2 * Intel & MS High Precision Event Timer Implementation.
4 * Copyright (C) 2003 Intel Corporation
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7 * Bob Picco <robert.picco@hp.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/miscdevice.h>
19 #include <linux/major.h>
20 #include <linux/ioport.h>
21 #include <linux/fcntl.h>
22 #include <linux/init.h>
23 #include <linux/poll.h>
24 #include <linux/proc_fs.h>
25 #include <linux/spinlock.h>
26 #include <linux/sysctl.h>
27 #include <linux/wait.h>
28 #include <linux/bcd.h>
29 #include <linux/seq_file.h>
30 #include <linux/bitops.h>
32 #include <asm/current.h>
33 #include <asm/uaccess.h>
34 #include <asm/system.h>
37 #include <asm/div64.h>
39 #include <linux/acpi.h>
40 #include <acpi/acpi_bus.h>
41 #include <linux/hpet.h>
44 * The High Precision Event Timer driver.
45 * This driver is closely modelled after the rtc.c driver.
46 * http://www.intel.com/hardwaredesign/hpetspec.htm
48 #define HPET_USER_FREQ (64)
49 #define HPET_DRIFT (500)
51 #define HPET_RANGE_SIZE 1024 /* from HPET spec */
53 static u32 hpet_nhpet
, hpet_max_freq
= HPET_USER_FREQ
;
55 /* A lock for concurrent access by app and isr hpet activity. */
56 static DEFINE_SPINLOCK(hpet_lock
);
57 /* A lock for concurrent intermodule access to hpet and isr hpet activity. */
58 static DEFINE_SPINLOCK(hpet_task_lock
);
60 #define HPET_DEV_NAME (7)
63 struct hpets
*hd_hpets
;
64 struct hpet __iomem
*hd_hpet
;
65 struct hpet_timer __iomem
*hd_timer
;
66 unsigned long hd_ireqfreq
;
67 unsigned long hd_irqdata
;
68 wait_queue_head_t hd_waitqueue
;
69 struct fasync_struct
*hd_async_queue
;
70 struct hpet_task
*hd_task
;
71 unsigned int hd_flags
;
73 unsigned int hd_hdwirq
;
74 char hd_name
[HPET_DEV_NAME
];
78 struct hpets
*hp_next
;
79 struct hpet __iomem
*hp_hpet
;
80 unsigned long hp_hpet_phys
;
81 struct time_interpolator
*hp_interpolator
;
82 unsigned long long hp_tick_freq
;
83 unsigned long hp_delta
;
84 unsigned int hp_ntimer
;
85 unsigned int hp_which
;
86 struct hpet_dev hp_dev
[1];
89 static struct hpets
*hpets
;
91 #define HPET_OPEN 0x0001
92 #define HPET_IE 0x0002 /* interrupt enabled */
93 #define HPET_PERIODIC 0x0004
94 #define HPET_SHARED_IRQ 0x0008
96 #if BITS_PER_LONG == 64
97 #define write_counter(V, MC) writeq(V, MC)
98 #define read_counter(MC) readq(MC)
100 #define write_counter(V, MC) writel(V, MC)
101 #define read_counter(MC) readl(MC)
105 static inline unsigned long long readq(void __iomem
*addr
)
107 return readl(addr
) | (((unsigned long long)readl(addr
+ 4)) << 32LL);
112 static inline void writeq(unsigned long long v
, void __iomem
*addr
)
114 writel(v
& 0xffffffff, addr
);
115 writel(v
>> 32, addr
+ 4);
119 static irqreturn_t
hpet_interrupt(int irq
, void *data
)
121 struct hpet_dev
*devp
;
125 isr
= 1 << (devp
- devp
->hd_hpets
->hp_dev
);
127 if ((devp
->hd_flags
& HPET_SHARED_IRQ
) &&
128 !(isr
& readl(&devp
->hd_hpet
->hpet_isr
)))
131 spin_lock(&hpet_lock
);
135 * For non-periodic timers, increment the accumulator.
136 * This has the effect of treating non-periodic like periodic.
138 if ((devp
->hd_flags
& (HPET_IE
| HPET_PERIODIC
)) == HPET_IE
) {
141 t
= devp
->hd_ireqfreq
;
142 m
= read_counter(&devp
->hd_hpet
->hpet_mc
);
143 write_counter(t
+ m
+ devp
->hd_hpets
->hp_delta
,
144 &devp
->hd_timer
->hpet_compare
);
147 if (devp
->hd_flags
& HPET_SHARED_IRQ
)
148 writel(isr
, &devp
->hd_hpet
->hpet_isr
);
149 spin_unlock(&hpet_lock
);
151 spin_lock(&hpet_task_lock
);
153 devp
->hd_task
->ht_func(devp
->hd_task
->ht_data
);
154 spin_unlock(&hpet_task_lock
);
156 wake_up_interruptible(&devp
->hd_waitqueue
);
158 kill_fasync(&devp
->hd_async_queue
, SIGIO
, POLL_IN
);
163 static int hpet_open(struct inode
*inode
, struct file
*file
)
165 struct hpet_dev
*devp
;
169 if (file
->f_mode
& FMODE_WRITE
)
172 spin_lock_irq(&hpet_lock
);
174 for (devp
= NULL
, hpetp
= hpets
; hpetp
&& !devp
; hpetp
= hpetp
->hp_next
)
175 for (i
= 0; i
< hpetp
->hp_ntimer
; i
++)
176 if (hpetp
->hp_dev
[i
].hd_flags
& HPET_OPEN
177 || hpetp
->hp_dev
[i
].hd_task
)
180 devp
= &hpetp
->hp_dev
[i
];
185 spin_unlock_irq(&hpet_lock
);
189 file
->private_data
= devp
;
190 devp
->hd_irqdata
= 0;
191 devp
->hd_flags
|= HPET_OPEN
;
192 spin_unlock_irq(&hpet_lock
);
198 hpet_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
* ppos
)
200 DECLARE_WAITQUEUE(wait
, current
);
203 struct hpet_dev
*devp
;
205 devp
= file
->private_data
;
206 if (!devp
->hd_ireqfreq
)
209 if (count
< sizeof(unsigned long))
212 add_wait_queue(&devp
->hd_waitqueue
, &wait
);
215 set_current_state(TASK_INTERRUPTIBLE
);
217 spin_lock_irq(&hpet_lock
);
218 data
= devp
->hd_irqdata
;
219 devp
->hd_irqdata
= 0;
220 spin_unlock_irq(&hpet_lock
);
224 else if (file
->f_flags
& O_NONBLOCK
) {
227 } else if (signal_pending(current
)) {
228 retval
= -ERESTARTSYS
;
234 retval
= put_user(data
, (unsigned long __user
*)buf
);
236 retval
= sizeof(unsigned long);
238 __set_current_state(TASK_RUNNING
);
239 remove_wait_queue(&devp
->hd_waitqueue
, &wait
);
244 static unsigned int hpet_poll(struct file
*file
, poll_table
* wait
)
247 struct hpet_dev
*devp
;
249 devp
= file
->private_data
;
251 if (!devp
->hd_ireqfreq
)
254 poll_wait(file
, &devp
->hd_waitqueue
, wait
);
256 spin_lock_irq(&hpet_lock
);
257 v
= devp
->hd_irqdata
;
258 spin_unlock_irq(&hpet_lock
);
261 return POLLIN
| POLLRDNORM
;
266 static int hpet_mmap(struct file
*file
, struct vm_area_struct
*vma
)
268 #ifdef CONFIG_HPET_MMAP
269 struct hpet_dev
*devp
;
272 if (((vma
->vm_end
- vma
->vm_start
) != PAGE_SIZE
) || vma
->vm_pgoff
)
275 devp
= file
->private_data
;
276 addr
= devp
->hd_hpets
->hp_hpet_phys
;
278 if (addr
& (PAGE_SIZE
- 1))
281 vma
->vm_flags
|= VM_IO
;
282 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
284 if (io_remap_pfn_range(vma
, vma
->vm_start
, addr
>> PAGE_SHIFT
,
285 PAGE_SIZE
, vma
->vm_page_prot
)) {
286 printk(KERN_ERR
"%s: io_remap_pfn_range failed\n",
297 static int hpet_fasync(int fd
, struct file
*file
, int on
)
299 struct hpet_dev
*devp
;
301 devp
= file
->private_data
;
303 if (fasync_helper(fd
, file
, on
, &devp
->hd_async_queue
) >= 0)
309 static int hpet_release(struct inode
*inode
, struct file
*file
)
311 struct hpet_dev
*devp
;
312 struct hpet_timer __iomem
*timer
;
315 devp
= file
->private_data
;
316 timer
= devp
->hd_timer
;
318 spin_lock_irq(&hpet_lock
);
320 writeq((readq(&timer
->hpet_config
) & ~Tn_INT_ENB_CNF_MASK
),
321 &timer
->hpet_config
);
326 devp
->hd_ireqfreq
= 0;
328 if (devp
->hd_flags
& HPET_PERIODIC
329 && readq(&timer
->hpet_config
) & Tn_TYPE_CNF_MASK
) {
332 v
= readq(&timer
->hpet_config
);
333 v
^= Tn_TYPE_CNF_MASK
;
334 writeq(v
, &timer
->hpet_config
);
337 devp
->hd_flags
&= ~(HPET_OPEN
| HPET_IE
| HPET_PERIODIC
);
338 spin_unlock_irq(&hpet_lock
);
343 if (file
->f_flags
& FASYNC
)
344 hpet_fasync(-1, file
, 0);
346 file
->private_data
= NULL
;
350 static int hpet_ioctl_common(struct hpet_dev
*, int, unsigned long, int);
353 hpet_ioctl(struct inode
*inode
, struct file
*file
, unsigned int cmd
,
356 struct hpet_dev
*devp
;
358 devp
= file
->private_data
;
359 return hpet_ioctl_common(devp
, cmd
, arg
, 0);
362 static int hpet_ioctl_ieon(struct hpet_dev
*devp
)
364 struct hpet_timer __iomem
*timer
;
365 struct hpet __iomem
*hpet
;
368 unsigned long g
, v
, t
, m
;
369 unsigned long flags
, isr
;
371 timer
= devp
->hd_timer
;
372 hpet
= devp
->hd_hpet
;
373 hpetp
= devp
->hd_hpets
;
375 if (!devp
->hd_ireqfreq
)
378 spin_lock_irq(&hpet_lock
);
380 if (devp
->hd_flags
& HPET_IE
) {
381 spin_unlock_irq(&hpet_lock
);
385 devp
->hd_flags
|= HPET_IE
;
387 if (readl(&timer
->hpet_config
) & Tn_INT_TYPE_CNF_MASK
)
388 devp
->hd_flags
|= HPET_SHARED_IRQ
;
389 spin_unlock_irq(&hpet_lock
);
391 irq
= devp
->hd_hdwirq
;
394 unsigned long irq_flags
;
396 sprintf(devp
->hd_name
, "hpet%d", (int)(devp
- hpetp
->hp_dev
));
397 irq_flags
= devp
->hd_flags
& HPET_SHARED_IRQ
398 ? IRQF_SHARED
: IRQF_DISABLED
;
399 if (request_irq(irq
, hpet_interrupt
, irq_flags
,
400 devp
->hd_name
, (void *)devp
)) {
401 printk(KERN_ERR
"hpet: IRQ %d is not free\n", irq
);
407 spin_lock_irq(&hpet_lock
);
408 devp
->hd_flags
^= HPET_IE
;
409 spin_unlock_irq(&hpet_lock
);
414 t
= devp
->hd_ireqfreq
;
415 v
= readq(&timer
->hpet_config
);
416 g
= v
| Tn_INT_ENB_CNF_MASK
;
418 if (devp
->hd_flags
& HPET_PERIODIC
) {
419 write_counter(t
, &timer
->hpet_compare
);
420 g
|= Tn_TYPE_CNF_MASK
;
421 v
|= Tn_TYPE_CNF_MASK
;
422 writeq(v
, &timer
->hpet_config
);
423 v
|= Tn_VAL_SET_CNF_MASK
;
424 writeq(v
, &timer
->hpet_config
);
425 local_irq_save(flags
);
426 m
= read_counter(&hpet
->hpet_mc
);
427 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
429 local_irq_save(flags
);
430 m
= read_counter(&hpet
->hpet_mc
);
431 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
434 if (devp
->hd_flags
& HPET_SHARED_IRQ
) {
435 isr
= 1 << (devp
- devp
->hd_hpets
->hp_dev
);
436 writel(isr
, &hpet
->hpet_isr
);
438 writeq(g
, &timer
->hpet_config
);
439 local_irq_restore(flags
);
444 /* converts Hz to number of timer ticks */
445 static inline unsigned long hpet_time_div(struct hpets
*hpets
,
448 unsigned long long m
;
450 m
= hpets
->hp_tick_freq
+ (dis
>> 1);
452 return (unsigned long)m
;
456 hpet_ioctl_common(struct hpet_dev
*devp
, int cmd
, unsigned long arg
, int kernel
)
458 struct hpet_timer __iomem
*timer
;
459 struct hpet __iomem
*hpet
;
470 timer
= devp
->hd_timer
;
471 hpet
= devp
->hd_hpet
;
472 hpetp
= devp
->hd_hpets
;
475 return hpet_ioctl_ieon(devp
);
484 if ((devp
->hd_flags
& HPET_IE
) == 0)
486 v
= readq(&timer
->hpet_config
);
487 v
&= ~Tn_INT_ENB_CNF_MASK
;
488 writeq(v
, &timer
->hpet_config
);
490 free_irq(devp
->hd_irq
, devp
);
493 devp
->hd_flags
^= HPET_IE
;
497 struct hpet_info info
;
499 if (devp
->hd_ireqfreq
)
501 hpet_time_div(hpetp
, devp
->hd_ireqfreq
);
503 info
.hi_ireqfreq
= 0;
505 readq(&timer
->hpet_config
) & Tn_PER_INT_CAP_MASK
;
506 info
.hi_hpet
= hpetp
->hp_which
;
507 info
.hi_timer
= devp
- hpetp
->hp_dev
;
509 memcpy((void *)arg
, &info
, sizeof(info
));
511 if (copy_to_user((void __user
*)arg
, &info
,
517 v
= readq(&timer
->hpet_config
);
518 if ((v
& Tn_PER_INT_CAP_MASK
) == 0) {
522 devp
->hd_flags
|= HPET_PERIODIC
;
525 v
= readq(&timer
->hpet_config
);
526 if ((v
& Tn_PER_INT_CAP_MASK
) == 0) {
530 if (devp
->hd_flags
& HPET_PERIODIC
&&
531 readq(&timer
->hpet_config
) & Tn_TYPE_CNF_MASK
) {
532 v
= readq(&timer
->hpet_config
);
533 v
^= Tn_TYPE_CNF_MASK
;
534 writeq(v
, &timer
->hpet_config
);
536 devp
->hd_flags
&= ~HPET_PERIODIC
;
539 if (!kernel
&& (arg
> hpet_max_freq
) &&
540 !capable(CAP_SYS_RESOURCE
)) {
550 devp
->hd_ireqfreq
= hpet_time_div(hpetp
, arg
);
556 static const struct file_operations hpet_fops
= {
557 .owner
= THIS_MODULE
,
563 .release
= hpet_release
,
564 .fasync
= hpet_fasync
,
568 static int hpet_is_known(struct hpet_data
*hdp
)
572 for (hpetp
= hpets
; hpetp
; hpetp
= hpetp
->hp_next
)
573 if (hpetp
->hp_hpet_phys
== hdp
->hd_phys_address
)
579 EXPORT_SYMBOL(hpet_alloc
);
580 EXPORT_SYMBOL(hpet_register
);
581 EXPORT_SYMBOL(hpet_unregister
);
582 EXPORT_SYMBOL(hpet_control
);
584 int hpet_register(struct hpet_task
*tp
, int periodic
)
588 struct hpet_timer __iomem
*timer
;
589 struct hpet_dev
*devp
;
594 mask
= Tn_PER_INT_CAP_MASK
;
603 tp
->ht_opaque
= NULL
;
605 spin_lock_irq(&hpet_task_lock
);
606 spin_lock(&hpet_lock
);
608 for (devp
= NULL
, hpetp
= hpets
; hpetp
&& !devp
; hpetp
= hpetp
->hp_next
)
609 for (timer
= hpetp
->hp_hpet
->hpet_timers
, i
= 0;
610 i
< hpetp
->hp_ntimer
; i
++, timer
++) {
611 if ((readq(&timer
->hpet_config
) & Tn_PER_INT_CAP_MASK
)
615 devp
= &hpetp
->hp_dev
[i
];
617 if (devp
->hd_flags
& HPET_OPEN
|| devp
->hd_task
) {
622 tp
->ht_opaque
= devp
;
627 spin_unlock(&hpet_lock
);
628 spin_unlock_irq(&hpet_task_lock
);
636 static inline int hpet_tpcheck(struct hpet_task
*tp
)
638 struct hpet_dev
*devp
;
641 devp
= tp
->ht_opaque
;
646 for (hpetp
= hpets
; hpetp
; hpetp
= hpetp
->hp_next
)
647 if (devp
>= hpetp
->hp_dev
648 && devp
< (hpetp
->hp_dev
+ hpetp
->hp_ntimer
)
649 && devp
->hd_hpet
== hpetp
->hp_hpet
)
655 int hpet_unregister(struct hpet_task
*tp
)
657 struct hpet_dev
*devp
;
658 struct hpet_timer __iomem
*timer
;
661 if ((err
= hpet_tpcheck(tp
)))
664 spin_lock_irq(&hpet_task_lock
);
665 spin_lock(&hpet_lock
);
667 devp
= tp
->ht_opaque
;
668 if (devp
->hd_task
!= tp
) {
669 spin_unlock(&hpet_lock
);
670 spin_unlock_irq(&hpet_task_lock
);
674 timer
= devp
->hd_timer
;
675 writeq((readq(&timer
->hpet_config
) & ~Tn_INT_ENB_CNF_MASK
),
676 &timer
->hpet_config
);
677 devp
->hd_flags
&= ~(HPET_IE
| HPET_PERIODIC
);
678 devp
->hd_task
= NULL
;
679 spin_unlock(&hpet_lock
);
680 spin_unlock_irq(&hpet_task_lock
);
685 int hpet_control(struct hpet_task
*tp
, unsigned int cmd
, unsigned long arg
)
687 struct hpet_dev
*devp
;
690 if ((err
= hpet_tpcheck(tp
)))
693 spin_lock_irq(&hpet_lock
);
694 devp
= tp
->ht_opaque
;
695 if (devp
->hd_task
!= tp
) {
696 spin_unlock_irq(&hpet_lock
);
699 spin_unlock_irq(&hpet_lock
);
700 return hpet_ioctl_common(devp
, cmd
, arg
, 1);
703 static ctl_table hpet_table
[] = {
706 .procname
= "max-user-freq",
707 .data
= &hpet_max_freq
,
708 .maxlen
= sizeof(int),
710 .proc_handler
= &proc_dointvec
,
715 static ctl_table hpet_root
[] = {
726 static ctl_table dev_root
[] = {
737 static struct ctl_table_header
*sysctl_header
;
739 static void hpet_register_interpolator(struct hpets
*hpetp
)
741 #ifdef CONFIG_TIME_INTERPOLATION
742 struct time_interpolator
*ti
;
744 ti
= kzalloc(sizeof(*ti
), GFP_KERNEL
);
748 ti
->source
= TIME_SOURCE_MMIO64
;
750 ti
->addr
= &hpetp
->hp_hpet
->hpet_mc
;
751 ti
->frequency
= hpetp
->hp_tick_freq
;
752 ti
->drift
= HPET_DRIFT
;
755 hpetp
->hp_interpolator
= ti
;
756 register_time_interpolator(ti
);
761 * Adjustment for when arming the timer with
762 * initial conditions. That is, main counter
763 * ticks expired before interrupts are enabled.
765 #define TICK_CALIBRATE (1000UL)
767 static unsigned long hpet_calibrate(struct hpets
*hpetp
)
769 struct hpet_timer __iomem
*timer
= NULL
;
770 unsigned long t
, m
, count
, i
, flags
, start
;
771 struct hpet_dev
*devp
;
773 struct hpet __iomem
*hpet
;
775 for (j
= 0, devp
= hpetp
->hp_dev
; j
< hpetp
->hp_ntimer
; j
++, devp
++)
776 if ((devp
->hd_flags
& HPET_OPEN
) == 0) {
777 timer
= devp
->hd_timer
;
784 hpet
= hpetp
->hp_hpet
;
785 t
= read_counter(&timer
->hpet_compare
);
788 count
= hpet_time_div(hpetp
, TICK_CALIBRATE
);
790 local_irq_save(flags
);
792 start
= read_counter(&hpet
->hpet_mc
);
795 m
= read_counter(&hpet
->hpet_mc
);
796 write_counter(t
+ m
+ hpetp
->hp_delta
, &timer
->hpet_compare
);
797 } while (i
++, (m
- start
) < count
);
799 local_irq_restore(flags
);
801 return (m
- start
) / i
;
804 int hpet_alloc(struct hpet_data
*hdp
)
807 struct hpet_dev
*devp
;
811 struct hpet __iomem
*hpet
;
812 static struct hpets
*last
= NULL
;
813 unsigned long period
;
814 unsigned long long temp
;
817 * hpet_alloc can be called by platform dependent code.
818 * If platform dependent code has allocated the hpet that
819 * ACPI has also reported, then we catch it here.
821 if (hpet_is_known(hdp
)) {
822 printk(KERN_DEBUG
"%s: duplicate HPET ignored\n",
827 siz
= sizeof(struct hpets
) + ((hdp
->hd_nirqs
- 1) *
828 sizeof(struct hpet_dev
));
830 hpetp
= kzalloc(siz
, GFP_KERNEL
);
835 hpetp
->hp_which
= hpet_nhpet
++;
836 hpetp
->hp_hpet
= hdp
->hd_address
;
837 hpetp
->hp_hpet_phys
= hdp
->hd_phys_address
;
839 hpetp
->hp_ntimer
= hdp
->hd_nirqs
;
841 for (i
= 0; i
< hdp
->hd_nirqs
; i
++)
842 hpetp
->hp_dev
[i
].hd_hdwirq
= hdp
->hd_irq
[i
];
844 hpet
= hpetp
->hp_hpet
;
846 cap
= readq(&hpet
->hpet_cap
);
848 ntimer
= ((cap
& HPET_NUM_TIM_CAP_MASK
) >> HPET_NUM_TIM_CAP_SHIFT
) + 1;
850 if (hpetp
->hp_ntimer
!= ntimer
) {
851 printk(KERN_WARNING
"hpet: number irqs doesn't agree"
852 " with number of timers\n");
858 last
->hp_next
= hpetp
;
864 period
= (cap
& HPET_COUNTER_CLK_PERIOD_MASK
) >>
865 HPET_COUNTER_CLK_PERIOD_SHIFT
; /* fs, 10^-15 */
866 temp
= 1000000000000000uLL; /* 10^15 femtoseconds per second */
867 temp
+= period
>> 1; /* round */
868 do_div(temp
, period
);
869 hpetp
->hp_tick_freq
= temp
; /* ticks per second */
871 printk(KERN_INFO
"hpet%d: at MMIO 0x%lx, IRQ%s",
872 hpetp
->hp_which
, hdp
->hd_phys_address
,
873 hpetp
->hp_ntimer
> 1 ? "s" : "");
874 for (i
= 0; i
< hpetp
->hp_ntimer
; i
++)
875 printk("%s %d", i
> 0 ? "," : "", hdp
->hd_irq
[i
]);
878 printk(KERN_INFO
"hpet%u: %u %d-bit timers, %Lu Hz\n",
879 hpetp
->hp_which
, hpetp
->hp_ntimer
,
880 cap
& HPET_COUNTER_SIZE_MASK
? 64 : 32, hpetp
->hp_tick_freq
);
882 mcfg
= readq(&hpet
->hpet_config
);
883 if ((mcfg
& HPET_ENABLE_CNF_MASK
) == 0) {
884 write_counter(0L, &hpet
->hpet_mc
);
885 mcfg
|= HPET_ENABLE_CNF_MASK
;
886 writeq(mcfg
, &hpet
->hpet_config
);
889 for (i
= 0, devp
= hpetp
->hp_dev
; i
< hpetp
->hp_ntimer
; i
++, devp
++) {
890 struct hpet_timer __iomem
*timer
;
892 timer
= &hpet
->hpet_timers
[devp
- hpetp
->hp_dev
];
894 devp
->hd_hpets
= hpetp
;
895 devp
->hd_hpet
= hpet
;
896 devp
->hd_timer
= timer
;
899 * If the timer was reserved by platform code,
900 * then make timer unavailable for opens.
902 if (hdp
->hd_state
& (1 << i
)) {
903 devp
->hd_flags
= HPET_OPEN
;
907 init_waitqueue_head(&devp
->hd_waitqueue
);
910 hpetp
->hp_delta
= hpet_calibrate(hpetp
);
911 hpet_register_interpolator(hpetp
);
916 static acpi_status
hpet_resources(struct acpi_resource
*res
, void *data
)
918 struct hpet_data
*hdp
;
920 struct acpi_resource_address64 addr
;
924 status
= acpi_resource_to_address64(res
, &addr
);
926 if (ACPI_SUCCESS(status
)) {
927 hdp
->hd_phys_address
= addr
.minimum
;
928 hdp
->hd_address
= ioremap(addr
.minimum
, addr
.address_length
);
930 if (hpet_is_known(hdp
)) {
931 printk(KERN_DEBUG
"%s: 0x%lx is busy\n",
932 __FUNCTION__
, hdp
->hd_phys_address
);
933 iounmap(hdp
->hd_address
);
936 } else if (res
->type
== ACPI_RESOURCE_TYPE_FIXED_MEMORY32
) {
937 struct acpi_resource_fixed_memory32
*fixmem32
;
939 fixmem32
= &res
->data
.fixed_memory32
;
943 hdp
->hd_phys_address
= fixmem32
->address
;
944 hdp
->hd_address
= ioremap(fixmem32
->address
,
947 if (hpet_is_known(hdp
)) {
948 printk(KERN_DEBUG
"%s: 0x%lx is busy\n",
949 __FUNCTION__
, hdp
->hd_phys_address
);
950 iounmap(hdp
->hd_address
);
953 } else if (res
->type
== ACPI_RESOURCE_TYPE_EXTENDED_IRQ
) {
954 struct acpi_resource_extended_irq
*irqp
;
957 irqp
= &res
->data
.extended_irq
;
959 for (i
= 0; i
< irqp
->interrupt_count
; i
++) {
960 irq
= acpi_register_gsi(irqp
->interrupts
[i
],
961 irqp
->triggering
, irqp
->polarity
);
965 hdp
->hd_irq
[hdp
->hd_nirqs
] = irq
;
973 static int hpet_acpi_add(struct acpi_device
*device
)
976 struct hpet_data data
;
978 memset(&data
, 0, sizeof(data
));
981 acpi_walk_resources(device
->handle
, METHOD_NAME__CRS
,
982 hpet_resources
, &data
);
984 if (ACPI_FAILURE(result
))
987 if (!data
.hd_address
|| !data
.hd_nirqs
) {
988 printk("%s: no address or irqs in _CRS\n", __FUNCTION__
);
992 return hpet_alloc(&data
);
995 static int hpet_acpi_remove(struct acpi_device
*device
, int type
)
997 /* XXX need to unregister interpolator, dealloc mem, etc */
1001 static struct acpi_driver hpet_acpi_driver
= {
1005 .add
= hpet_acpi_add
,
1006 .remove
= hpet_acpi_remove
,
1010 static struct miscdevice hpet_misc
= { HPET_MINOR
, "hpet", &hpet_fops
};
1012 static int __init
hpet_init(void)
1016 result
= misc_register(&hpet_misc
);
1020 sysctl_header
= register_sysctl_table(dev_root
, 0);
1022 result
= acpi_bus_register_driver(&hpet_acpi_driver
);
1025 unregister_sysctl_table(sysctl_header
);
1026 misc_deregister(&hpet_misc
);
1033 static void __exit
hpet_exit(void)
1035 acpi_bus_unregister_driver(&hpet_acpi_driver
);
1038 unregister_sysctl_table(sysctl_header
);
1039 misc_deregister(&hpet_misc
);
1044 module_init(hpet_init
);
1045 module_exit(hpet_exit
);
1046 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1047 MODULE_LICENSE("GPL");