1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/vmalloc.h>
32 #include <linux/pagemap.h>
33 #include <linux/netdevice.h>
34 #include <linux/ipv6.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/mii.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/interrupt.h>
43 #include <linux/if_ether.h>
45 #include <linux/dca.h>
49 #define DRV_VERSION "1.2.45-k2"
50 char igb_driver_name
[] = "igb";
51 char igb_driver_version
[] = DRV_VERSION
;
52 static const char igb_driver_string
[] =
53 "Intel(R) Gigabit Ethernet Network Driver";
54 static const char igb_copyright
[] = "Copyright (c) 2008 Intel Corporation.";
56 static const struct e1000_info
*igb_info_tbl
[] = {
57 [board_82575
] = &e1000_82575_info
,
60 static struct pci_device_id igb_pci_tbl
[] = {
61 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576
), board_82575
},
62 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_FIBER
), board_82575
},
63 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_SERDES
), board_82575
},
64 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_COPPER
), board_82575
},
65 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575EB_FIBER_SERDES
), board_82575
},
66 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82575GB_QUAD_COPPER
), board_82575
},
67 /* required last entry */
71 MODULE_DEVICE_TABLE(pci
, igb_pci_tbl
);
73 void igb_reset(struct igb_adapter
*);
74 static int igb_setup_all_tx_resources(struct igb_adapter
*);
75 static int igb_setup_all_rx_resources(struct igb_adapter
*);
76 static void igb_free_all_tx_resources(struct igb_adapter
*);
77 static void igb_free_all_rx_resources(struct igb_adapter
*);
78 static void igb_free_tx_resources(struct igb_ring
*);
79 static void igb_free_rx_resources(struct igb_ring
*);
80 void igb_update_stats(struct igb_adapter
*);
81 static int igb_probe(struct pci_dev
*, const struct pci_device_id
*);
82 static void __devexit
igb_remove(struct pci_dev
*pdev
);
83 static int igb_sw_init(struct igb_adapter
*);
84 static int igb_open(struct net_device
*);
85 static int igb_close(struct net_device
*);
86 static void igb_configure_tx(struct igb_adapter
*);
87 static void igb_configure_rx(struct igb_adapter
*);
88 static void igb_setup_rctl(struct igb_adapter
*);
89 static void igb_clean_all_tx_rings(struct igb_adapter
*);
90 static void igb_clean_all_rx_rings(struct igb_adapter
*);
91 static void igb_clean_tx_ring(struct igb_ring
*);
92 static void igb_clean_rx_ring(struct igb_ring
*);
93 static void igb_set_multi(struct net_device
*);
94 static void igb_update_phy_info(unsigned long);
95 static void igb_watchdog(unsigned long);
96 static void igb_watchdog_task(struct work_struct
*);
97 static int igb_xmit_frame_ring_adv(struct sk_buff
*, struct net_device
*,
99 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*);
100 static struct net_device_stats
*igb_get_stats(struct net_device
*);
101 static int igb_change_mtu(struct net_device
*, int);
102 static int igb_set_mac(struct net_device
*, void *);
103 static irqreturn_t
igb_intr(int irq
, void *);
104 static irqreturn_t
igb_intr_msi(int irq
, void *);
105 static irqreturn_t
igb_msix_other(int irq
, void *);
106 static irqreturn_t
igb_msix_rx(int irq
, void *);
107 static irqreturn_t
igb_msix_tx(int irq
, void *);
108 static int igb_clean_rx_ring_msix(struct napi_struct
*, int);
110 static void igb_update_rx_dca(struct igb_ring
*);
111 static void igb_update_tx_dca(struct igb_ring
*);
112 static void igb_setup_dca(struct igb_adapter
*);
113 #endif /* CONFIG_DCA */
114 static bool igb_clean_tx_irq(struct igb_ring
*);
115 static int igb_poll(struct napi_struct
*, int);
116 static bool igb_clean_rx_irq_adv(struct igb_ring
*, int *, int);
117 static void igb_alloc_rx_buffers_adv(struct igb_ring
*, int);
118 #ifdef CONFIG_IGB_LRO
119 static int igb_get_skb_hdr(struct sk_buff
*skb
, void **, void **, u64
*, void *);
121 static int igb_ioctl(struct net_device
*, struct ifreq
*, int cmd
);
122 static void igb_tx_timeout(struct net_device
*);
123 static void igb_reset_task(struct work_struct
*);
124 static void igb_vlan_rx_register(struct net_device
*, struct vlan_group
*);
125 static void igb_vlan_rx_add_vid(struct net_device
*, u16
);
126 static void igb_vlan_rx_kill_vid(struct net_device
*, u16
);
127 static void igb_restore_vlan(struct igb_adapter
*);
129 static int igb_suspend(struct pci_dev
*, pm_message_t
);
131 static int igb_resume(struct pci_dev
*);
133 static void igb_shutdown(struct pci_dev
*);
135 static int igb_notify_dca(struct notifier_block
*, unsigned long, void *);
136 static struct notifier_block dca_notifier
= {
137 .notifier_call
= igb_notify_dca
,
143 #ifdef CONFIG_NET_POLL_CONTROLLER
144 /* for netdump / net console */
145 static void igb_netpoll(struct net_device
*);
148 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*,
149 pci_channel_state_t
);
150 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*);
151 static void igb_io_resume(struct pci_dev
*);
153 static struct pci_error_handlers igb_err_handler
= {
154 .error_detected
= igb_io_error_detected
,
155 .slot_reset
= igb_io_slot_reset
,
156 .resume
= igb_io_resume
,
160 static struct pci_driver igb_driver
= {
161 .name
= igb_driver_name
,
162 .id_table
= igb_pci_tbl
,
164 .remove
= __devexit_p(igb_remove
),
166 /* Power Managment Hooks */
167 .suspend
= igb_suspend
,
168 .resume
= igb_resume
,
170 .shutdown
= igb_shutdown
,
171 .err_handler
= &igb_err_handler
174 static int global_quad_port_a
; /* global quad port a indication */
176 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
177 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
178 MODULE_LICENSE("GPL");
179 MODULE_VERSION(DRV_VERSION
);
183 * igb_get_hw_dev_name - return device name string
184 * used by hardware layer to print debugging information
186 char *igb_get_hw_dev_name(struct e1000_hw
*hw
)
188 struct igb_adapter
*adapter
= hw
->back
;
189 return adapter
->netdev
->name
;
194 * igb_init_module - Driver Registration Routine
196 * igb_init_module is the first routine called when the driver is
197 * loaded. All it does is register with the PCI subsystem.
199 static int __init
igb_init_module(void)
202 printk(KERN_INFO
"%s - version %s\n",
203 igb_driver_string
, igb_driver_version
);
205 printk(KERN_INFO
"%s\n", igb_copyright
);
207 global_quad_port_a
= 0;
209 ret
= pci_register_driver(&igb_driver
);
211 dca_register_notify(&dca_notifier
);
216 module_init(igb_init_module
);
219 * igb_exit_module - Driver Exit Cleanup Routine
221 * igb_exit_module is called just before the driver is removed
224 static void __exit
igb_exit_module(void)
227 dca_unregister_notify(&dca_notifier
);
229 pci_unregister_driver(&igb_driver
);
232 module_exit(igb_exit_module
);
235 * igb_alloc_queues - Allocate memory for all rings
236 * @adapter: board private structure to initialize
238 * We allocate one ring per queue at run-time since we don't know the
239 * number of queues at compile-time.
241 static int igb_alloc_queues(struct igb_adapter
*adapter
)
245 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
246 sizeof(struct igb_ring
), GFP_KERNEL
);
247 if (!adapter
->tx_ring
)
250 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
251 sizeof(struct igb_ring
), GFP_KERNEL
);
252 if (!adapter
->rx_ring
) {
253 kfree(adapter
->tx_ring
);
257 adapter
->rx_ring
->buddy
= adapter
->tx_ring
;
259 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
260 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
261 ring
->adapter
= adapter
;
262 ring
->queue_index
= i
;
264 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
265 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
266 ring
->adapter
= adapter
;
267 ring
->queue_index
= i
;
268 ring
->itr_register
= E1000_ITR
;
270 /* set a default napi handler for each rx_ring */
271 netif_napi_add(adapter
->netdev
, &ring
->napi
, igb_poll
, 64);
276 static void igb_free_queues(struct igb_adapter
*adapter
)
280 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
281 netif_napi_del(&adapter
->rx_ring
[i
].napi
);
283 kfree(adapter
->tx_ring
);
284 kfree(adapter
->rx_ring
);
287 #define IGB_N0_QUEUE -1
288 static void igb_assign_vector(struct igb_adapter
*adapter
, int rx_queue
,
289 int tx_queue
, int msix_vector
)
292 struct e1000_hw
*hw
= &adapter
->hw
;
295 switch (hw
->mac
.type
) {
297 /* The 82575 assigns vectors using a bitmask, which matches the
298 bitmask for the EICR/EIMS/EIMC registers. To assign one
299 or more queues to a vector, we write the appropriate bits
300 into the MSIXBM register for that vector. */
301 if (rx_queue
> IGB_N0_QUEUE
) {
302 msixbm
= E1000_EICR_RX_QUEUE0
<< rx_queue
;
303 adapter
->rx_ring
[rx_queue
].eims_value
= msixbm
;
305 if (tx_queue
> IGB_N0_QUEUE
) {
306 msixbm
|= E1000_EICR_TX_QUEUE0
<< tx_queue
;
307 adapter
->tx_ring
[tx_queue
].eims_value
=
308 E1000_EICR_TX_QUEUE0
<< tx_queue
;
310 array_wr32(E1000_MSIXBM(0), msix_vector
, msixbm
);
313 /* The 82576 uses a table-based method for assigning vectors.
314 Each queue has a single entry in the table to which we write
315 a vector number along with a "valid" bit. Sadly, the layout
316 of the table is somewhat counterintuitive. */
317 if (rx_queue
> IGB_N0_QUEUE
) {
318 index
= (rx_queue
& 0x7);
319 ivar
= array_rd32(E1000_IVAR0
, index
);
321 /* vector goes into low byte of register */
322 ivar
= ivar
& 0xFFFFFF00;
323 ivar
|= msix_vector
| E1000_IVAR_VALID
;
325 /* vector goes into third byte of register */
326 ivar
= ivar
& 0xFF00FFFF;
327 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
329 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
330 array_wr32(E1000_IVAR0
, index
, ivar
);
332 if (tx_queue
> IGB_N0_QUEUE
) {
333 index
= (tx_queue
& 0x7);
334 ivar
= array_rd32(E1000_IVAR0
, index
);
336 /* vector goes into second byte of register */
337 ivar
= ivar
& 0xFFFF00FF;
338 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
340 /* vector goes into high byte of register */
341 ivar
= ivar
& 0x00FFFFFF;
342 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
344 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
345 array_wr32(E1000_IVAR0
, index
, ivar
);
355 * igb_configure_msix - Configure MSI-X hardware
357 * igb_configure_msix sets up the hardware to properly
358 * generate MSI-X interrupts.
360 static void igb_configure_msix(struct igb_adapter
*adapter
)
364 struct e1000_hw
*hw
= &adapter
->hw
;
366 adapter
->eims_enable_mask
= 0;
367 if (hw
->mac
.type
== e1000_82576
)
368 /* Turn on MSI-X capability first, or our settings
369 * won't stick. And it will take days to debug. */
370 wr32(E1000_GPIE
, E1000_GPIE_MSIX_MODE
|
371 E1000_GPIE_PBA
| E1000_GPIE_EIAME
|
374 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
375 struct igb_ring
*tx_ring
= &adapter
->tx_ring
[i
];
376 igb_assign_vector(adapter
, IGB_N0_QUEUE
, i
, vector
++);
377 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
378 if (tx_ring
->itr_val
)
379 writel(tx_ring
->itr_val
,
380 hw
->hw_addr
+ tx_ring
->itr_register
);
382 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
385 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
386 struct igb_ring
*rx_ring
= &adapter
->rx_ring
[i
];
387 rx_ring
->buddy
= NULL
;
388 igb_assign_vector(adapter
, i
, IGB_N0_QUEUE
, vector
++);
389 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
390 if (rx_ring
->itr_val
)
391 writel(rx_ring
->itr_val
,
392 hw
->hw_addr
+ rx_ring
->itr_register
);
394 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
398 /* set vector for other causes, i.e. link changes */
399 switch (hw
->mac
.type
) {
401 array_wr32(E1000_MSIXBM(0), vector
++,
404 tmp
= rd32(E1000_CTRL_EXT
);
405 /* enable MSI-X PBA support*/
406 tmp
|= E1000_CTRL_EXT_PBA_CLR
;
408 /* Auto-Mask interrupts upon ICR read. */
409 tmp
|= E1000_CTRL_EXT_EIAME
;
410 tmp
|= E1000_CTRL_EXT_IRCA
;
412 wr32(E1000_CTRL_EXT
, tmp
);
413 adapter
->eims_enable_mask
|= E1000_EIMS_OTHER
;
414 adapter
->eims_other
= E1000_EIMS_OTHER
;
419 tmp
= (vector
++ | E1000_IVAR_VALID
) << 8;
420 wr32(E1000_IVAR_MISC
, tmp
);
422 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
423 adapter
->eims_other
= 1 << (vector
- 1);
426 /* do nothing, since nothing else supports MSI-X */
428 } /* switch (hw->mac.type) */
433 * igb_request_msix - Initialize MSI-X interrupts
435 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
438 static int igb_request_msix(struct igb_adapter
*adapter
)
440 struct net_device
*netdev
= adapter
->netdev
;
441 int i
, err
= 0, vector
= 0;
445 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
446 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
447 sprintf(ring
->name
, "%s-tx%d", netdev
->name
, i
);
448 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
449 &igb_msix_tx
, 0, ring
->name
,
450 &(adapter
->tx_ring
[i
]));
453 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
454 ring
->itr_val
= 976; /* ~4000 ints/sec */
457 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
458 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
459 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
460 sprintf(ring
->name
, "%s-rx%d", netdev
->name
, i
);
462 memcpy(ring
->name
, netdev
->name
, IFNAMSIZ
);
463 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
464 &igb_msix_rx
, 0, ring
->name
,
465 &(adapter
->rx_ring
[i
]));
468 ring
->itr_register
= E1000_EITR(0) + (vector
<< 2);
469 ring
->itr_val
= adapter
->itr
;
470 /* overwrite the poll routine for MSIX, we've already done
472 ring
->napi
.poll
= &igb_clean_rx_ring_msix
;
476 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
477 &igb_msix_other
, 0, netdev
->name
, netdev
);
481 igb_configure_msix(adapter
);
487 static void igb_reset_interrupt_capability(struct igb_adapter
*adapter
)
489 if (adapter
->msix_entries
) {
490 pci_disable_msix(adapter
->pdev
);
491 kfree(adapter
->msix_entries
);
492 adapter
->msix_entries
= NULL
;
493 } else if (adapter
->flags
& IGB_FLAG_HAS_MSI
)
494 pci_disable_msi(adapter
->pdev
);
500 * igb_set_interrupt_capability - set MSI or MSI-X if supported
502 * Attempt to configure interrupts using the best available
503 * capabilities of the hardware and kernel.
505 static void igb_set_interrupt_capability(struct igb_adapter
*adapter
)
510 numvecs
= adapter
->num_tx_queues
+ adapter
->num_rx_queues
+ 1;
511 adapter
->msix_entries
= kcalloc(numvecs
, sizeof(struct msix_entry
),
513 if (!adapter
->msix_entries
)
516 for (i
= 0; i
< numvecs
; i
++)
517 adapter
->msix_entries
[i
].entry
= i
;
519 err
= pci_enable_msix(adapter
->pdev
,
520 adapter
->msix_entries
,
525 igb_reset_interrupt_capability(adapter
);
527 /* If we can't do MSI-X, try MSI */
529 adapter
->num_rx_queues
= 1;
530 adapter
->num_tx_queues
= 1;
531 if (!pci_enable_msi(adapter
->pdev
))
532 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
534 /* Notify the stack of the (possibly) reduced Tx Queue count. */
535 adapter
->netdev
->real_num_tx_queues
= adapter
->num_tx_queues
;
540 * igb_request_irq - initialize interrupts
542 * Attempts to configure interrupts using the best available
543 * capabilities of the hardware and kernel.
545 static int igb_request_irq(struct igb_adapter
*adapter
)
547 struct net_device
*netdev
= adapter
->netdev
;
548 struct e1000_hw
*hw
= &adapter
->hw
;
551 if (adapter
->msix_entries
) {
552 err
= igb_request_msix(adapter
);
555 /* fall back to MSI */
556 igb_reset_interrupt_capability(adapter
);
557 if (!pci_enable_msi(adapter
->pdev
))
558 adapter
->flags
|= IGB_FLAG_HAS_MSI
;
559 igb_free_all_tx_resources(adapter
);
560 igb_free_all_rx_resources(adapter
);
561 adapter
->num_rx_queues
= 1;
562 igb_alloc_queues(adapter
);
564 switch (hw
->mac
.type
) {
566 wr32(E1000_MSIXBM(0),
567 (E1000_EICR_RX_QUEUE0
| E1000_EIMS_OTHER
));
570 wr32(E1000_IVAR0
, E1000_IVAR_VALID
);
577 if (adapter
->flags
& IGB_FLAG_HAS_MSI
) {
578 err
= request_irq(adapter
->pdev
->irq
, &igb_intr_msi
, 0,
579 netdev
->name
, netdev
);
582 /* fall back to legacy interrupts */
583 igb_reset_interrupt_capability(adapter
);
584 adapter
->flags
&= ~IGB_FLAG_HAS_MSI
;
587 err
= request_irq(adapter
->pdev
->irq
, &igb_intr
, IRQF_SHARED
,
588 netdev
->name
, netdev
);
591 dev_err(&adapter
->pdev
->dev
, "Error %d getting interrupt\n",
598 static void igb_free_irq(struct igb_adapter
*adapter
)
600 struct net_device
*netdev
= adapter
->netdev
;
602 if (adapter
->msix_entries
) {
605 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
606 free_irq(adapter
->msix_entries
[vector
++].vector
,
607 &(adapter
->tx_ring
[i
]));
608 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
609 free_irq(adapter
->msix_entries
[vector
++].vector
,
610 &(adapter
->rx_ring
[i
]));
612 free_irq(adapter
->msix_entries
[vector
++].vector
, netdev
);
616 free_irq(adapter
->pdev
->irq
, netdev
);
620 * igb_irq_disable - Mask off interrupt generation on the NIC
621 * @adapter: board private structure
623 static void igb_irq_disable(struct igb_adapter
*adapter
)
625 struct e1000_hw
*hw
= &adapter
->hw
;
627 if (adapter
->msix_entries
) {
629 wr32(E1000_EIMC
, ~0);
636 synchronize_irq(adapter
->pdev
->irq
);
640 * igb_irq_enable - Enable default interrupt generation settings
641 * @adapter: board private structure
643 static void igb_irq_enable(struct igb_adapter
*adapter
)
645 struct e1000_hw
*hw
= &adapter
->hw
;
647 if (adapter
->msix_entries
) {
648 wr32(E1000_EIAC
, adapter
->eims_enable_mask
);
649 wr32(E1000_EIAM
, adapter
->eims_enable_mask
);
650 wr32(E1000_EIMS
, adapter
->eims_enable_mask
);
651 wr32(E1000_IMS
, E1000_IMS_LSC
);
653 wr32(E1000_IMS
, IMS_ENABLE_MASK
);
654 wr32(E1000_IAM
, IMS_ENABLE_MASK
);
658 static void igb_update_mng_vlan(struct igb_adapter
*adapter
)
660 struct net_device
*netdev
= adapter
->netdev
;
661 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
662 u16 old_vid
= adapter
->mng_vlan_id
;
663 if (adapter
->vlgrp
) {
664 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
665 if (adapter
->hw
.mng_cookie
.status
&
666 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
667 igb_vlan_rx_add_vid(netdev
, vid
);
668 adapter
->mng_vlan_id
= vid
;
670 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
672 if ((old_vid
!= (u16
)IGB_MNG_VLAN_NONE
) &&
674 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
675 igb_vlan_rx_kill_vid(netdev
, old_vid
);
677 adapter
->mng_vlan_id
= vid
;
682 * igb_release_hw_control - release control of the h/w to f/w
683 * @adapter: address of board private structure
685 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
686 * For ASF and Pass Through versions of f/w this means that the
687 * driver is no longer loaded.
690 static void igb_release_hw_control(struct igb_adapter
*adapter
)
692 struct e1000_hw
*hw
= &adapter
->hw
;
695 /* Let firmware take over control of h/w */
696 ctrl_ext
= rd32(E1000_CTRL_EXT
);
698 ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
703 * igb_get_hw_control - get control of the h/w from f/w
704 * @adapter: address of board private structure
706 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
707 * For ASF and Pass Through versions of f/w this means that
708 * the driver is loaded.
711 static void igb_get_hw_control(struct igb_adapter
*adapter
)
713 struct e1000_hw
*hw
= &adapter
->hw
;
716 /* Let firmware know the driver has taken over */
717 ctrl_ext
= rd32(E1000_CTRL_EXT
);
719 ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
723 * igb_configure - configure the hardware for RX and TX
724 * @adapter: private board structure
726 static void igb_configure(struct igb_adapter
*adapter
)
728 struct net_device
*netdev
= adapter
->netdev
;
731 igb_get_hw_control(adapter
);
732 igb_set_multi(netdev
);
734 igb_restore_vlan(adapter
);
736 igb_configure_tx(adapter
);
737 igb_setup_rctl(adapter
);
738 igb_configure_rx(adapter
);
740 igb_rx_fifo_flush_82575(&adapter
->hw
);
742 /* call IGB_DESC_UNUSED which always leaves
743 * at least 1 descriptor unused to make sure
744 * next_to_use != next_to_clean */
745 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
746 struct igb_ring
*ring
= &adapter
->rx_ring
[i
];
747 igb_alloc_rx_buffers_adv(ring
, IGB_DESC_UNUSED(ring
));
751 adapter
->tx_queue_len
= netdev
->tx_queue_len
;
756 * igb_up - Open the interface and prepare it to handle traffic
757 * @adapter: board private structure
760 int igb_up(struct igb_adapter
*adapter
)
762 struct e1000_hw
*hw
= &adapter
->hw
;
765 /* hardware has been reset, we need to reload some things */
766 igb_configure(adapter
);
768 clear_bit(__IGB_DOWN
, &adapter
->state
);
770 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
771 napi_enable(&adapter
->rx_ring
[i
].napi
);
772 if (adapter
->msix_entries
)
773 igb_configure_msix(adapter
);
775 /* Clear any pending interrupts. */
777 igb_irq_enable(adapter
);
779 /* Fire a link change interrupt to start the watchdog. */
780 wr32(E1000_ICS
, E1000_ICS_LSC
);
784 void igb_down(struct igb_adapter
*adapter
)
786 struct e1000_hw
*hw
= &adapter
->hw
;
787 struct net_device
*netdev
= adapter
->netdev
;
791 /* signal that we're down so the interrupt handler does not
792 * reschedule our watchdog timer */
793 set_bit(__IGB_DOWN
, &adapter
->state
);
795 /* disable receives in the hardware */
796 rctl
= rd32(E1000_RCTL
);
797 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
798 /* flush and sleep below */
800 netif_tx_stop_all_queues(netdev
);
802 /* disable transmits in the hardware */
803 tctl
= rd32(E1000_TCTL
);
804 tctl
&= ~E1000_TCTL_EN
;
805 wr32(E1000_TCTL
, tctl
);
806 /* flush both disables and wait for them to finish */
810 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
811 napi_disable(&adapter
->rx_ring
[i
].napi
);
813 igb_irq_disable(adapter
);
815 del_timer_sync(&adapter
->watchdog_timer
);
816 del_timer_sync(&adapter
->phy_info_timer
);
818 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
819 netif_carrier_off(netdev
);
820 adapter
->link_speed
= 0;
821 adapter
->link_duplex
= 0;
823 if (!pci_channel_offline(adapter
->pdev
))
825 igb_clean_all_tx_rings(adapter
);
826 igb_clean_all_rx_rings(adapter
);
829 void igb_reinit_locked(struct igb_adapter
*adapter
)
831 WARN_ON(in_interrupt());
832 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
836 clear_bit(__IGB_RESETTING
, &adapter
->state
);
839 void igb_reset(struct igb_adapter
*adapter
)
841 struct e1000_hw
*hw
= &adapter
->hw
;
842 struct e1000_mac_info
*mac
= &hw
->mac
;
843 struct e1000_fc_info
*fc
= &hw
->fc
;
844 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
847 /* Repartition Pba for greater than 9k mtu
848 * To take effect CTRL.RST is required.
850 if (mac
->type
!= e1000_82576
) {
857 if ((adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
858 (mac
->type
< e1000_82576
)) {
859 /* adjust PBA for jumbo frames */
860 wr32(E1000_PBA
, pba
);
862 /* To maintain wire speed transmits, the Tx FIFO should be
863 * large enough to accommodate two full transmit packets,
864 * rounded up to the next 1KB and expressed in KB. Likewise,
865 * the Rx FIFO should be large enough to accommodate at least
866 * one full receive packet and is similarly rounded up and
867 * expressed in KB. */
868 pba
= rd32(E1000_PBA
);
869 /* upper 16 bits has Tx packet buffer allocation size in KB */
870 tx_space
= pba
>> 16;
871 /* lower 16 bits has Rx packet buffer allocation size in KB */
873 /* the tx fifo also stores 16 bytes of information about the tx
874 * but don't include ethernet FCS because hardware appends it */
875 min_tx_space
= (adapter
->max_frame_size
+
876 sizeof(struct e1000_tx_desc
) -
878 min_tx_space
= ALIGN(min_tx_space
, 1024);
880 /* software strips receive CRC, so leave room for it */
881 min_rx_space
= adapter
->max_frame_size
;
882 min_rx_space
= ALIGN(min_rx_space
, 1024);
885 /* If current Tx allocation is less than the min Tx FIFO size,
886 * and the min Tx FIFO size is less than the current Rx FIFO
887 * allocation, take space away from current Rx allocation */
888 if (tx_space
< min_tx_space
&&
889 ((min_tx_space
- tx_space
) < pba
)) {
890 pba
= pba
- (min_tx_space
- tx_space
);
892 /* if short on rx space, rx wins and must trump tx
894 if (pba
< min_rx_space
)
897 wr32(E1000_PBA
, pba
);
900 /* flow control settings */
901 /* The high water mark must be low enough to fit one full frame
902 * (or the size used for early receive) above it in the Rx FIFO.
903 * Set it to the lower of:
904 * - 90% of the Rx FIFO size, or
905 * - the full Rx FIFO size minus one full frame */
906 hwm
= min(((pba
<< 10) * 9 / 10),
907 ((pba
<< 10) - 2 * adapter
->max_frame_size
));
909 if (mac
->type
< e1000_82576
) {
910 fc
->high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
911 fc
->low_water
= fc
->high_water
- 8;
913 fc
->high_water
= hwm
& 0xFFF0; /* 16-byte granularity */
914 fc
->low_water
= fc
->high_water
- 16;
916 fc
->pause_time
= 0xFFFF;
918 fc
->type
= fc
->original_type
;
920 /* Allow time for pending master requests to run */
921 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
924 if (adapter
->hw
.mac
.ops
.init_hw(&adapter
->hw
))
925 dev_err(&adapter
->pdev
->dev
, "Hardware Error\n");
927 igb_update_mng_vlan(adapter
);
929 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
930 wr32(E1000_VET
, ETHERNET_IEEE_VLAN_TYPE
);
932 igb_reset_adaptive(&adapter
->hw
);
933 if (adapter
->hw
.phy
.ops
.get_phy_info
)
934 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
938 * igb_is_need_ioport - determine if an adapter needs ioport resources or not
939 * @pdev: PCI device information struct
941 * Returns true if an adapter needs ioport resources
943 static int igb_is_need_ioport(struct pci_dev
*pdev
)
945 switch (pdev
->device
) {
946 /* Currently there are no adapters that need ioport resources */
953 * igb_probe - Device Initialization Routine
954 * @pdev: PCI device information struct
955 * @ent: entry in igb_pci_tbl
957 * Returns 0 on success, negative on failure
959 * igb_probe initializes an adapter identified by a pci_dev structure.
960 * The OS initialization, configuring of the adapter private structure,
961 * and a hardware reset occur.
963 static int __devinit
igb_probe(struct pci_dev
*pdev
,
964 const struct pci_device_id
*ent
)
966 struct net_device
*netdev
;
967 struct igb_adapter
*adapter
;
969 const struct e1000_info
*ei
= igb_info_tbl
[ent
->driver_data
];
970 unsigned long mmio_start
, mmio_len
;
971 int i
, err
, pci_using_dac
;
973 u16 eeprom_apme_mask
= IGB_EEPROM_APME
;
975 int bars
, need_ioport
;
977 /* do not allocate ioport bars when not needed */
978 need_ioport
= igb_is_need_ioport(pdev
);
980 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
981 err
= pci_enable_device(pdev
);
983 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
984 err
= pci_enable_device_mem(pdev
);
990 err
= pci_set_dma_mask(pdev
, DMA_64BIT_MASK
);
992 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
996 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
998 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
1000 dev_err(&pdev
->dev
, "No usable DMA "
1001 "configuration, aborting\n");
1007 err
= pci_request_selected_regions(pdev
, bars
, igb_driver_name
);
1011 pci_set_master(pdev
);
1012 pci_save_state(pdev
);
1015 netdev
= alloc_etherdev_mq(sizeof(struct igb_adapter
), IGB_MAX_TX_QUEUES
);
1017 goto err_alloc_etherdev
;
1019 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1021 pci_set_drvdata(pdev
, netdev
);
1022 adapter
= netdev_priv(netdev
);
1023 adapter
->netdev
= netdev
;
1024 adapter
->pdev
= pdev
;
1027 adapter
->msg_enable
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
1028 adapter
->bars
= bars
;
1029 adapter
->need_ioport
= need_ioport
;
1031 mmio_start
= pci_resource_start(pdev
, 0);
1032 mmio_len
= pci_resource_len(pdev
, 0);
1035 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
1036 if (!adapter
->hw
.hw_addr
)
1039 netdev
->open
= &igb_open
;
1040 netdev
->stop
= &igb_close
;
1041 netdev
->get_stats
= &igb_get_stats
;
1042 netdev
->set_multicast_list
= &igb_set_multi
;
1043 netdev
->set_mac_address
= &igb_set_mac
;
1044 netdev
->change_mtu
= &igb_change_mtu
;
1045 netdev
->do_ioctl
= &igb_ioctl
;
1046 igb_set_ethtool_ops(netdev
);
1047 netdev
->tx_timeout
= &igb_tx_timeout
;
1048 netdev
->watchdog_timeo
= 5 * HZ
;
1049 netdev
->vlan_rx_register
= igb_vlan_rx_register
;
1050 netdev
->vlan_rx_add_vid
= igb_vlan_rx_add_vid
;
1051 netdev
->vlan_rx_kill_vid
= igb_vlan_rx_kill_vid
;
1052 #ifdef CONFIG_NET_POLL_CONTROLLER
1053 netdev
->poll_controller
= igb_netpoll
;
1055 netdev
->hard_start_xmit
= &igb_xmit_frame_adv
;
1057 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1059 netdev
->mem_start
= mmio_start
;
1060 netdev
->mem_end
= mmio_start
+ mmio_len
;
1062 /* PCI config space info */
1063 hw
->vendor_id
= pdev
->vendor
;
1064 hw
->device_id
= pdev
->device
;
1065 hw
->revision_id
= pdev
->revision
;
1066 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
1067 hw
->subsystem_device_id
= pdev
->subsystem_device
;
1069 /* setup the private structure */
1071 /* Copy the default MAC, PHY and NVM function pointers */
1072 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
1073 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
1074 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
1075 /* Initialize skew-specific constants */
1076 err
= ei
->get_invariants(hw
);
1080 err
= igb_sw_init(adapter
);
1084 igb_get_bus_info_pcie(hw
);
1087 switch (hw
->mac
.type
) {
1090 adapter
->flags
|= IGB_FLAG_HAS_DCA
;
1091 adapter
->flags
|= IGB_FLAG_NEED_CTX_IDX
;
1097 hw
->phy
.autoneg_wait_to_complete
= false;
1098 hw
->mac
.adaptive_ifs
= true;
1100 /* Copper options */
1101 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1102 hw
->phy
.mdix
= AUTO_ALL_MODES
;
1103 hw
->phy
.disable_polarity_correction
= false;
1104 hw
->phy
.ms_type
= e1000_ms_hw_default
;
1107 if (igb_check_reset_block(hw
))
1108 dev_info(&pdev
->dev
,
1109 "PHY reset is blocked due to SOL/IDER session.\n");
1111 netdev
->features
= NETIF_F_SG
|
1113 NETIF_F_HW_VLAN_TX
|
1114 NETIF_F_HW_VLAN_RX
|
1115 NETIF_F_HW_VLAN_FILTER
;
1117 netdev
->features
|= NETIF_F_TSO
;
1118 netdev
->features
|= NETIF_F_TSO6
;
1120 #ifdef CONFIG_IGB_LRO
1121 netdev
->features
|= NETIF_F_LRO
;
1124 netdev
->vlan_features
|= NETIF_F_TSO
;
1125 netdev
->vlan_features
|= NETIF_F_TSO6
;
1126 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1127 netdev
->vlan_features
|= NETIF_F_SG
;
1130 netdev
->features
|= NETIF_F_HIGHDMA
;
1132 netdev
->features
|= NETIF_F_LLTX
;
1133 adapter
->en_mng_pt
= igb_enable_mng_pass_thru(&adapter
->hw
);
1135 /* before reading the NVM, reset the controller to put the device in a
1136 * known good starting state */
1137 hw
->mac
.ops
.reset_hw(hw
);
1139 /* make sure the NVM is good */
1140 if (igb_validate_nvm_checksum(hw
) < 0) {
1141 dev_err(&pdev
->dev
, "The NVM Checksum Is Not Valid\n");
1146 /* copy the MAC address out of the NVM */
1147 if (hw
->mac
.ops
.read_mac_addr(hw
))
1148 dev_err(&pdev
->dev
, "NVM Read Error\n");
1150 memcpy(netdev
->dev_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1151 memcpy(netdev
->perm_addr
, hw
->mac
.addr
, netdev
->addr_len
);
1153 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
1154 dev_err(&pdev
->dev
, "Invalid MAC Address\n");
1159 init_timer(&adapter
->watchdog_timer
);
1160 adapter
->watchdog_timer
.function
= &igb_watchdog
;
1161 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
1163 init_timer(&adapter
->phy_info_timer
);
1164 adapter
->phy_info_timer
.function
= &igb_update_phy_info
;
1165 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
1167 INIT_WORK(&adapter
->reset_task
, igb_reset_task
);
1168 INIT_WORK(&adapter
->watchdog_task
, igb_watchdog_task
);
1170 /* Initialize link & ring properties that are user-changeable */
1171 adapter
->tx_ring
->count
= 256;
1172 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1173 adapter
->tx_ring
[i
].count
= adapter
->tx_ring
->count
;
1174 adapter
->rx_ring
->count
= 256;
1175 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1176 adapter
->rx_ring
[i
].count
= adapter
->rx_ring
->count
;
1178 adapter
->fc_autoneg
= true;
1179 hw
->mac
.autoneg
= true;
1180 hw
->phy
.autoneg_advertised
= 0x2f;
1182 hw
->fc
.original_type
= e1000_fc_default
;
1183 hw
->fc
.type
= e1000_fc_default
;
1185 adapter
->itr_setting
= 3;
1186 adapter
->itr
= IGB_START_ITR
;
1188 igb_validate_mdi_setting(hw
);
1190 adapter
->rx_csum
= 1;
1192 /* Initial Wake on LAN setting If APM wake is enabled in the EEPROM,
1193 * enable the ACPI Magic Packet filter
1196 if (hw
->bus
.func
== 0 ||
1197 hw
->device_id
== E1000_DEV_ID_82575EB_COPPER
)
1198 hw
->nvm
.ops
.read_nvm(hw
, NVM_INIT_CONTROL3_PORT_A
, 1,
1201 if (eeprom_data
& eeprom_apme_mask
)
1202 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1204 /* now that we have the eeprom settings, apply the special cases where
1205 * the eeprom may be wrong or the board simply won't support wake on
1206 * lan on a particular port */
1207 switch (pdev
->device
) {
1208 case E1000_DEV_ID_82575GB_QUAD_COPPER
:
1209 adapter
->eeprom_wol
= 0;
1211 case E1000_DEV_ID_82575EB_FIBER_SERDES
:
1212 case E1000_DEV_ID_82576_FIBER
:
1213 case E1000_DEV_ID_82576_SERDES
:
1214 /* Wake events only supported on port A for dual fiber
1215 * regardless of eeprom setting */
1216 if (rd32(E1000_STATUS
) & E1000_STATUS_FUNC_1
)
1217 adapter
->eeprom_wol
= 0;
1221 /* initialize the wol settings based on the eeprom settings */
1222 adapter
->wol
= adapter
->eeprom_wol
;
1224 /* reset the hardware with the new settings */
1227 /* let the f/w know that the h/w is now under the control of the
1229 igb_get_hw_control(adapter
);
1231 /* tell the stack to leave us alone until igb_open() is called */
1232 netif_carrier_off(netdev
);
1233 netif_tx_stop_all_queues(netdev
);
1235 strcpy(netdev
->name
, "eth%d");
1236 err
= register_netdev(netdev
);
1241 if ((adapter
->flags
& IGB_FLAG_HAS_DCA
) &&
1242 (dca_add_requester(&pdev
->dev
) == 0)) {
1243 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
1244 dev_info(&pdev
->dev
, "DCA enabled\n");
1245 /* Always use CB2 mode, difference is masked
1246 * in the CB driver. */
1247 wr32(E1000_DCA_CTRL
, 2);
1248 igb_setup_dca(adapter
);
1252 dev_info(&pdev
->dev
, "Intel(R) Gigabit Ethernet Network Connection\n");
1253 /* print bus type/speed/width info */
1254 dev_info(&pdev
->dev
,
1255 "%s: (PCIe:%s:%s) %02x:%02x:%02x:%02x:%02x:%02x\n",
1257 ((hw
->bus
.speed
== e1000_bus_speed_2500
)
1258 ? "2.5Gb/s" : "unknown"),
1259 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
)
1260 ? "Width x4" : (hw
->bus
.width
== e1000_bus_width_pcie_x1
)
1261 ? "Width x1" : "unknown"),
1262 netdev
->dev_addr
[0], netdev
->dev_addr
[1], netdev
->dev_addr
[2],
1263 netdev
->dev_addr
[3], netdev
->dev_addr
[4], netdev
->dev_addr
[5]);
1265 igb_read_part_num(hw
, &part_num
);
1266 dev_info(&pdev
->dev
, "%s: PBA No: %06x-%03x\n", netdev
->name
,
1267 (part_num
>> 8), (part_num
& 0xff));
1269 dev_info(&pdev
->dev
,
1270 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
1271 adapter
->msix_entries
? "MSI-X" :
1272 (adapter
->flags
& IGB_FLAG_HAS_MSI
) ? "MSI" : "legacy",
1273 adapter
->num_rx_queues
, adapter
->num_tx_queues
);
1278 igb_release_hw_control(adapter
);
1280 if (!igb_check_reset_block(hw
))
1281 hw
->phy
.ops
.reset_phy(hw
);
1283 if (hw
->flash_address
)
1284 iounmap(hw
->flash_address
);
1286 igb_remove_device(hw
);
1287 igb_free_queues(adapter
);
1290 iounmap(hw
->hw_addr
);
1292 free_netdev(netdev
);
1294 pci_release_selected_regions(pdev
, bars
);
1297 pci_disable_device(pdev
);
1302 * igb_remove - Device Removal Routine
1303 * @pdev: PCI device information struct
1305 * igb_remove is called by the PCI subsystem to alert the driver
1306 * that it should release a PCI device. The could be caused by a
1307 * Hot-Plug event, or because the driver is going to be removed from
1310 static void __devexit
igb_remove(struct pci_dev
*pdev
)
1312 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1313 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1315 struct e1000_hw
*hw
= &adapter
->hw
;
1318 /* flush_scheduled work may reschedule our watchdog task, so
1319 * explicitly disable watchdog tasks from being rescheduled */
1320 set_bit(__IGB_DOWN
, &adapter
->state
);
1321 del_timer_sync(&adapter
->watchdog_timer
);
1322 del_timer_sync(&adapter
->phy_info_timer
);
1324 flush_scheduled_work();
1327 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
1328 dev_info(&pdev
->dev
, "DCA disabled\n");
1329 dca_remove_requester(&pdev
->dev
);
1330 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
1331 wr32(E1000_DCA_CTRL
, 1);
1335 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1336 * would have already happened in close and is redundant. */
1337 igb_release_hw_control(adapter
);
1339 unregister_netdev(netdev
);
1341 if (adapter
->hw
.phy
.ops
.reset_phy
&&
1342 !igb_check_reset_block(&adapter
->hw
))
1343 adapter
->hw
.phy
.ops
.reset_phy(&adapter
->hw
);
1345 igb_remove_device(&adapter
->hw
);
1346 igb_reset_interrupt_capability(adapter
);
1348 igb_free_queues(adapter
);
1350 iounmap(adapter
->hw
.hw_addr
);
1351 if (adapter
->hw
.flash_address
)
1352 iounmap(adapter
->hw
.flash_address
);
1353 pci_release_selected_regions(pdev
, adapter
->bars
);
1355 free_netdev(netdev
);
1357 pci_disable_device(pdev
);
1361 * igb_sw_init - Initialize general software structures (struct igb_adapter)
1362 * @adapter: board private structure to initialize
1364 * igb_sw_init initializes the Adapter private data structure.
1365 * Fields are initialized based on PCI device information and
1366 * OS network device settings (MTU size).
1368 static int __devinit
igb_sw_init(struct igb_adapter
*adapter
)
1370 struct e1000_hw
*hw
= &adapter
->hw
;
1371 struct net_device
*netdev
= adapter
->netdev
;
1372 struct pci_dev
*pdev
= adapter
->pdev
;
1374 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->bus
.pci_cmd_word
);
1376 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1377 adapter
->rx_ps_hdr_size
= 0; /* disable packet split */
1378 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1379 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1381 /* Number of supported queues. */
1382 /* Having more queues than CPUs doesn't make sense. */
1383 adapter
->num_rx_queues
= min((u32
)IGB_MAX_RX_QUEUES
, (u32
)num_online_cpus());
1384 adapter
->num_tx_queues
= min(IGB_MAX_TX_QUEUES
, num_online_cpus());
1386 /* This call may decrease the number of queues depending on
1387 * interrupt mode. */
1388 igb_set_interrupt_capability(adapter
);
1390 if (igb_alloc_queues(adapter
)) {
1391 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
1395 /* Explicitly disable IRQ since the NIC can be in any state. */
1396 igb_irq_disable(adapter
);
1398 set_bit(__IGB_DOWN
, &adapter
->state
);
1403 * igb_open - Called when a network interface is made active
1404 * @netdev: network interface device structure
1406 * Returns 0 on success, negative value on failure
1408 * The open entry point is called when a network interface is made
1409 * active by the system (IFF_UP). At this point all resources needed
1410 * for transmit and receive operations are allocated, the interrupt
1411 * handler is registered with the OS, the watchdog timer is started,
1412 * and the stack is notified that the interface is ready.
1414 static int igb_open(struct net_device
*netdev
)
1416 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1417 struct e1000_hw
*hw
= &adapter
->hw
;
1421 /* disallow open during test */
1422 if (test_bit(__IGB_TESTING
, &adapter
->state
))
1425 /* allocate transmit descriptors */
1426 err
= igb_setup_all_tx_resources(adapter
);
1430 /* allocate receive descriptors */
1431 err
= igb_setup_all_rx_resources(adapter
);
1435 /* e1000_power_up_phy(adapter); */
1437 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
1438 if ((adapter
->hw
.mng_cookie
.status
&
1439 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
1440 igb_update_mng_vlan(adapter
);
1442 /* before we allocate an interrupt, we must be ready to handle it.
1443 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1444 * as soon as we call pci_request_irq, so we have to setup our
1445 * clean_rx handler before we do so. */
1446 igb_configure(adapter
);
1448 err
= igb_request_irq(adapter
);
1452 /* From here on the code is the same as igb_up() */
1453 clear_bit(__IGB_DOWN
, &adapter
->state
);
1455 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1456 napi_enable(&adapter
->rx_ring
[i
].napi
);
1458 /* Clear any pending interrupts. */
1461 igb_irq_enable(adapter
);
1463 netif_tx_start_all_queues(netdev
);
1465 /* Fire a link status change interrupt to start the watchdog. */
1466 wr32(E1000_ICS
, E1000_ICS_LSC
);
1471 igb_release_hw_control(adapter
);
1472 /* e1000_power_down_phy(adapter); */
1473 igb_free_all_rx_resources(adapter
);
1475 igb_free_all_tx_resources(adapter
);
1483 * igb_close - Disables a network interface
1484 * @netdev: network interface device structure
1486 * Returns 0, this is not allowed to fail
1488 * The close entry point is called when an interface is de-activated
1489 * by the OS. The hardware is still under the driver's control, but
1490 * needs to be disabled. A global MAC reset is issued to stop the
1491 * hardware, and all transmit and receive resources are freed.
1493 static int igb_close(struct net_device
*netdev
)
1495 struct igb_adapter
*adapter
= netdev_priv(netdev
);
1497 WARN_ON(test_bit(__IGB_RESETTING
, &adapter
->state
));
1500 igb_free_irq(adapter
);
1502 igb_free_all_tx_resources(adapter
);
1503 igb_free_all_rx_resources(adapter
);
1505 /* kill manageability vlan ID if supported, but not if a vlan with
1506 * the same ID is registered on the host OS (let 8021q kill it) */
1507 if ((adapter
->hw
.mng_cookie
.status
&
1508 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
1510 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
1511 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1517 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
1518 * @adapter: board private structure
1519 * @tx_ring: tx descriptor ring (for a specific queue) to setup
1521 * Return 0 on success, negative on failure
1524 int igb_setup_tx_resources(struct igb_adapter
*adapter
,
1525 struct igb_ring
*tx_ring
)
1527 struct pci_dev
*pdev
= adapter
->pdev
;
1530 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
1531 tx_ring
->buffer_info
= vmalloc(size
);
1532 if (!tx_ring
->buffer_info
)
1534 memset(tx_ring
->buffer_info
, 0, size
);
1536 /* round up to nearest 4K */
1537 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
)
1539 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1541 tx_ring
->desc
= pci_alloc_consistent(pdev
, tx_ring
->size
,
1547 tx_ring
->adapter
= adapter
;
1548 tx_ring
->next_to_use
= 0;
1549 tx_ring
->next_to_clean
= 0;
1553 vfree(tx_ring
->buffer_info
);
1554 dev_err(&adapter
->pdev
->dev
,
1555 "Unable to allocate memory for the transmit descriptor ring\n");
1560 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
1561 * (Descriptors) for all queues
1562 * @adapter: board private structure
1564 * Return 0 on success, negative on failure
1566 static int igb_setup_all_tx_resources(struct igb_adapter
*adapter
)
1571 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1572 err
= igb_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1574 dev_err(&adapter
->pdev
->dev
,
1575 "Allocation for Tx Queue %u failed\n", i
);
1576 for (i
--; i
>= 0; i
--)
1577 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
1582 for (i
= 0; i
< IGB_MAX_TX_QUEUES
; i
++) {
1583 r_idx
= i
% adapter
->num_tx_queues
;
1584 adapter
->multi_tx_table
[i
] = &adapter
->tx_ring
[r_idx
];
1590 * igb_configure_tx - Configure transmit Unit after Reset
1591 * @adapter: board private structure
1593 * Configure the Tx unit of the MAC after a reset.
1595 static void igb_configure_tx(struct igb_adapter
*adapter
)
1598 struct e1000_hw
*hw
= &adapter
->hw
;
1603 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1604 struct igb_ring
*ring
= &(adapter
->tx_ring
[i
]);
1606 wr32(E1000_TDLEN(i
),
1607 ring
->count
* sizeof(struct e1000_tx_desc
));
1609 wr32(E1000_TDBAL(i
),
1610 tdba
& 0x00000000ffffffffULL
);
1611 wr32(E1000_TDBAH(i
), tdba
>> 32);
1613 tdwba
= ring
->dma
+ ring
->count
* sizeof(struct e1000_tx_desc
);
1614 tdwba
|= 1; /* enable head wb */
1615 wr32(E1000_TDWBAL(i
),
1616 tdwba
& 0x00000000ffffffffULL
);
1617 wr32(E1000_TDWBAH(i
), tdwba
>> 32);
1619 ring
->head
= E1000_TDH(i
);
1620 ring
->tail
= E1000_TDT(i
);
1621 writel(0, hw
->hw_addr
+ ring
->tail
);
1622 writel(0, hw
->hw_addr
+ ring
->head
);
1623 txdctl
= rd32(E1000_TXDCTL(i
));
1624 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1625 wr32(E1000_TXDCTL(i
), txdctl
);
1627 /* Turn off Relaxed Ordering on head write-backs. The
1628 * writebacks MUST be delivered in order or it will
1629 * completely screw up our bookeeping.
1631 txctrl
= rd32(E1000_DCA_TXCTRL(i
));
1632 txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1633 wr32(E1000_DCA_TXCTRL(i
), txctrl
);
1638 /* Use the default values for the Tx Inter Packet Gap (IPG) timer */
1640 /* Program the Transmit Control Register */
1642 tctl
= rd32(E1000_TCTL
);
1643 tctl
&= ~E1000_TCTL_CT
;
1644 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1645 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1647 igb_config_collision_dist(hw
);
1649 /* Setup Transmit Descriptor Settings for eop descriptor */
1650 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_RS
;
1652 /* Enable transmits */
1653 tctl
|= E1000_TCTL_EN
;
1655 wr32(E1000_TCTL
, tctl
);
1659 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
1660 * @adapter: board private structure
1661 * @rx_ring: rx descriptor ring (for a specific queue) to setup
1663 * Returns 0 on success, negative on failure
1666 int igb_setup_rx_resources(struct igb_adapter
*adapter
,
1667 struct igb_ring
*rx_ring
)
1669 struct pci_dev
*pdev
= adapter
->pdev
;
1672 #ifdef CONFIG_IGB_LRO
1673 size
= sizeof(struct net_lro_desc
) * MAX_LRO_DESCRIPTORS
;
1674 rx_ring
->lro_mgr
.lro_arr
= vmalloc(size
);
1675 if (!rx_ring
->lro_mgr
.lro_arr
)
1677 memset(rx_ring
->lro_mgr
.lro_arr
, 0, size
);
1680 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
1681 rx_ring
->buffer_info
= vmalloc(size
);
1682 if (!rx_ring
->buffer_info
)
1684 memset(rx_ring
->buffer_info
, 0, size
);
1686 desc_len
= sizeof(union e1000_adv_rx_desc
);
1688 /* Round up to nearest 4K */
1689 rx_ring
->size
= rx_ring
->count
* desc_len
;
1690 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1692 rx_ring
->desc
= pci_alloc_consistent(pdev
, rx_ring
->size
,
1698 rx_ring
->next_to_clean
= 0;
1699 rx_ring
->next_to_use
= 0;
1701 rx_ring
->adapter
= adapter
;
1706 #ifdef CONFIG_IGB_LRO
1707 vfree(rx_ring
->lro_mgr
.lro_arr
);
1708 rx_ring
->lro_mgr
.lro_arr
= NULL
;
1710 vfree(rx_ring
->buffer_info
);
1711 dev_err(&adapter
->pdev
->dev
, "Unable to allocate memory for "
1712 "the receive descriptor ring\n");
1717 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
1718 * (Descriptors) for all queues
1719 * @adapter: board private structure
1721 * Return 0 on success, negative on failure
1723 static int igb_setup_all_rx_resources(struct igb_adapter
*adapter
)
1727 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1728 err
= igb_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1730 dev_err(&adapter
->pdev
->dev
,
1731 "Allocation for Rx Queue %u failed\n", i
);
1732 for (i
--; i
>= 0; i
--)
1733 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
1742 * igb_setup_rctl - configure the receive control registers
1743 * @adapter: Board private structure
1745 static void igb_setup_rctl(struct igb_adapter
*adapter
)
1747 struct e1000_hw
*hw
= &adapter
->hw
;
1752 rctl
= rd32(E1000_RCTL
);
1754 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1756 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
1757 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
1758 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1761 * enable stripping of CRC. It's unlikely this will break BMC
1762 * redirection as it did with e1000. Newer features require
1763 * that the HW strips the CRC.
1765 rctl
|= E1000_RCTL_SECRC
;
1767 rctl
&= ~E1000_RCTL_SBP
;
1769 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1770 rctl
&= ~E1000_RCTL_LPE
;
1772 rctl
|= E1000_RCTL_LPE
;
1773 if (adapter
->rx_buffer_len
<= IGB_RXBUFFER_2048
) {
1774 /* Setup buffer sizes */
1775 rctl
&= ~E1000_RCTL_SZ_4096
;
1776 rctl
|= E1000_RCTL_BSEX
;
1777 switch (adapter
->rx_buffer_len
) {
1778 case IGB_RXBUFFER_256
:
1779 rctl
|= E1000_RCTL_SZ_256
;
1780 rctl
&= ~E1000_RCTL_BSEX
;
1782 case IGB_RXBUFFER_512
:
1783 rctl
|= E1000_RCTL_SZ_512
;
1784 rctl
&= ~E1000_RCTL_BSEX
;
1786 case IGB_RXBUFFER_1024
:
1787 rctl
|= E1000_RCTL_SZ_1024
;
1788 rctl
&= ~E1000_RCTL_BSEX
;
1790 case IGB_RXBUFFER_2048
:
1792 rctl
|= E1000_RCTL_SZ_2048
;
1793 rctl
&= ~E1000_RCTL_BSEX
;
1797 rctl
&= ~E1000_RCTL_BSEX
;
1798 srrctl
= adapter
->rx_buffer_len
>> E1000_SRRCTL_BSIZEPKT_SHIFT
;
1801 /* 82575 and greater support packet-split where the protocol
1802 * header is placed in skb->data and the packet data is
1803 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1804 * In the case of a non-split, skb->data is linearly filled,
1805 * followed by the page buffers. Therefore, skb->data is
1806 * sized to hold the largest protocol header.
1808 /* allocations using alloc_page take too long for regular MTU
1809 * so only enable packet split for jumbo frames */
1810 if (rctl
& E1000_RCTL_LPE
) {
1811 adapter
->rx_ps_hdr_size
= IGB_RXBUFFER_128
;
1812 srrctl
|= adapter
->rx_ps_hdr_size
<<
1813 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1814 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1816 adapter
->rx_ps_hdr_size
= 0;
1817 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1820 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
1821 wr32(E1000_SRRCTL(i
), srrctl
);
1823 wr32(E1000_RCTL
, rctl
);
1827 * igb_configure_rx - Configure receive Unit after Reset
1828 * @adapter: board private structure
1830 * Configure the Rx unit of the MAC after a reset.
1832 static void igb_configure_rx(struct igb_adapter
*adapter
)
1835 struct e1000_hw
*hw
= &adapter
->hw
;
1840 /* disable receives while setting up the descriptors */
1841 rctl
= rd32(E1000_RCTL
);
1842 wr32(E1000_RCTL
, rctl
& ~E1000_RCTL_EN
);
1846 if (adapter
->itr_setting
> 3)
1847 wr32(E1000_ITR
, adapter
->itr
);
1849 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1850 * the Base and Length of the Rx Descriptor Ring */
1851 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1852 struct igb_ring
*ring
= &(adapter
->rx_ring
[i
]);
1854 wr32(E1000_RDBAL(i
),
1855 rdba
& 0x00000000ffffffffULL
);
1856 wr32(E1000_RDBAH(i
), rdba
>> 32);
1857 wr32(E1000_RDLEN(i
),
1858 ring
->count
* sizeof(union e1000_adv_rx_desc
));
1860 ring
->head
= E1000_RDH(i
);
1861 ring
->tail
= E1000_RDT(i
);
1862 writel(0, hw
->hw_addr
+ ring
->tail
);
1863 writel(0, hw
->hw_addr
+ ring
->head
);
1865 rxdctl
= rd32(E1000_RXDCTL(i
));
1866 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1867 rxdctl
&= 0xFFF00000;
1868 rxdctl
|= IGB_RX_PTHRESH
;
1869 rxdctl
|= IGB_RX_HTHRESH
<< 8;
1870 rxdctl
|= IGB_RX_WTHRESH
<< 16;
1871 wr32(E1000_RXDCTL(i
), rxdctl
);
1872 #ifdef CONFIG_IGB_LRO
1873 /* Intitial LRO Settings */
1874 ring
->lro_mgr
.max_aggr
= MAX_LRO_AGGR
;
1875 ring
->lro_mgr
.max_desc
= MAX_LRO_DESCRIPTORS
;
1876 ring
->lro_mgr
.get_skb_header
= igb_get_skb_hdr
;
1877 ring
->lro_mgr
.features
= LRO_F_NAPI
| LRO_F_EXTRACT_VLAN_ID
;
1878 ring
->lro_mgr
.dev
= adapter
->netdev
;
1879 ring
->lro_mgr
.ip_summed
= CHECKSUM_UNNECESSARY
;
1880 ring
->lro_mgr
.ip_summed_aggr
= CHECKSUM_UNNECESSARY
;
1884 if (adapter
->num_rx_queues
> 1) {
1893 get_random_bytes(&random
[0], 40);
1895 if (hw
->mac
.type
>= e1000_82576
)
1899 for (j
= 0; j
< (32 * 4); j
++) {
1901 (j
% adapter
->num_rx_queues
) << shift
;
1904 hw
->hw_addr
+ E1000_RETA(0) + (j
& ~3));
1906 mrqc
= E1000_MRQC_ENABLE_RSS_4Q
;
1908 /* Fill out hash function seeds */
1909 for (j
= 0; j
< 10; j
++)
1910 array_wr32(E1000_RSSRK(0), j
, random
[j
]);
1912 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4
|
1913 E1000_MRQC_RSS_FIELD_IPV4_TCP
);
1914 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6
|
1915 E1000_MRQC_RSS_FIELD_IPV6_TCP
);
1916 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV4_UDP
|
1917 E1000_MRQC_RSS_FIELD_IPV6_UDP
);
1918 mrqc
|= (E1000_MRQC_RSS_FIELD_IPV6_UDP_EX
|
1919 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX
);
1922 wr32(E1000_MRQC
, mrqc
);
1924 /* Multiqueue and raw packet checksumming are mutually
1925 * exclusive. Note that this not the same as TCP/IP
1926 * checksumming, which works fine. */
1927 rxcsum
= rd32(E1000_RXCSUM
);
1928 rxcsum
|= E1000_RXCSUM_PCSD
;
1929 wr32(E1000_RXCSUM
, rxcsum
);
1931 /* Enable Receive Checksum Offload for TCP and UDP */
1932 rxcsum
= rd32(E1000_RXCSUM
);
1933 if (adapter
->rx_csum
) {
1934 rxcsum
|= E1000_RXCSUM_TUOFL
;
1936 /* Enable IPv4 payload checksum for UDP fragments
1937 * Must be used in conjunction with packet-split. */
1938 if (adapter
->rx_ps_hdr_size
)
1939 rxcsum
|= E1000_RXCSUM_IPPCSE
;
1941 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1942 /* don't need to clear IPPCSE as it defaults to 0 */
1944 wr32(E1000_RXCSUM
, rxcsum
);
1949 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
1951 wr32(E1000_RLPML
, adapter
->max_frame_size
);
1953 /* Enable Receives */
1954 wr32(E1000_RCTL
, rctl
);
1958 * igb_free_tx_resources - Free Tx Resources per Queue
1959 * @adapter: board private structure
1960 * @tx_ring: Tx descriptor ring for a specific queue
1962 * Free all transmit software resources
1964 static void igb_free_tx_resources(struct igb_ring
*tx_ring
)
1966 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
1968 igb_clean_tx_ring(tx_ring
);
1970 vfree(tx_ring
->buffer_info
);
1971 tx_ring
->buffer_info
= NULL
;
1973 pci_free_consistent(pdev
, tx_ring
->size
, tx_ring
->desc
, tx_ring
->dma
);
1975 tx_ring
->desc
= NULL
;
1979 * igb_free_all_tx_resources - Free Tx Resources for All Queues
1980 * @adapter: board private structure
1982 * Free all transmit software resources
1984 static void igb_free_all_tx_resources(struct igb_adapter
*adapter
)
1988 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1989 igb_free_tx_resources(&adapter
->tx_ring
[i
]);
1992 static void igb_unmap_and_free_tx_resource(struct igb_adapter
*adapter
,
1993 struct igb_buffer
*buffer_info
)
1995 if (buffer_info
->dma
) {
1996 pci_unmap_page(adapter
->pdev
,
1998 buffer_info
->length
,
2000 buffer_info
->dma
= 0;
2002 if (buffer_info
->skb
) {
2003 dev_kfree_skb_any(buffer_info
->skb
);
2004 buffer_info
->skb
= NULL
;
2006 buffer_info
->time_stamp
= 0;
2007 /* buffer_info must be completely set up in the transmit path */
2011 * igb_clean_tx_ring - Free Tx Buffers
2012 * @adapter: board private structure
2013 * @tx_ring: ring to be cleaned
2015 static void igb_clean_tx_ring(struct igb_ring
*tx_ring
)
2017 struct igb_adapter
*adapter
= tx_ring
->adapter
;
2018 struct igb_buffer
*buffer_info
;
2022 if (!tx_ring
->buffer_info
)
2024 /* Free all the Tx ring sk_buffs */
2026 for (i
= 0; i
< tx_ring
->count
; i
++) {
2027 buffer_info
= &tx_ring
->buffer_info
[i
];
2028 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
2031 size
= sizeof(struct igb_buffer
) * tx_ring
->count
;
2032 memset(tx_ring
->buffer_info
, 0, size
);
2034 /* Zero out the descriptor ring */
2036 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2038 tx_ring
->next_to_use
= 0;
2039 tx_ring
->next_to_clean
= 0;
2041 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2042 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2046 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
2047 * @adapter: board private structure
2049 static void igb_clean_all_tx_rings(struct igb_adapter
*adapter
)
2053 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2054 igb_clean_tx_ring(&adapter
->tx_ring
[i
]);
2058 * igb_free_rx_resources - Free Rx Resources
2059 * @adapter: board private structure
2060 * @rx_ring: ring to clean the resources from
2062 * Free all receive software resources
2064 static void igb_free_rx_resources(struct igb_ring
*rx_ring
)
2066 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
2068 igb_clean_rx_ring(rx_ring
);
2070 vfree(rx_ring
->buffer_info
);
2071 rx_ring
->buffer_info
= NULL
;
2073 #ifdef CONFIG_IGB_LRO
2074 vfree(rx_ring
->lro_mgr
.lro_arr
);
2075 rx_ring
->lro_mgr
.lro_arr
= NULL
;
2078 pci_free_consistent(pdev
, rx_ring
->size
, rx_ring
->desc
, rx_ring
->dma
);
2080 rx_ring
->desc
= NULL
;
2084 * igb_free_all_rx_resources - Free Rx Resources for All Queues
2085 * @adapter: board private structure
2087 * Free all receive software resources
2089 static void igb_free_all_rx_resources(struct igb_adapter
*adapter
)
2093 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2094 igb_free_rx_resources(&adapter
->rx_ring
[i
]);
2098 * igb_clean_rx_ring - Free Rx Buffers per Queue
2099 * @adapter: board private structure
2100 * @rx_ring: ring to free buffers from
2102 static void igb_clean_rx_ring(struct igb_ring
*rx_ring
)
2104 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2105 struct igb_buffer
*buffer_info
;
2106 struct pci_dev
*pdev
= adapter
->pdev
;
2110 if (!rx_ring
->buffer_info
)
2112 /* Free all the Rx ring sk_buffs */
2113 for (i
= 0; i
< rx_ring
->count
; i
++) {
2114 buffer_info
= &rx_ring
->buffer_info
[i
];
2115 if (buffer_info
->dma
) {
2116 if (adapter
->rx_ps_hdr_size
)
2117 pci_unmap_single(pdev
, buffer_info
->dma
,
2118 adapter
->rx_ps_hdr_size
,
2119 PCI_DMA_FROMDEVICE
);
2121 pci_unmap_single(pdev
, buffer_info
->dma
,
2122 adapter
->rx_buffer_len
,
2123 PCI_DMA_FROMDEVICE
);
2124 buffer_info
->dma
= 0;
2127 if (buffer_info
->skb
) {
2128 dev_kfree_skb(buffer_info
->skb
);
2129 buffer_info
->skb
= NULL
;
2131 if (buffer_info
->page
) {
2132 if (buffer_info
->page_dma
)
2133 pci_unmap_page(pdev
, buffer_info
->page_dma
,
2135 PCI_DMA_FROMDEVICE
);
2136 put_page(buffer_info
->page
);
2137 buffer_info
->page
= NULL
;
2138 buffer_info
->page_dma
= 0;
2139 buffer_info
->page_offset
= 0;
2143 size
= sizeof(struct igb_buffer
) * rx_ring
->count
;
2144 memset(rx_ring
->buffer_info
, 0, size
);
2146 /* Zero out the descriptor ring */
2147 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2149 rx_ring
->next_to_clean
= 0;
2150 rx_ring
->next_to_use
= 0;
2152 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
2153 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
2157 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
2158 * @adapter: board private structure
2160 static void igb_clean_all_rx_rings(struct igb_adapter
*adapter
)
2164 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2165 igb_clean_rx_ring(&adapter
->rx_ring
[i
]);
2169 * igb_set_mac - Change the Ethernet Address of the NIC
2170 * @netdev: network interface device structure
2171 * @p: pointer to an address structure
2173 * Returns 0 on success, negative on failure
2175 static int igb_set_mac(struct net_device
*netdev
, void *p
)
2177 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2178 struct sockaddr
*addr
= p
;
2180 if (!is_valid_ether_addr(addr
->sa_data
))
2181 return -EADDRNOTAVAIL
;
2183 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2184 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
2186 adapter
->hw
.mac
.ops
.rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
2192 * igb_set_multi - Multicast and Promiscuous mode set
2193 * @netdev: network interface device structure
2195 * The set_multi entry point is called whenever the multicast address
2196 * list or the network interface flags are updated. This routine is
2197 * responsible for configuring the hardware for proper multicast,
2198 * promiscuous mode, and all-multi behavior.
2200 static void igb_set_multi(struct net_device
*netdev
)
2202 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2203 struct e1000_hw
*hw
= &adapter
->hw
;
2204 struct e1000_mac_info
*mac
= &hw
->mac
;
2205 struct dev_mc_list
*mc_ptr
;
2210 /* Check for Promiscuous and All Multicast modes */
2212 rctl
= rd32(E1000_RCTL
);
2214 if (netdev
->flags
& IFF_PROMISC
) {
2215 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2216 rctl
&= ~E1000_RCTL_VFE
;
2218 if (netdev
->flags
& IFF_ALLMULTI
) {
2219 rctl
|= E1000_RCTL_MPE
;
2220 rctl
&= ~E1000_RCTL_UPE
;
2222 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2223 rctl
|= E1000_RCTL_VFE
;
2225 wr32(E1000_RCTL
, rctl
);
2227 if (!netdev
->mc_count
) {
2228 /* nothing to program, so clear mc list */
2229 igb_update_mc_addr_list_82575(hw
, NULL
, 0, 1,
2230 mac
->rar_entry_count
);
2234 mta_list
= kzalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2238 /* The shared function expects a packed array of only addresses. */
2239 mc_ptr
= netdev
->mc_list
;
2241 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2244 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
, ETH_ALEN
);
2245 mc_ptr
= mc_ptr
->next
;
2247 igb_update_mc_addr_list_82575(hw
, mta_list
, i
, 1,
2248 mac
->rar_entry_count
);
2252 /* Need to wait a few seconds after link up to get diagnostic information from
2254 static void igb_update_phy_info(unsigned long data
)
2256 struct igb_adapter
*adapter
= (struct igb_adapter
*) data
;
2257 if (adapter
->hw
.phy
.ops
.get_phy_info
)
2258 adapter
->hw
.phy
.ops
.get_phy_info(&adapter
->hw
);
2262 * igb_watchdog - Timer Call-back
2263 * @data: pointer to adapter cast into an unsigned long
2265 static void igb_watchdog(unsigned long data
)
2267 struct igb_adapter
*adapter
= (struct igb_adapter
*)data
;
2268 /* Do the rest outside of interrupt context */
2269 schedule_work(&adapter
->watchdog_task
);
2272 static void igb_watchdog_task(struct work_struct
*work
)
2274 struct igb_adapter
*adapter
= container_of(work
,
2275 struct igb_adapter
, watchdog_task
);
2276 struct e1000_hw
*hw
= &adapter
->hw
;
2278 struct net_device
*netdev
= adapter
->netdev
;
2279 struct igb_ring
*tx_ring
= adapter
->tx_ring
;
2280 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2286 if ((netif_carrier_ok(netdev
)) &&
2287 (rd32(E1000_STATUS
) & E1000_STATUS_LU
))
2290 ret_val
= hw
->mac
.ops
.check_for_link(&adapter
->hw
);
2291 if ((ret_val
== E1000_ERR_PHY
) &&
2292 (hw
->phy
.type
== e1000_phy_igp_3
) &&
2294 E1000_PHY_CTRL_GBE_DISABLE
))
2295 dev_info(&adapter
->pdev
->dev
,
2296 "Gigabit has been disabled, downgrading speed\n");
2298 if ((hw
->phy
.media_type
== e1000_media_type_internal_serdes
) &&
2299 !(rd32(E1000_TXCW
) & E1000_TXCW_ANE
))
2300 link
= mac
->serdes_has_link
;
2302 link
= rd32(E1000_STATUS
) &
2306 if (!netif_carrier_ok(netdev
)) {
2308 hw
->mac
.ops
.get_speed_and_duplex(&adapter
->hw
,
2309 &adapter
->link_speed
,
2310 &adapter
->link_duplex
);
2312 ctrl
= rd32(E1000_CTRL
);
2313 dev_info(&adapter
->pdev
->dev
,
2314 "NIC Link is Up %d Mbps %s, "
2315 "Flow Control: %s\n",
2316 adapter
->link_speed
,
2317 adapter
->link_duplex
== FULL_DUPLEX
?
2318 "Full Duplex" : "Half Duplex",
2319 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2320 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2321 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2322 E1000_CTRL_TFCE
) ? "TX" : "None")));
2324 /* tweak tx_queue_len according to speed/duplex and
2325 * adjust the timeout factor */
2326 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2327 adapter
->tx_timeout_factor
= 1;
2328 switch (adapter
->link_speed
) {
2330 netdev
->tx_queue_len
= 10;
2331 adapter
->tx_timeout_factor
= 14;
2334 netdev
->tx_queue_len
= 100;
2335 /* maybe add some timeout factor ? */
2339 netif_carrier_on(netdev
);
2340 netif_tx_wake_all_queues(netdev
);
2342 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2343 mod_timer(&adapter
->phy_info_timer
,
2344 round_jiffies(jiffies
+ 2 * HZ
));
2347 if (netif_carrier_ok(netdev
)) {
2348 adapter
->link_speed
= 0;
2349 adapter
->link_duplex
= 0;
2350 dev_info(&adapter
->pdev
->dev
, "NIC Link is Down\n");
2351 netif_carrier_off(netdev
);
2352 netif_tx_stop_all_queues(netdev
);
2353 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2354 mod_timer(&adapter
->phy_info_timer
,
2355 round_jiffies(jiffies
+ 2 * HZ
));
2360 igb_update_stats(adapter
);
2362 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2363 adapter
->tpt_old
= adapter
->stats
.tpt
;
2364 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2365 adapter
->colc_old
= adapter
->stats
.colc
;
2367 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
2368 adapter
->gorc_old
= adapter
->stats
.gorc
;
2369 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
2370 adapter
->gotc_old
= adapter
->stats
.gotc
;
2372 igb_update_adaptive(&adapter
->hw
);
2374 if (!netif_carrier_ok(netdev
)) {
2375 if (IGB_DESC_UNUSED(tx_ring
) + 1 < tx_ring
->count
) {
2376 /* We've lost link, so the controller stops DMA,
2377 * but we've got queued Tx work that's never going
2378 * to get done, so reset controller to flush Tx.
2379 * (Do the reset outside of interrupt context). */
2380 adapter
->tx_timeout_count
++;
2381 schedule_work(&adapter
->reset_task
);
2385 /* Cause software interrupt to ensure rx ring is cleaned */
2386 if (adapter
->msix_entries
) {
2387 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2388 eics
|= adapter
->rx_ring
[i
].eims_value
;
2389 wr32(E1000_EICS
, eics
);
2391 wr32(E1000_ICS
, E1000_ICS_RXDMT0
);
2394 /* Force detection of hung controller every watchdog period */
2395 tx_ring
->detect_tx_hung
= true;
2397 /* Reset the timer */
2398 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
2399 mod_timer(&adapter
->watchdog_timer
,
2400 round_jiffies(jiffies
+ 2 * HZ
));
2403 enum latency_range
{
2407 latency_invalid
= 255
2412 * igb_update_ring_itr - update the dynamic ITR value based on packet size
2414 * Stores a new ITR value based on strictly on packet size. This
2415 * algorithm is less sophisticated than that used in igb_update_itr,
2416 * due to the difficulty of synchronizing statistics across multiple
2417 * receive rings. The divisors and thresholds used by this fuction
2418 * were determined based on theoretical maximum wire speed and testing
2419 * data, in order to minimize response time while increasing bulk
2421 * This functionality is controlled by the InterruptThrottleRate module
2422 * parameter (see igb_param.c)
2423 * NOTE: This function is called only when operating in a multiqueue
2424 * receive environment.
2425 * @rx_ring: pointer to ring
2427 static void igb_update_ring_itr(struct igb_ring
*rx_ring
)
2429 int new_val
= rx_ring
->itr_val
;
2430 int avg_wire_size
= 0;
2431 struct igb_adapter
*adapter
= rx_ring
->adapter
;
2433 if (!rx_ring
->total_packets
)
2434 goto clear_counts
; /* no packets, so don't do anything */
2436 /* For non-gigabit speeds, just fix the interrupt rate at 4000
2437 * ints/sec - ITR timer value of 120 ticks.
2439 if (adapter
->link_speed
!= SPEED_1000
) {
2443 avg_wire_size
= rx_ring
->total_bytes
/ rx_ring
->total_packets
;
2445 /* Add 24 bytes to size to account for CRC, preamble, and gap */
2446 avg_wire_size
+= 24;
2448 /* Don't starve jumbo frames */
2449 avg_wire_size
= min(avg_wire_size
, 3000);
2451 /* Give a little boost to mid-size frames */
2452 if ((avg_wire_size
> 300) && (avg_wire_size
< 1200))
2453 new_val
= avg_wire_size
/ 3;
2455 new_val
= avg_wire_size
/ 2;
2458 if (new_val
!= rx_ring
->itr_val
) {
2459 rx_ring
->itr_val
= new_val
;
2460 rx_ring
->set_itr
= 1;
2463 rx_ring
->total_bytes
= 0;
2464 rx_ring
->total_packets
= 0;
2468 * igb_update_itr - update the dynamic ITR value based on statistics
2469 * Stores a new ITR value based on packets and byte
2470 * counts during the last interrupt. The advantage of per interrupt
2471 * computation is faster updates and more accurate ITR for the current
2472 * traffic pattern. Constants in this function were computed
2473 * based on theoretical maximum wire speed and thresholds were set based
2474 * on testing data as well as attempting to minimize response time
2475 * while increasing bulk throughput.
2476 * this functionality is controlled by the InterruptThrottleRate module
2477 * parameter (see igb_param.c)
2478 * NOTE: These calculations are only valid when operating in a single-
2479 * queue environment.
2480 * @adapter: pointer to adapter
2481 * @itr_setting: current adapter->itr
2482 * @packets: the number of packets during this measurement interval
2483 * @bytes: the number of bytes during this measurement interval
2485 static unsigned int igb_update_itr(struct igb_adapter
*adapter
, u16 itr_setting
,
2486 int packets
, int bytes
)
2488 unsigned int retval
= itr_setting
;
2491 goto update_itr_done
;
2493 switch (itr_setting
) {
2494 case lowest_latency
:
2495 /* handle TSO and jumbo frames */
2496 if (bytes
/packets
> 8000)
2497 retval
= bulk_latency
;
2498 else if ((packets
< 5) && (bytes
> 512))
2499 retval
= low_latency
;
2501 case low_latency
: /* 50 usec aka 20000 ints/s */
2502 if (bytes
> 10000) {
2503 /* this if handles the TSO accounting */
2504 if (bytes
/packets
> 8000) {
2505 retval
= bulk_latency
;
2506 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
2507 retval
= bulk_latency
;
2508 } else if ((packets
> 35)) {
2509 retval
= lowest_latency
;
2511 } else if (bytes
/packets
> 2000) {
2512 retval
= bulk_latency
;
2513 } else if (packets
<= 2 && bytes
< 512) {
2514 retval
= lowest_latency
;
2517 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2518 if (bytes
> 25000) {
2520 retval
= low_latency
;
2521 } else if (bytes
< 6000) {
2522 retval
= low_latency
;
2531 static void igb_set_itr(struct igb_adapter
*adapter
)
2534 u32 new_itr
= adapter
->itr
;
2536 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2537 if (adapter
->link_speed
!= SPEED_1000
) {
2543 adapter
->rx_itr
= igb_update_itr(adapter
,
2545 adapter
->rx_ring
->total_packets
,
2546 adapter
->rx_ring
->total_bytes
);
2548 if (adapter
->rx_ring
->buddy
) {
2549 adapter
->tx_itr
= igb_update_itr(adapter
,
2551 adapter
->tx_ring
->total_packets
,
2552 adapter
->tx_ring
->total_bytes
);
2554 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2556 current_itr
= adapter
->rx_itr
;
2559 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2560 if (adapter
->itr_setting
== 3 &&
2561 current_itr
== lowest_latency
)
2562 current_itr
= low_latency
;
2564 switch (current_itr
) {
2565 /* counts and packets in update_itr are dependent on these numbers */
2566 case lowest_latency
:
2570 new_itr
= 20000; /* aka hwitr = ~200 */
2580 adapter
->rx_ring
->total_bytes
= 0;
2581 adapter
->rx_ring
->total_packets
= 0;
2582 if (adapter
->rx_ring
->buddy
) {
2583 adapter
->rx_ring
->buddy
->total_bytes
= 0;
2584 adapter
->rx_ring
->buddy
->total_packets
= 0;
2587 if (new_itr
!= adapter
->itr
) {
2588 /* this attempts to bias the interrupt rate towards Bulk
2589 * by adding intermediate steps when interrupt rate is
2591 new_itr
= new_itr
> adapter
->itr
?
2592 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2594 /* Don't write the value here; it resets the adapter's
2595 * internal timer, and causes us to delay far longer than
2596 * we should between interrupts. Instead, we write the ITR
2597 * value at the beginning of the next interrupt so the timing
2598 * ends up being correct.
2600 adapter
->itr
= new_itr
;
2601 adapter
->rx_ring
->itr_val
= 1000000000 / (new_itr
* 256);
2602 adapter
->rx_ring
->set_itr
= 1;
2609 #define IGB_TX_FLAGS_CSUM 0x00000001
2610 #define IGB_TX_FLAGS_VLAN 0x00000002
2611 #define IGB_TX_FLAGS_TSO 0x00000004
2612 #define IGB_TX_FLAGS_IPV4 0x00000008
2613 #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000
2614 #define IGB_TX_FLAGS_VLAN_SHIFT 16
2616 static inline int igb_tso_adv(struct igb_adapter
*adapter
,
2617 struct igb_ring
*tx_ring
,
2618 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
2620 struct e1000_adv_tx_context_desc
*context_desc
;
2623 struct igb_buffer
*buffer_info
;
2624 u32 info
= 0, tu_cmd
= 0;
2625 u32 mss_l4len_idx
, l4len
;
2628 if (skb_header_cloned(skb
)) {
2629 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2634 l4len
= tcp_hdrlen(skb
);
2637 if (skb
->protocol
== htons(ETH_P_IP
)) {
2638 struct iphdr
*iph
= ip_hdr(skb
);
2641 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2645 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
2646 ipv6_hdr(skb
)->payload_len
= 0;
2647 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2648 &ipv6_hdr(skb
)->daddr
,
2652 i
= tx_ring
->next_to_use
;
2654 buffer_info
= &tx_ring
->buffer_info
[i
];
2655 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2656 /* VLAN MACLEN IPLEN */
2657 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2658 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2659 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2660 *hdr_len
+= skb_network_offset(skb
);
2661 info
|= skb_network_header_len(skb
);
2662 *hdr_len
+= skb_network_header_len(skb
);
2663 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2665 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
2666 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2668 if (skb
->protocol
== htons(ETH_P_IP
))
2669 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2670 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2672 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2675 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
2676 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
2678 /* Context index must be unique per ring. */
2679 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
2680 mss_l4len_idx
|= tx_ring
->queue_index
<< 4;
2682 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
2683 context_desc
->seqnum_seed
= 0;
2685 buffer_info
->time_stamp
= jiffies
;
2686 buffer_info
->dma
= 0;
2688 if (i
== tx_ring
->count
)
2691 tx_ring
->next_to_use
= i
;
2696 static inline bool igb_tx_csum_adv(struct igb_adapter
*adapter
,
2697 struct igb_ring
*tx_ring
,
2698 struct sk_buff
*skb
, u32 tx_flags
)
2700 struct e1000_adv_tx_context_desc
*context_desc
;
2702 struct igb_buffer
*buffer_info
;
2703 u32 info
= 0, tu_cmd
= 0;
2705 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
2706 (tx_flags
& IGB_TX_FLAGS_VLAN
)) {
2707 i
= tx_ring
->next_to_use
;
2708 buffer_info
= &tx_ring
->buffer_info
[i
];
2709 context_desc
= E1000_TX_CTXTDESC_ADV(*tx_ring
, i
);
2711 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2712 info
|= (tx_flags
& IGB_TX_FLAGS_VLAN_MASK
);
2713 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2714 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2715 info
|= skb_network_header_len(skb
);
2717 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2719 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2721 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2722 switch (skb
->protocol
) {
2723 case __constant_htons(ETH_P_IP
):
2724 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2725 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2726 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2728 case __constant_htons(ETH_P_IPV6
):
2729 /* XXX what about other V6 headers?? */
2730 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2731 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2734 if (unlikely(net_ratelimit()))
2735 dev_warn(&adapter
->pdev
->dev
,
2736 "partial checksum but proto=%x!\n",
2742 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2743 context_desc
->seqnum_seed
= 0;
2744 if (adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
)
2745 context_desc
->mss_l4len_idx
=
2746 cpu_to_le32(tx_ring
->queue_index
<< 4);
2748 buffer_info
->time_stamp
= jiffies
;
2749 buffer_info
->dma
= 0;
2752 if (i
== tx_ring
->count
)
2754 tx_ring
->next_to_use
= i
;
2763 #define IGB_MAX_TXD_PWR 16
2764 #define IGB_MAX_DATA_PER_TXD (1<<IGB_MAX_TXD_PWR)
2766 static inline int igb_tx_map_adv(struct igb_adapter
*adapter
,
2767 struct igb_ring
*tx_ring
,
2768 struct sk_buff
*skb
)
2770 struct igb_buffer
*buffer_info
;
2771 unsigned int len
= skb_headlen(skb
);
2772 unsigned int count
= 0, i
;
2775 i
= tx_ring
->next_to_use
;
2777 buffer_info
= &tx_ring
->buffer_info
[i
];
2778 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2779 buffer_info
->length
= len
;
2780 /* set time_stamp *before* dma to help avoid a possible race */
2781 buffer_info
->time_stamp
= jiffies
;
2782 buffer_info
->dma
= pci_map_single(adapter
->pdev
, skb
->data
, len
,
2786 if (i
== tx_ring
->count
)
2789 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2790 struct skb_frag_struct
*frag
;
2792 frag
= &skb_shinfo(skb
)->frags
[f
];
2795 buffer_info
= &tx_ring
->buffer_info
[i
];
2796 BUG_ON(len
>= IGB_MAX_DATA_PER_TXD
);
2797 buffer_info
->length
= len
;
2798 buffer_info
->time_stamp
= jiffies
;
2799 buffer_info
->dma
= pci_map_page(adapter
->pdev
,
2807 if (i
== tx_ring
->count
)
2811 i
= (i
== 0) ? tx_ring
->count
- 1 : i
- 1;
2812 tx_ring
->buffer_info
[i
].skb
= skb
;
2817 static inline void igb_tx_queue_adv(struct igb_adapter
*adapter
,
2818 struct igb_ring
*tx_ring
,
2819 int tx_flags
, int count
, u32 paylen
,
2822 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2823 struct igb_buffer
*buffer_info
;
2824 u32 olinfo_status
= 0, cmd_type_len
;
2827 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2828 E1000_ADVTXD_DCMD_DEXT
);
2830 if (tx_flags
& IGB_TX_FLAGS_VLAN
)
2831 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2833 if (tx_flags
& IGB_TX_FLAGS_TSO
) {
2834 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2836 /* insert tcp checksum */
2837 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2839 /* insert ip checksum */
2840 if (tx_flags
& IGB_TX_FLAGS_IPV4
)
2841 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2843 } else if (tx_flags
& IGB_TX_FLAGS_CSUM
) {
2844 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2847 if ((adapter
->flags
& IGB_FLAG_NEED_CTX_IDX
) &&
2848 (tx_flags
& (IGB_TX_FLAGS_CSUM
| IGB_TX_FLAGS_TSO
|
2849 IGB_TX_FLAGS_VLAN
)))
2850 olinfo_status
|= tx_ring
->queue_index
<< 4;
2852 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2854 i
= tx_ring
->next_to_use
;
2856 buffer_info
= &tx_ring
->buffer_info
[i
];
2857 tx_desc
= E1000_TX_DESC_ADV(*tx_ring
, i
);
2858 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2859 tx_desc
->read
.cmd_type_len
=
2860 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2861 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2863 if (i
== tx_ring
->count
)
2867 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2868 /* Force memory writes to complete before letting h/w
2869 * know there are new descriptors to fetch. (Only
2870 * applicable for weak-ordered memory model archs,
2871 * such as IA-64). */
2874 tx_ring
->next_to_use
= i
;
2875 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2876 /* we need this if more than one processor can write to our tail
2877 * at a time, it syncronizes IO on IA64/Altix systems */
2881 static int __igb_maybe_stop_tx(struct net_device
*netdev
,
2882 struct igb_ring
*tx_ring
, int size
)
2884 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2886 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
2888 /* Herbert's original patch had:
2889 * smp_mb__after_netif_stop_queue();
2890 * but since that doesn't exist yet, just open code it. */
2893 /* We need to check again in a case another CPU has just
2894 * made room available. */
2895 if (IGB_DESC_UNUSED(tx_ring
) < size
)
2899 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
2900 ++adapter
->restart_queue
;
2904 static int igb_maybe_stop_tx(struct net_device
*netdev
,
2905 struct igb_ring
*tx_ring
, int size
)
2907 if (IGB_DESC_UNUSED(tx_ring
) >= size
)
2909 return __igb_maybe_stop_tx(netdev
, tx_ring
, size
);
2912 #define TXD_USE_COUNT(S) (((S) >> (IGB_MAX_TXD_PWR)) + 1)
2914 static int igb_xmit_frame_ring_adv(struct sk_buff
*skb
,
2915 struct net_device
*netdev
,
2916 struct igb_ring
*tx_ring
)
2918 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2919 unsigned int tx_flags
= 0;
2924 len
= skb_headlen(skb
);
2926 if (test_bit(__IGB_DOWN
, &adapter
->state
)) {
2927 dev_kfree_skb_any(skb
);
2928 return NETDEV_TX_OK
;
2931 if (skb
->len
<= 0) {
2932 dev_kfree_skb_any(skb
);
2933 return NETDEV_TX_OK
;
2936 /* need: 1 descriptor per page,
2937 * + 2 desc gap to keep tail from touching head,
2938 * + 1 desc for skb->data,
2939 * + 1 desc for context descriptor,
2940 * otherwise try next time */
2941 if (igb_maybe_stop_tx(netdev
, tx_ring
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2942 /* this is a hard error */
2943 return NETDEV_TX_BUSY
;
2947 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
2948 tx_flags
|= IGB_TX_FLAGS_VLAN
;
2949 tx_flags
|= (vlan_tx_tag_get(skb
) << IGB_TX_FLAGS_VLAN_SHIFT
);
2952 if (skb
->protocol
== htons(ETH_P_IP
))
2953 tx_flags
|= IGB_TX_FLAGS_IPV4
;
2955 tso
= skb_is_gso(skb
) ? igb_tso_adv(adapter
, tx_ring
, skb
, tx_flags
,
2959 dev_kfree_skb_any(skb
);
2960 return NETDEV_TX_OK
;
2964 tx_flags
|= IGB_TX_FLAGS_TSO
;
2965 else if (igb_tx_csum_adv(adapter
, tx_ring
, skb
, tx_flags
))
2966 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2967 tx_flags
|= IGB_TX_FLAGS_CSUM
;
2969 igb_tx_queue_adv(adapter
, tx_ring
, tx_flags
,
2970 igb_tx_map_adv(adapter
, tx_ring
, skb
),
2973 netdev
->trans_start
= jiffies
;
2975 /* Make sure there is space in the ring for the next send. */
2976 igb_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 4);
2978 return NETDEV_TX_OK
;
2981 static int igb_xmit_frame_adv(struct sk_buff
*skb
, struct net_device
*netdev
)
2983 struct igb_adapter
*adapter
= netdev_priv(netdev
);
2984 struct igb_ring
*tx_ring
;
2987 r_idx
= skb
->queue_mapping
& (IGB_MAX_TX_QUEUES
- 1);
2988 tx_ring
= adapter
->multi_tx_table
[r_idx
];
2990 /* This goes back to the question of how to logically map a tx queue
2991 * to a flow. Right now, performance is impacted slightly negatively
2992 * if using multiple tx queues. If the stack breaks away from a
2993 * single qdisc implementation, we can look at this again. */
2994 return (igb_xmit_frame_ring_adv(skb
, netdev
, tx_ring
));
2998 * igb_tx_timeout - Respond to a Tx Hang
2999 * @netdev: network interface device structure
3001 static void igb_tx_timeout(struct net_device
*netdev
)
3003 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3004 struct e1000_hw
*hw
= &adapter
->hw
;
3006 /* Do the reset outside of interrupt context */
3007 adapter
->tx_timeout_count
++;
3008 schedule_work(&adapter
->reset_task
);
3009 wr32(E1000_EICS
, adapter
->eims_enable_mask
&
3010 ~(E1000_EIMS_TCP_TIMER
| E1000_EIMS_OTHER
));
3013 static void igb_reset_task(struct work_struct
*work
)
3015 struct igb_adapter
*adapter
;
3016 adapter
= container_of(work
, struct igb_adapter
, reset_task
);
3018 igb_reinit_locked(adapter
);
3022 * igb_get_stats - Get System Network Statistics
3023 * @netdev: network interface device structure
3025 * Returns the address of the device statistics structure.
3026 * The statistics are actually updated from the timer callback.
3028 static struct net_device_stats
*
3029 igb_get_stats(struct net_device
*netdev
)
3031 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3033 /* only return the current stats */
3034 return &adapter
->net_stats
;
3038 * igb_change_mtu - Change the Maximum Transfer Unit
3039 * @netdev: network interface device structure
3040 * @new_mtu: new value for maximum frame size
3042 * Returns 0 on success, negative on failure
3044 static int igb_change_mtu(struct net_device
*netdev
, int new_mtu
)
3046 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3047 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3049 if ((max_frame
< ETH_ZLEN
+ ETH_FCS_LEN
) ||
3050 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3051 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
3055 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3056 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
3057 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
3061 while (test_and_set_bit(__IGB_RESETTING
, &adapter
->state
))
3063 /* igb_down has a dependency on max_frame_size */
3064 adapter
->max_frame_size
= max_frame
;
3065 if (netif_running(netdev
))
3068 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3069 * means we reserve 2 more, this pushes us to allocate from the next
3071 * i.e. RXBUFFER_2048 --> size-4096 slab
3074 if (max_frame
<= IGB_RXBUFFER_256
)
3075 adapter
->rx_buffer_len
= IGB_RXBUFFER_256
;
3076 else if (max_frame
<= IGB_RXBUFFER_512
)
3077 adapter
->rx_buffer_len
= IGB_RXBUFFER_512
;
3078 else if (max_frame
<= IGB_RXBUFFER_1024
)
3079 adapter
->rx_buffer_len
= IGB_RXBUFFER_1024
;
3080 else if (max_frame
<= IGB_RXBUFFER_2048
)
3081 adapter
->rx_buffer_len
= IGB_RXBUFFER_2048
;
3083 #if (PAGE_SIZE / 2) > IGB_RXBUFFER_16384
3084 adapter
->rx_buffer_len
= IGB_RXBUFFER_16384
;
3086 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
3088 /* adjust allocation if LPE protects us, and we aren't using SBP */
3089 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
3090 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
))
3091 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3093 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
3094 netdev
->mtu
, new_mtu
);
3095 netdev
->mtu
= new_mtu
;
3097 if (netif_running(netdev
))
3102 clear_bit(__IGB_RESETTING
, &adapter
->state
);
3108 * igb_update_stats - Update the board statistics counters
3109 * @adapter: board private structure
3112 void igb_update_stats(struct igb_adapter
*adapter
)
3114 struct e1000_hw
*hw
= &adapter
->hw
;
3115 struct pci_dev
*pdev
= adapter
->pdev
;
3118 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3121 * Prevent stats update while adapter is being reset, or if the pci
3122 * connection is down.
3124 if (adapter
->link_speed
== 0)
3126 if (pci_channel_offline(pdev
))
3129 adapter
->stats
.crcerrs
+= rd32(E1000_CRCERRS
);
3130 adapter
->stats
.gprc
+= rd32(E1000_GPRC
);
3131 adapter
->stats
.gorc
+= rd32(E1000_GORCL
);
3132 rd32(E1000_GORCH
); /* clear GORCL */
3133 adapter
->stats
.bprc
+= rd32(E1000_BPRC
);
3134 adapter
->stats
.mprc
+= rd32(E1000_MPRC
);
3135 adapter
->stats
.roc
+= rd32(E1000_ROC
);
3137 adapter
->stats
.prc64
+= rd32(E1000_PRC64
);
3138 adapter
->stats
.prc127
+= rd32(E1000_PRC127
);
3139 adapter
->stats
.prc255
+= rd32(E1000_PRC255
);
3140 adapter
->stats
.prc511
+= rd32(E1000_PRC511
);
3141 adapter
->stats
.prc1023
+= rd32(E1000_PRC1023
);
3142 adapter
->stats
.prc1522
+= rd32(E1000_PRC1522
);
3143 adapter
->stats
.symerrs
+= rd32(E1000_SYMERRS
);
3144 adapter
->stats
.sec
+= rd32(E1000_SEC
);
3146 adapter
->stats
.mpc
+= rd32(E1000_MPC
);
3147 adapter
->stats
.scc
+= rd32(E1000_SCC
);
3148 adapter
->stats
.ecol
+= rd32(E1000_ECOL
);
3149 adapter
->stats
.mcc
+= rd32(E1000_MCC
);
3150 adapter
->stats
.latecol
+= rd32(E1000_LATECOL
);
3151 adapter
->stats
.dc
+= rd32(E1000_DC
);
3152 adapter
->stats
.rlec
+= rd32(E1000_RLEC
);
3153 adapter
->stats
.xonrxc
+= rd32(E1000_XONRXC
);
3154 adapter
->stats
.xontxc
+= rd32(E1000_XONTXC
);
3155 adapter
->stats
.xoffrxc
+= rd32(E1000_XOFFRXC
);
3156 adapter
->stats
.xofftxc
+= rd32(E1000_XOFFTXC
);
3157 adapter
->stats
.fcruc
+= rd32(E1000_FCRUC
);
3158 adapter
->stats
.gptc
+= rd32(E1000_GPTC
);
3159 adapter
->stats
.gotc
+= rd32(E1000_GOTCL
);
3160 rd32(E1000_GOTCH
); /* clear GOTCL */
3161 adapter
->stats
.rnbc
+= rd32(E1000_RNBC
);
3162 adapter
->stats
.ruc
+= rd32(E1000_RUC
);
3163 adapter
->stats
.rfc
+= rd32(E1000_RFC
);
3164 adapter
->stats
.rjc
+= rd32(E1000_RJC
);
3165 adapter
->stats
.tor
+= rd32(E1000_TORH
);
3166 adapter
->stats
.tot
+= rd32(E1000_TOTH
);
3167 adapter
->stats
.tpr
+= rd32(E1000_TPR
);
3169 adapter
->stats
.ptc64
+= rd32(E1000_PTC64
);
3170 adapter
->stats
.ptc127
+= rd32(E1000_PTC127
);
3171 adapter
->stats
.ptc255
+= rd32(E1000_PTC255
);
3172 adapter
->stats
.ptc511
+= rd32(E1000_PTC511
);
3173 adapter
->stats
.ptc1023
+= rd32(E1000_PTC1023
);
3174 adapter
->stats
.ptc1522
+= rd32(E1000_PTC1522
);
3176 adapter
->stats
.mptc
+= rd32(E1000_MPTC
);
3177 adapter
->stats
.bptc
+= rd32(E1000_BPTC
);
3179 /* used for adaptive IFS */
3181 hw
->mac
.tx_packet_delta
= rd32(E1000_TPT
);
3182 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3183 hw
->mac
.collision_delta
= rd32(E1000_COLC
);
3184 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3186 adapter
->stats
.algnerrc
+= rd32(E1000_ALGNERRC
);
3187 adapter
->stats
.rxerrc
+= rd32(E1000_RXERRC
);
3188 adapter
->stats
.tncrs
+= rd32(E1000_TNCRS
);
3189 adapter
->stats
.tsctc
+= rd32(E1000_TSCTC
);
3190 adapter
->stats
.tsctfc
+= rd32(E1000_TSCTFC
);
3192 adapter
->stats
.iac
+= rd32(E1000_IAC
);
3193 adapter
->stats
.icrxoc
+= rd32(E1000_ICRXOC
);
3194 adapter
->stats
.icrxptc
+= rd32(E1000_ICRXPTC
);
3195 adapter
->stats
.icrxatc
+= rd32(E1000_ICRXATC
);
3196 adapter
->stats
.ictxptc
+= rd32(E1000_ICTXPTC
);
3197 adapter
->stats
.ictxatc
+= rd32(E1000_ICTXATC
);
3198 adapter
->stats
.ictxqec
+= rd32(E1000_ICTXQEC
);
3199 adapter
->stats
.ictxqmtc
+= rd32(E1000_ICTXQMTC
);
3200 adapter
->stats
.icrxdmtc
+= rd32(E1000_ICRXDMTC
);
3202 /* Fill out the OS statistics structure */
3203 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3204 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3208 /* RLEC on some newer hardware can be incorrect so build
3209 * our own version based on RUC and ROC */
3210 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3211 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3212 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3213 adapter
->stats
.cexterr
;
3214 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
3216 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3217 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3218 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3221 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3222 adapter
->stats
.latecol
;
3223 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3224 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3225 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3227 /* Tx Dropped needs to be maintained elsewhere */
3230 if (hw
->phy
.media_type
== e1000_media_type_copper
) {
3231 if ((adapter
->link_speed
== SPEED_1000
) &&
3232 (!hw
->phy
.ops
.read_phy_reg(hw
, PHY_1000T_STATUS
,
3234 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3235 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3239 /* Management Stats */
3240 adapter
->stats
.mgptc
+= rd32(E1000_MGTPTC
);
3241 adapter
->stats
.mgprc
+= rd32(E1000_MGTPRC
);
3242 adapter
->stats
.mgpdc
+= rd32(E1000_MGTPDC
);
3246 static irqreturn_t
igb_msix_other(int irq
, void *data
)
3248 struct net_device
*netdev
= data
;
3249 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3250 struct e1000_hw
*hw
= &adapter
->hw
;
3251 u32 icr
= rd32(E1000_ICR
);
3253 /* reading ICR causes bit 31 of EICR to be cleared */
3254 if (!(icr
& E1000_ICR_LSC
))
3255 goto no_link_interrupt
;
3256 hw
->mac
.get_link_status
= 1;
3257 /* guard against interrupt when we're going down */
3258 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3259 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3262 wr32(E1000_IMS
, E1000_IMS_LSC
);
3263 wr32(E1000_EIMS
, adapter
->eims_other
);
3268 static irqreturn_t
igb_msix_tx(int irq
, void *data
)
3270 struct igb_ring
*tx_ring
= data
;
3271 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3272 struct e1000_hw
*hw
= &adapter
->hw
;
3275 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3276 igb_update_tx_dca(tx_ring
);
3278 tx_ring
->total_bytes
= 0;
3279 tx_ring
->total_packets
= 0;
3281 /* auto mask will automatically reenable the interrupt when we write
3283 if (!igb_clean_tx_irq(tx_ring
))
3284 /* Ring was not completely cleaned, so fire another interrupt */
3285 wr32(E1000_EICS
, tx_ring
->eims_value
);
3287 wr32(E1000_EIMS
, tx_ring
->eims_value
);
3292 static void igb_write_itr(struct igb_ring
*ring
)
3294 struct e1000_hw
*hw
= &ring
->adapter
->hw
;
3295 if ((ring
->adapter
->itr_setting
& 3) && ring
->set_itr
) {
3296 switch (hw
->mac
.type
) {
3298 wr32(ring
->itr_register
,
3303 wr32(ring
->itr_register
,
3305 (ring
->itr_val
<< 16));
3312 static irqreturn_t
igb_msix_rx(int irq
, void *data
)
3314 struct igb_ring
*rx_ring
= data
;
3315 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3317 /* Write the ITR value calculated at the end of the
3318 * previous interrupt.
3321 igb_write_itr(rx_ring
);
3323 if (netif_rx_schedule_prep(adapter
->netdev
, &rx_ring
->napi
))
3324 __netif_rx_schedule(adapter
->netdev
, &rx_ring
->napi
);
3327 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3328 igb_update_rx_dca(rx_ring
);
3334 static void igb_update_rx_dca(struct igb_ring
*rx_ring
)
3337 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3338 struct e1000_hw
*hw
= &adapter
->hw
;
3339 int cpu
= get_cpu();
3340 int q
= rx_ring
- adapter
->rx_ring
;
3342 if (rx_ring
->cpu
!= cpu
) {
3343 dca_rxctrl
= rd32(E1000_DCA_RXCTRL(q
));
3344 if (hw
->mac
.type
== e1000_82576
) {
3345 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK_82576
;
3346 dca_rxctrl
|= dca_get_tag(cpu
) <<
3347 E1000_DCA_RXCTRL_CPUID_SHIFT
;
3349 dca_rxctrl
&= ~E1000_DCA_RXCTRL_CPUID_MASK
;
3350 dca_rxctrl
|= dca_get_tag(cpu
);
3352 dca_rxctrl
|= E1000_DCA_RXCTRL_DESC_DCA_EN
;
3353 dca_rxctrl
|= E1000_DCA_RXCTRL_HEAD_DCA_EN
;
3354 dca_rxctrl
|= E1000_DCA_RXCTRL_DATA_DCA_EN
;
3355 wr32(E1000_DCA_RXCTRL(q
), dca_rxctrl
);
3361 static void igb_update_tx_dca(struct igb_ring
*tx_ring
)
3364 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3365 struct e1000_hw
*hw
= &adapter
->hw
;
3366 int cpu
= get_cpu();
3367 int q
= tx_ring
- adapter
->tx_ring
;
3369 if (tx_ring
->cpu
!= cpu
) {
3370 dca_txctrl
= rd32(E1000_DCA_TXCTRL(q
));
3371 if (hw
->mac
.type
== e1000_82576
) {
3372 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK_82576
;
3373 dca_txctrl
|= dca_get_tag(cpu
) <<
3374 E1000_DCA_TXCTRL_CPUID_SHIFT
;
3376 dca_txctrl
&= ~E1000_DCA_TXCTRL_CPUID_MASK
;
3377 dca_txctrl
|= dca_get_tag(cpu
);
3379 dca_txctrl
|= E1000_DCA_TXCTRL_DESC_DCA_EN
;
3380 wr32(E1000_DCA_TXCTRL(q
), dca_txctrl
);
3386 static void igb_setup_dca(struct igb_adapter
*adapter
)
3390 if (!(adapter
->flags
& IGB_FLAG_DCA_ENABLED
))
3393 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
3394 adapter
->tx_ring
[i
].cpu
= -1;
3395 igb_update_tx_dca(&adapter
->tx_ring
[i
]);
3397 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
3398 adapter
->rx_ring
[i
].cpu
= -1;
3399 igb_update_rx_dca(&adapter
->rx_ring
[i
]);
3403 static int __igb_notify_dca(struct device
*dev
, void *data
)
3405 struct net_device
*netdev
= dev_get_drvdata(dev
);
3406 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3407 struct e1000_hw
*hw
= &adapter
->hw
;
3408 unsigned long event
= *(unsigned long *)data
;
3410 if (!(adapter
->flags
& IGB_FLAG_HAS_DCA
))
3414 case DCA_PROVIDER_ADD
:
3415 /* if already enabled, don't do it again */
3416 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3418 adapter
->flags
|= IGB_FLAG_DCA_ENABLED
;
3419 /* Always use CB2 mode, difference is masked
3420 * in the CB driver. */
3421 wr32(E1000_DCA_CTRL
, 2);
3422 if (dca_add_requester(dev
) == 0) {
3423 dev_info(&adapter
->pdev
->dev
, "DCA enabled\n");
3424 igb_setup_dca(adapter
);
3427 /* Fall Through since DCA is disabled. */
3428 case DCA_PROVIDER_REMOVE
:
3429 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
) {
3430 /* without this a class_device is left
3431 * hanging around in the sysfs model */
3432 dca_remove_requester(dev
);
3433 dev_info(&adapter
->pdev
->dev
, "DCA disabled\n");
3434 adapter
->flags
&= ~IGB_FLAG_DCA_ENABLED
;
3435 wr32(E1000_DCA_CTRL
, 1);
3443 static int igb_notify_dca(struct notifier_block
*nb
, unsigned long event
,
3448 ret_val
= driver_for_each_device(&igb_driver
.driver
, NULL
, &event
,
3451 return ret_val
? NOTIFY_BAD
: NOTIFY_DONE
;
3453 #endif /* CONFIG_DCA */
3456 * igb_intr_msi - Interrupt Handler
3457 * @irq: interrupt number
3458 * @data: pointer to a network interface device structure
3460 static irqreturn_t
igb_intr_msi(int irq
, void *data
)
3462 struct net_device
*netdev
= data
;
3463 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3464 struct e1000_hw
*hw
= &adapter
->hw
;
3465 /* read ICR disables interrupts using IAM */
3466 u32 icr
= rd32(E1000_ICR
);
3468 igb_write_itr(adapter
->rx_ring
);
3470 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3471 hw
->mac
.get_link_status
= 1;
3472 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3473 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3476 netif_rx_schedule(netdev
, &adapter
->rx_ring
[0].napi
);
3482 * igb_intr - Interrupt Handler
3483 * @irq: interrupt number
3484 * @data: pointer to a network interface device structure
3486 static irqreturn_t
igb_intr(int irq
, void *data
)
3488 struct net_device
*netdev
= data
;
3489 struct igb_adapter
*adapter
= netdev_priv(netdev
);
3490 struct e1000_hw
*hw
= &adapter
->hw
;
3491 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3492 * need for the IMC write */
3493 u32 icr
= rd32(E1000_ICR
);
3496 return IRQ_NONE
; /* Not our interrupt */
3498 igb_write_itr(adapter
->rx_ring
);
3500 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3501 * not set, then the adapter didn't send an interrupt */
3502 if (!(icr
& E1000_ICR_INT_ASSERTED
))
3505 eicr
= rd32(E1000_EICR
);
3507 if (icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
)) {
3508 hw
->mac
.get_link_status
= 1;
3509 /* guard against interrupt when we're going down */
3510 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3511 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
3514 netif_rx_schedule(netdev
, &adapter
->rx_ring
[0].napi
);
3520 * igb_poll - NAPI Rx polling callback
3521 * @napi: napi polling structure
3522 * @budget: count of how many packets we should handle
3524 static int igb_poll(struct napi_struct
*napi
, int budget
)
3526 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3527 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3528 struct net_device
*netdev
= adapter
->netdev
;
3529 int tx_clean_complete
, work_done
= 0;
3531 /* this poll routine only supports one tx and one rx queue */
3533 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3534 igb_update_tx_dca(&adapter
->tx_ring
[0]);
3536 tx_clean_complete
= igb_clean_tx_irq(&adapter
->tx_ring
[0]);
3539 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3540 igb_update_rx_dca(&adapter
->rx_ring
[0]);
3542 igb_clean_rx_irq_adv(&adapter
->rx_ring
[0], &work_done
, budget
);
3544 /* If no Tx and not enough Rx work done, exit the polling mode */
3545 if ((tx_clean_complete
&& (work_done
< budget
)) ||
3546 !netif_running(netdev
)) {
3547 if (adapter
->itr_setting
& 3)
3548 igb_set_itr(adapter
);
3549 netif_rx_complete(netdev
, napi
);
3550 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3551 igb_irq_enable(adapter
);
3558 static int igb_clean_rx_ring_msix(struct napi_struct
*napi
, int budget
)
3560 struct igb_ring
*rx_ring
= container_of(napi
, struct igb_ring
, napi
);
3561 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3562 struct e1000_hw
*hw
= &adapter
->hw
;
3563 struct net_device
*netdev
= adapter
->netdev
;
3566 /* Keep link state information with original netdev */
3567 if (!netif_carrier_ok(netdev
))
3571 if (adapter
->flags
& IGB_FLAG_DCA_ENABLED
)
3572 igb_update_rx_dca(rx_ring
);
3574 igb_clean_rx_irq_adv(rx_ring
, &work_done
, budget
);
3577 /* If not enough Rx work done, exit the polling mode */
3578 if ((work_done
== 0) || !netif_running(netdev
)) {
3580 netif_rx_complete(netdev
, napi
);
3582 if (adapter
->itr_setting
& 3) {
3583 if (adapter
->num_rx_queues
== 1)
3584 igb_set_itr(adapter
);
3586 igb_update_ring_itr(rx_ring
);
3589 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
3590 wr32(E1000_EIMS
, rx_ring
->eims_value
);
3598 static inline u32
get_head(struct igb_ring
*tx_ring
)
3600 void *end
= (struct e1000_tx_desc
*)tx_ring
->desc
+ tx_ring
->count
;
3601 return le32_to_cpu(*(volatile __le32
*)end
);
3605 * igb_clean_tx_irq - Reclaim resources after transmit completes
3606 * @adapter: board private structure
3607 * returns true if ring is completely cleaned
3609 static bool igb_clean_tx_irq(struct igb_ring
*tx_ring
)
3611 struct igb_adapter
*adapter
= tx_ring
->adapter
;
3612 struct e1000_hw
*hw
= &adapter
->hw
;
3613 struct net_device
*netdev
= adapter
->netdev
;
3614 struct e1000_tx_desc
*tx_desc
;
3615 struct igb_buffer
*buffer_info
;
3616 struct sk_buff
*skb
;
3619 unsigned int count
= 0;
3620 bool cleaned
= false;
3622 unsigned int total_bytes
= 0, total_packets
= 0;
3625 head
= get_head(tx_ring
);
3626 i
= tx_ring
->next_to_clean
;
3630 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3631 buffer_info
= &tx_ring
->buffer_info
[i
];
3632 skb
= buffer_info
->skb
;
3635 unsigned int segs
, bytecount
;
3636 /* gso_segs is currently only valid for tcp */
3637 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
3638 /* multiply data chunks by size of headers */
3639 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
3641 total_packets
+= segs
;
3642 total_bytes
+= bytecount
;
3645 igb_unmap_and_free_tx_resource(adapter
, buffer_info
);
3646 tx_desc
->upper
.data
= 0;
3649 if (i
== tx_ring
->count
)
3653 if (count
== IGB_MAX_TX_CLEAN
) {
3660 head
= get_head(tx_ring
);
3661 if (head
== oldhead
)
3666 tx_ring
->next_to_clean
= i
;
3668 if (unlikely(cleaned
&&
3669 netif_carrier_ok(netdev
) &&
3670 IGB_DESC_UNUSED(tx_ring
) >= IGB_TX_QUEUE_WAKE
)) {
3671 /* Make sure that anybody stopping the queue after this
3672 * sees the new next_to_clean.
3675 if (__netif_subqueue_stopped(netdev
, tx_ring
->queue_index
) &&
3676 !(test_bit(__IGB_DOWN
, &adapter
->state
))) {
3677 netif_wake_subqueue(netdev
, tx_ring
->queue_index
);
3678 ++adapter
->restart_queue
;
3682 if (tx_ring
->detect_tx_hung
) {
3683 /* Detect a transmit hang in hardware, this serializes the
3684 * check with the clearing of time_stamp and movement of i */
3685 tx_ring
->detect_tx_hung
= false;
3686 if (tx_ring
->buffer_info
[i
].time_stamp
&&
3687 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
+
3688 (adapter
->tx_timeout_factor
* HZ
))
3689 && !(rd32(E1000_STATUS
) &
3690 E1000_STATUS_TXOFF
)) {
3692 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3693 /* detected Tx unit hang */
3694 dev_err(&adapter
->pdev
->dev
,
3695 "Detected Tx Unit Hang\n"
3699 " next_to_use <%x>\n"
3700 " next_to_clean <%x>\n"
3702 "buffer_info[next_to_clean]\n"
3703 " time_stamp <%lx>\n"
3705 " desc.status <%x>\n",
3706 tx_ring
->queue_index
,
3707 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
3708 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
3709 tx_ring
->next_to_use
,
3710 tx_ring
->next_to_clean
,
3712 tx_ring
->buffer_info
[i
].time_stamp
,
3714 tx_desc
->upper
.fields
.status
);
3715 netif_stop_subqueue(netdev
, tx_ring
->queue_index
);
3718 tx_ring
->total_bytes
+= total_bytes
;
3719 tx_ring
->total_packets
+= total_packets
;
3720 tx_ring
->tx_stats
.bytes
+= total_bytes
;
3721 tx_ring
->tx_stats
.packets
+= total_packets
;
3722 adapter
->net_stats
.tx_bytes
+= total_bytes
;
3723 adapter
->net_stats
.tx_packets
+= total_packets
;
3727 #ifdef CONFIG_IGB_LRO
3729 * igb_get_skb_hdr - helper function for LRO header processing
3730 * @skb: pointer to sk_buff to be added to LRO packet
3731 * @iphdr: pointer to ip header structure
3732 * @tcph: pointer to tcp header structure
3733 * @hdr_flags: pointer to header flags
3734 * @priv: pointer to the receive descriptor for the current sk_buff
3736 static int igb_get_skb_hdr(struct sk_buff
*skb
, void **iphdr
, void **tcph
,
3737 u64
*hdr_flags
, void *priv
)
3739 union e1000_adv_rx_desc
*rx_desc
= priv
;
3740 u16 pkt_type
= rx_desc
->wb
.lower
.lo_dword
.pkt_info
&
3741 (E1000_RXDADV_PKTTYPE_IPV4
| E1000_RXDADV_PKTTYPE_TCP
);
3743 /* Verify that this is a valid IPv4 TCP packet */
3744 if (pkt_type
!= (E1000_RXDADV_PKTTYPE_IPV4
|
3745 E1000_RXDADV_PKTTYPE_TCP
))
3748 /* Set network headers */
3749 skb_reset_network_header(skb
);
3750 skb_set_transport_header(skb
, ip_hdrlen(skb
));
3751 *iphdr
= ip_hdr(skb
);
3752 *tcph
= tcp_hdr(skb
);
3753 *hdr_flags
= LRO_IPV4
| LRO_TCP
;
3758 #endif /* CONFIG_IGB_LRO */
3761 * igb_receive_skb - helper function to handle rx indications
3762 * @ring: pointer to receive ring receving this packet
3763 * @status: descriptor status field as written by hardware
3764 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3765 * @skb: pointer to sk_buff to be indicated to stack
3767 static void igb_receive_skb(struct igb_ring
*ring
, u8 status
,
3768 union e1000_adv_rx_desc
* rx_desc
,
3769 struct sk_buff
*skb
)
3771 struct igb_adapter
* adapter
= ring
->adapter
;
3772 bool vlan_extracted
= (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
));
3774 #ifdef CONFIG_IGB_LRO
3775 if (adapter
->netdev
->features
& NETIF_F_LRO
&&
3776 skb
->ip_summed
== CHECKSUM_UNNECESSARY
) {
3778 lro_vlan_hwaccel_receive_skb(&ring
->lro_mgr
, skb
,
3780 le16_to_cpu(rx_desc
->wb
.upper
.vlan
),
3783 lro_receive_skb(&ring
->lro_mgr
,skb
, rx_desc
);
3788 vlan_hwaccel_receive_skb(skb
, adapter
->vlgrp
,
3789 le16_to_cpu(rx_desc
->wb
.upper
.vlan
));
3792 netif_receive_skb(skb
);
3793 #ifdef CONFIG_IGB_LRO
3799 static inline void igb_rx_checksum_adv(struct igb_adapter
*adapter
,
3800 u32 status_err
, struct sk_buff
*skb
)
3802 skb
->ip_summed
= CHECKSUM_NONE
;
3804 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
3805 if ((status_err
& E1000_RXD_STAT_IXSM
) || !adapter
->rx_csum
)
3807 /* TCP/UDP checksum error bit is set */
3809 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
3810 /* let the stack verify checksum errors */
3811 adapter
->hw_csum_err
++;
3814 /* It must be a TCP or UDP packet with a valid checksum */
3815 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
3816 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3818 adapter
->hw_csum_good
++;
3821 static bool igb_clean_rx_irq_adv(struct igb_ring
*rx_ring
,
3822 int *work_done
, int budget
)
3824 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3825 struct net_device
*netdev
= adapter
->netdev
;
3826 struct pci_dev
*pdev
= adapter
->pdev
;
3827 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
3828 struct igb_buffer
*buffer_info
, *next_buffer
;
3829 struct sk_buff
*skb
;
3831 u32 length
, hlen
, staterr
;
3832 bool cleaned
= false;
3833 int cleaned_count
= 0;
3834 unsigned int total_bytes
= 0, total_packets
= 0;
3836 i
= rx_ring
->next_to_clean
;
3837 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3838 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3840 while (staterr
& E1000_RXD_STAT_DD
) {
3841 if (*work_done
>= budget
)
3844 buffer_info
= &rx_ring
->buffer_info
[i
];
3846 /* HW will not DMA in data larger than the given buffer, even
3847 * if it parses the (NFS, of course) header to be larger. In
3848 * that case, it fills the header buffer and spills the rest
3851 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hdr_info
) &
3852 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
3853 if (hlen
> adapter
->rx_ps_hdr_size
)
3854 hlen
= adapter
->rx_ps_hdr_size
;
3856 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
3860 skb
= buffer_info
->skb
;
3861 prefetch(skb
->data
- NET_IP_ALIGN
);
3862 buffer_info
->skb
= NULL
;
3863 if (!adapter
->rx_ps_hdr_size
) {
3864 pci_unmap_single(pdev
, buffer_info
->dma
,
3865 adapter
->rx_buffer_len
+
3867 PCI_DMA_FROMDEVICE
);
3868 skb_put(skb
, length
);
3872 if (!skb_shinfo(skb
)->nr_frags
) {
3873 pci_unmap_single(pdev
, buffer_info
->dma
,
3874 adapter
->rx_ps_hdr_size
+
3876 PCI_DMA_FROMDEVICE
);
3881 pci_unmap_page(pdev
, buffer_info
->page_dma
,
3882 PAGE_SIZE
/ 2, PCI_DMA_FROMDEVICE
);
3883 buffer_info
->page_dma
= 0;
3885 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
++,
3887 buffer_info
->page_offset
,
3890 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
3891 (page_count(buffer_info
->page
) != 1))
3892 buffer_info
->page
= NULL
;
3894 get_page(buffer_info
->page
);
3897 skb
->data_len
+= length
;
3899 skb
->truesize
+= length
;
3903 if (i
== rx_ring
->count
)
3905 next_rxd
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3907 next_buffer
= &rx_ring
->buffer_info
[i
];
3909 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
3910 buffer_info
->skb
= xchg(&next_buffer
->skb
, skb
);
3911 buffer_info
->dma
= xchg(&next_buffer
->dma
, 0);
3915 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
3916 dev_kfree_skb_irq(skb
);
3920 total_bytes
+= skb
->len
;
3923 igb_rx_checksum_adv(adapter
, staterr
, skb
);
3925 skb
->protocol
= eth_type_trans(skb
, netdev
);
3927 igb_receive_skb(rx_ring
, staterr
, rx_desc
, skb
);
3929 netdev
->last_rx
= jiffies
;
3932 rx_desc
->wb
.upper
.status_error
= 0;
3934 /* return some buffers to hardware, one at a time is too slow */
3935 if (cleaned_count
>= IGB_RX_BUFFER_WRITE
) {
3936 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
3940 /* use prefetched values */
3942 buffer_info
= next_buffer
;
3944 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
3947 rx_ring
->next_to_clean
= i
;
3948 cleaned_count
= IGB_DESC_UNUSED(rx_ring
);
3950 #ifdef CONFIG_IGB_LRO
3951 if (rx_ring
->lro_used
) {
3952 lro_flush_all(&rx_ring
->lro_mgr
);
3953 rx_ring
->lro_used
= 0;
3958 igb_alloc_rx_buffers_adv(rx_ring
, cleaned_count
);
3960 rx_ring
->total_packets
+= total_packets
;
3961 rx_ring
->total_bytes
+= total_bytes
;
3962 rx_ring
->rx_stats
.packets
+= total_packets
;
3963 rx_ring
->rx_stats
.bytes
+= total_bytes
;
3964 adapter
->net_stats
.rx_bytes
+= total_bytes
;
3965 adapter
->net_stats
.rx_packets
+= total_packets
;
3971 * igb_alloc_rx_buffers_adv - Replace used receive buffers; packet split
3972 * @adapter: address of board private structure
3974 static void igb_alloc_rx_buffers_adv(struct igb_ring
*rx_ring
,
3977 struct igb_adapter
*adapter
= rx_ring
->adapter
;
3978 struct net_device
*netdev
= adapter
->netdev
;
3979 struct pci_dev
*pdev
= adapter
->pdev
;
3980 union e1000_adv_rx_desc
*rx_desc
;
3981 struct igb_buffer
*buffer_info
;
3982 struct sk_buff
*skb
;
3985 i
= rx_ring
->next_to_use
;
3986 buffer_info
= &rx_ring
->buffer_info
[i
];
3988 while (cleaned_count
--) {
3989 rx_desc
= E1000_RX_DESC_ADV(*rx_ring
, i
);
3991 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
3992 if (!buffer_info
->page
) {
3993 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
3994 if (!buffer_info
->page
) {
3995 adapter
->alloc_rx_buff_failed
++;
3998 buffer_info
->page_offset
= 0;
4000 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
4002 buffer_info
->page_dma
=
4005 buffer_info
->page_offset
,
4007 PCI_DMA_FROMDEVICE
);
4010 if (!buffer_info
->skb
) {
4013 if (adapter
->rx_ps_hdr_size
)
4014 bufsz
= adapter
->rx_ps_hdr_size
;
4016 bufsz
= adapter
->rx_buffer_len
;
4017 bufsz
+= NET_IP_ALIGN
;
4018 skb
= netdev_alloc_skb(netdev
, bufsz
);
4021 adapter
->alloc_rx_buff_failed
++;
4025 /* Make buffer alignment 2 beyond a 16 byte boundary
4026 * this will result in a 16 byte aligned IP header after
4027 * the 14 byte MAC header is removed
4029 skb_reserve(skb
, NET_IP_ALIGN
);
4031 buffer_info
->skb
= skb
;
4032 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
4034 PCI_DMA_FROMDEVICE
);
4037 /* Refresh the desc even if buffer_addrs didn't change because
4038 * each write-back erases this info. */
4039 if (adapter
->rx_ps_hdr_size
) {
4040 rx_desc
->read
.pkt_addr
=
4041 cpu_to_le64(buffer_info
->page_dma
);
4042 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
4044 rx_desc
->read
.pkt_addr
=
4045 cpu_to_le64(buffer_info
->dma
);
4046 rx_desc
->read
.hdr_addr
= 0;
4050 if (i
== rx_ring
->count
)
4052 buffer_info
= &rx_ring
->buffer_info
[i
];
4056 if (rx_ring
->next_to_use
!= i
) {
4057 rx_ring
->next_to_use
= i
;
4059 i
= (rx_ring
->count
- 1);
4063 /* Force memory writes to complete before letting h/w
4064 * know there are new descriptors to fetch. (Only
4065 * applicable for weak-ordered memory model archs,
4066 * such as IA-64). */
4068 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
4078 static int igb_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4080 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4081 struct mii_ioctl_data
*data
= if_mii(ifr
);
4083 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
4088 data
->phy_id
= adapter
->hw
.phy
.addr
;
4091 if (!capable(CAP_NET_ADMIN
))
4093 if (adapter
->hw
.phy
.ops
.read_phy_reg(&adapter
->hw
,
4095 & 0x1F, &data
->val_out
))
4111 static int igb_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4117 return igb_mii_ioctl(netdev
, ifr
, cmd
);
4123 static void igb_vlan_rx_register(struct net_device
*netdev
,
4124 struct vlan_group
*grp
)
4126 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4127 struct e1000_hw
*hw
= &adapter
->hw
;
4130 igb_irq_disable(adapter
);
4131 adapter
->vlgrp
= grp
;
4134 /* enable VLAN tag insert/strip */
4135 ctrl
= rd32(E1000_CTRL
);
4136 ctrl
|= E1000_CTRL_VME
;
4137 wr32(E1000_CTRL
, ctrl
);
4139 /* enable VLAN receive filtering */
4140 rctl
= rd32(E1000_RCTL
);
4141 rctl
&= ~E1000_RCTL_CFIEN
;
4142 wr32(E1000_RCTL
, rctl
);
4143 igb_update_mng_vlan(adapter
);
4145 adapter
->max_frame_size
+ VLAN_TAG_SIZE
);
4147 /* disable VLAN tag insert/strip */
4148 ctrl
= rd32(E1000_CTRL
);
4149 ctrl
&= ~E1000_CTRL_VME
;
4150 wr32(E1000_CTRL
, ctrl
);
4152 if (adapter
->mng_vlan_id
!= (u16
)IGB_MNG_VLAN_NONE
) {
4153 igb_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
4154 adapter
->mng_vlan_id
= IGB_MNG_VLAN_NONE
;
4157 adapter
->max_frame_size
);
4160 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4161 igb_irq_enable(adapter
);
4164 static void igb_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4166 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4167 struct e1000_hw
*hw
= &adapter
->hw
;
4170 if ((adapter
->hw
.mng_cookie
.status
&
4171 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
4172 (vid
== adapter
->mng_vlan_id
))
4174 /* add VID to filter table */
4175 index
= (vid
>> 5) & 0x7F;
4176 vfta
= array_rd32(E1000_VFTA
, index
);
4177 vfta
|= (1 << (vid
& 0x1F));
4178 igb_write_vfta(&adapter
->hw
, index
, vfta
);
4181 static void igb_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4183 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4184 struct e1000_hw
*hw
= &adapter
->hw
;
4187 igb_irq_disable(adapter
);
4188 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
4190 if (!test_bit(__IGB_DOWN
, &adapter
->state
))
4191 igb_irq_enable(adapter
);
4193 if ((adapter
->hw
.mng_cookie
.status
&
4194 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
4195 (vid
== adapter
->mng_vlan_id
)) {
4196 /* release control to f/w */
4197 igb_release_hw_control(adapter
);
4201 /* remove VID from filter table */
4202 index
= (vid
>> 5) & 0x7F;
4203 vfta
= array_rd32(E1000_VFTA
, index
);
4204 vfta
&= ~(1 << (vid
& 0x1F));
4205 igb_write_vfta(&adapter
->hw
, index
, vfta
);
4208 static void igb_restore_vlan(struct igb_adapter
*adapter
)
4210 igb_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
4212 if (adapter
->vlgrp
) {
4214 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
4215 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
4217 igb_vlan_rx_add_vid(adapter
->netdev
, vid
);
4222 int igb_set_spd_dplx(struct igb_adapter
*adapter
, u16 spddplx
)
4224 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4228 /* Fiber NICs only allow 1000 gbps Full duplex */
4229 if ((adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
) &&
4230 spddplx
!= (SPEED_1000
+ DUPLEX_FULL
)) {
4231 dev_err(&adapter
->pdev
->dev
,
4232 "Unsupported Speed/Duplex configuration\n");
4237 case SPEED_10
+ DUPLEX_HALF
:
4238 mac
->forced_speed_duplex
= ADVERTISE_10_HALF
;
4240 case SPEED_10
+ DUPLEX_FULL
:
4241 mac
->forced_speed_duplex
= ADVERTISE_10_FULL
;
4243 case SPEED_100
+ DUPLEX_HALF
:
4244 mac
->forced_speed_duplex
= ADVERTISE_100_HALF
;
4246 case SPEED_100
+ DUPLEX_FULL
:
4247 mac
->forced_speed_duplex
= ADVERTISE_100_FULL
;
4249 case SPEED_1000
+ DUPLEX_FULL
:
4251 adapter
->hw
.phy
.autoneg_advertised
= ADVERTISE_1000_FULL
;
4253 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4255 dev_err(&adapter
->pdev
->dev
,
4256 "Unsupported Speed/Duplex configuration\n");
4263 static int igb_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4265 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4266 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4267 struct e1000_hw
*hw
= &adapter
->hw
;
4268 u32 ctrl
, rctl
, status
;
4269 u32 wufc
= adapter
->wol
;
4274 netif_device_detach(netdev
);
4276 if (netif_running(netdev
))
4279 igb_reset_interrupt_capability(adapter
);
4281 igb_free_queues(adapter
);
4284 retval
= pci_save_state(pdev
);
4289 status
= rd32(E1000_STATUS
);
4290 if (status
& E1000_STATUS_LU
)
4291 wufc
&= ~E1000_WUFC_LNKC
;
4294 igb_setup_rctl(adapter
);
4295 igb_set_multi(netdev
);
4297 /* turn on all-multi mode if wake on multicast is enabled */
4298 if (wufc
& E1000_WUFC_MC
) {
4299 rctl
= rd32(E1000_RCTL
);
4300 rctl
|= E1000_RCTL_MPE
;
4301 wr32(E1000_RCTL
, rctl
);
4304 ctrl
= rd32(E1000_CTRL
);
4305 /* advertise wake from D3Cold */
4306 #define E1000_CTRL_ADVD3WUC 0x00100000
4307 /* phy power management enable */
4308 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4309 ctrl
|= E1000_CTRL_ADVD3WUC
;
4310 wr32(E1000_CTRL
, ctrl
);
4312 /* Allow time for pending master requests to run */
4313 igb_disable_pcie_master(&adapter
->hw
);
4315 wr32(E1000_WUC
, E1000_WUC_PME_EN
);
4316 wr32(E1000_WUFC
, wufc
);
4319 wr32(E1000_WUFC
, 0);
4322 /* make sure adapter isn't asleep if manageability/wol is enabled */
4323 if (wufc
|| adapter
->en_mng_pt
) {
4324 pci_enable_wake(pdev
, PCI_D3hot
, 1);
4325 pci_enable_wake(pdev
, PCI_D3cold
, 1);
4327 igb_shutdown_fiber_serdes_link_82575(hw
);
4328 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4329 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4332 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4333 * would have already happened in close and is redundant. */
4334 igb_release_hw_control(adapter
);
4336 pci_disable_device(pdev
);
4338 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
4344 static int igb_resume(struct pci_dev
*pdev
)
4346 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4347 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4348 struct e1000_hw
*hw
= &adapter
->hw
;
4351 pci_set_power_state(pdev
, PCI_D0
);
4352 pci_restore_state(pdev
);
4354 if (adapter
->need_ioport
)
4355 err
= pci_enable_device(pdev
);
4357 err
= pci_enable_device_mem(pdev
);
4360 "igb: Cannot enable PCI device from suspend\n");
4363 pci_set_master(pdev
);
4365 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4366 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4368 igb_set_interrupt_capability(adapter
);
4370 if (igb_alloc_queues(adapter
)) {
4371 dev_err(&pdev
->dev
, "Unable to allocate memory for queues\n");
4375 /* e1000_power_up_phy(adapter); */
4378 wr32(E1000_WUS
, ~0);
4380 if (netif_running(netdev
)) {
4381 err
= igb_open(netdev
);
4386 netif_device_attach(netdev
);
4388 /* let the f/w know that the h/w is now under the control of the
4390 igb_get_hw_control(adapter
);
4396 static void igb_shutdown(struct pci_dev
*pdev
)
4398 igb_suspend(pdev
, PMSG_SUSPEND
);
4401 #ifdef CONFIG_NET_POLL_CONTROLLER
4403 * Polling 'interrupt' - used by things like netconsole to send skbs
4404 * without having to re-enable interrupts. It's not called while
4405 * the interrupt routine is executing.
4407 static void igb_netpoll(struct net_device
*netdev
)
4409 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4413 igb_irq_disable(adapter
);
4414 adapter
->flags
|= IGB_FLAG_IN_NETPOLL
;
4416 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
4417 igb_clean_tx_irq(&adapter
->tx_ring
[i
]);
4419 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
4420 igb_clean_rx_irq_adv(&adapter
->rx_ring
[i
],
4422 adapter
->rx_ring
[i
].napi
.weight
);
4424 adapter
->flags
&= ~IGB_FLAG_IN_NETPOLL
;
4425 igb_irq_enable(adapter
);
4427 #endif /* CONFIG_NET_POLL_CONTROLLER */
4430 * igb_io_error_detected - called when PCI error is detected
4431 * @pdev: Pointer to PCI device
4432 * @state: The current pci connection state
4434 * This function is called after a PCI bus error affecting
4435 * this device has been detected.
4437 static pci_ers_result_t
igb_io_error_detected(struct pci_dev
*pdev
,
4438 pci_channel_state_t state
)
4440 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4441 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4443 netif_device_detach(netdev
);
4445 if (netif_running(netdev
))
4447 pci_disable_device(pdev
);
4449 /* Request a slot slot reset. */
4450 return PCI_ERS_RESULT_NEED_RESET
;
4454 * igb_io_slot_reset - called after the pci bus has been reset.
4455 * @pdev: Pointer to PCI device
4457 * Restart the card from scratch, as if from a cold-boot. Implementation
4458 * resembles the first-half of the igb_resume routine.
4460 static pci_ers_result_t
igb_io_slot_reset(struct pci_dev
*pdev
)
4462 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4463 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4464 struct e1000_hw
*hw
= &adapter
->hw
;
4467 if (adapter
->need_ioport
)
4468 err
= pci_enable_device(pdev
);
4470 err
= pci_enable_device_mem(pdev
);
4473 "Cannot re-enable PCI device after reset.\n");
4474 return PCI_ERS_RESULT_DISCONNECT
;
4476 pci_set_master(pdev
);
4477 pci_restore_state(pdev
);
4479 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4480 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4483 wr32(E1000_WUS
, ~0);
4485 return PCI_ERS_RESULT_RECOVERED
;
4489 * igb_io_resume - called when traffic can start flowing again.
4490 * @pdev: Pointer to PCI device
4492 * This callback is called when the error recovery driver tells us that
4493 * its OK to resume normal operation. Implementation resembles the
4494 * second-half of the igb_resume routine.
4496 static void igb_io_resume(struct pci_dev
*pdev
)
4498 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4499 struct igb_adapter
*adapter
= netdev_priv(netdev
);
4501 if (netif_running(netdev
)) {
4502 if (igb_up(adapter
)) {
4503 dev_err(&pdev
->dev
, "igb_up failed after reset\n");
4508 netif_device_attach(netdev
);
4510 /* let the f/w know that the h/w is now under the control of the
4512 igb_get_hw_control(adapter
);