2 ** -----------------------------------------------------------------------------
4 ** Perle Specialix driver for Linux
5 ** Ported from existing RIO Driver for SCO sources.
7 * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 ** Last Modified : 11/6/98 10:33:36
26 ** Retrieved : 11/6/98 10:33:48
28 ** ident @(#)rioboot.c 1.3
30 ** -----------------------------------------------------------------------------
33 #include <linux/module.h>
34 #include <linux/slab.h>
35 #include <linux/termios.h>
36 #include <linux/serial.h>
37 #include <linux/vmalloc.h>
38 #include <asm/semaphore.h>
39 #include <linux/generic_serial.h>
40 #include <linux/errno.h>
41 #include <linux/interrupt.h>
42 #include <linux/delay.h>
44 #include <asm/system.h>
45 #include <asm/string.h>
46 #include <asm/uaccess.h>
49 #include "linux_compat.h"
50 #include "rio_linux.h"
74 static int RIOBootComplete(struct rio_info
*p
, struct Host
*HostP
, unsigned int Rup
, struct PktCmd __iomem
*PktCmdP
);
76 static const unsigned char RIOAtVec2Ctrl
[] = {
77 /* 0 */ INTERRUPT_DISABLE
,
78 /* 1 */ INTERRUPT_DISABLE
,
79 /* 2 */ INTERRUPT_DISABLE
,
80 /* 3 */ INTERRUPT_DISABLE
,
81 /* 4 */ INTERRUPT_DISABLE
,
82 /* 5 */ INTERRUPT_DISABLE
,
83 /* 6 */ INTERRUPT_DISABLE
,
84 /* 7 */ INTERRUPT_DISABLE
,
85 /* 8 */ INTERRUPT_DISABLE
,
86 /* 9 */ IRQ_9
| INTERRUPT_ENABLE
,
87 /* 10 */ INTERRUPT_DISABLE
,
88 /* 11 */ IRQ_11
| INTERRUPT_ENABLE
,
89 /* 12 */ IRQ_12
| INTERRUPT_ENABLE
,
90 /* 13 */ INTERRUPT_DISABLE
,
91 /* 14 */ INTERRUPT_DISABLE
,
92 /* 15 */ IRQ_15
| INTERRUPT_ENABLE
96 * RIOBootCodeRTA - Load RTA boot code
98 * @rbp: Download descriptor
100 * Called when the user process initiates booting of the card firmware.
104 int RIOBootCodeRTA(struct rio_info
*p
, struct DownLoad
* rbp
)
110 rio_dprintk(RIO_DEBUG_BOOT
, "Data at user address %p\n", rbp
->DataP
);
113 ** Check that we have set asside enough memory for this
115 if (rbp
->Count
> SIXTY_FOUR_K
) {
116 rio_dprintk(RIO_DEBUG_BOOT
, "RTA Boot Code Too Large!\n");
117 p
->RIOError
.Error
= HOST_FILE_TOO_LARGE
;
123 rio_dprintk(RIO_DEBUG_BOOT
, "RTA Boot Code : BUSY BUSY BUSY!\n");
124 p
->RIOError
.Error
= BOOT_IN_PROGRESS
;
130 ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary,
131 ** so calculate how far we have to move the data up the buffer
134 offset
= (RTA_BOOT_DATA_SIZE
- (rbp
->Count
% RTA_BOOT_DATA_SIZE
)) % RTA_BOOT_DATA_SIZE
;
137 ** Be clean, and clear the 'unused' portion of the boot buffer,
138 ** because it will (eventually) be part of the Rta run time environment
139 ** and so should be zeroed.
141 memset(p
->RIOBootPackets
, 0, offset
);
144 ** Copy the data from user space into the array
147 if (copy_from_user(((u8
*)p
->RIOBootPackets
) + offset
, rbp
->DataP
, rbp
->Count
)) {
148 rio_dprintk(RIO_DEBUG_BOOT
, "Bad data copy from user space\n");
149 p
->RIOError
.Error
= COPYIN_FAILED
;
155 ** Make sure that our copy of the size includes that offset we discussed
158 p
->RIONumBootPkts
= (rbp
->Count
+ offset
) / RTA_BOOT_DATA_SIZE
;
159 p
->RIOBootCount
= rbp
->Count
;
166 * rio_start_card_running - host card start
167 * @HostP: The RIO to kick off
169 * Start a RIO processor unit running. Encapsulates the knowledge
173 void rio_start_card_running(struct Host
*HostP
)
175 switch (HostP
->Type
) {
177 rio_dprintk(RIO_DEBUG_BOOT
, "Start ISA card running\n");
178 writeb(BOOT_FROM_RAM
| EXTERNAL_BUS_ON
| HostP
->Mode
| RIOAtVec2Ctrl
[HostP
->Ivec
& 0xF], &HostP
->Control
);
182 ** PCI is much the same as MCA. Everything is once again memory
183 ** mapped, so we are writing to memory registers instead of io
186 rio_dprintk(RIO_DEBUG_BOOT
, "Start PCI card running\n");
187 writeb(PCITpBootFromRam
| PCITpBusEnable
| HostP
->Mode
, &HostP
->Control
);
190 rio_dprintk(RIO_DEBUG_BOOT
, "Unknown host type %d\n", HostP
->Type
);
197 ** Load in the host boot code - load it directly onto all halted hosts
198 ** of the correct type.
200 ** Put your rubber pants on before messing with this code - even the magic
201 ** numbers have trouble understanding what they are doing here.
204 int RIOBootCodeHOST(struct rio_info
*p
, struct DownLoad
*rbp
)
208 PARM_MAP __iomem
*ParmMapP
;
216 u16 offset
; /* It is very important that this is a u16 */
220 HostP
= NULL
; /* Assure the compiler we've initialized it */
224 for (host
= 0; host
< p
->RIONumHosts
; host
++) {
225 rio_dprintk(RIO_DEBUG_BOOT
, "Attempt to boot host %d\n", host
);
226 HostP
= &p
->RIOHosts
[host
];
228 rio_dprintk(RIO_DEBUG_BOOT
, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP
->Type
, HostP
->Mode
, HostP
->Ivec
);
230 /* Don't boot hosts already running */
231 if ((HostP
->Flags
& RUN_STATE
) != RC_WAITING
) {
232 rio_dprintk(RIO_DEBUG_BOOT
, "%s %d already running\n", "Host", host
);
237 ** Grab a pointer to the card (ioremapped)
242 ** We are going to (try) and load in rbp->Count bytes.
243 ** The last byte will reside at p->RIOConf.HostLoadBase-1;
244 ** Therefore, we need to start copying at address
245 ** (caddr+p->RIOConf.HostLoadBase-rbp->Count)
247 StartP
= &Cad
[p
->RIOConf
.HostLoadBase
- rbp
->Count
];
249 rio_dprintk(RIO_DEBUG_BOOT
, "kernel virtual address for host is %p\n", Cad
);
250 rio_dprintk(RIO_DEBUG_BOOT
, "kernel virtual address for download is %p\n", StartP
);
251 rio_dprintk(RIO_DEBUG_BOOT
, "host loadbase is 0x%x\n", p
->RIOConf
.HostLoadBase
);
252 rio_dprintk(RIO_DEBUG_BOOT
, "size of download is 0x%x\n", rbp
->Count
);
254 /* Make sure it fits */
255 if (p
->RIOConf
.HostLoadBase
< rbp
->Count
) {
256 rio_dprintk(RIO_DEBUG_BOOT
, "Bin too large\n");
257 p
->RIOError
.Error
= HOST_FILE_TOO_LARGE
;
262 ** Ensure that the host really is stopped.
263 ** Disable it's external bus & twang its reset line.
265 RIOHostReset(HostP
->Type
, HostP
->CardP
, HostP
->Slot
);
268 ** Copy the data directly from user space to the SRAM.
269 ** This ain't going to be none too clever if the download
270 ** code is bigger than this segment.
272 rio_dprintk(RIO_DEBUG_BOOT
, "Copy in code\n");
274 /* Buffer to local memory as we want to use I/O space and
275 some cards only do 8 or 16 bit I/O */
277 DownCode
= vmalloc(rbp
->Count
);
279 p
->RIOError
.Error
= NOT_ENOUGH_CORE_FOR_PCI_COPY
;
283 if (copy_from_user(DownCode
, rbp
->DataP
, rbp
->Count
)) {
285 p
->RIOError
.Error
= COPYIN_FAILED
;
289 HostP
->Copy(DownCode
, StartP
, rbp
->Count
);
292 rio_dprintk(RIO_DEBUG_BOOT
, "Copy completed\n");
297 ** Upto this point the code has been fairly rational, and possibly
298 ** even straight forward. What follows is a pile of crud that will
299 ** magically turn into six bytes of transputer assembler. Normally
300 ** you would expect an array or something, but, being me, I have
301 ** chosen [been told] to use a technique whereby the startup code
302 ** will be correct if we change the loadbase for the code. Which
303 ** brings us onto another issue - the loadbase is the *end* of the
304 ** code, not the start.
306 ** If I were you I wouldn't start from here.
310 ** We now need to insert a short boot section into
311 ** the memory at the end of Sram2. This is normally (de)composed
312 ** of the last eight bytes of the download code. The
313 ** download has been assembled/compiled to expect to be
314 ** loaded from 0x7FFF downwards. We have loaded it
315 ** at some other address. The startup code goes into the small
316 ** ram window at Sram2, in the last 8 bytes, which are really
317 ** at addresses 0x7FF8-0x7FFF.
319 ** If the loadbase is, say, 0x7C00, then we need to branch to
320 ** address 0x7BFE to run the host.bin startup code. We assemble
321 ** this jump manually.
323 ** The two byte sequence 60 08 is loaded into memory at address
324 ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0,
325 ** which adds '0' to the .O register, complements .O, and then shifts
326 ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will
327 ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new
328 ** location. Now, the branch starts from the value of .PC (or .IP or
329 ** whatever the bloody register is called on this chip), and the .PC
330 ** will be pointing to the location AFTER the branch, in this case
331 ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8.
333 ** A long branch is coded at 0x7FF8. This consists of loading a four
334 ** byte offset into .O using nfix (as above) and pfix operators. The
335 ** pfix operates in exactly the same way as the nfix operator, but
336 ** without the complement operation. The offset, of course, must be
337 ** relative to the address of the byte AFTER the branch instruction,
338 ** which will be (urm) 0x7FFC, so, our final destination of the branch
339 ** (loadbase-2), has to be reached from here. Imagine that the loadbase
340 ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which
341 ** is the first byte of the initial two byte short local branch of the
344 ** To code a jump from 0x7FFC (which is where the branch will start
345 ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)=
347 ** This will be coded as four bytes:
354 ** The nfix operator is used, so that the startup code will be
355 ** compatible with the whole Tp family. (lies, damn lies, it'll never
356 ** work in a month of Sundays).
358 ** The nfix nyble is the 1s complement of the nyble value you
359 ** want to load - in this case we wanted 'F' so we nfix loaded '0'.
364 ** Dest points to the top 8 bytes of Sram2. The Tp jumps
365 ** to 0x7FFE at reset time, and starts executing. This is
366 ** a short branch to 0x7FF8, where a long branch is coded.
369 DestP
= &Cad
[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */
371 #define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */
372 #define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */
373 #define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */
376 ** 0x7FFC is the address of the location following the last byte of
377 ** the four byte jump instruction.
378 ** READ THE ABOVE COMMENTS
380 ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about.
381 ** Memsize is 64K for this range of Tp, so offset is a short (unsigned,
382 ** cos I don't understand 2's complement).
384 offset
= (p
->RIOConf
.HostLoadBase
- 2) - 0x7FFC;
386 writeb(NFIX(((unsigned short) (~offset
) >> (unsigned short) 12) & 0xF), DestP
);
387 writeb(PFIX((offset
>> 8) & 0xF), DestP
+ 1);
388 writeb(PFIX((offset
>> 4) & 0xF), DestP
+ 2);
389 writeb(JUMP(offset
& 0xF), DestP
+ 3);
391 writeb(NFIX(0), DestP
+ 6);
392 writeb(JUMP(8), DestP
+ 7);
394 rio_dprintk(RIO_DEBUG_BOOT
, "host loadbase is 0x%x\n", p
->RIOConf
.HostLoadBase
);
395 rio_dprintk(RIO_DEBUG_BOOT
, "startup offset is 0x%x\n", offset
);
398 ** Flag what is going on
400 HostP
->Flags
&= ~RUN_STATE
;
401 HostP
->Flags
|= RC_STARTUP
;
404 ** Grab a copy of the current ParmMap pointer, so we
405 ** can tell when it has changed.
407 OldParmMap
= readw(&HostP
->__ParmMapR
);
409 rio_dprintk(RIO_DEBUG_BOOT
, "Original parmmap is 0x%x\n", OldParmMap
);
412 ** And start it running (I hope).
413 ** As there is nothing dodgy or obscure about the
414 ** above code, this is guaranteed to work every time.
416 rio_dprintk(RIO_DEBUG_BOOT
, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP
->Type
, HostP
->Mode
, HostP
->Ivec
);
418 rio_start_card_running(HostP
);
420 rio_dprintk(RIO_DEBUG_BOOT
, "Set control port\n");
423 ** Now, wait for upto five seconds for the Tp to setup the parmmap
426 for (wait_count
= 0; (wait_count
< p
->RIOConf
.StartupTime
) && (readw(&HostP
->__ParmMapR
) == OldParmMap
); wait_count
++) {
427 rio_dprintk(RIO_DEBUG_BOOT
, "Checkout %d, 0x%x\n", wait_count
, readw(&HostP
->__ParmMapR
));
433 ** If the parmmap pointer is unchanged, then the host code
434 ** has crashed & burned in a really spectacular way
436 if (readw(&HostP
->__ParmMapR
) == OldParmMap
) {
437 rio_dprintk(RIO_DEBUG_BOOT
, "parmmap 0x%x\n", readw(&HostP
->__ParmMapR
));
438 rio_dprintk(RIO_DEBUG_BOOT
, "RIO Mesg Run Fail\n");
439 HostP
->Flags
&= ~RUN_STATE
;
440 HostP
->Flags
|= RC_STUFFED
;
441 RIOHostReset( HostP
->Type
, HostP
->CardP
, HostP
->Slot
);
445 rio_dprintk(RIO_DEBUG_BOOT
, "Running 0x%x\n", readw(&HostP
->__ParmMapR
));
448 ** Well, the board thought it was OK, and setup its parmmap
449 ** pointer. For the time being, we will pretend that this
450 ** board is running, and check out what the error flag says.
454 ** Grab a 32 bit pointer to the parmmap structure
456 ParmMapP
= (PARM_MAP __iomem
*) RIO_PTR(Cad
, readw(&HostP
->__ParmMapR
));
457 rio_dprintk(RIO_DEBUG_BOOT
, "ParmMapP : %p\n", ParmMapP
);
458 ParmMapP
= (PARM_MAP __iomem
*)(Cad
+ readw(&HostP
->__ParmMapR
));
459 rio_dprintk(RIO_DEBUG_BOOT
, "ParmMapP : %p\n", ParmMapP
);
462 ** The links entry should be 0xFFFF; we set it up
463 ** with a mask to say how many PHBs to use, and
464 ** which links to use.
466 if (readw(&ParmMapP
->links
) != 0xFFFF) {
467 rio_dprintk(RIO_DEBUG_BOOT
, "RIO Mesg Run Fail %s\n", HostP
->Name
);
468 rio_dprintk(RIO_DEBUG_BOOT
, "Links = 0x%x\n", readw(&ParmMapP
->links
));
469 HostP
->Flags
&= ~RUN_STATE
;
470 HostP
->Flags
|= RC_STUFFED
;
471 RIOHostReset( HostP
->Type
, HostP
->CardP
, HostP
->Slot
);
475 writew(RIO_LINK_ENABLE
, &ParmMapP
->links
);
478 ** now wait for the card to set all the parmmap->XXX stuff
479 ** this is a wait of upto two seconds....
481 rio_dprintk(RIO_DEBUG_BOOT
, "Looking for init_done - %d ticks\n", p
->RIOConf
.StartupTime
);
482 HostP
->timeout_id
= 0;
483 for (wait_count
= 0; (wait_count
< p
->RIOConf
.StartupTime
) && !readw(&ParmMapP
->init_done
); wait_count
++) {
484 rio_dprintk(RIO_DEBUG_BOOT
, "Waiting for init_done\n");
487 rio_dprintk(RIO_DEBUG_BOOT
, "OK! init_done!\n");
489 if (readw(&ParmMapP
->error
) != E_NO_ERROR
|| !readw(&ParmMapP
->init_done
)) {
490 rio_dprintk(RIO_DEBUG_BOOT
, "RIO Mesg Run Fail %s\n", HostP
->Name
);
491 rio_dprintk(RIO_DEBUG_BOOT
, "Timedout waiting for init_done\n");
492 HostP
->Flags
&= ~RUN_STATE
;
493 HostP
->Flags
|= RC_STUFFED
;
494 RIOHostReset( HostP
->Type
, HostP
->CardP
, HostP
->Slot
);
498 rio_dprintk(RIO_DEBUG_BOOT
, "Got init_done\n");
503 rio_dprintk(RIO_DEBUG_BOOT
, "Host ID %x Running\n", HostP
->UniqueNum
);
506 ** set the time period between interrupts.
508 writew(p
->RIOConf
.Timer
, &ParmMapP
->timer
);
511 ** Translate all the 16 bit pointers in the __ParmMapR into
512 ** 32 bit pointers for the driver in ioremap space.
514 HostP
->ParmMapP
= ParmMapP
;
515 HostP
->PhbP
= (struct PHB __iomem
*) RIO_PTR(Cad
, readw(&ParmMapP
->phb_ptr
));
516 HostP
->RupP
= (struct RUP __iomem
*) RIO_PTR(Cad
, readw(&ParmMapP
->rups
));
517 HostP
->PhbNumP
= (unsigned short __iomem
*) RIO_PTR(Cad
, readw(&ParmMapP
->phb_num_ptr
));
518 HostP
->LinkStrP
= (struct LPB __iomem
*) RIO_PTR(Cad
, readw(&ParmMapP
->link_str_ptr
));
521 ** point the UnixRups at the real Rups
523 for (RupN
= 0; RupN
< MAX_RUP
; RupN
++) {
524 HostP
->UnixRups
[RupN
].RupP
= &HostP
->RupP
[RupN
];
525 HostP
->UnixRups
[RupN
].Id
= RupN
+ 1;
526 HostP
->UnixRups
[RupN
].BaseSysPort
= NO_PORT
;
527 spin_lock_init(&HostP
->UnixRups
[RupN
].RupLock
);
530 for (RupN
= 0; RupN
< LINKS_PER_UNIT
; RupN
++) {
531 HostP
->UnixRups
[RupN
+ MAX_RUP
].RupP
= &HostP
->LinkStrP
[RupN
].rup
;
532 HostP
->UnixRups
[RupN
+ MAX_RUP
].Id
= 0;
533 HostP
->UnixRups
[RupN
+ MAX_RUP
].BaseSysPort
= NO_PORT
;
534 spin_lock_init(&HostP
->UnixRups
[RupN
+ MAX_RUP
].RupLock
);
538 ** point the PortP->Phbs at the real Phbs
540 for (PortN
= p
->RIOFirstPortsMapped
; PortN
< p
->RIOLastPortsMapped
+ PORTS_PER_RTA
; PortN
++) {
541 if (p
->RIOPortp
[PortN
]->HostP
== HostP
) {
542 struct Port
*PortP
= p
->RIOPortp
[PortN
];
543 struct PHB __iomem
*PhbP
;
549 PhbP
= &HostP
->PhbP
[PortP
->HostPort
];
550 rio_spin_lock_irqsave(&PortP
->portSem
, flags
);
554 PortP
->TxAdd
= (u16 __iomem
*) RIO_PTR(Cad
, readw(&PhbP
->tx_add
));
555 PortP
->TxStart
= (u16 __iomem
*) RIO_PTR(Cad
, readw(&PhbP
->tx_start
));
556 PortP
->TxEnd
= (u16 __iomem
*) RIO_PTR(Cad
, readw(&PhbP
->tx_end
));
557 PortP
->RxRemove
= (u16 __iomem
*) RIO_PTR(Cad
, readw(&PhbP
->rx_remove
));
558 PortP
->RxStart
= (u16 __iomem
*) RIO_PTR(Cad
, readw(&PhbP
->rx_start
));
559 PortP
->RxEnd
= (u16 __iomem
*) RIO_PTR(Cad
, readw(&PhbP
->rx_end
));
561 rio_spin_unlock_irqrestore(&PortP
->portSem
, flags
);
563 ** point the UnixRup at the base SysPort
565 if (!(PortN
% PORTS_PER_RTA
))
566 HostP
->UnixRups
[PortP
->RupNum
].BaseSysPort
= PortN
;
570 rio_dprintk(RIO_DEBUG_BOOT
, "Set the card running... \n");
572 ** last thing - show the world that everything is in place
574 HostP
->Flags
&= ~RUN_STATE
;
575 HostP
->Flags
|= RC_RUNNING
;
578 ** MPX always uses a poller. This is actually patched into the system
579 ** configuration and called directly from each clock tick.
586 rio_dprintk(RIO_DEBUG_BOOT
, "Done everything %x\n", HostP
->Ivec
);
594 * RIOBootRup - Boot an RTA
595 * @p: rio we are working with
597 * @HostP: host object
598 * @PacketP: packet to use
600 * If we have successfully processed this boot, then
601 * return 1. If we havent, then return 0.
604 int RIOBootRup(struct rio_info
*p
, unsigned int Rup
, struct Host
*HostP
, struct PKT __iomem
*PacketP
)
606 struct PktCmd __iomem
*PktCmdP
= (struct PktCmd __iomem
*) PacketP
->data
;
607 struct PktCmd_M
*PktReplyP
;
608 struct CmdBlk
*CmdBlkP
;
609 unsigned int sequence
;
612 ** If we haven't been told what to boot, we can't boot it.
614 if (p
->RIONumBootPkts
== 0) {
615 rio_dprintk(RIO_DEBUG_BOOT
, "No RTA code to download yet\n");
620 ** Special case of boot completed - if we get one of these then we
621 ** don't need a command block. For all other cases we do, so handle
622 ** this first and then get a command block, then handle every other
623 ** case, relinquishing the command block if disaster strikes!
625 if ((readb(&PacketP
->len
) & PKT_CMD_BIT
) && (readb(&PktCmdP
->Command
) == BOOT_COMPLETED
))
626 return RIOBootComplete(p
, HostP
, Rup
, PktCmdP
);
629 ** Try to allocate a command block. This is in kernel space
631 if (!(CmdBlkP
= RIOGetCmdBlk())) {
632 rio_dprintk(RIO_DEBUG_BOOT
, "No command blocks to boot RTA! come back later.\n");
637 ** Fill in the default info on the command block
639 CmdBlkP
->Packet
.dest_unit
= Rup
< (unsigned short) MAX_RUP
? Rup
: 0;
640 CmdBlkP
->Packet
.dest_port
= BOOT_RUP
;
641 CmdBlkP
->Packet
.src_unit
= 0;
642 CmdBlkP
->Packet
.src_port
= BOOT_RUP
;
644 CmdBlkP
->PreFuncP
= CmdBlkP
->PostFuncP
= NULL
;
645 PktReplyP
= (struct PktCmd_M
*) CmdBlkP
->Packet
.data
;
648 ** process COMMANDS on the boot rup!
650 if (readb(&PacketP
->len
) & PKT_CMD_BIT
) {
652 ** We only expect one type of command - a BOOT_REQUEST!
654 if (readb(&PktCmdP
->Command
) != BOOT_REQUEST
) {
655 rio_dprintk(RIO_DEBUG_BOOT
, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP
->Command
), Rup
, HostP
- p
->RIOHosts
);
656 RIOFreeCmdBlk(CmdBlkP
);
661 ** Build a Boot Sequence command block
663 ** We no longer need to use "Boot Mode", we'll always allow
664 ** boot requests - the boot will not complete if the device
665 ** appears in the bindings table.
667 ** We'll just (always) set the command field in packet reply
668 ** to allow an attempted boot sequence :
670 PktReplyP
->Command
= BOOT_SEQUENCE
;
672 PktReplyP
->BootSequence
.NumPackets
= p
->RIONumBootPkts
;
673 PktReplyP
->BootSequence
.LoadBase
= p
->RIOConf
.RtaLoadBase
;
674 PktReplyP
->BootSequence
.CodeSize
= p
->RIOBootCount
;
676 CmdBlkP
->Packet
.len
= BOOT_SEQUENCE_LEN
| PKT_CMD_BIT
;
678 memcpy((void *) &CmdBlkP
->Packet
.data
[BOOT_SEQUENCE_LEN
], "BOOT", 4);
680 rio_dprintk(RIO_DEBUG_BOOT
, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP
- p
->RIOHosts
, Rup
, p
->RIONumBootPkts
, p
->RIONumBootPkts
, p
->RIOConf
.RtaLoadBase
);
683 ** If this host is in slave mode, send the RTA an invalid boot
684 ** sequence command block to force it to kill the boot. We wait
685 ** for half a second before sending this packet to prevent the RTA
686 ** attempting to boot too often. The master host should then grab
687 ** the RTA and make it its own.
690 RIOQueueCmdBlk(HostP
, Rup
, CmdBlkP
);
695 ** It is a request for boot data.
697 sequence
= readw(&PktCmdP
->Sequence
);
699 rio_dprintk(RIO_DEBUG_BOOT
, "Boot block %d on Host %Zd Rup%d\n", sequence
, HostP
- p
->RIOHosts
, Rup
);
701 if (sequence
>= p
->RIONumBootPkts
) {
702 rio_dprintk(RIO_DEBUG_BOOT
, "Got a request for packet %d, max is %d\n", sequence
, p
->RIONumBootPkts
);
705 PktReplyP
->Sequence
= sequence
;
706 memcpy(PktReplyP
->BootData
, p
->RIOBootPackets
[p
->RIONumBootPkts
- sequence
- 1], RTA_BOOT_DATA_SIZE
);
707 CmdBlkP
->Packet
.len
= PKT_MAX_DATA_LEN
;
708 RIOQueueCmdBlk(HostP
, Rup
, CmdBlkP
);
713 * RIOBootComplete - RTA boot is done
714 * @p: RIO we are working with
715 * @HostP: Host structure
716 * @Rup: RUP being used
717 * @PktCmdP: Packet command that was used
719 * This function is called when an RTA been booted.
720 * If booted by a host, HostP->HostUniqueNum is the booting host.
721 * If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA.
722 * RtaUniq is the booted RTA.
725 static int RIOBootComplete(struct rio_info
*p
, struct Host
*HostP
, unsigned int Rup
, struct PktCmd __iomem
*PktCmdP
)
727 struct Map
*MapP
= NULL
;
728 struct Map
*MapP2
= NULL
;
734 char *MyType
, *MyName
;
736 unsigned short RtaType
;
737 u32 RtaUniq
= (readb(&PktCmdP
->UniqNum
[0])) + (readb(&PktCmdP
->UniqNum
[1]) << 8) + (readb(&PktCmdP
->UniqNum
[2]) << 16) + (readb(&PktCmdP
->UniqNum
[3]) << 24);
741 rio_dprintk(RIO_DEBUG_BOOT
, "RTA Boot completed - BootInProgress now %d\n", p
->RIOBooting
);
744 ** Determine type of unit (16/8 port RTA).
747 RtaType
= GetUnitType(RtaUniq
);
748 if (Rup
>= (unsigned short) MAX_RUP
)
749 rio_dprintk(RIO_DEBUG_BOOT
, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP
->Name
, 8 * RtaType
, readb(&PktCmdP
->LinkNum
) + 'A');
751 rio_dprintk(RIO_DEBUG_BOOT
, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP
->Mapping
[Rup
].Name
, 8 * RtaType
, readb(&PktCmdP
->LinkNum
) + 'A');
753 rio_dprintk(RIO_DEBUG_BOOT
, "UniqNum is 0x%x\n", RtaUniq
);
755 if (RtaUniq
== 0x00000000 || RtaUniq
== 0xffffffff) {
756 rio_dprintk(RIO_DEBUG_BOOT
, "Illegal RTA Uniq Number\n");
761 ** If this RTA has just booted an RTA which doesn't belong to this
762 ** system, or the system is in slave mode, do not attempt to create
763 ** a new table entry for it.
766 if (!RIOBootOk(p
, HostP
, RtaUniq
)) {
767 MyLink
= readb(&PktCmdP
->LinkNum
);
768 if (Rup
< (unsigned short) MAX_RUP
) {
770 ** RtaUniq was clone booted (by this RTA). Instruct this RTA
771 ** to hold off further attempts to boot on this link for 30
774 if (RIOSuspendBootRta(HostP
, HostP
->Mapping
[Rup
].ID
, MyLink
)) {
775 rio_dprintk(RIO_DEBUG_BOOT
, "RTA failed to suspend booting on link %c\n", 'A' + MyLink
);
779 ** RtaUniq was booted by this host. Set the booting link
780 ** to hold off for 30 seconds to give another unit a
781 ** chance to boot it.
783 writew(30, &HostP
->LinkStrP
[MyLink
].WaitNoBoot
);
784 rio_dprintk(RIO_DEBUG_BOOT
, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq
, 'A' + MyLink
, HostP
->Mapping
[Rup
].RtaUniqueNum
);
789 ** Check for a SLOT_IN_USE entry for this RTA attached to the
790 ** current host card in the driver table.
792 ** If it exists, make a note that we have booted it. Other parts of
793 ** the driver are interested in this information at a later date,
794 ** in particular when the booting RTA asks for an ID for this unit,
795 ** we must have set the BOOTED flag, and the NEWBOOT flag is used
796 ** to force an open on any ports that where previously open on this
799 for (entry
= 0; entry
< MAX_RUP
; entry
++) {
800 unsigned int sysport
;
802 if ((HostP
->Mapping
[entry
].Flags
& SLOT_IN_USE
) && (HostP
->Mapping
[entry
].RtaUniqueNum
== RtaUniq
)) {
803 HostP
->Mapping
[entry
].Flags
|= RTA_BOOTED
| RTA_NEWBOOT
;
804 if ((sysport
= HostP
->Mapping
[entry
].SysPort
) != NO_PORT
) {
805 if (sysport
< p
->RIOFirstPortsBooted
)
806 p
->RIOFirstPortsBooted
= sysport
;
807 if (sysport
> p
->RIOLastPortsBooted
)
808 p
->RIOLastPortsBooted
= sysport
;
810 ** For a 16 port RTA, check the second bank of 8 ports
812 if (RtaType
== TYPE_RTA16
) {
813 entry2
= HostP
->Mapping
[entry
].ID2
- 1;
814 HostP
->Mapping
[entry2
].Flags
|= RTA_BOOTED
| RTA_NEWBOOT
;
815 sysport
= HostP
->Mapping
[entry2
].SysPort
;
816 if (sysport
< p
->RIOFirstPortsBooted
)
817 p
->RIOFirstPortsBooted
= sysport
;
818 if (sysport
> p
->RIOLastPortsBooted
)
819 p
->RIOLastPortsBooted
= sysport
;
822 if (RtaType
== TYPE_RTA16
)
823 rio_dprintk(RIO_DEBUG_BOOT
, "RTA will be given IDs %d+%d\n", entry
+ 1, entry2
+ 1);
825 rio_dprintk(RIO_DEBUG_BOOT
, "RTA will be given ID %d\n", entry
+ 1);
830 rio_dprintk(RIO_DEBUG_BOOT
, "RTA not configured for this host\n");
832 if (Rup
>= (unsigned short) MAX_RUP
) {
834 ** It was a host that did the booting
837 MyName
= HostP
->Name
;
840 ** It was an RTA that did the booting
843 MyName
= HostP
->Mapping
[Rup
].Name
;
845 MyLink
= readb(&PktCmdP
->LinkNum
);
848 ** There is no SLOT_IN_USE entry for this RTA attached to the current
849 ** host card in the driver table.
851 ** Check for a SLOT_TENTATIVE entry for this RTA attached to the
852 ** current host card in the driver table.
854 ** If we find one, then we re-use that slot.
856 for (entry
= 0; entry
< MAX_RUP
; entry
++) {
857 if ((HostP
->Mapping
[entry
].Flags
& SLOT_TENTATIVE
) && (HostP
->Mapping
[entry
].RtaUniqueNum
== RtaUniq
)) {
858 if (RtaType
== TYPE_RTA16
) {
859 entry2
= HostP
->Mapping
[entry
].ID2
- 1;
860 if ((HostP
->Mapping
[entry2
].Flags
& SLOT_TENTATIVE
) && (HostP
->Mapping
[entry2
].RtaUniqueNum
== RtaUniq
))
861 rio_dprintk(RIO_DEBUG_BOOT
, "Found previous tentative slots (%d+%d)\n", entry
, entry2
);
865 rio_dprintk(RIO_DEBUG_BOOT
, "Found previous tentative slot (%d)\n", entry
);
866 if (!p
->RIONoMessage
)
867 printk("RTA connected to %s '%s' (%c) not configured.\n", MyType
, MyName
, MyLink
+ 'A');
873 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
874 ** attached to the current host card in the driver table.
876 ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another
877 ** host for this RTA in the driver table.
879 ** For a SLOT_IN_USE entry on another host, we need to delete the RTA
880 ** entry from the other host and add it to this host (using some of
881 ** the functions from table.c which do this).
882 ** For a SLOT_TENTATIVE entry on another host, we must cope with the
883 ** following scenario:
885 ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry
887 ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE
889 ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE)
890 ** + Unplug RTA and plug back into host A.
891 ** + Configure RTA on host A. We now have the same RTA configured
892 ** with different ports on two different hosts.
894 rio_dprintk(RIO_DEBUG_BOOT
, "Have we seen RTA %x before?\n", RtaUniq
);
896 Flag
= 0; /* Convince the compiler this variable is initialized */
897 for (host
= 0; !found
&& (host
< p
->RIONumHosts
); host
++) {
898 for (rta
= 0; rta
< MAX_RUP
; rta
++) {
899 if ((p
->RIOHosts
[host
].Mapping
[rta
].Flags
& (SLOT_IN_USE
| SLOT_TENTATIVE
)) && (p
->RIOHosts
[host
].Mapping
[rta
].RtaUniqueNum
== RtaUniq
)) {
900 Flag
= p
->RIOHosts
[host
].Mapping
[rta
].Flags
;
901 MapP
= &p
->RIOHosts
[host
].Mapping
[rta
];
902 if (RtaType
== TYPE_RTA16
) {
903 MapP2
= &p
->RIOHosts
[host
].Mapping
[MapP
->ID2
- 1];
904 rio_dprintk(RIO_DEBUG_BOOT
, "This RTA is units %d+%d from host %s\n", rta
+ 1, MapP
->ID2
, p
->RIOHosts
[host
].Name
);
906 rio_dprintk(RIO_DEBUG_BOOT
, "This RTA is unit %d from host %s\n", rta
+ 1, p
->RIOHosts
[host
].Name
);
914 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
915 ** attached to the current host card in the driver table.
917 ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on
918 ** another host for this RTA in the driver table...
920 ** Check for a SLOT_IN_USE entry for this RTA in the config table.
923 rio_dprintk(RIO_DEBUG_BOOT
, "Look for RTA %x in RIOSavedTable\n", RtaUniq
);
924 for (rta
= 0; rta
< TOTAL_MAP_ENTRIES
; rta
++) {
925 rio_dprintk(RIO_DEBUG_BOOT
, "Check table entry %d (%x)", rta
, p
->RIOSavedTable
[rta
].RtaUniqueNum
);
927 if ((p
->RIOSavedTable
[rta
].Flags
& SLOT_IN_USE
) && (p
->RIOSavedTable
[rta
].RtaUniqueNum
== RtaUniq
)) {
928 MapP
= &p
->RIOSavedTable
[rta
];
929 Flag
= p
->RIOSavedTable
[rta
].Flags
;
930 if (RtaType
== TYPE_RTA16
) {
931 for (entry2
= rta
+ 1; entry2
< TOTAL_MAP_ENTRIES
; entry2
++) {
932 if (p
->RIOSavedTable
[entry2
].RtaUniqueNum
== RtaUniq
)
935 MapP2
= &p
->RIOSavedTable
[entry2
];
936 rio_dprintk(RIO_DEBUG_BOOT
, "This RTA is from table entries %d+%d\n", rta
, entry2
);
938 rio_dprintk(RIO_DEBUG_BOOT
, "This RTA is from table entry %d\n", rta
);
945 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
946 ** attached to the current host card in the driver table.
948 ** We may have found a SLOT_IN_USE entry on another host for this
949 ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry
950 ** on another host for this RTA in the driver table.
952 ** Check the driver table for room to fit this newly discovered RTA.
953 ** RIOFindFreeID() first looks for free slots and if it does not
954 ** find any free slots it will then attempt to oust any
955 ** tentative entry in the table.
958 if (RtaType
== TYPE_RTA16
) {
959 if (RIOFindFreeID(p
, HostP
, &entry
, &entry2
) == 0) {
960 RIODefaultName(p
, HostP
, entry
);
961 rio_fill_host_slot(entry
, entry2
, RtaUniq
, HostP
);
965 if (RIOFindFreeID(p
, HostP
, &entry
, NULL
) == 0) {
966 RIODefaultName(p
, HostP
, entry
);
967 rio_fill_host_slot(entry
, 0, RtaUniq
, HostP
);
973 ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA
974 ** attached to the current host card in the driver table.
976 ** If we found a SLOT_IN_USE entry on another host for this
977 ** RTA in the config or driver table, and there are enough free
978 ** slots in the driver table, then we need to move it over and
979 ** delete it from the other host.
980 ** If we found a SLOT_TENTATIVE entry on another host for this
981 ** RTA in the driver table, just delete the other host entry.
983 if (EmptySlot
== 0) {
985 if (Flag
& SLOT_IN_USE
) {
986 rio_dprintk(RIO_DEBUG_BOOT
, "This RTA configured on another host - move entry to current host (1)\n");
987 HostP
->Mapping
[entry
].SysPort
= MapP
->SysPort
;
988 memcpy(HostP
->Mapping
[entry
].Name
, MapP
->Name
, MAX_NAME_LEN
);
989 HostP
->Mapping
[entry
].Flags
= SLOT_IN_USE
| RTA_BOOTED
| RTA_NEWBOOT
;
990 RIOReMapPorts(p
, HostP
, &HostP
->Mapping
[entry
]);
991 if (HostP
->Mapping
[entry
].SysPort
< p
->RIOFirstPortsBooted
)
992 p
->RIOFirstPortsBooted
= HostP
->Mapping
[entry
].SysPort
;
993 if (HostP
->Mapping
[entry
].SysPort
> p
->RIOLastPortsBooted
)
994 p
->RIOLastPortsBooted
= HostP
->Mapping
[entry
].SysPort
;
995 rio_dprintk(RIO_DEBUG_BOOT
, "SysPort %d, Name %s\n", (int) MapP
->SysPort
, MapP
->Name
);
997 rio_dprintk(RIO_DEBUG_BOOT
, "This RTA has a tentative entry on another host - delete that entry (1)\n");
998 HostP
->Mapping
[entry
].Flags
= SLOT_TENTATIVE
| RTA_BOOTED
| RTA_NEWBOOT
;
1000 if (RtaType
== TYPE_RTA16
) {
1001 if (Flag
& SLOT_IN_USE
) {
1002 HostP
->Mapping
[entry2
].Flags
= SLOT_IN_USE
| RTA_BOOTED
| RTA_NEWBOOT
| RTA16_SECOND_SLOT
;
1003 HostP
->Mapping
[entry2
].SysPort
= MapP2
->SysPort
;
1005 ** Map second block of ttys for 16 port RTA
1007 RIOReMapPorts(p
, HostP
, &HostP
->Mapping
[entry2
]);
1008 if (HostP
->Mapping
[entry2
].SysPort
< p
->RIOFirstPortsBooted
)
1009 p
->RIOFirstPortsBooted
= HostP
->Mapping
[entry2
].SysPort
;
1010 if (HostP
->Mapping
[entry2
].SysPort
> p
->RIOLastPortsBooted
)
1011 p
->RIOLastPortsBooted
= HostP
->Mapping
[entry2
].SysPort
;
1012 rio_dprintk(RIO_DEBUG_BOOT
, "SysPort %d, Name %s\n", (int) HostP
->Mapping
[entry2
].SysPort
, HostP
->Mapping
[entry
].Name
);
1014 HostP
->Mapping
[entry2
].Flags
= SLOT_TENTATIVE
| RTA_BOOTED
| RTA_NEWBOOT
| RTA16_SECOND_SLOT
;
1015 memset(MapP2
, 0, sizeof(struct Map
));
1017 memset(MapP
, 0, sizeof(struct Map
));
1018 if (!p
->RIONoMessage
)
1019 printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType
, MyName
, MyLink
+ 'A');
1020 } else if (!p
->RIONoMessage
)
1021 printk("RTA connected to %s '%s' (%c) not configured.\n", MyType
, MyName
, MyLink
+ 'A');
1027 ** There is no room in the driver table to make an entry for the
1028 ** booted RTA. Keep a note of its Uniq Num in the overflow table,
1029 ** so we can ignore it's ID requests.
1031 if (!p
->RIONoMessage
)
1032 printk("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n", MyType
, MyName
, MyLink
+ 'A');
1033 for (entry
= 0; entry
< HostP
->NumExtraBooted
; entry
++) {
1034 if (HostP
->ExtraUnits
[entry
] == RtaUniq
) {
1042 ** If there is room, add the unit to the list of extras
1044 if (HostP
->NumExtraBooted
< MAX_EXTRA_UNITS
)
1045 HostP
->ExtraUnits
[HostP
->NumExtraBooted
++] = RtaUniq
;
1051 ** If the RTA or its host appears in the RIOBindTab[] structure then
1052 ** we mustn't boot the RTA and should return 0.
1053 ** This operation is slightly different from the other drivers for RIO
1054 ** in that this is designed to work with the new utilities
1055 ** not config.rio and is FAR SIMPLER.
1056 ** We no longer support the RIOBootMode variable. It is all done from the
1057 ** "boot/noboot" field in the rio.cf file.
1059 int RIOBootOk(struct rio_info
*p
, struct Host
*HostP
, unsigned long RtaUniq
)
1062 unsigned int HostUniq
= HostP
->UniqueNum
;
1065 ** Search bindings table for RTA or its parent.
1066 ** If it exists, return 0, else 1.
1068 for (Entry
= 0; (Entry
< MAX_RTA_BINDINGS
) && (p
->RIOBindTab
[Entry
] != 0); Entry
++) {
1069 if ((p
->RIOBindTab
[Entry
] == HostUniq
) || (p
->RIOBindTab
[Entry
] == RtaUniq
))
1076 ** Make an empty slot tentative. If this is a 16 port RTA, make both
1077 ** slots tentative, and the second one RTA_SECOND_SLOT as well.
1080 void rio_fill_host_slot(int entry
, int entry2
, unsigned int rta_uniq
, struct Host
*host
)
1084 rio_dprintk(RIO_DEBUG_BOOT
, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry
, entry2
, rta_uniq
);
1086 host
->Mapping
[entry
].Flags
= (RTA_BOOTED
| RTA_NEWBOOT
| SLOT_TENTATIVE
);
1087 host
->Mapping
[entry
].SysPort
= NO_PORT
;
1088 host
->Mapping
[entry
].RtaUniqueNum
= rta_uniq
;
1089 host
->Mapping
[entry
].HostUniqueNum
= host
->UniqueNum
;
1090 host
->Mapping
[entry
].ID
= entry
+ 1;
1091 host
->Mapping
[entry
].ID2
= 0;
1093 host
->Mapping
[entry2
].Flags
= (RTA_BOOTED
| RTA_NEWBOOT
| SLOT_TENTATIVE
| RTA16_SECOND_SLOT
);
1094 host
->Mapping
[entry2
].SysPort
= NO_PORT
;
1095 host
->Mapping
[entry2
].RtaUniqueNum
= rta_uniq
;
1096 host
->Mapping
[entry2
].HostUniqueNum
= host
->UniqueNum
;
1097 host
->Mapping
[entry2
].Name
[0] = '\0';
1098 host
->Mapping
[entry2
].ID
= entry2
+ 1;
1099 host
->Mapping
[entry2
].ID2
= entry
+ 1;
1100 host
->Mapping
[entry
].ID2
= entry2
+ 1;
1103 ** Must set these up, so that utilities show
1104 ** topology of 16 port RTAs correctly
1106 for (link
= 0; link
< LINKS_PER_UNIT
; link
++) {
1107 host
->Mapping
[entry
].Topology
[link
].Unit
= ROUTE_DISCONNECT
;
1108 host
->Mapping
[entry
].Topology
[link
].Link
= NO_LINK
;
1110 host
->Mapping
[entry2
].Topology
[link
].Unit
= ROUTE_DISCONNECT
;
1111 host
->Mapping
[entry2
].Topology
[link
].Link
= NO_LINK
;