wl12xx: add driver
[linux-2.6/mini2440.git] / drivers / net / wireless / wl12xx / spi.c
blobabdf171a47e738613fc1779bae3a512d60c7f415
1 /*
2 * This file is part of wl12xx
4 * Copyright (C) 2008 Nokia Corporation
6 * Contact: Kalle Valo <kalle.valo@nokia.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * version 2 as published by the Free Software Foundation.
12 * This program is distributed in the hope that it will be useful, but
13 * WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
20 * 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/crc7.h>
26 #include <linux/spi/spi.h>
28 #include "wl12xx.h"
29 #include "wl12xx_80211.h"
30 #include "reg.h"
31 #include "spi.h"
32 #include "ps.h"
34 static int wl12xx_translate_reg_addr(struct wl12xx *wl, int addr)
36 /* If the address is lower than REGISTERS_BASE, it means that this is
37 * a chip-specific register address, so look it up in the registers
38 * table */
39 if (addr < REGISTERS_BASE) {
40 /* Make sure we don't go over the table */
41 if (addr >= ACX_REG_TABLE_LEN) {
42 wl12xx_error("address out of range (%d)", addr);
43 return -EINVAL;
45 addr = wl->chip.acx_reg_table[addr];
48 return addr - wl->physical_reg_addr + wl->virtual_reg_addr;
51 static int wl12xx_translate_mem_addr(struct wl12xx *wl, int addr)
53 return addr - wl->physical_mem_addr + wl->virtual_mem_addr;
57 void wl12xx_spi_reset(struct wl12xx *wl)
59 u8 *cmd;
60 struct spi_transfer t;
61 struct spi_message m;
63 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
64 if (!cmd) {
65 wl12xx_error("could not allocate cmd for spi reset");
66 return;
69 memset(&t, 0, sizeof(t));
70 spi_message_init(&m);
72 memset(cmd, 0xff, WSPI_INIT_CMD_LEN);
74 t.tx_buf = cmd;
75 t.len = WSPI_INIT_CMD_LEN;
76 spi_message_add_tail(&t, &m);
78 spi_sync(wl->spi, &m);
80 wl12xx_dump(DEBUG_SPI, "spi reset -> ", cmd, WSPI_INIT_CMD_LEN);
83 void wl12xx_spi_init(struct wl12xx *wl)
85 u8 crc[WSPI_INIT_CMD_CRC_LEN], *cmd;
86 struct spi_transfer t;
87 struct spi_message m;
89 cmd = kzalloc(WSPI_INIT_CMD_LEN, GFP_KERNEL);
90 if (!cmd) {
91 wl12xx_error("could not allocate cmd for spi init");
92 return;
95 memset(crc, 0, sizeof(crc));
96 memset(&t, 0, sizeof(t));
97 spi_message_init(&m);
100 * Set WSPI_INIT_COMMAND
101 * the data is being send from the MSB to LSB
103 cmd[2] = 0xff;
104 cmd[3] = 0xff;
105 cmd[1] = WSPI_INIT_CMD_START | WSPI_INIT_CMD_TX;
106 cmd[0] = 0;
107 cmd[7] = 0;
108 cmd[6] |= HW_ACCESS_WSPI_INIT_CMD_MASK << 3;
109 cmd[6] |= HW_ACCESS_WSPI_FIXED_BUSY_LEN & WSPI_INIT_CMD_FIXEDBUSY_LEN;
111 if (HW_ACCESS_WSPI_FIXED_BUSY_LEN == 0)
112 cmd[5] |= WSPI_INIT_CMD_DIS_FIXEDBUSY;
113 else
114 cmd[5] |= WSPI_INIT_CMD_EN_FIXEDBUSY;
116 cmd[5] |= WSPI_INIT_CMD_IOD | WSPI_INIT_CMD_IP | WSPI_INIT_CMD_CS
117 | WSPI_INIT_CMD_WSPI | WSPI_INIT_CMD_WS;
119 crc[0] = cmd[1];
120 crc[1] = cmd[0];
121 crc[2] = cmd[7];
122 crc[3] = cmd[6];
123 crc[4] = cmd[5];
125 cmd[4] |= crc7(0, crc, WSPI_INIT_CMD_CRC_LEN) << 1;
126 cmd[4] |= WSPI_INIT_CMD_END;
128 t.tx_buf = cmd;
129 t.len = WSPI_INIT_CMD_LEN;
130 spi_message_add_tail(&t, &m);
132 spi_sync(wl->spi, &m);
134 wl12xx_dump(DEBUG_SPI, "spi init -> ", cmd, WSPI_INIT_CMD_LEN);
137 /* Set the SPI partitions to access the chip addresses
139 * There are two VIRTUAL (SPI) partitions (the memory partition and the
140 * registers partition), which are mapped to two different areas of the
141 * PHYSICAL (hardware) memory. This function also makes other checks to
142 * ensure that the partitions are not overlapping. In the diagram below, the
143 * memory partition comes before the register partition, but the opposite is
144 * also supported.
146 * PHYSICAL address
147 * space
149 * | |
150 * ...+----+--> mem_start
151 * VIRTUAL address ... | |
152 * space ... | | [PART_0]
153 * ... | |
154 * 0x00000000 <--+----+... ...+----+--> mem_start + mem_size
155 * | | ... | |
156 * |MEM | ... | |
157 * | | ... | |
158 * part_size <--+----+... | | {unused area)
159 * | | ... | |
160 * |REG | ... | |
161 * part_size | | ... | |
162 * + <--+----+... ...+----+--> reg_start
163 * reg_size ... | |
164 * ... | | [PART_1]
165 * ... | |
166 * ...+----+--> reg_start + reg_size
167 * | |
170 void wl12xx_set_partition(struct wl12xx *wl,
171 u32 mem_start, u32 mem_size,
172 u32 reg_start, u32 reg_size)
174 u8 tx_buf[sizeof(u32) + 2 * sizeof(struct wl12xx_partition)];
175 struct wl12xx_partition *partition;
176 struct spi_transfer t;
177 struct spi_message m;
178 u32 *cmd;
179 size_t len;
180 int addr;
182 spi_message_init(&m);
183 memset(&t, 0, sizeof(t));
184 memset(tx_buf, 0, sizeof(tx_buf));
186 cmd = (u32 *) tx_buf;
187 partition = (struct wl12xx_partition *) (tx_buf + sizeof(u32));
188 addr = HW_ACCESS_PART0_SIZE_ADDR;
189 len = 2 * sizeof(struct wl12xx_partition);
191 *cmd |= WSPI_CMD_WRITE;
192 *cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
193 *cmd |= addr & WSPI_CMD_BYTE_ADDR;
195 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
196 mem_start, mem_size);
197 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
198 reg_start, reg_size);
200 /* Make sure that the two partitions together don't exceed the
201 * address range */
202 if ((mem_size + reg_size) > HW_ACCESS_MEMORY_MAX_RANGE) {
203 wl12xx_debug(DEBUG_SPI, "Total size exceeds maximum virtual"
204 " address range. Truncating partition[0].");
205 mem_size = HW_ACCESS_MEMORY_MAX_RANGE - reg_size;
206 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
207 mem_start, mem_size);
208 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
209 reg_start, reg_size);
212 if ((mem_start < reg_start) &&
213 ((mem_start + mem_size) > reg_start)) {
214 /* Guarantee that the memory partition doesn't overlap the
215 * registers partition */
216 wl12xx_debug(DEBUG_SPI, "End of partition[0] is "
217 "overlapping partition[1]. Adjusted.");
218 mem_size = reg_start - mem_start;
219 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
220 mem_start, mem_size);
221 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
222 reg_start, reg_size);
223 } else if ((reg_start < mem_start) &&
224 ((reg_start + reg_size) > mem_start)) {
225 /* Guarantee that the register partition doesn't overlap the
226 * memory partition */
227 wl12xx_debug(DEBUG_SPI, "End of partition[1] is"
228 " overlapping partition[0]. Adjusted.");
229 reg_size = mem_start - reg_start;
230 wl12xx_debug(DEBUG_SPI, "mem_start %08X mem_size %08X",
231 mem_start, mem_size);
232 wl12xx_debug(DEBUG_SPI, "reg_start %08X reg_size %08X",
233 reg_start, reg_size);
236 partition[0].start = mem_start;
237 partition[0].size = mem_size;
238 partition[1].start = reg_start;
239 partition[1].size = reg_size;
241 wl->physical_mem_addr = mem_start;
242 wl->physical_reg_addr = reg_start;
244 wl->virtual_mem_addr = 0;
245 wl->virtual_reg_addr = mem_size;
247 t.tx_buf = tx_buf;
248 t.len = sizeof(tx_buf);
249 spi_message_add_tail(&t, &m);
251 spi_sync(wl->spi, &m);
254 void wl12xx_spi_read(struct wl12xx *wl, int addr, void *buf,
255 size_t len)
257 struct spi_transfer t[3];
258 struct spi_message m;
259 char busy_buf[TNETWIF_READ_OFFSET_BYTES];
260 u32 cmd;
262 cmd = 0;
263 cmd |= WSPI_CMD_READ;
264 cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
265 cmd |= addr & WSPI_CMD_BYTE_ADDR;
267 spi_message_init(&m);
268 memset(t, 0, sizeof(t));
270 t[0].tx_buf = &cmd;
271 t[0].len = 4;
272 spi_message_add_tail(&t[0], &m);
274 /* Busy and non busy words read */
275 t[1].rx_buf = busy_buf;
276 t[1].len = TNETWIF_READ_OFFSET_BYTES;
277 spi_message_add_tail(&t[1], &m);
279 t[2].rx_buf = buf;
280 t[2].len = len;
281 spi_message_add_tail(&t[2], &m);
283 spi_sync(wl->spi, &m);
285 /* FIXME: check busy words */
287 wl12xx_dump(DEBUG_SPI, "spi_read cmd -> ", &cmd, sizeof(cmd));
288 wl12xx_dump(DEBUG_SPI, "spi_read buf <- ", buf, len);
291 void wl12xx_spi_write(struct wl12xx *wl, int addr, void *buf,
292 size_t len)
294 struct spi_transfer t[2];
295 struct spi_message m;
296 u32 cmd;
298 cmd = 0;
299 cmd |= WSPI_CMD_WRITE;
300 cmd |= (len << WSPI_CMD_BYTE_LENGTH_OFFSET) & WSPI_CMD_BYTE_LENGTH;
301 cmd |= addr & WSPI_CMD_BYTE_ADDR;
303 spi_message_init(&m);
304 memset(t, 0, sizeof(t));
306 t[0].tx_buf = &cmd;
307 t[0].len = sizeof(cmd);
308 spi_message_add_tail(&t[0], &m);
310 t[1].tx_buf = buf;
311 t[1].len = len;
312 spi_message_add_tail(&t[1], &m);
314 spi_sync(wl->spi, &m);
316 wl12xx_dump(DEBUG_SPI, "spi_write cmd -> ", &cmd, sizeof(cmd));
317 wl12xx_dump(DEBUG_SPI, "spi_write buf -> ", buf, len);
320 void wl12xx_spi_mem_read(struct wl12xx *wl, int addr, void *buf,
321 size_t len)
323 int physical;
325 physical = wl12xx_translate_mem_addr(wl, addr);
327 wl12xx_spi_read(wl, physical, buf, len);
330 void wl12xx_spi_mem_write(struct wl12xx *wl, int addr, void *buf,
331 size_t len)
333 int physical;
335 physical = wl12xx_translate_mem_addr(wl, addr);
337 wl12xx_spi_write(wl, physical, buf, len);
340 u32 wl12xx_mem_read32(struct wl12xx *wl, int addr)
342 return wl12xx_read32(wl, wl12xx_translate_mem_addr(wl, addr));
345 void wl12xx_mem_write32(struct wl12xx *wl, int addr, u32 val)
347 wl12xx_write32(wl, wl12xx_translate_mem_addr(wl, addr), val);
350 u32 wl12xx_reg_read32(struct wl12xx *wl, int addr)
352 return wl12xx_read32(wl, wl12xx_translate_reg_addr(wl, addr));
355 void wl12xx_reg_write32(struct wl12xx *wl, int addr, u32 val)
357 wl12xx_write32(wl, wl12xx_translate_reg_addr(wl, addr), val);