_zonelists[0];
2640 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2641 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2642 for (z = zonelist->_zonerefs; z->zone; z++)
2643 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2647 #else /* CONFIG_NUMA */
2649 static void set_zonelist_order(void)
2651 current_zonelist_order = ZONELIST_ORDER_ZONE;
2654 static void build_zonelists(pg_data_t *pgdat)
2656 int node, local_node;
2657 enum zone_type j;
2658 struct zonelist *zonelist;
2660 local_node = pgdat->node_id;
2662 zonelist = &pgdat->node_zonelists[0];
2663 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2666 * Now we build the zonelist so that it contains the zones
2667 * of all the other nodes.
2668 * We don't want to pressure a particular node, so when
2669 * building the zones for node N, we make sure that the
2670 * zones coming right after the local ones are those from
2671 * node N+1 (modulo N)
2673 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2674 if (!node_online(node))
2675 continue;
2676 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2677 MAX_NR_ZONES - 1);
2679 for (node = 0; node < local_node; node++) {
2680 if (!node_online(node))
2681 continue;
2682 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2683 MAX_NR_ZONES - 1);
2686 zonelist->_zonerefs[j].zone = NULL;
2687 zonelist->_zonerefs[j].zone_idx = 0;
2690 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2691 static void build_zonelist_cache(pg_data_t *pgdat)
2693 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2696 #endif /* CONFIG_NUMA */
2698 /* return values int ....just for stop_machine() */
2699 static int __build_all_zonelists(void *dummy)
2701 int nid;
2703 #ifdef CONFIG_NUMA
2704 memset(node_load, 0, sizeof(node_load));
2705 #endif
2706 for_each_online_node(nid) {
2707 pg_data_t *pgdat = NODE_DATA(nid);
2709 build_zonelists(pgdat);
2710 build_zonelist_cache(pgdat);
2712 return 0;
2715 void build_all_zonelists(void)
2717 set_zonelist_order();
2719 if (system_state == SYSTEM_BOOTING) {
2720 __build_all_zonelists(NULL);
2721 mminit_verify_zonelist();
2722 cpuset_init_current_mems_allowed();
2723 } else {
2724 /* we have to stop all cpus to guarantee there is no user
2725 of zonelist */
2726 stop_machine(__build_all_zonelists, NULL, NULL);
2727 /* cpuset refresh routine should be here */
2729 vm_total_pages = nr_free_pagecache_pages();
2731 * Disable grouping by mobility if the number of pages in the
2732 * system is too low to allow the mechanism to work. It would be
2733 * more accurate, but expensive to check per-zone. This check is
2734 * made on memory-hotadd so a system can start with mobility
2735 * disabled and enable it later
2737 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2738 page_group_by_mobility_disabled = 1;
2739 else
2740 page_group_by_mobility_disabled = 0;
2742 printk("Built %i zonelists in %s order, mobility grouping %s. "
2743 "Total pages: %ld\n",
2744 nr_online_nodes,
2745 zonelist_order_name[current_zonelist_order],
2746 page_group_by_mobility_disabled ? "off" : "on",
2747 vm_total_pages);
2748 #ifdef CONFIG_NUMA
2749 printk("Policy zone: %s\n", zone_names[policy_zone]);
2750 #endif
2754 * Helper functions to size the waitqueue hash table.
2755 * Essentially these want to choose hash table sizes sufficiently
2756 * large so that collisions trying to wait on pages are rare.
2757 * But in fact, the number of active page waitqueues on typical
2758 * systems is ridiculously low, less than 200. So this is even
2759 * conservative, even though it seems large.
2761 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2762 * waitqueues, i.e. the size of the waitq table given the number of pages.
2764 #define PAGES_PER_WAITQUEUE 256
2766 #ifndef CONFIG_MEMORY_HOTPLUG
2767 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2769 unsigned long size = 1;
2771 pages /= PAGES_PER_WAITQUEUE;
2773 while (size < pages)
2774 size <<= 1;
2777 * Once we have dozens or even hundreds of threads sleeping
2778 * on IO we've got bigger problems than wait queue collision.
2779 * Limit the size of the wait table to a reasonable size.
2781 size = min(size, 4096UL);
2783 return max(size, 4UL);
2785 #else
2787 * A zone's size might be changed by hot-add, so it is not possible to determine
2788 * a suitable size for its wait_table. So we use the maximum size now.
2790 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2792 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2793 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2794 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2796 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2797 * or more by the traditional way. (See above). It equals:
2799 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2800 * ia64(16K page size) : = ( 8G + 4M)byte.
2801 * powerpc (64K page size) : = (32G +16M)byte.
2803 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2805 return 4096UL;
2807 #endif
2810 * This is an integer logarithm so that shifts can be used later
2811 * to extract the more random high bits from the multiplicative
2812 * hash function before the remainder is taken.
2814 static inline unsigned long wait_table_bits(unsigned long size)
2816 return ffz(~size);
2819 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2822 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2823 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2824 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
2825 * higher will lead to a bigger reserve which will get freed as contiguous
2826 * blocks as reclaim kicks in
2828 static void setup_zone_migrate_reserve(struct zone *zone)
2830 unsigned long start_pfn, pfn, end_pfn;
2831 struct page *page;
2832 unsigned long reserve, block_migratetype;
2834 /* Get the start pfn, end pfn and the number of blocks to reserve */
2835 start_pfn = zone->zone_start_pfn;
2836 end_pfn = start_pfn + zone->spanned_pages;
2837 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
2838 pageblock_order;
2840 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2841 if (!pfn_valid(pfn))
2842 continue;
2843 page = pfn_to_page(pfn);
2845 /* Watch out for overlapping nodes */
2846 if (page_to_nid(page) != zone_to_nid(zone))
2847 continue;
2849 /* Blocks with reserved pages will never free, skip them. */
2850 if (PageReserved(page))
2851 continue;
2853 block_migratetype = get_pageblock_migratetype(page);
2855 /* If this block is reserved, account for it */
2856 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2857 reserve--;
2858 continue;
2861 /* Suitable for reserving if this block is movable */
2862 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2863 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2864 move_freepages_block(zone, page, MIGRATE_RESERVE);
2865 reserve--;
2866 continue;
2870 * If the reserve is met and this is a previous reserved block,
2871 * take it back
2873 if (block_migratetype == MIGRATE_RESERVE) {
2874 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2875 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2881 * Initially all pages are reserved - free ones are freed
2882 * up by free_all_bootmem() once the early boot process is
2883 * done. Non-atomic initialization, single-pass.
2885 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2886 unsigned long start_pfn, enum memmap_context context)
2888 struct page *page;
2889 unsigned long end_pfn = start_pfn + size;
2890 unsigned long pfn;
2891 struct zone *z;
2893 if (highest_memmap_pfn < end_pfn - 1)
2894 highest_memmap_pfn = end_pfn - 1;
2896 z = &NODE_DATA(nid)->node_zones[zone];
2897 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2899 * There can be holes in boot-time mem_map[]s
2900 * handed to this function. They do not
2901 * exist on hotplugged memory.
2903 if (context == MEMMAP_EARLY) {
2904 if (!early_pfn_valid(pfn))
2905 continue;
2906 if (!early_pfn_in_nid(pfn, nid))
2907 continue;
2909 page = pfn_to_page(pfn);
2910 set_page_links(page, zone, nid, pfn);
2911 mminit_verify_page_links(page, zone, nid, pfn);
2912 init_page_count(page);
2913 reset_page_mapcount(page);
2914 SetPageReserved(page);
2916 * Mark the block movable so that blocks are reserved for
2917 * movable at startup. This will force kernel allocations
2918 * to reserve their blocks rather than leaking throughout
2919 * the address space during boot when many long-lived
2920 * kernel allocations are made. Later some blocks near
2921 * the start are marked MIGRATE_RESERVE by
2922 * setup_zone_migrate_reserve()
2924 * bitmap is created for zone's valid pfn range. but memmap
2925 * can be created for invalid pages (for alignment)
2926 * check here not to call set_pageblock_migratetype() against
2927 * pfn out of zone.
2929 if ((z->zone_start_pfn <= pfn)
2930 && (pfn < z->zone_start_pfn + z->spanned_pages)
2931 && !(pfn & (pageblock_nr_pages - 1)))
2932 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2934 INIT_LIST_HEAD(&page->lru);
2935 #ifdef WANT_PAGE_VIRTUAL
2936 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2937 if (!is_highmem_idx(zone))
2938 set_page_address(page, __va(pfn << PAGE_SHIFT));
2939 #endif
2943 static void __meminit zone_init_free_lists(struct zone *zone)
2945 int order, t;
2946 for_each_migratetype_order(order, t) {
2947 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2948 zone->free_area[order].nr_free = 0;
2952 #ifndef __HAVE_ARCH_MEMMAP_INIT
2953 #define memmap_init(size, nid, zone, start_pfn) \
2954 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2955 #endif
2957 static int zone_batchsize(struct zone *zone)
2959 #ifdef CONFIG_MMU
2960 int batch;
2963 * The per-cpu-pages pools are set to around 1000th of the
2964 * size of the zone. But no more than 1/2 of a meg.
2966 * OK, so we don't know how big the cache is. So guess.
2968 batch = zone->present_pages / 1024;
2969 if (batch * PAGE_SIZE > 512 * 1024)
2970 batch = (512 * 1024) / PAGE_SIZE;
2971 batch /= 4; /* We effectively *= 4 below */
2972 if (batch < 1)
2973 batch = 1;
2976 * Clamp the batch to a 2^n - 1 value. Having a power
2977 * of 2 value was found to be more likely to have
2978 * suboptimal cache aliasing properties in some cases.
2980 * For example if 2 tasks are alternately allocating
2981 * batches of pages, one task can end up with a lot
2982 * of pages of one half of the possible page colors
2983 * and the other with pages of the other colors.
2985 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2987 return batch;
2989 #else
2990 /* The deferral and batching of frees should be suppressed under NOMMU
2991 * conditions.
2993 * The problem is that NOMMU needs to be able to allocate large chunks
2994 * of contiguous memory as there's no hardware page translation to
2995 * assemble apparent contiguous memory from discontiguous pages.
2997 * Queueing large contiguous runs of pages for batching, however,
2998 * causes the pages to actually be freed in smaller chunks. As there
2999 * can be a significant delay between the individual batches being
3000 * recycled, this leads to the once large chunks of space being
3001 * fragmented and becoming unavailable for high-order allocations.
3003 return 0;
3004 #endif
3007 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3009 struct per_cpu_pages *pcp;
3011 memset(p, 0, sizeof(*p));
3013 pcp = &p->pcp;
3014 pcp->count = 0;
3015 pcp->high = 6 * batch;
3016 pcp->batch = max(1UL, 1 * batch);
3017 INIT_LIST_HEAD(&pcp->list);
3021 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3022 * to the value high for the pageset p.
3025 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3026 unsigned long high)
3028 struct per_cpu_pages *pcp;
3030 pcp = &p->pcp;
3031 pcp->high = high;
3032 pcp->batch = max(1UL, high/4);
3033 if ((high/4) > (PAGE_SHIFT * 8))
3034 pcp->batch = PAGE_SHIFT * 8;
3038 #ifdef CONFIG_NUMA
3040 * Boot pageset table. One per cpu which is going to be used for all
3041 * zones and all nodes. The parameters will be set in such a way
3042 * that an item put on a list will immediately be handed over to
3043 * the buddy list. This is safe since pageset manipulation is done
3044 * with interrupts disabled.
3046 * Some NUMA counter updates may also be caught by the boot pagesets.
3048 * The boot_pagesets must be kept even after bootup is complete for
3049 * unused processors and/or zones. They do play a role for bootstrapping
3050 * hotplugged processors.
3052 * zoneinfo_show() and maybe other functions do
3053 * not check if the processor is online before following the pageset pointer.
3054 * Other parts of the kernel may not check if the zone is available.
3056 static struct per_cpu_pageset boot_pageset[NR_CPUS];
3059 * Dynamically allocate memory for the
3060 * per cpu pageset array in struct zone.
3062 static int __cpuinit process_zones(int cpu)
3064 struct zone *zone, *dzone;
3065 int node = cpu_to_node(cpu);
3067 node_set_state(node, N_CPU); /* this node has a cpu */
3069 for_each_populated_zone(zone) {
3070 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
3071 GFP_KERNEL, node);
3072 if (!zone_pcp(zone, cpu))
3073 goto bad;
3075 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
3077 if (percpu_pagelist_fraction)
3078 setup_pagelist_highmark(zone_pcp(zone, cpu),
3079 (zone->present_pages / percpu_pagelist_fraction));
3082 return 0;
3083 bad:
3084 for_each_zone(dzone) {
3085 if (!populated_zone(dzone))
3086 continue;
3087 if (dzone == zone)
3088 break;
3089 kfree(zone_pcp(dzone, cpu));
3090 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
3092 return -ENOMEM;
3095 static inline void free_zone_pagesets(int cpu)
3097 struct zone *zone;
3099 for_each_zone(zone) {
3100 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3102 /* Free per_cpu_pageset if it is slab allocated */
3103 if (pset != &boot_pageset[cpu])
3104 kfree(pset);
3105 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3109 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
3110 unsigned long action,
3111 void *hcpu)
3113 int cpu = (long)hcpu;
3114 int ret = NOTIFY_OK;
3116 switch (action) {
3117 case CPU_UP_PREPARE:
3118 case CPU_UP_PREPARE_FROZEN:
3119 if (process_zones(cpu))
3120 ret = NOTIFY_BAD;
3121 break;
3122 case CPU_UP_CANCELED:
3123 case CPU_UP_CANCELED_FROZEN:
3124 case CPU_DEAD:
3125 case CPU_DEAD_FROZEN:
3126 free_zone_pagesets(cpu);
3127 break;
3128 default:
3129 break;
3131 return ret;
3134 static struct notifier_block __cpuinitdata pageset_notifier =
3135 { &pageset_cpuup_callback, NULL, 0 };
3137 void __init setup_per_cpu_pageset(void)
3139 int err;
3141 /* Initialize per_cpu_pageset for cpu 0.
3142 * A cpuup callback will do this for every cpu
3143 * as it comes online
3145 err = process_zones(smp_processor_id());
3146 BUG_ON(err);
3147 register_cpu_notifier(&pageset_notifier);
3150 #endif
3152 static noinline __init_refok
3153 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3155 int i;
3156 struct pglist_data *pgdat = zone->zone_pgdat;
3157 size_t alloc_size;
3160 * The per-page waitqueue mechanism uses hashed waitqueues
3161 * per zone.
3163 zone->wait_table_hash_nr_entries =
3164 wait_table_hash_nr_entries(zone_size_pages);
3165 zone->wait_table_bits =
3166 wait_table_bits(zone->wait_table_hash_nr_entries);
3167 alloc_size = zone->wait_table_hash_nr_entries
3168 * sizeof(wait_queue_head_t);
3170 if (!slab_is_available()) {
3171 zone->wait_table = (wait_queue_head_t *)
3172 alloc_bootmem_node(pgdat, alloc_size);
3173 } else {
3175 * This case means that a zone whose size was 0 gets new memory
3176 * via memory hot-add.
3177 * But it may be the case that a new node was hot-added. In
3178 * this case vmalloc() will not be able to use this new node's
3179 * memory - this wait_table must be initialized to use this new
3180 * node itself as well.
3181 * To use this new node's memory, further consideration will be
3182 * necessary.
3184 zone->wait_table = vmalloc(alloc_size);
3186 if (!zone->wait_table)
3187 return -ENOMEM;
3189 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3190 init_waitqueue_head(zone->wait_table + i);
3192 return 0;
3195 static int __zone_pcp_update(void *data)
3197 struct zone *zone = data;
3198 int cpu;
3199 unsigned long batch = zone_batchsize(zone), flags;
3201 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3202 struct per_cpu_pageset *pset;
3203 struct per_cpu_pages *pcp;
3205 pset = zone_pcp(zone, cpu);
3206 pcp = &pset->pcp;
3208 local_irq_save(flags);
3209 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
3210 setup_pageset(pset, batch);
3211 local_irq_restore(flags);
3213 return 0;
3216 void zone_pcp_update(struct zone *zone)
3218 stop_machine(__zone_pcp_update, zone, NULL);
3221 static __meminit void zone_pcp_init(struct zone *zone)
3223 int cpu;
3224 unsigned long batch = zone_batchsize(zone);
3226 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3227 #ifdef CONFIG_NUMA
3228 /* Early boot. Slab allocator not functional yet */
3229 zone_pcp(zone, cpu) = &boot_pageset[cpu];
3230 setup_pageset(&boot_pageset[cpu],0);
3231 #else
3232 setup_pageset(zone_pcp(zone,cpu), batch);
3233 #endif
3235 if (zone->present_pages)
3236 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3237 zone->name, zone->present_pages, batch);
3240 __meminit int init_currently_empty_zone(struct zone *zone,
3241 unsigned long zone_start_pfn,
3242 unsigned long size,
3243 enum memmap_context context)
3245 struct pglist_data *pgdat = zone->zone_pgdat;
3246 int ret;
3247 ret = zone_wait_table_init(zone, size);
3248 if (ret)
3249 return ret;
3250 pgdat->nr_zones = zone_idx(zone) + 1;
3252 zone->zone_start_pfn = zone_start_pfn;
3254 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3255 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3256 pgdat->node_id,
3257 (unsigned long)zone_idx(zone),
3258 zone_start_pfn, (zone_start_pfn + size));
3260 zone_init_free_lists(zone);
3262 return 0;
3265 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3267 * Basic iterator support. Return the first range of PFNs for a node
3268 * Note: nid == MAX_NUMNODES returns first region regardless of node
3270 static int __meminit first_active_region_index_in_nid(int nid)
3272 int i;
3274 for (i = 0; i < nr_nodemap_entries; i++)
3275 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3276 return i;
3278 return -1;
3282 * Basic iterator support. Return the next active range of PFNs for a node
3283 * Note: nid == MAX_NUMNODES returns next region regardless of node
3285 static int __meminit next_active_region_index_in_nid(int index, int nid)
3287 for (index = index + 1; index < nr_nodemap_entries; index++)
3288 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3289 return index;
3291 return -1;
3294 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3296 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3297 * Architectures may implement their own version but if add_active_range()
3298 * was used and there are no special requirements, this is a convenient
3299 * alternative
3301 int __meminit __early_pfn_to_nid(unsigned long pfn)
3303 int i;
3305 for (i = 0; i < nr_nodemap_entries; i++) {
3306 unsigned long start_pfn = early_node_map[i].start_pfn;
3307 unsigned long end_pfn = early_node_map[i].end_pfn;
3309 if (start_pfn <= pfn && pfn < end_pfn)
3310 return early_node_map[i].nid;
3312 /* This is a memory hole */
3313 return -1;
3315 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3317 int __meminit early_pfn_to_nid(unsigned long pfn)
3319 int nid;
3321 nid = __early_pfn_to_nid(pfn);
3322 if (nid >= 0)
3323 return nid;
3324 /* just returns 0 */
3325 return 0;
3328 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3329 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3331 int nid;
3333 nid = __early_pfn_to_nid(pfn);
3334 if (nid >= 0 && nid != node)
3335 return false;
3336 return true;
3338 #endif
3340 /* Basic iterator support to walk early_node_map[] */
3341 #define for_each_active_range_index_in_nid(i, nid) \
3342 for (i = first_active_region_index_in_nid(nid); i != -1; \
3343 i = next_active_region_index_in_nid(i, nid))
3346 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3347 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3348 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3350 * If an architecture guarantees that all ranges registered with
3351 * add_active_ranges() contain no holes and may be freed, this
3352 * this function may be used instead of calling free_bootmem() manually.
3354 void __init free_bootmem_with_active_regions(int nid,
3355 unsigned long max_low_pfn)
3357 int i;
3359 for_each_active_range_index_in_nid(i, nid) {
3360 unsigned long size_pages = 0;
3361 unsigned long end_pfn = early_node_map[i].end_pfn;
3363 if (early_node_map[i].start_pfn >= max_low_pfn)
3364 continue;
3366 if (end_pfn > max_low_pfn)
3367 end_pfn = max_low_pfn;
3369 size_pages = end_pfn - early_node_map[i].start_pfn;
3370 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3371 PFN_PHYS(early_node_map[i].start_pfn),
3372 size_pages << PAGE_SHIFT);
3376 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3378 int i;
3379 int ret;
3381 for_each_active_range_index_in_nid(i, nid) {
3382 ret = work_fn(early_node_map[i].start_pfn,
3383 early_node_map[i].end_pfn, data);
3384 if (ret)
3385 break;
3389 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3390 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3392 * If an architecture guarantees that all ranges registered with
3393 * add_active_ranges() contain no holes and may be freed, this
3394 * function may be used instead of calling memory_present() manually.
3396 void __init sparse_memory_present_with_active_regions(int nid)
3398 int i;
3400 for_each_active_range_index_in_nid(i, nid)
3401 memory_present(early_node_map[i].nid,
3402 early_node_map[i].start_pfn,
3403 early_node_map[i].end_pfn);
3407 * get_pfn_range_for_nid - Return the start and end page frames for a node
3408 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3409 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3410 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3412 * It returns the start and end page frame of a node based on information
3413 * provided by an arch calling add_active_range(). If called for a node
3414 * with no available memory, a warning is printed and the start and end
3415 * PFNs will be 0.
3417 void __meminit get_pfn_range_for_nid(unsigned int nid,
3418 unsigned long *start_pfn, unsigned long *end_pfn)
3420 int i;
3421 *start_pfn = -1UL;
3422 *end_pfn = 0;
3424 for_each_active_range_index_in_nid(i, nid) {
3425 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3426 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3429 if (*start_pfn == -1UL)
3430 *start_pfn = 0;
3434 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3435 * assumption is made that zones within a node are ordered in monotonic
3436 * increasing memory addresses so that the "highest" populated zone is used
3438 static void __init find_usable_zone_for_movable(void)
3440 int zone_index;
3441 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3442 if (zone_index == ZONE_MOVABLE)
3443 continue;
3445 if (arch_zone_highest_possible_pfn[zone_index] >
3446 arch_zone_lowest_possible_pfn[zone_index])
3447 break;
3450 VM_BUG_ON(zone_index == -1);
3451 movable_zone = zone_index;
3455 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3456 * because it is sized independant of architecture. Unlike the other zones,
3457 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3458 * in each node depending on the size of each node and how evenly kernelcore
3459 * is distributed. This helper function adjusts the zone ranges
3460 * provided by the architecture for a given node by using the end of the
3461 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3462 * zones within a node are in order of monotonic increases memory addresses
3464 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3465 unsigned long zone_type,
3466 unsigned long node_start_pfn,
3467 unsigned long node_end_pfn,
3468 unsigned long *zone_start_pfn,
3469 unsigned long *zone_end_pfn)
3471 /* Only adjust if ZONE_MOVABLE is on this node */
3472 if (zone_movable_pfn[nid]) {
3473 /* Size ZONE_MOVABLE */
3474 if (zone_type == ZONE_MOVABLE) {
3475 *zone_start_pfn = zone_movable_pfn[nid];
3476 *zone_end_pfn = min(node_end_pfn,
3477 arch_zone_highest_possible_pfn[movable_zone]);
3479 /* Adjust for ZONE_MOVABLE starting within this range */
3480 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3481 *zone_end_pfn > zone_movable_pfn[nid]) {
3482 *zone_end_pfn = zone_movable_pfn[nid];
3484 /* Check if this whole range is within ZONE_MOVABLE */
3485 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3486 *zone_start_pfn = *zone_end_pfn;
3491 * Return the number of pages a zone spans in a node, including holes
3492 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3494 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3495 unsigned long zone_type,
3496 unsigned long *ignored)
3498 unsigned long node_start_pfn, node_end_pfn;
3499 unsigned long zone_start_pfn, zone_end_pfn;
3501 /* Get the start and end of the node and zone */
3502 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3503 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3504 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3505 adjust_zone_range_for_zone_movable(nid, zone_type,
3506 node_start_pfn, node_end_pfn,
3507 &zone_start_pfn, &zone_end_pfn);
3509 /* Check that this node has pages within the zone's required range */
3510 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3511 return 0;
3513 /* Move the zone boundaries inside the node if necessary */
3514 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3515 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3517 /* Return the spanned pages */
3518 return zone_end_pfn - zone_start_pfn;
3522 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3523 * then all holes in the requested range will be accounted for.
3525 static unsigned long __meminit __absent_pages_in_range(int nid,
3526 unsigned long range_start_pfn,
3527 unsigned long range_end_pfn)
3529 int i = 0;
3530 unsigned long prev_end_pfn = 0, hole_pages = 0;
3531 unsigned long start_pfn;
3533 /* Find the end_pfn of the first active range of pfns in the node */
3534 i = first_active_region_index_in_nid(nid);
3535 if (i == -1)
3536 return 0;
3538 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3540 /* Account for ranges before physical memory on this node */
3541 if (early_node_map[i].start_pfn > range_start_pfn)
3542 hole_pages = prev_end_pfn - range_start_pfn;
3544 /* Find all holes for the zone within the node */
3545 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3547 /* No need to continue if prev_end_pfn is outside the zone */
3548 if (prev_end_pfn >= range_end_pfn)
3549 break;
3551 /* Make sure the end of the zone is not within the hole */
3552 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3553 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3555 /* Update the hole size cound and move on */
3556 if (start_pfn > range_start_pfn) {
3557 BUG_ON(prev_end_pfn > start_pfn);
3558 hole_pages += start_pfn - prev_end_pfn;
3560 prev_end_pfn = early_node_map[i].end_pfn;
3563 /* Account for ranges past physical memory on this node */
3564 if (range_end_pfn > prev_end_pfn)
3565 hole_pages += range_end_pfn -
3566 max(range_start_pfn, prev_end_pfn);
3568 return hole_pages;
3572 * absent_pages_in_range - Return number of page frames in holes within a range
3573 * @start_pfn: The start PFN to start searching for holes
3574 * @end_pfn: The end PFN to stop searching for holes
3576 * It returns the number of pages frames in memory holes within a range.
3578 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3579 unsigned long end_pfn)
3581 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3584 /* Return the number of page frames in holes in a zone on a node */
3585 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3586 unsigned long zone_type,
3587 unsigned long *ignored)
3589 unsigned long node_start_pfn, node_end_pfn;
3590 unsigned long zone_start_pfn, zone_end_pfn;
3592 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3593 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3594 node_start_pfn);
3595 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3596 node_end_pfn);
3598 adjust_zone_range_for_zone_movable(nid, zone_type,
3599 node_start_pfn, node_end_pfn,
3600 &zone_start_pfn, &zone_end_pfn);
3601 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3604 #else
3605 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3606 unsigned long zone_type,
3607 unsigned long *zones_size)
3609 return zones_size[zone_type];
3612 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3613 unsigned long zone_type,
3614 unsigned long *zholes_size)
3616 if (!zholes_size)
3617 return 0;
3619 return zholes_size[zone_type];
3622 #endif
3624 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3625 unsigned long *zones_size, unsigned long *zholes_size)
3627 unsigned long realtotalpages, totalpages = 0;
3628 enum zone_type i;
3630 for (i = 0; i < MAX_NR_ZONES; i++)
3631 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3632 zones_size);
3633 pgdat->node_spanned_pages = totalpages;
3635 realtotalpages = totalpages;
3636 for (i = 0; i < MAX_NR_ZONES; i++)
3637 realtotalpages -=
3638 zone_absent_pages_in_node(pgdat->node_id, i,
3639 zholes_size);
3640 pgdat->node_present_pages = realtotalpages;
3641 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3642 realtotalpages);
3645 #ifndef CONFIG_SPARSEMEM
3647 * Calculate the size of the zone->blockflags rounded to an unsigned long
3648 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3649 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3650 * round what is now in bits to nearest long in bits, then return it in
3651 * bytes.
3653 static unsigned long __init usemap_size(unsigned long zonesize)
3655 unsigned long usemapsize;
3657 usemapsize = roundup(zonesize, pageblock_nr_pages);
3658 usemapsize = usemapsize >> pageblock_order;
3659 usemapsize *= NR_PAGEBLOCK_BITS;
3660 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3662 return usemapsize / 8;
3665 static void __init setup_usemap(struct pglist_data *pgdat,
3666 struct zone *zone, unsigned long zonesize)
3668 unsigned long usemapsize = usemap_size(zonesize);
3669 zone->pageblock_flags = NULL;
3670 if (usemapsize)
3671 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3673 #else
3674 static void inline setup_usemap(struct pglist_data *pgdat,
3675 struct zone *zone, unsigned long zonesize) {}
3676 #endif /* CONFIG_SPARSEMEM */
3678 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3680 /* Return a sensible default order for the pageblock size. */
3681 static inline int pageblock_default_order(void)
3683 if (HPAGE_SHIFT > PAGE_SHIFT)
3684 return HUGETLB_PAGE_ORDER;
3686 return MAX_ORDER-1;
3689 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3690 static inline void __init set_pageblock_order(unsigned int order)
3692 /* Check that pageblock_nr_pages has not already been setup */
3693 if (pageblock_order)
3694 return;
3697 * Assume the largest contiguous order of interest is a huge page.
3698 * This value may be variable depending on boot parameters on IA64
3700 pageblock_order = order;
3702 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3705 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3706 * and pageblock_default_order() are unused as pageblock_order is set
3707 * at compile-time. See include/linux/pageblock-flags.h for the values of
3708 * pageblock_order based on the kernel config
3710 static inline int pageblock_default_order(unsigned int order)
3712 return MAX_ORDER-1;
3714 #define set_pageblock_order(x) do {} while (0)
3716 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3719 * Set up the zone data structures:
3720 * - mark all pages reserved
3721 * - mark all memory queues empty
3722 * - clear the memory bitmaps
3724 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3725 unsigned long *zones_size, unsigned long *zholes_size)
3727 enum zone_type j;
3728 int nid = pgdat->node_id;
3729 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3730 int ret;
3732 pgdat_resize_init(pgdat);
3733 pgdat->nr_zones = 0;
3734 init_waitqueue_head(&pgdat->kswapd_wait);
3735 pgdat->kswapd_max_order = 0;
3736 pgdat_page_cgroup_init(pgdat);
3738 for (j = 0; j < MAX_NR_ZONES; j++) {
3739 struct zone *zone = pgdat->node_zones + j;
3740 unsigned long size, realsize, memmap_pages;
3741 enum lru_list l;
3743 size = zone_spanned_pages_in_node(nid, j, zones_size);
3744 realsize = size - zone_absent_pages_in_node(nid, j,
3745 zholes_size);
3748 * Adjust realsize so that it accounts for how much memory
3749 * is used by this zone for memmap. This affects the watermark
3750 * and per-cpu initialisations
3752 memmap_pages =
3753 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3754 if (realsize >= memmap_pages) {
3755 realsize -= memmap_pages;
3756 if (memmap_pages)
3757 printk(KERN_DEBUG
3758 " %s zone: %lu pages used for memmap\n",
3759 zone_names[j], memmap_pages);
3760 } else
3761 printk(KERN_WARNING
3762 " %s zone: %lu pages exceeds realsize %lu\n",
3763 zone_names[j], memmap_pages, realsize);
3765 /* Account for reserved pages */
3766 if (j == 0 && realsize > dma_reserve) {
3767 realsize -= dma_reserve;
3768 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3769 zone_names[0], dma_reserve);
3772 if (!is_highmem_idx(j))
3773 nr_kernel_pages += realsize;
3774 nr_all_pages += realsize;
3776 zone->spanned_pages = size;
3777 zone->present_pages = realsize;
3778 #ifdef CONFIG_NUMA
3779 zone->node = nid;
3780 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3781 / 100;
3782 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3783 #endif
3784 zone->name = zone_names[j];
3785 spin_lock_init(&zone->lock);
3786 spin_lock_init(&zone->lru_lock);
3787 zone_seqlock_init(zone);
3788 zone->zone_pgdat = pgdat;
3790 zone->prev_priority = DEF_PRIORITY;
3792 zone_pcp_init(zone);
3793 for_each_lru(l) {
3794 INIT_LIST_HEAD(&zone->lru[l].list);
3795 zone->lru[l].nr_saved_scan = 0;
3797 zone->reclaim_stat.recent_rotated[0] = 0;
3798 zone->reclaim_stat.recent_rotated[1] = 0;
3799 zone->reclaim_stat.recent_scanned[0] = 0;
3800 zone->reclaim_stat.recent_scanned[1] = 0;
3801 zap_zone_vm_stats(zone);
3802 zone->flags = 0;
3803 if (!size)
3804 continue;
3806 set_pageblock_order(pageblock_default_order());
3807 setup_usemap(pgdat, zone, size);
3808 ret = init_currently_empty_zone(zone, zone_start_pfn,
3809 size, MEMMAP_EARLY);
3810 BUG_ON(ret);
3811 memmap_init(size, nid, j, zone_start_pfn);
3812 zone_start_pfn += size;
3816 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3818 /* Skip empty nodes */
3819 if (!pgdat->node_spanned_pages)
3820 return;
3822 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3823 /* ia64 gets its own node_mem_map, before this, without bootmem */
3824 if (!pgdat->node_mem_map) {
3825 unsigned long size, start, end;
3826 struct page *map;
3829 * The zone's endpoints aren't required to be MAX_ORDER
3830 * aligned but the node_mem_map endpoints must be in order
3831 * for the buddy allocator to function correctly.
3833 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3834 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3835 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3836 size = (end - start) * sizeof(struct page);
3837 map = alloc_remap(pgdat->node_id, size);
3838 if (!map)
3839 map = alloc_bootmem_node(pgdat, size);
3840 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3842 #ifndef CONFIG_NEED_MULTIPLE_NODES
3844 * With no DISCONTIG, the global mem_map is just set as node 0's
3846 if (pgdat == NODE_DATA(0)) {
3847 mem_map = NODE_DATA(0)->node_mem_map;
3848 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3849 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3850 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3851 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3853 #endif
3854 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3857 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3858 unsigned long node_start_pfn, unsigned long *zholes_size)
3860 pg_data_t *pgdat = NODE_DATA(nid);
3862 pgdat->node_id = nid;
3863 pgdat->node_start_pfn = node_start_pfn;
3864 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3866 alloc_node_mem_map(pgdat);
3867 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3868 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3869 nid, (unsigned long)pgdat,
3870 (unsigned long)pgdat->node_mem_map);
3871 #endif
3873 free_area_init_core(pgdat, zones_size, zholes_size);
3876 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3878 #if MAX_NUMNODES > 1
3880 * Figure out the number of possible node ids.
3882 static void __init setup_nr_node_ids(void)
3884 unsigned int node;
3885 unsigned int highest = 0;
3887 for_each_node_mask(node, node_possible_map)
3888 highest = node;
3889 nr_node_ids = highest + 1;
3891 #else
3892 static inline void setup_nr_node_ids(void)
3895 #endif
3898 * add_active_range - Register a range of PFNs backed by physical memory
3899 * @nid: The node ID the range resides on
3900 * @start_pfn: The start PFN of the available physical memory
3901 * @end_pfn: The end PFN of the available physical memory
3903 * These ranges are stored in an early_node_map[] and later used by
3904 * free_area_init_nodes() to calculate zone sizes and holes. If the
3905 * range spans a memory hole, it is up to the architecture to ensure
3906 * the memory is not freed by the bootmem allocator. If possible
3907 * the range being registered will be merged with existing ranges.
3909 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3910 unsigned long end_pfn)
3912 int i;
3914 mminit_dprintk(MMINIT_TRACE, "memory_register",
3915 "Entering add_active_range(%d, %#lx, %#lx) "
3916 "%d entries of %d used\n",
3917 nid, start_pfn, end_pfn,
3918 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3920 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3922 /* Merge with existing active regions if possible */
3923 for (i = 0; i < nr_nodemap_entries; i++) {
3924 if (early_node_map[i].nid != nid)
3925 continue;
3927 /* Skip if an existing region covers this new one */
3928 if (start_pfn >= early_node_map[i].start_pfn &&
3929 end_pfn <= early_node_map[i].end_pfn)
3930 return;
3932 /* Merge forward if suitable */
3933 if (start_pfn <= early_node_map[i].end_pfn &&
3934 end_pfn > early_node_map[i].end_pfn) {
3935 early_node_map[i].end_pfn = end_pfn;
3936 return;
3939 /* Merge backward if suitable */
3940 if (start_pfn < early_node_map[i].end_pfn &&
3941 end_pfn >= early_node_map[i].start_pfn) {
3942 early_node_map[i].start_pfn = start_pfn;
3943 return;
3947 /* Check that early_node_map is large enough */
3948 if (i >= MAX_ACTIVE_REGIONS) {
3949 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3950 MAX_ACTIVE_REGIONS);
3951 return;
3954 early_node_map[i].nid = nid;
3955 early_node_map[i].start_pfn = start_pfn;
3956 early_node_map[i].end_pfn = end_pfn;
3957 nr_nodemap_entries = i + 1;
3961 * remove_active_range - Shrink an existing registered range of PFNs
3962 * @nid: The node id the range is on that should be shrunk
3963 * @start_pfn: The new PFN of the range
3964 * @end_pfn: The new PFN of the range
3966 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3967 * The map is kept near the end physical page range that has already been
3968 * registered. This function allows an arch to shrink an existing registered
3969 * range.
3971 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3972 unsigned long end_pfn)
3974 int i, j;
3975 int removed = 0;
3977 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3978 nid, start_pfn, end_pfn);
3980 /* Find the old active region end and shrink */
3981 for_each_active_range_index_in_nid(i, nid) {
3982 if (early_node_map[i].start_pfn >= start_pfn &&
3983 early_node_map[i].end_pfn <= end_pfn) {
3984 /* clear it */
3985 early_node_map[i].start_pfn = 0;
3986 early_node_map[i].end_pfn = 0;
3987 removed = 1;
3988 continue;
3990 if (early_node_map[i].start_pfn < start_pfn &&
3991 early_node_map[i].end_pfn > start_pfn) {
3992 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3993 early_node_map[i].end_pfn = start_pfn;
3994 if (temp_end_pfn > end_pfn)
3995 add_active_range(nid, end_pfn, temp_end_pfn);
3996 continue;
3998 if (early_node_map[i].start_pfn >= start_pfn &&
3999 early_node_map[i].end_pfn > end_pfn &&
4000 early_node_map[i].start_pfn < end_pfn) {
4001 early_node_map[i].start_pfn = end_pfn;
4002 continue;
4006 if (!removed)
4007 return;
4009 /* remove the blank ones */
4010 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4011 if (early_node_map[i].nid != nid)
4012 continue;
4013 if (early_node_map[i].end_pfn)
4014 continue;
4015 /* we found it, get rid of it */
4016 for (j = i; j < nr_nodemap_entries - 1; j++)
4017 memcpy(&early_node_map[j], &early_node_map[j+1],
4018 sizeof(early_node_map[j]));
4019 j = nr_nodemap_entries - 1;
4020 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4021 nr_nodemap_entries--;
4026 * remove_all_active_ranges - Remove all currently registered regions
4028 * During discovery, it may be found that a table like SRAT is invalid
4029 * and an alternative discovery method must be used. This function removes
4030 * all currently registered regions.
4032 void __init remove_all_active_ranges(void)
4034 memset(early_node_map, 0, sizeof(early_node_map));
4035 nr_nodemap_entries = 0;
4038 /* Compare two active node_active_regions */
4039 static int __init cmp_node_active_region(const void *a, const void *b)
4041 struct node_active_region *arange = (struct node_active_region *)a;
4042 struct node_active_region *brange = (struct node_active_region *)b;
4044 /* Done this way to avoid overflows */
4045 if (arange->start_pfn > brange->start_pfn)
4046 return 1;
4047 if (arange->start_pfn < brange->start_pfn)
4048 return -1;
4050 return 0;
4053 /* sort the node_map by start_pfn */
4054 static void __init sort_node_map(void)
4056 sort(early_node_map, (size_t)nr_nodemap_entries,
4057 sizeof(struct node_active_region),
4058 cmp_node_active_region, NULL);
4061 /* Find the lowest pfn for a node */
4062 static unsigned long __init find_min_pfn_for_node(int nid)
4064 int i;
4065 unsigned long min_pfn = ULONG_MAX;
4067 /* Assuming a sorted map, the first range found has the starting pfn */
4068 for_each_active_range_index_in_nid(i, nid)
4069 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4071 if (min_pfn == ULONG_MAX) {
4072 printk(KERN_WARNING
4073 "Could not find start_pfn for node %d\n", nid);
4074 return 0;
4077 return min_pfn;
4081 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4083 * It returns the minimum PFN based on information provided via
4084 * add_active_range().
4086 unsigned long __init find_min_pfn_with_active_regions(void)
4088 return find_min_pfn_for_node(MAX_NUMNODES);
4092 * early_calculate_totalpages()
4093 * Sum pages in active regions for movable zone.
4094 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4096 static unsigned long __init early_calculate_totalpages(void)
4098 int i;
4099 unsigned long totalpages = 0;
4101 for (i = 0; i < nr_nodemap_entries; i++) {
4102 unsigned long pages = early_node_map[i].end_pfn -
4103 early_node_map[i].start_pfn;
4104 totalpages += pages;
4105 if (pages)
4106 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4108 return totalpages;
4112 * Find the PFN the Movable zone begins in each node. Kernel memory
4113 * is spread evenly between nodes as long as the nodes have enough
4114 * memory. When they don't, some nodes will have more kernelcore than
4115 * others
4117 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4119 int i, nid;
4120 unsigned long usable_startpfn;
4121 unsigned long kernelcore_node, kernelcore_remaining;
4122 /* save the state before borrow the nodemask */
4123 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4124 unsigned long totalpages = early_calculate_totalpages();
4125 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4128 * If movablecore was specified, calculate what size of
4129 * kernelcore that corresponds so that memory usable for
4130 * any allocation type is evenly spread. If both kernelcore
4131 * and movablecore are specified, then the value of kernelcore
4132 * will be used for required_kernelcore if it's greater than
4133 * what movablecore would have allowed.
4135 if (required_movablecore) {
4136 unsigned long corepages;
4139 * Round-up so that ZONE_MOVABLE is at least as large as what
4140 * was requested by the user
4142 required_movablecore =
4143 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4144 corepages = totalpages - required_movablecore;
4146 required_kernelcore = max(required_kernelcore, corepages);
4149 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4150 if (!required_kernelcore)
4151 goto out;
4153 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4154 find_usable_zone_for_movable();
4155 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4157 restart:
4158 /* Spread kernelcore memory as evenly as possible throughout nodes */
4159 kernelcore_node = required_kernelcore / usable_nodes;
4160 for_each_node_state(nid, N_HIGH_MEMORY) {
4162 * Recalculate kernelcore_node if the division per node
4163 * now exceeds what is necessary to satisfy the requested
4164 * amount of memory for the kernel
4166 if (required_kernelcore < kernelcore_node)
4167 kernelcore_node = required_kernelcore / usable_nodes;
4170 * As the map is walked, we track how much memory is usable
4171 * by the kernel using kernelcore_remaining. When it is
4172 * 0, the rest of the node is usable by ZONE_MOVABLE
4174 kernelcore_remaining = kernelcore_node;
4176 /* Go through each range of PFNs within this node */
4177 for_each_active_range_index_in_nid(i, nid) {
4178 unsigned long start_pfn, end_pfn;
4179 unsigned long size_pages;
4181 start_pfn = max(early_node_map[i].start_pfn,
4182 zone_movable_pfn[nid]);
4183 end_pfn = early_node_map[i].end_pfn;
4184 if (start_pfn >= end_pfn)
4185 continue;
4187 /* Account for what is only usable for kernelcore */
4188 if (start_pfn < usable_startpfn) {
4189 unsigned long kernel_pages;
4190 kernel_pages = min(end_pfn, usable_startpfn)
4191 - start_pfn;
4193 kernelcore_remaining -= min(kernel_pages,
4194 kernelcore_remaining);
4195 required_kernelcore -= min(kernel_pages,
4196 required_kernelcore);
4198 /* Continue if range is now fully accounted */
4199 if (end_pfn <= usable_startpfn) {
4202 * Push zone_movable_pfn to the end so
4203 * that if we have to rebalance
4204 * kernelcore across nodes, we will
4205 * not double account here
4207 zone_movable_pfn[nid] = end_pfn;
4208 continue;
4210 start_pfn = usable_startpfn;
4214 * The usable PFN range for ZONE_MOVABLE is from
4215 * start_pfn->end_pfn. Calculate size_pages as the
4216 * number of pages used as kernelcore
4218 size_pages = end_pfn - start_pfn;
4219 if (size_pages > kernelcore_remaining)
4220 size_pages = kernelcore_remaining;
4221 zone_movable_pfn[nid] = start_pfn + size_pages;
4224 * Some kernelcore has been met, update counts and
4225 * break if the kernelcore for this node has been
4226 * satisified
4228 required_kernelcore -= min(required_kernelcore,
4229 size_pages);
4230 kernelcore_remaining -= size_pages;
4231 if (!kernelcore_remaining)
4232 break;
4237 * If there is still required_kernelcore, we do another pass with one
4238 * less node in the count. This will push zone_movable_pfn[nid] further
4239 * along on the nodes that still have memory until kernelcore is
4240 * satisified
4242 usable_nodes--;
4243 if (usable_nodes && required_kernelcore > usable_nodes)
4244 goto restart;
4246 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4247 for (nid = 0; nid < MAX_NUMNODES; nid++)
4248 zone_movable_pfn[nid] =
4249 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4251 out:
4252 /* restore the node_state */
4253 node_states[N_HIGH_MEMORY] = saved_node_state;
4256 /* Any regular memory on that node ? */
4257 static void check_for_regular_memory(pg_data_t *pgdat)
4259 #ifdef CONFIG_HIGHMEM
4260 enum zone_type zone_type;
4262 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4263 struct zone *zone = &pgdat->node_zones[zone_type];
4264 if (zone->present_pages)
4265 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4267 #endif
4271 * free_area_init_nodes - Initialise all pg_data_t and zone data
4272 * @max_zone_pfn: an array of max PFNs for each zone
4274 * This will call free_area_init_node() for each active node in the system.
4275 * Using the page ranges provided by add_active_range(), the size of each
4276 * zone in each node and their holes is calculated. If the maximum PFN
4277 * between two adjacent zones match, it is assumed that the zone is empty.
4278 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4279 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4280 * starts where the previous one ended. For example, ZONE_DMA32 starts
4281 * at arch_max_dma_pfn.
4283 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4285 unsigned long nid;
4286 int i;
4288 /* Sort early_node_map as initialisation assumes it is sorted */
4289 sort_node_map();
4291 /* Record where the zone boundaries are */
4292 memset(arch_zone_lowest_possible_pfn, 0,
4293 sizeof(arch_zone_lowest_possible_pfn));
4294 memset(arch_zone_highest_possible_pfn, 0,
4295 sizeof(arch_zone_highest_possible_pfn));
4296 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4297 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4298 for (i = 1; i < MAX_NR_ZONES; i++) {
4299 if (i == ZONE_MOVABLE)
4300 continue;
4301 arch_zone_lowest_possible_pfn[i] =
4302 arch_zone_highest_possible_pfn[i-1];
4303 arch_zone_highest_possible_pfn[i] =
4304 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4306 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4307 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4309 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4310 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4311 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4313 /* Print out the zone ranges */
4314 printk("Zone PFN ranges:\n");
4315 for (i = 0; i < MAX_NR_ZONES; i++) {
4316 if (i == ZONE_MOVABLE)
4317 continue;
4318 printk(" %-8s %0#10lx -> %0#10lx\n",
4319 zone_names[i],
4320 arch_zone_lowest_possible_pfn[i],
4321 arch_zone_highest_possible_pfn[i]);
4324 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4325 printk("Movable zone start PFN for each node\n");
4326 for (i = 0; i < MAX_NUMNODES; i++) {
4327 if (zone_movable_pfn[i])
4328 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4331 /* Print out the early_node_map[] */
4332 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4333 for (i = 0; i < nr_nodemap_entries; i++)
4334 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4335 early_node_map[i].start_pfn,
4336 early_node_map[i].end_pfn);
4338 /* Initialise every node */
4339 mminit_verify_pageflags_layout();
4340 setup_nr_node_ids();
4341 for_each_online_node(nid) {
4342 pg_data_t *pgdat = NODE_DATA(nid);
4343 free_area_init_node(nid, NULL,
4344 find_min_pfn_for_node(nid), NULL);
4346 /* Any memory on that node */
4347 if (pgdat->node_present_pages)
4348 node_set_state(nid, N_HIGH_MEMORY);
4349 check_for_regular_memory(pgdat);
4353 static int __init cmdline_parse_core(char *p, unsigned long *core)
4355 unsigned long long coremem;
4356 if (!p)
4357 return -EINVAL;
4359 coremem = memparse(p, &p);
4360 *core = coremem >> PAGE_SHIFT;
4362 /* Paranoid check that UL is enough for the coremem value */
4363 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4365 return 0;
4369 * kernelcore=size sets the amount of memory for use for allocations that
4370 * cannot be reclaimed or migrated.
4372 static int __init cmdline_parse_kernelcore(char *p)
4374 return cmdline_parse_core(p, &required_kernelcore);
4378 * movablecore=size sets the amount of memory for use for allocations that
4379 * can be reclaimed or migrated.
4381 static int __init cmdline_parse_movablecore(char *p)
4383 return cmdline_parse_core(p, &required_movablecore);
4386 early_param("kernelcore", cmdline_parse_kernelcore);
4387 early_param("movablecore", cmdline_parse_movablecore);
4389 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4392 * set_dma_reserve - set the specified number of pages reserved in the first zone
4393 * @new_dma_reserve: The number of pages to mark reserved
4395 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4396 * In the DMA zone, a significant percentage may be consumed by kernel image
4397 * and other unfreeable allocations which can skew the watermarks badly. This
4398 * function may optionally be used to account for unfreeable pages in the
4399 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4400 * smaller per-cpu batchsize.
4402 void __init set_dma_reserve(unsigned long new_dma_reserve)
4404 dma_reserve = new_dma_reserve;
4407 #ifndef CONFIG_NEED_MULTIPLE_NODES
4408 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4409 EXPORT_SYMBOL(contig_page_data);
4410 #endif
4412 void __init free_area_init(unsigned long *zones_size)
4414 free_area_init_node(0, zones_size,
4415 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4418 static int page_alloc_cpu_notify(struct notifier_block *self,
4419 unsigned long action, void *hcpu)
4421 int cpu = (unsigned long)hcpu;
4423 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4424 drain_pages(cpu);
4427 * Spill the event counters of the dead processor
4428 * into the current processors event counters.
4429 * This artificially elevates the count of the current
4430 * processor.
4432 vm_events_fold_cpu(cpu);
4435 * Zero the differential counters of the dead processor
4436 * so that the vm statistics are consistent.
4438 * This is only okay since the processor is dead and cannot
4439 * race with what we are doing.
4441 refresh_cpu_vm_stats(cpu);
4443 return NOTIFY_OK;
4446 void __init page_alloc_init(void)
4448 hotcpu_notifier(page_alloc_cpu_notify, 0);
4452 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4453 * or min_free_kbytes changes.
4455 static void calculate_totalreserve_pages(void)
4457 struct pglist_data *pgdat;
4458 unsigned long reserve_pages = 0;
4459 enum zone_type i, j;
4461 for_each_online_pgdat(pgdat) {
4462 for (i = 0; i < MAX_NR_ZONES; i++) {
4463 struct zone *zone = pgdat->node_zones + i;
4464 unsigned long max = 0;
4466 /* Find valid and maximum lowmem_reserve in the zone */
4467 for (j = i; j < MAX_NR_ZONES; j++) {
4468 if (zone->lowmem_reserve[j] > max)
4469 max = zone->lowmem_reserve[j];
4472 /* we treat the high watermark as reserved pages. */
4473 max += high_wmark_pages(zone);
4475 if (max > zone->present_pages)
4476 max = zone->present_pages;
4477 reserve_pages += max;
4480 totalreserve_pages = reserve_pages;
4484 * setup_per_zone_lowmem_reserve - called whenever
4485 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4486 * has a correct pages reserved value, so an adequate number of
4487 * pages are left in the zone after a successful __alloc_pages().
4489 static void setup_per_zone_lowmem_reserve(void)
4491 struct pglist_data *pgdat;
4492 enum zone_type j, idx;
4494 for_each_online_pgdat(pgdat) {
4495 for (j = 0; j < MAX_NR_ZONES; j++) {
4496 struct zone *zone = pgdat->node_zones + j;
4497 unsigned long present_pages = zone->present_pages;
4499 zone->lowmem_reserve[j] = 0;
4501 idx = j;
4502 while (idx) {
4503 struct zone *lower_zone;
4505 idx--;
4507 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4508 sysctl_lowmem_reserve_ratio[idx] = 1;
4510 lower_zone = pgdat->node_zones + idx;
4511 lower_zone->lowmem_reserve[j] = present_pages /
4512 sysctl_lowmem_reserve_ratio[idx];
4513 present_pages += lower_zone->present_pages;
4518 /* update totalreserve_pages */
4519 calculate_totalreserve_pages();
4523 * setup_per_zone_wmarks - called when min_free_kbytes changes
4524 * or when memory is hot-{added|removed}
4526 * Ensures that the watermark[min,low,high] values for each zone are set
4527 * correctly with respect to min_free_kbytes.
4529 void setup_per_zone_wmarks(void)
4531 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4532 unsigned long lowmem_pages = 0;
4533 struct zone *zone;
4534 unsigned long flags;
4536 /* Calculate total number of !ZONE_HIGHMEM pages */
4537 for_each_zone(zone) {
4538 if (!is_highmem(zone))
4539 lowmem_pages += zone->present_pages;
4542 for_each_zone(zone) {
4543 u64 tmp;
4545 spin_lock_irqsave(&zone->lock, flags);
4546 tmp = (u64)pages_min * zone->present_pages;
4547 do_div(tmp, lowmem_pages);
4548 if (is_highmem(zone)) {
4550 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4551 * need highmem pages, so cap pages_min to a small
4552 * value here.
4554 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4555 * deltas controls asynch page reclaim, and so should
4556 * not be capped for highmem.
4558 int min_pages;
4560 min_pages = zone->present_pages / 1024;
4561 if (min_pages < SWAP_CLUSTER_MAX)
4562 min_pages = SWAP_CLUSTER_MAX;
4563 if (min_pages > 128)
4564 min_pages = 128;
4565 zone->watermark[WMARK_MIN] = min_pages;
4566 } else {
4568 * If it's a lowmem zone, reserve a number of pages
4569 * proportionate to the zone's size.
4571 zone->watermark[WMARK_MIN] = tmp;
4574 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4575 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4576 setup_zone_migrate_reserve(zone);
4577 spin_unlock_irqrestore(&zone->lock, flags);
4580 /* update totalreserve_pages */
4581 calculate_totalreserve_pages();
4585 * The inactive anon list should be small enough that the VM never has to
4586 * do too much work, but large enough that each inactive page has a chance
4587 * to be referenced again before it is swapped out.
4589 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4590 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4591 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4592 * the anonymous pages are kept on the inactive list.
4594 * total target max
4595 * memory ratio inactive anon
4596 * -------------------------------------
4597 * 10MB 1 5MB
4598 * 100MB 1 50MB
4599 * 1GB 3 250MB
4600 * 10GB 10 0.9GB
4601 * 100GB 31 3GB
4602 * 1TB 101 10GB
4603 * 10TB 320 32GB
4605 void calculate_zone_inactive_ratio(struct zone *zone)
4607 unsigned int gb, ratio;
4609 /* Zone size in gigabytes */
4610 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4611 if (gb)
4612 ratio = int_sqrt(10 * gb);
4613 else
4614 ratio = 1;
4616 zone->inactive_ratio = ratio;
4619 static void __init setup_per_zone_inactive_ratio(void)
4621 struct zone *zone;
4623 for_each_zone(zone)
4624 calculate_zone_inactive_ratio(zone);
4628 * Initialise min_free_kbytes.
4630 * For small machines we want it small (128k min). For large machines
4631 * we want it large (64MB max). But it is not linear, because network
4632 * bandwidth does not increase linearly with machine size. We use
4634 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4635 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4637 * which yields
4639 * 16MB: 512k
4640 * 32MB: 724k
4641 * 64MB: 1024k
4642 * 128MB: 1448k
4643 * 256MB: 2048k
4644 * 512MB: 2896k
4645 * 1024MB: 4096k
4646 * 2048MB: 5792k
4647 * 4096MB: 8192k
4648 * 8192MB: 11584k
4649 * 16384MB: 16384k
4651 static int __init init_per_zone_wmark_min(void)
4653 unsigned long lowmem_kbytes;
4655 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4657 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4658 if (min_free_kbytes < 128)
4659 min_free_kbytes = 128;
4660 if (min_free_kbytes > 65536)
4661 min_free_kbytes = 65536;
4662 setup_per_zone_wmarks();
4663 setup_per_zone_lowmem_reserve();
4664 setup_per_zone_inactive_ratio();
4665 return 0;
4667 module_init(init_per_zone_wmark_min)
4670 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4671 * that we can call two helper functions whenever min_free_kbytes
4672 * changes.
4674 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4675 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4677 proc_dointvec(table, write, file, buffer, length, ppos);
4678 if (write)
4679 setup_per_zone_wmarks();
4680 return 0;
4683 #ifdef CONFIG_NUMA
4684 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4685 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4687 struct zone *zone;
4688 int rc;
4690 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4691 if (rc)
4692 return rc;
4694 for_each_zone(zone)
4695 zone->min_unmapped_pages = (zone->present_pages *
4696 sysctl_min_unmapped_ratio) / 100;
4697 return 0;
4700 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4701 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4703 struct zone *zone;
4704 int rc;
4706 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4707 if (rc)
4708 return rc;
4710 for_each_zone(zone)
4711 zone->min_slab_pages = (zone->present_pages *
4712 sysctl_min_slab_ratio) / 100;
4713 return 0;
4715 #endif
4718 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4719 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4720 * whenever sysctl_lowmem_reserve_ratio changes.
4722 * The reserve ratio obviously has absolutely no relation with the
4723 * minimum watermarks. The lowmem reserve ratio can only make sense
4724 * if in function of the boot time zone sizes.
4726 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4727 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4729 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4730 setup_per_zone_lowmem_reserve();
4731 return 0;
4735 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4736 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4737 * can have before it gets flushed back to buddy allocator.
4740 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4741 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4743 struct zone *zone;
4744 unsigned int cpu;
4745 int ret;
4747 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4748 if (!write || (ret == -EINVAL))
4749 return ret;
4750 for_each_populated_zone(zone) {
4751 for_each_online_cpu(cpu) {
4752 unsigned long high;
4753 high = zone->present_pages / percpu_pagelist_fraction;
4754 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4757 return 0;
4760 int hashdist = HASHDIST_DEFAULT;
4762 #ifdef CONFIG_NUMA
4763 static int __init set_hashdist(char *str)
4765 if (!str)
4766 return 0;
4767 hashdist = simple_strtoul(str, &str, 0);
4768 return 1;
4770 __setup("hashdist=", set_hashdist);
4771 #endif
4774 * allocate a large system hash table from bootmem
4775 * - it is assumed that the hash table must contain an exact power-of-2
4776 * quantity of entries
4777 * - limit is the number of hash buckets, not the total allocation size
4779 void *__init alloc_large_system_hash(const char *tablename,
4780 unsigned long bucketsize,
4781 unsigned long numentries,
4782 int scale,
4783 int flags,
4784 unsigned int *_hash_shift,
4785 unsigned int *_hash_mask,
4786 unsigned long limit)
4788 unsigned long long max = limit;
4789 unsigned long log2qty, size;
4790 void *table = NULL;
4792 /* allow the kernel cmdline to have a say */
4793 if (!numentries) {
4794 /* round applicable memory size up to nearest megabyte */
4795 numentries = nr_kernel_pages;
4796 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4797 numentries >>= 20 - PAGE_SHIFT;
4798 numentries <<= 20 - PAGE_SHIFT;
4800 /* limit to 1 bucket per 2^scale bytes of low memory */
4801 if (scale > PAGE_SHIFT)
4802 numentries >>= (scale - PAGE_SHIFT);
4803 else
4804 numentries <<= (PAGE_SHIFT - scale);
4806 /* Make sure we've got at least a 0-order allocation.. */
4807 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4808 numentries = PAGE_SIZE / bucketsize;
4810 numentries = roundup_pow_of_two(numentries);
4812 /* limit allocation size to 1/16 total memory by default */
4813 if (max == 0) {
4814 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4815 do_div(max, bucketsize);
4818 if (numentries > max)
4819 numentries = max;
4821 log2qty = ilog2(numentries);
4823 do {
4824 size = bucketsize << log2qty;
4825 if (flags & HASH_EARLY)
4826 table = alloc_bootmem_nopanic(size);
4827 else if (hashdist)
4828 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4829 else {
4831 * If bucketsize is not a power-of-two, we may free
4832 * some pages at the end of hash table which
4833 * alloc_pages_exact() automatically does
4835 if (get_order(size) < MAX_ORDER) {
4836 table = alloc_pages_exact(size, GFP_ATOMIC);
4837 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4840 } while (!table && size > PAGE_SIZE && --log2qty);
4842 if (!table)
4843 panic("Failed to allocate %s hash table\n", tablename);
4845 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4846 tablename,
4847 (1U << log2qty),
4848 ilog2(size) - PAGE_SHIFT,
4849 size);
4851 if (_hash_shift)
4852 *_hash_shift = log2qty;
4853 if (_hash_mask)
4854 *_hash_mask = (1 << log2qty) - 1;
4856 return table;
4859 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4860 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4861 unsigned long pfn)
4863 #ifdef CONFIG_SPARSEMEM
4864 return __pfn_to_section(pfn)->pageblock_flags;
4865 #else
4866 return zone->pageblock_flags;
4867 #endif /* CONFIG_SPARSEMEM */
4870 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4872 #ifdef CONFIG_SPARSEMEM
4873 pfn &= (PAGES_PER_SECTION-1);
4874 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4875 #else
4876 pfn = pfn - zone->zone_start_pfn;
4877 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4878 #endif /* CONFIG_SPARSEMEM */
4882 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4883 * @page: The page within the block of interest
4884 * @start_bitidx: The first bit of interest to retrieve
4885 * @end_bitidx: The last bit of interest
4886 * returns pageblock_bits flags
4888 unsigned long get_pageblock_flags_group(struct page *page,
4889 int start_bitidx, int end_bitidx)
4891 struct zone *zone;
4892 unsigned long *bitmap;
4893 unsigned long pfn, bitidx;
4894 unsigned long flags = 0;
4895 unsigned long value = 1;
4897 zone = page_zone(page);
4898 pfn = page_to_pfn(page);
4899 bitmap = get_pageblock_bitmap(zone, pfn);
4900 bitidx = pfn_to_bitidx(zone, pfn);
4902 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4903 if (test_bit(bitidx + start_bitidx, bitmap))
4904 flags |= value;
4906 return flags;
4910 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4911 * @page: The page within the block of interest
4912 * @start_bitidx: The first bit of interest
4913 * @end_bitidx: The last bit of interest
4914 * @flags: The flags to set
4916 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4917 int start_bitidx, int end_bitidx)
4919 struct zone *zone;
4920 unsigned long *bitmap;
4921 unsigned long pfn, bitidx;
4922 unsigned long value = 1;
4924 zone = page_zone(page);
4925 pfn = page_to_pfn(page);
4926 bitmap = get_pageblock_bitmap(zone, pfn);
4927 bitidx = pfn_to_bitidx(zone, pfn);
4928 VM_BUG_ON(pfn < zone->zone_start_pfn);
4929 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4931 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4932 if (flags & value)
4933 __set_bit(bitidx + start_bitidx, bitmap);
4934 else
4935 __clear_bit(bitidx + start_bitidx, bitmap);
4939 * This is designed as sub function...plz see page_isolation.c also.
4940 * set/clear page block's type to be ISOLATE.
4941 * page allocater never alloc memory from ISOLATE block.
4944 int set_migratetype_isolate(struct page *page)
4946 struct zone *zone;
4947 unsigned long flags;
4948 int ret = -EBUSY;
4949 int zone_idx;
4951 zone = page_zone(page);
4952 zone_idx = zone_idx(zone);
4953 spin_lock_irqsave(&zone->lock, flags);
4955 * In future, more migrate types will be able to be isolation target.
4957 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
4958 zone_idx != ZONE_MOVABLE)
4959 goto out;
4960 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4961 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4962 ret = 0;
4963 out:
4964 spin_unlock_irqrestore(&zone->lock, flags);
4965 if (!ret)
4966 drain_all_pages();
4967 return ret;
4970 void unset_migratetype_isolate(struct page *page)
4972 struct zone *zone;
4973 unsigned long flags;
4974 zone = page_zone(page);
4975 spin_lock_irqsave(&zone->lock, flags);
4976 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4977 goto out;
4978 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4979 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4980 out:
4981 spin_unlock_irqrestore(&zone->lock, flags);
4984 #ifdef CONFIG_MEMORY_HOTREMOVE
4986 * All pages in the range must be isolated before calling this.
4988 void
4989 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4991 struct page *page;
4992 struct zone *zone;
4993 int order, i;
4994 unsigned long pfn;
4995 unsigned long flags;
4996 /* find the first valid pfn */
4997 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4998 if (pfn_valid(pfn))
4999 break;
5000 if (pfn == end_pfn)
5001 return;
5002 zone = page_zone(pfn_to_page(pfn));
5003 spin_lock_irqsave(&zone->lock, flags);
5004 pfn = start_pfn;
5005 while (pfn < end_pfn) {
5006 if (!pfn_valid(pfn)) {
5007 pfn++;
5008 continue;
5010 page = pfn_to_page(pfn);
5011 BUG_ON(page_count(page));
5012 BUG_ON(!PageBuddy(page));
5013 order = page_order(page);
5014 #ifdef CONFIG_DEBUG_VM
5015 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5016 pfn, 1 << order, end_pfn);
5017 #endif
5018 list_del(&page->lru);
5019 rmv_page_order(page);
5020 zone->free_area[order].nr_free--;
5021 __mod_zone_page_state(zone, NR_FREE_PAGES,
5022 - (1UL << order));
5023 for (i = 0; i < (1 << order); i++)
5024 SetPageReserved((page+i));
5025 pfn += (1 << order);
5027 spin_unlock_irqrestore(&zone->lock, flags);
5029 #endif