Avoid taking waitqueue lock in dmapool
[linux-2.6/mini2440.git] / drivers / net / s2io.c
blobd5113dd712c2c3c4926c16642c50113d0fec84fb
1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
13 * Credits:
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
24 * dependent code.
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
31 * in the driver.
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35 * values are 1, 2.
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '2(MSI_X)'
41 * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.26.6"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
98 int ret;
100 ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
103 return ret;
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC 1
120 #define LOW 2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
123 struct mac_info *mac_control;
125 mac_control = &sp->mac_control;
126 if (rxb_size <= rxd_count[sp->rxd_mode])
127 return PANIC;
128 else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129 return LOW;
130 return 0;
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
135 return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140 "Register test\t(offline)",
141 "Eeprom test\t(offline)",
142 "Link test\t(online)",
143 "RLDRAM test\t(offline)",
144 "BIST Test\t(offline)"
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148 {"tmac_frms"},
149 {"tmac_data_octets"},
150 {"tmac_drop_frms"},
151 {"tmac_mcst_frms"},
152 {"tmac_bcst_frms"},
153 {"tmac_pause_ctrl_frms"},
154 {"tmac_ttl_octets"},
155 {"tmac_ucst_frms"},
156 {"tmac_nucst_frms"},
157 {"tmac_any_err_frms"},
158 {"tmac_ttl_less_fb_octets"},
159 {"tmac_vld_ip_octets"},
160 {"tmac_vld_ip"},
161 {"tmac_drop_ip"},
162 {"tmac_icmp"},
163 {"tmac_rst_tcp"},
164 {"tmac_tcp"},
165 {"tmac_udp"},
166 {"rmac_vld_frms"},
167 {"rmac_data_octets"},
168 {"rmac_fcs_err_frms"},
169 {"rmac_drop_frms"},
170 {"rmac_vld_mcst_frms"},
171 {"rmac_vld_bcst_frms"},
172 {"rmac_in_rng_len_err_frms"},
173 {"rmac_out_rng_len_err_frms"},
174 {"rmac_long_frms"},
175 {"rmac_pause_ctrl_frms"},
176 {"rmac_unsup_ctrl_frms"},
177 {"rmac_ttl_octets"},
178 {"rmac_accepted_ucst_frms"},
179 {"rmac_accepted_nucst_frms"},
180 {"rmac_discarded_frms"},
181 {"rmac_drop_events"},
182 {"rmac_ttl_less_fb_octets"},
183 {"rmac_ttl_frms"},
184 {"rmac_usized_frms"},
185 {"rmac_osized_frms"},
186 {"rmac_frag_frms"},
187 {"rmac_jabber_frms"},
188 {"rmac_ttl_64_frms"},
189 {"rmac_ttl_65_127_frms"},
190 {"rmac_ttl_128_255_frms"},
191 {"rmac_ttl_256_511_frms"},
192 {"rmac_ttl_512_1023_frms"},
193 {"rmac_ttl_1024_1518_frms"},
194 {"rmac_ip"},
195 {"rmac_ip_octets"},
196 {"rmac_hdr_err_ip"},
197 {"rmac_drop_ip"},
198 {"rmac_icmp"},
199 {"rmac_tcp"},
200 {"rmac_udp"},
201 {"rmac_err_drp_udp"},
202 {"rmac_xgmii_err_sym"},
203 {"rmac_frms_q0"},
204 {"rmac_frms_q1"},
205 {"rmac_frms_q2"},
206 {"rmac_frms_q3"},
207 {"rmac_frms_q4"},
208 {"rmac_frms_q5"},
209 {"rmac_frms_q6"},
210 {"rmac_frms_q7"},
211 {"rmac_full_q0"},
212 {"rmac_full_q1"},
213 {"rmac_full_q2"},
214 {"rmac_full_q3"},
215 {"rmac_full_q4"},
216 {"rmac_full_q5"},
217 {"rmac_full_q6"},
218 {"rmac_full_q7"},
219 {"rmac_pause_cnt"},
220 {"rmac_xgmii_data_err_cnt"},
221 {"rmac_xgmii_ctrl_err_cnt"},
222 {"rmac_accepted_ip"},
223 {"rmac_err_tcp"},
224 {"rd_req_cnt"},
225 {"new_rd_req_cnt"},
226 {"new_rd_req_rtry_cnt"},
227 {"rd_rtry_cnt"},
228 {"wr_rtry_rd_ack_cnt"},
229 {"wr_req_cnt"},
230 {"new_wr_req_cnt"},
231 {"new_wr_req_rtry_cnt"},
232 {"wr_rtry_cnt"},
233 {"wr_disc_cnt"},
234 {"rd_rtry_wr_ack_cnt"},
235 {"txp_wr_cnt"},
236 {"txd_rd_cnt"},
237 {"txd_wr_cnt"},
238 {"rxd_rd_cnt"},
239 {"rxd_wr_cnt"},
240 {"txf_rd_cnt"},
241 {"rxf_wr_cnt"}
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245 {"rmac_ttl_1519_4095_frms"},
246 {"rmac_ttl_4096_8191_frms"},
247 {"rmac_ttl_8192_max_frms"},
248 {"rmac_ttl_gt_max_frms"},
249 {"rmac_osized_alt_frms"},
250 {"rmac_jabber_alt_frms"},
251 {"rmac_gt_max_alt_frms"},
252 {"rmac_vlan_frms"},
253 {"rmac_len_discard"},
254 {"rmac_fcs_discard"},
255 {"rmac_pf_discard"},
256 {"rmac_da_discard"},
257 {"rmac_red_discard"},
258 {"rmac_rts_discard"},
259 {"rmac_ingm_full_discard"},
260 {"link_fault_cnt"}
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264 {"\n DRIVER STATISTICS"},
265 {"single_bit_ecc_errs"},
266 {"double_bit_ecc_errs"},
267 {"parity_err_cnt"},
268 {"serious_err_cnt"},
269 {"soft_reset_cnt"},
270 {"fifo_full_cnt"},
271 {"ring_0_full_cnt"},
272 {"ring_1_full_cnt"},
273 {"ring_2_full_cnt"},
274 {"ring_3_full_cnt"},
275 {"ring_4_full_cnt"},
276 {"ring_5_full_cnt"},
277 {"ring_6_full_cnt"},
278 {"ring_7_full_cnt"},
279 {"alarm_transceiver_temp_high"},
280 {"alarm_transceiver_temp_low"},
281 {"alarm_laser_bias_current_high"},
282 {"alarm_laser_bias_current_low"},
283 {"alarm_laser_output_power_high"},
284 {"alarm_laser_output_power_low"},
285 {"warn_transceiver_temp_high"},
286 {"warn_transceiver_temp_low"},
287 {"warn_laser_bias_current_high"},
288 {"warn_laser_bias_current_low"},
289 {"warn_laser_output_power_high"},
290 {"warn_laser_output_power_low"},
291 {"lro_aggregated_pkts"},
292 {"lro_flush_both_count"},
293 {"lro_out_of_sequence_pkts"},
294 {"lro_flush_due_to_max_pkts"},
295 {"lro_avg_aggr_pkts"},
296 {"mem_alloc_fail_cnt"},
297 {"pci_map_fail_cnt"},
298 {"watchdog_timer_cnt"},
299 {"mem_allocated"},
300 {"mem_freed"},
301 {"link_up_cnt"},
302 {"link_down_cnt"},
303 {"link_up_time"},
304 {"link_down_time"},
305 {"tx_tcode_buf_abort_cnt"},
306 {"tx_tcode_desc_abort_cnt"},
307 {"tx_tcode_parity_err_cnt"},
308 {"tx_tcode_link_loss_cnt"},
309 {"tx_tcode_list_proc_err_cnt"},
310 {"rx_tcode_parity_err_cnt"},
311 {"rx_tcode_abort_cnt"},
312 {"rx_tcode_parity_abort_cnt"},
313 {"rx_tcode_rda_fail_cnt"},
314 {"rx_tcode_unkn_prot_cnt"},
315 {"rx_tcode_fcs_err_cnt"},
316 {"rx_tcode_buf_size_err_cnt"},
317 {"rx_tcode_rxd_corrupt_cnt"},
318 {"rx_tcode_unkn_err_cnt"},
319 {"tda_err_cnt"},
320 {"pfc_err_cnt"},
321 {"pcc_err_cnt"},
322 {"tti_err_cnt"},
323 {"tpa_err_cnt"},
324 {"sm_err_cnt"},
325 {"lso_err_cnt"},
326 {"mac_tmac_err_cnt"},
327 {"mac_rmac_err_cnt"},
328 {"xgxs_txgxs_err_cnt"},
329 {"xgxs_rxgxs_err_cnt"},
330 {"rc_err_cnt"},
331 {"prc_pcix_err_cnt"},
332 {"rpa_err_cnt"},
333 {"rda_err_cnt"},
334 {"rti_err_cnt"},
335 {"mc_err_cnt"}
338 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
339 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
340 ETH_GSTRING_LEN
341 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
343 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
344 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
346 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
347 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
349 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
350 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
352 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
353 init_timer(&timer); \
354 timer.function = handle; \
355 timer.data = (unsigned long) arg; \
356 mod_timer(&timer, (jiffies + exp)) \
358 /* copy mac addr to def_mac_addr array */
359 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
361 sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
362 sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
363 sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
364 sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
365 sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
366 sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
368 /* Add the vlan */
369 static void s2io_vlan_rx_register(struct net_device *dev,
370 struct vlan_group *grp)
372 struct s2io_nic *nic = dev->priv;
373 unsigned long flags;
375 spin_lock_irqsave(&nic->tx_lock, flags);
376 nic->vlgrp = grp;
377 spin_unlock_irqrestore(&nic->tx_lock, flags);
380 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
381 static int vlan_strip_flag;
384 * Constants to be programmed into the Xena's registers, to configure
385 * the XAUI.
388 #define END_SIGN 0x0
389 static const u64 herc_act_dtx_cfg[] = {
390 /* Set address */
391 0x8000051536750000ULL, 0x80000515367500E0ULL,
392 /* Write data */
393 0x8000051536750004ULL, 0x80000515367500E4ULL,
394 /* Set address */
395 0x80010515003F0000ULL, 0x80010515003F00E0ULL,
396 /* Write data */
397 0x80010515003F0004ULL, 0x80010515003F00E4ULL,
398 /* Set address */
399 0x801205150D440000ULL, 0x801205150D4400E0ULL,
400 /* Write data */
401 0x801205150D440004ULL, 0x801205150D4400E4ULL,
402 /* Set address */
403 0x80020515F2100000ULL, 0x80020515F21000E0ULL,
404 /* Write data */
405 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
406 /* Done */
407 END_SIGN
410 static const u64 xena_dtx_cfg[] = {
411 /* Set address */
412 0x8000051500000000ULL, 0x80000515000000E0ULL,
413 /* Write data */
414 0x80000515D9350004ULL, 0x80000515D93500E4ULL,
415 /* Set address */
416 0x8001051500000000ULL, 0x80010515000000E0ULL,
417 /* Write data */
418 0x80010515001E0004ULL, 0x80010515001E00E4ULL,
419 /* Set address */
420 0x8002051500000000ULL, 0x80020515000000E0ULL,
421 /* Write data */
422 0x80020515F2100004ULL, 0x80020515F21000E4ULL,
423 END_SIGN
427 * Constants for Fixing the MacAddress problem seen mostly on
428 * Alpha machines.
430 static const u64 fix_mac[] = {
431 0x0060000000000000ULL, 0x0060600000000000ULL,
432 0x0040600000000000ULL, 0x0000600000000000ULL,
433 0x0020600000000000ULL, 0x0060600000000000ULL,
434 0x0020600000000000ULL, 0x0060600000000000ULL,
435 0x0020600000000000ULL, 0x0060600000000000ULL,
436 0x0020600000000000ULL, 0x0060600000000000ULL,
437 0x0020600000000000ULL, 0x0060600000000000ULL,
438 0x0020600000000000ULL, 0x0060600000000000ULL,
439 0x0020600000000000ULL, 0x0060600000000000ULL,
440 0x0020600000000000ULL, 0x0060600000000000ULL,
441 0x0020600000000000ULL, 0x0060600000000000ULL,
442 0x0020600000000000ULL, 0x0060600000000000ULL,
443 0x0020600000000000ULL, 0x0000600000000000ULL,
444 0x0040600000000000ULL, 0x0060600000000000ULL,
445 END_SIGN
448 MODULE_LICENSE("GPL");
449 MODULE_VERSION(DRV_VERSION);
452 /* Module Loadable parameters. */
453 S2IO_PARM_INT(tx_fifo_num, 1);
454 S2IO_PARM_INT(rx_ring_num, 1);
457 S2IO_PARM_INT(rx_ring_mode, 1);
458 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
459 S2IO_PARM_INT(rmac_pause_time, 0x100);
460 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
461 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
462 S2IO_PARM_INT(shared_splits, 0);
463 S2IO_PARM_INT(tmac_util_period, 5);
464 S2IO_PARM_INT(rmac_util_period, 5);
465 S2IO_PARM_INT(l3l4hdr_size, 128);
466 /* Frequency of Rx desc syncs expressed as power of 2 */
467 S2IO_PARM_INT(rxsync_frequency, 3);
468 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
469 S2IO_PARM_INT(intr_type, 2);
470 /* Large receive offload feature */
471 static unsigned int lro_enable;
472 module_param_named(lro, lro_enable, uint, 0);
474 /* Max pkts to be aggregated by LRO at one time. If not specified,
475 * aggregation happens until we hit max IP pkt size(64K)
477 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
478 S2IO_PARM_INT(indicate_max_pkts, 0);
480 S2IO_PARM_INT(napi, 1);
481 S2IO_PARM_INT(ufo, 0);
482 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
484 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
485 {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
486 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
487 {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
488 static unsigned int rts_frm_len[MAX_RX_RINGS] =
489 {[0 ...(MAX_RX_RINGS - 1)] = 0 };
491 module_param_array(tx_fifo_len, uint, NULL, 0);
492 module_param_array(rx_ring_sz, uint, NULL, 0);
493 module_param_array(rts_frm_len, uint, NULL, 0);
496 * S2IO device table.
497 * This table lists all the devices that this driver supports.
499 static struct pci_device_id s2io_tbl[] __devinitdata = {
500 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
501 PCI_ANY_ID, PCI_ANY_ID},
502 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
503 PCI_ANY_ID, PCI_ANY_ID},
504 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
505 PCI_ANY_ID, PCI_ANY_ID},
506 {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
507 PCI_ANY_ID, PCI_ANY_ID},
508 {0,}
511 MODULE_DEVICE_TABLE(pci, s2io_tbl);
513 static struct pci_error_handlers s2io_err_handler = {
514 .error_detected = s2io_io_error_detected,
515 .slot_reset = s2io_io_slot_reset,
516 .resume = s2io_io_resume,
519 static struct pci_driver s2io_driver = {
520 .name = "S2IO",
521 .id_table = s2io_tbl,
522 .probe = s2io_init_nic,
523 .remove = __devexit_p(s2io_rem_nic),
524 .err_handler = &s2io_err_handler,
527 /* A simplifier macro used both by init and free shared_mem Fns(). */
528 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
531 * init_shared_mem - Allocation and Initialization of Memory
532 * @nic: Device private variable.
533 * Description: The function allocates all the memory areas shared
534 * between the NIC and the driver. This includes Tx descriptors,
535 * Rx descriptors and the statistics block.
538 static int init_shared_mem(struct s2io_nic *nic)
540 u32 size;
541 void *tmp_v_addr, *tmp_v_addr_next;
542 dma_addr_t tmp_p_addr, tmp_p_addr_next;
543 struct RxD_block *pre_rxd_blk = NULL;
544 int i, j, blk_cnt;
545 int lst_size, lst_per_page;
546 struct net_device *dev = nic->dev;
547 unsigned long tmp;
548 struct buffAdd *ba;
550 struct mac_info *mac_control;
551 struct config_param *config;
552 unsigned long long mem_allocated = 0;
554 mac_control = &nic->mac_control;
555 config = &nic->config;
558 /* Allocation and initialization of TXDLs in FIOFs */
559 size = 0;
560 for (i = 0; i < config->tx_fifo_num; i++) {
561 size += config->tx_cfg[i].fifo_len;
563 if (size > MAX_AVAILABLE_TXDS) {
564 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
565 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
566 return -EINVAL;
569 lst_size = (sizeof(struct TxD) * config->max_txds);
570 lst_per_page = PAGE_SIZE / lst_size;
572 for (i = 0; i < config->tx_fifo_num; i++) {
573 int fifo_len = config->tx_cfg[i].fifo_len;
574 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
575 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
576 GFP_KERNEL);
577 if (!mac_control->fifos[i].list_info) {
578 DBG_PRINT(INFO_DBG,
579 "Malloc failed for list_info\n");
580 return -ENOMEM;
582 mem_allocated += list_holder_size;
584 for (i = 0; i < config->tx_fifo_num; i++) {
585 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
586 lst_per_page);
587 mac_control->fifos[i].tx_curr_put_info.offset = 0;
588 mac_control->fifos[i].tx_curr_put_info.fifo_len =
589 config->tx_cfg[i].fifo_len - 1;
590 mac_control->fifos[i].tx_curr_get_info.offset = 0;
591 mac_control->fifos[i].tx_curr_get_info.fifo_len =
592 config->tx_cfg[i].fifo_len - 1;
593 mac_control->fifos[i].fifo_no = i;
594 mac_control->fifos[i].nic = nic;
595 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
597 for (j = 0; j < page_num; j++) {
598 int k = 0;
599 dma_addr_t tmp_p;
600 void *tmp_v;
601 tmp_v = pci_alloc_consistent(nic->pdev,
602 PAGE_SIZE, &tmp_p);
603 if (!tmp_v) {
604 DBG_PRINT(INFO_DBG,
605 "pci_alloc_consistent ");
606 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
607 return -ENOMEM;
609 /* If we got a zero DMA address(can happen on
610 * certain platforms like PPC), reallocate.
611 * Store virtual address of page we don't want,
612 * to be freed later.
614 if (!tmp_p) {
615 mac_control->zerodma_virt_addr = tmp_v;
616 DBG_PRINT(INIT_DBG,
617 "%s: Zero DMA address for TxDL. ", dev->name);
618 DBG_PRINT(INIT_DBG,
619 "Virtual address %p\n", tmp_v);
620 tmp_v = pci_alloc_consistent(nic->pdev,
621 PAGE_SIZE, &tmp_p);
622 if (!tmp_v) {
623 DBG_PRINT(INFO_DBG,
624 "pci_alloc_consistent ");
625 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
626 return -ENOMEM;
628 mem_allocated += PAGE_SIZE;
630 while (k < lst_per_page) {
631 int l = (j * lst_per_page) + k;
632 if (l == config->tx_cfg[i].fifo_len)
633 break;
634 mac_control->fifos[i].list_info[l].list_virt_addr =
635 tmp_v + (k * lst_size);
636 mac_control->fifos[i].list_info[l].list_phy_addr =
637 tmp_p + (k * lst_size);
638 k++;
643 nic->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL);
644 if (!nic->ufo_in_band_v)
645 return -ENOMEM;
646 mem_allocated += (size * sizeof(u64));
648 /* Allocation and initialization of RXDs in Rings */
649 size = 0;
650 for (i = 0; i < config->rx_ring_num; i++) {
651 if (config->rx_cfg[i].num_rxd %
652 (rxd_count[nic->rxd_mode] + 1)) {
653 DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
654 DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
656 DBG_PRINT(ERR_DBG, "RxDs per Block");
657 return FAILURE;
659 size += config->rx_cfg[i].num_rxd;
660 mac_control->rings[i].block_count =
661 config->rx_cfg[i].num_rxd /
662 (rxd_count[nic->rxd_mode] + 1 );
663 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
664 mac_control->rings[i].block_count;
666 if (nic->rxd_mode == RXD_MODE_1)
667 size = (size * (sizeof(struct RxD1)));
668 else
669 size = (size * (sizeof(struct RxD3)));
671 for (i = 0; i < config->rx_ring_num; i++) {
672 mac_control->rings[i].rx_curr_get_info.block_index = 0;
673 mac_control->rings[i].rx_curr_get_info.offset = 0;
674 mac_control->rings[i].rx_curr_get_info.ring_len =
675 config->rx_cfg[i].num_rxd - 1;
676 mac_control->rings[i].rx_curr_put_info.block_index = 0;
677 mac_control->rings[i].rx_curr_put_info.offset = 0;
678 mac_control->rings[i].rx_curr_put_info.ring_len =
679 config->rx_cfg[i].num_rxd - 1;
680 mac_control->rings[i].nic = nic;
681 mac_control->rings[i].ring_no = i;
683 blk_cnt = config->rx_cfg[i].num_rxd /
684 (rxd_count[nic->rxd_mode] + 1);
685 /* Allocating all the Rx blocks */
686 for (j = 0; j < blk_cnt; j++) {
687 struct rx_block_info *rx_blocks;
688 int l;
690 rx_blocks = &mac_control->rings[i].rx_blocks[j];
691 size = SIZE_OF_BLOCK; //size is always page size
692 tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
693 &tmp_p_addr);
694 if (tmp_v_addr == NULL) {
696 * In case of failure, free_shared_mem()
697 * is called, which should free any
698 * memory that was alloced till the
699 * failure happened.
701 rx_blocks->block_virt_addr = tmp_v_addr;
702 return -ENOMEM;
704 mem_allocated += size;
705 memset(tmp_v_addr, 0, size);
706 rx_blocks->block_virt_addr = tmp_v_addr;
707 rx_blocks->block_dma_addr = tmp_p_addr;
708 rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
709 rxd_count[nic->rxd_mode],
710 GFP_KERNEL);
711 if (!rx_blocks->rxds)
712 return -ENOMEM;
713 mem_allocated +=
714 (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
715 for (l=0; l<rxd_count[nic->rxd_mode];l++) {
716 rx_blocks->rxds[l].virt_addr =
717 rx_blocks->block_virt_addr +
718 (rxd_size[nic->rxd_mode] * l);
719 rx_blocks->rxds[l].dma_addr =
720 rx_blocks->block_dma_addr +
721 (rxd_size[nic->rxd_mode] * l);
724 /* Interlinking all Rx Blocks */
725 for (j = 0; j < blk_cnt; j++) {
726 tmp_v_addr =
727 mac_control->rings[i].rx_blocks[j].block_virt_addr;
728 tmp_v_addr_next =
729 mac_control->rings[i].rx_blocks[(j + 1) %
730 blk_cnt].block_virt_addr;
731 tmp_p_addr =
732 mac_control->rings[i].rx_blocks[j].block_dma_addr;
733 tmp_p_addr_next =
734 mac_control->rings[i].rx_blocks[(j + 1) %
735 blk_cnt].block_dma_addr;
737 pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
738 pre_rxd_blk->reserved_2_pNext_RxD_block =
739 (unsigned long) tmp_v_addr_next;
740 pre_rxd_blk->pNext_RxD_Blk_physical =
741 (u64) tmp_p_addr_next;
744 if (nic->rxd_mode == RXD_MODE_3B) {
746 * Allocation of Storages for buffer addresses in 2BUFF mode
747 * and the buffers as well.
749 for (i = 0; i < config->rx_ring_num; i++) {
750 blk_cnt = config->rx_cfg[i].num_rxd /
751 (rxd_count[nic->rxd_mode]+ 1);
752 mac_control->rings[i].ba =
753 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
754 GFP_KERNEL);
755 if (!mac_control->rings[i].ba)
756 return -ENOMEM;
757 mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
758 for (j = 0; j < blk_cnt; j++) {
759 int k = 0;
760 mac_control->rings[i].ba[j] =
761 kmalloc((sizeof(struct buffAdd) *
762 (rxd_count[nic->rxd_mode] + 1)),
763 GFP_KERNEL);
764 if (!mac_control->rings[i].ba[j])
765 return -ENOMEM;
766 mem_allocated += (sizeof(struct buffAdd) * \
767 (rxd_count[nic->rxd_mode] + 1));
768 while (k != rxd_count[nic->rxd_mode]) {
769 ba = &mac_control->rings[i].ba[j][k];
771 ba->ba_0_org = (void *) kmalloc
772 (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
773 if (!ba->ba_0_org)
774 return -ENOMEM;
775 mem_allocated +=
776 (BUF0_LEN + ALIGN_SIZE);
777 tmp = (unsigned long)ba->ba_0_org;
778 tmp += ALIGN_SIZE;
779 tmp &= ~((unsigned long) ALIGN_SIZE);
780 ba->ba_0 = (void *) tmp;
782 ba->ba_1_org = (void *) kmalloc
783 (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
784 if (!ba->ba_1_org)
785 return -ENOMEM;
786 mem_allocated
787 += (BUF1_LEN + ALIGN_SIZE);
788 tmp = (unsigned long) ba->ba_1_org;
789 tmp += ALIGN_SIZE;
790 tmp &= ~((unsigned long) ALIGN_SIZE);
791 ba->ba_1 = (void *) tmp;
792 k++;
798 /* Allocation and initialization of Statistics block */
799 size = sizeof(struct stat_block);
800 mac_control->stats_mem = pci_alloc_consistent
801 (nic->pdev, size, &mac_control->stats_mem_phy);
803 if (!mac_control->stats_mem) {
805 * In case of failure, free_shared_mem() is called, which
806 * should free any memory that was alloced till the
807 * failure happened.
809 return -ENOMEM;
811 mem_allocated += size;
812 mac_control->stats_mem_sz = size;
814 tmp_v_addr = mac_control->stats_mem;
815 mac_control->stats_info = (struct stat_block *) tmp_v_addr;
816 memset(tmp_v_addr, 0, size);
817 DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
818 (unsigned long long) tmp_p_addr);
819 mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
820 return SUCCESS;
824 * free_shared_mem - Free the allocated Memory
825 * @nic: Device private variable.
826 * Description: This function is to free all memory locations allocated by
827 * the init_shared_mem() function and return it to the kernel.
830 static void free_shared_mem(struct s2io_nic *nic)
832 int i, j, blk_cnt, size;
833 u32 ufo_size = 0;
834 void *tmp_v_addr;
835 dma_addr_t tmp_p_addr;
836 struct mac_info *mac_control;
837 struct config_param *config;
838 int lst_size, lst_per_page;
839 struct net_device *dev;
840 int page_num = 0;
842 if (!nic)
843 return;
845 dev = nic->dev;
847 mac_control = &nic->mac_control;
848 config = &nic->config;
850 lst_size = (sizeof(struct TxD) * config->max_txds);
851 lst_per_page = PAGE_SIZE / lst_size;
853 for (i = 0; i < config->tx_fifo_num; i++) {
854 ufo_size += config->tx_cfg[i].fifo_len;
855 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
856 lst_per_page);
857 for (j = 0; j < page_num; j++) {
858 int mem_blks = (j * lst_per_page);
859 if (!mac_control->fifos[i].list_info)
860 return;
861 if (!mac_control->fifos[i].list_info[mem_blks].
862 list_virt_addr)
863 break;
864 pci_free_consistent(nic->pdev, PAGE_SIZE,
865 mac_control->fifos[i].
866 list_info[mem_blks].
867 list_virt_addr,
868 mac_control->fifos[i].
869 list_info[mem_blks].
870 list_phy_addr);
871 nic->mac_control.stats_info->sw_stat.mem_freed
872 += PAGE_SIZE;
874 /* If we got a zero DMA address during allocation,
875 * free the page now
877 if (mac_control->zerodma_virt_addr) {
878 pci_free_consistent(nic->pdev, PAGE_SIZE,
879 mac_control->zerodma_virt_addr,
880 (dma_addr_t)0);
881 DBG_PRINT(INIT_DBG,
882 "%s: Freeing TxDL with zero DMA addr. ",
883 dev->name);
884 DBG_PRINT(INIT_DBG, "Virtual address %p\n",
885 mac_control->zerodma_virt_addr);
886 nic->mac_control.stats_info->sw_stat.mem_freed
887 += PAGE_SIZE;
889 kfree(mac_control->fifos[i].list_info);
890 nic->mac_control.stats_info->sw_stat.mem_freed +=
891 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
894 size = SIZE_OF_BLOCK;
895 for (i = 0; i < config->rx_ring_num; i++) {
896 blk_cnt = mac_control->rings[i].block_count;
897 for (j = 0; j < blk_cnt; j++) {
898 tmp_v_addr = mac_control->rings[i].rx_blocks[j].
899 block_virt_addr;
900 tmp_p_addr = mac_control->rings[i].rx_blocks[j].
901 block_dma_addr;
902 if (tmp_v_addr == NULL)
903 break;
904 pci_free_consistent(nic->pdev, size,
905 tmp_v_addr, tmp_p_addr);
906 nic->mac_control.stats_info->sw_stat.mem_freed += size;
907 kfree(mac_control->rings[i].rx_blocks[j].rxds);
908 nic->mac_control.stats_info->sw_stat.mem_freed +=
909 ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
913 if (nic->rxd_mode == RXD_MODE_3B) {
914 /* Freeing buffer storage addresses in 2BUFF mode. */
915 for (i = 0; i < config->rx_ring_num; i++) {
916 blk_cnt = config->rx_cfg[i].num_rxd /
917 (rxd_count[nic->rxd_mode] + 1);
918 for (j = 0; j < blk_cnt; j++) {
919 int k = 0;
920 if (!mac_control->rings[i].ba[j])
921 continue;
922 while (k != rxd_count[nic->rxd_mode]) {
923 struct buffAdd *ba =
924 &mac_control->rings[i].ba[j][k];
925 kfree(ba->ba_0_org);
926 nic->mac_control.stats_info->sw_stat.\
927 mem_freed += (BUF0_LEN + ALIGN_SIZE);
928 kfree(ba->ba_1_org);
929 nic->mac_control.stats_info->sw_stat.\
930 mem_freed += (BUF1_LEN + ALIGN_SIZE);
931 k++;
933 kfree(mac_control->rings[i].ba[j]);
934 nic->mac_control.stats_info->sw_stat.mem_freed +=
935 (sizeof(struct buffAdd) *
936 (rxd_count[nic->rxd_mode] + 1));
938 kfree(mac_control->rings[i].ba);
939 nic->mac_control.stats_info->sw_stat.mem_freed +=
940 (sizeof(struct buffAdd *) * blk_cnt);
944 if (mac_control->stats_mem) {
945 pci_free_consistent(nic->pdev,
946 mac_control->stats_mem_sz,
947 mac_control->stats_mem,
948 mac_control->stats_mem_phy);
949 nic->mac_control.stats_info->sw_stat.mem_freed +=
950 mac_control->stats_mem_sz;
952 if (nic->ufo_in_band_v) {
953 kfree(nic->ufo_in_band_v);
954 nic->mac_control.stats_info->sw_stat.mem_freed
955 += (ufo_size * sizeof(u64));
960 * s2io_verify_pci_mode -
963 static int s2io_verify_pci_mode(struct s2io_nic *nic)
965 struct XENA_dev_config __iomem *bar0 = nic->bar0;
966 register u64 val64 = 0;
967 int mode;
969 val64 = readq(&bar0->pci_mode);
970 mode = (u8)GET_PCI_MODE(val64);
972 if ( val64 & PCI_MODE_UNKNOWN_MODE)
973 return -1; /* Unknown PCI mode */
974 return mode;
977 #define NEC_VENID 0x1033
978 #define NEC_DEVID 0x0125
979 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
981 struct pci_dev *tdev = NULL;
982 while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
983 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
984 if (tdev->bus == s2io_pdev->bus->parent)
985 pci_dev_put(tdev);
986 return 1;
989 return 0;
992 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
994 * s2io_print_pci_mode -
996 static int s2io_print_pci_mode(struct s2io_nic *nic)
998 struct XENA_dev_config __iomem *bar0 = nic->bar0;
999 register u64 val64 = 0;
1000 int mode;
1001 struct config_param *config = &nic->config;
1003 val64 = readq(&bar0->pci_mode);
1004 mode = (u8)GET_PCI_MODE(val64);
1006 if ( val64 & PCI_MODE_UNKNOWN_MODE)
1007 return -1; /* Unknown PCI mode */
1009 config->bus_speed = bus_speed[mode];
1011 if (s2io_on_nec_bridge(nic->pdev)) {
1012 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1013 nic->dev->name);
1014 return mode;
1017 if (val64 & PCI_MODE_32_BITS) {
1018 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1019 } else {
1020 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1023 switch(mode) {
1024 case PCI_MODE_PCI_33:
1025 DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1026 break;
1027 case PCI_MODE_PCI_66:
1028 DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1029 break;
1030 case PCI_MODE_PCIX_M1_66:
1031 DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1032 break;
1033 case PCI_MODE_PCIX_M1_100:
1034 DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1035 break;
1036 case PCI_MODE_PCIX_M1_133:
1037 DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1038 break;
1039 case PCI_MODE_PCIX_M2_66:
1040 DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1041 break;
1042 case PCI_MODE_PCIX_M2_100:
1043 DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1044 break;
1045 case PCI_MODE_PCIX_M2_133:
1046 DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1047 break;
1048 default:
1049 return -1; /* Unsupported bus speed */
1052 return mode;
1056 * init_nic - Initialization of hardware
1057 * @nic: device peivate variable
1058 * Description: The function sequentially configures every block
1059 * of the H/W from their reset values.
1060 * Return Value: SUCCESS on success and
1061 * '-1' on failure (endian settings incorrect).
1064 static int init_nic(struct s2io_nic *nic)
1066 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1067 struct net_device *dev = nic->dev;
1068 register u64 val64 = 0;
1069 void __iomem *add;
1070 u32 time;
1071 int i, j;
1072 struct mac_info *mac_control;
1073 struct config_param *config;
1074 int dtx_cnt = 0;
1075 unsigned long long mem_share;
1076 int mem_size;
1078 mac_control = &nic->mac_control;
1079 config = &nic->config;
1081 /* to set the swapper controle on the card */
1082 if(s2io_set_swapper(nic)) {
1083 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1084 return -EIO;
1088 * Herc requires EOI to be removed from reset before XGXS, so..
1090 if (nic->device_type & XFRAME_II_DEVICE) {
1091 val64 = 0xA500000000ULL;
1092 writeq(val64, &bar0->sw_reset);
1093 msleep(500);
1094 val64 = readq(&bar0->sw_reset);
1097 /* Remove XGXS from reset state */
1098 val64 = 0;
1099 writeq(val64, &bar0->sw_reset);
1100 msleep(500);
1101 val64 = readq(&bar0->sw_reset);
1103 /* Enable Receiving broadcasts */
1104 add = &bar0->mac_cfg;
1105 val64 = readq(&bar0->mac_cfg);
1106 val64 |= MAC_RMAC_BCAST_ENABLE;
1107 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1108 writel((u32) val64, add);
1109 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1110 writel((u32) (val64 >> 32), (add + 4));
1112 /* Read registers in all blocks */
1113 val64 = readq(&bar0->mac_int_mask);
1114 val64 = readq(&bar0->mc_int_mask);
1115 val64 = readq(&bar0->xgxs_int_mask);
1117 /* Set MTU */
1118 val64 = dev->mtu;
1119 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1121 if (nic->device_type & XFRAME_II_DEVICE) {
1122 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1123 SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1124 &bar0->dtx_control, UF);
1125 if (dtx_cnt & 0x1)
1126 msleep(1); /* Necessary!! */
1127 dtx_cnt++;
1129 } else {
1130 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1131 SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1132 &bar0->dtx_control, UF);
1133 val64 = readq(&bar0->dtx_control);
1134 dtx_cnt++;
1138 /* Tx DMA Initialization */
1139 val64 = 0;
1140 writeq(val64, &bar0->tx_fifo_partition_0);
1141 writeq(val64, &bar0->tx_fifo_partition_1);
1142 writeq(val64, &bar0->tx_fifo_partition_2);
1143 writeq(val64, &bar0->tx_fifo_partition_3);
1146 for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1147 val64 |=
1148 vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19),
1149 13) | vBIT(config->tx_cfg[i].fifo_priority,
1150 ((i * 32) + 5), 3);
1152 if (i == (config->tx_fifo_num - 1)) {
1153 if (i % 2 == 0)
1154 i++;
1157 switch (i) {
1158 case 1:
1159 writeq(val64, &bar0->tx_fifo_partition_0);
1160 val64 = 0;
1161 break;
1162 case 3:
1163 writeq(val64, &bar0->tx_fifo_partition_1);
1164 val64 = 0;
1165 break;
1166 case 5:
1167 writeq(val64, &bar0->tx_fifo_partition_2);
1168 val64 = 0;
1169 break;
1170 case 7:
1171 writeq(val64, &bar0->tx_fifo_partition_3);
1172 break;
1177 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1178 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1180 if ((nic->device_type == XFRAME_I_DEVICE) &&
1181 (nic->pdev->revision < 4))
1182 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1184 val64 = readq(&bar0->tx_fifo_partition_0);
1185 DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1186 &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1189 * Initialization of Tx_PA_CONFIG register to ignore packet
1190 * integrity checking.
1192 val64 = readq(&bar0->tx_pa_cfg);
1193 val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1194 TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1195 writeq(val64, &bar0->tx_pa_cfg);
1197 /* Rx DMA intialization. */
1198 val64 = 0;
1199 for (i = 0; i < config->rx_ring_num; i++) {
1200 val64 |=
1201 vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1204 writeq(val64, &bar0->rx_queue_priority);
1207 * Allocating equal share of memory to all the
1208 * configured Rings.
1210 val64 = 0;
1211 if (nic->device_type & XFRAME_II_DEVICE)
1212 mem_size = 32;
1213 else
1214 mem_size = 64;
1216 for (i = 0; i < config->rx_ring_num; i++) {
1217 switch (i) {
1218 case 0:
1219 mem_share = (mem_size / config->rx_ring_num +
1220 mem_size % config->rx_ring_num);
1221 val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1222 continue;
1223 case 1:
1224 mem_share = (mem_size / config->rx_ring_num);
1225 val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1226 continue;
1227 case 2:
1228 mem_share = (mem_size / config->rx_ring_num);
1229 val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1230 continue;
1231 case 3:
1232 mem_share = (mem_size / config->rx_ring_num);
1233 val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1234 continue;
1235 case 4:
1236 mem_share = (mem_size / config->rx_ring_num);
1237 val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1238 continue;
1239 case 5:
1240 mem_share = (mem_size / config->rx_ring_num);
1241 val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1242 continue;
1243 case 6:
1244 mem_share = (mem_size / config->rx_ring_num);
1245 val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1246 continue;
1247 case 7:
1248 mem_share = (mem_size / config->rx_ring_num);
1249 val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1250 continue;
1253 writeq(val64, &bar0->rx_queue_cfg);
1256 * Filling Tx round robin registers
1257 * as per the number of FIFOs
1259 switch (config->tx_fifo_num) {
1260 case 1:
1261 val64 = 0x0000000000000000ULL;
1262 writeq(val64, &bar0->tx_w_round_robin_0);
1263 writeq(val64, &bar0->tx_w_round_robin_1);
1264 writeq(val64, &bar0->tx_w_round_robin_2);
1265 writeq(val64, &bar0->tx_w_round_robin_3);
1266 writeq(val64, &bar0->tx_w_round_robin_4);
1267 break;
1268 case 2:
1269 val64 = 0x0000010000010000ULL;
1270 writeq(val64, &bar0->tx_w_round_robin_0);
1271 val64 = 0x0100000100000100ULL;
1272 writeq(val64, &bar0->tx_w_round_robin_1);
1273 val64 = 0x0001000001000001ULL;
1274 writeq(val64, &bar0->tx_w_round_robin_2);
1275 val64 = 0x0000010000010000ULL;
1276 writeq(val64, &bar0->tx_w_round_robin_3);
1277 val64 = 0x0100000000000000ULL;
1278 writeq(val64, &bar0->tx_w_round_robin_4);
1279 break;
1280 case 3:
1281 val64 = 0x0001000102000001ULL;
1282 writeq(val64, &bar0->tx_w_round_robin_0);
1283 val64 = 0x0001020000010001ULL;
1284 writeq(val64, &bar0->tx_w_round_robin_1);
1285 val64 = 0x0200000100010200ULL;
1286 writeq(val64, &bar0->tx_w_round_robin_2);
1287 val64 = 0x0001000102000001ULL;
1288 writeq(val64, &bar0->tx_w_round_robin_3);
1289 val64 = 0x0001020000000000ULL;
1290 writeq(val64, &bar0->tx_w_round_robin_4);
1291 break;
1292 case 4:
1293 val64 = 0x0001020300010200ULL;
1294 writeq(val64, &bar0->tx_w_round_robin_0);
1295 val64 = 0x0100000102030001ULL;
1296 writeq(val64, &bar0->tx_w_round_robin_1);
1297 val64 = 0x0200010000010203ULL;
1298 writeq(val64, &bar0->tx_w_round_robin_2);
1299 val64 = 0x0001020001000001ULL;
1300 writeq(val64, &bar0->tx_w_round_robin_3);
1301 val64 = 0x0203000100000000ULL;
1302 writeq(val64, &bar0->tx_w_round_robin_4);
1303 break;
1304 case 5:
1305 val64 = 0x0001000203000102ULL;
1306 writeq(val64, &bar0->tx_w_round_robin_0);
1307 val64 = 0x0001020001030004ULL;
1308 writeq(val64, &bar0->tx_w_round_robin_1);
1309 val64 = 0x0001000203000102ULL;
1310 writeq(val64, &bar0->tx_w_round_robin_2);
1311 val64 = 0x0001020001030004ULL;
1312 writeq(val64, &bar0->tx_w_round_robin_3);
1313 val64 = 0x0001000000000000ULL;
1314 writeq(val64, &bar0->tx_w_round_robin_4);
1315 break;
1316 case 6:
1317 val64 = 0x0001020304000102ULL;
1318 writeq(val64, &bar0->tx_w_round_robin_0);
1319 val64 = 0x0304050001020001ULL;
1320 writeq(val64, &bar0->tx_w_round_robin_1);
1321 val64 = 0x0203000100000102ULL;
1322 writeq(val64, &bar0->tx_w_round_robin_2);
1323 val64 = 0x0304000102030405ULL;
1324 writeq(val64, &bar0->tx_w_round_robin_3);
1325 val64 = 0x0001000200000000ULL;
1326 writeq(val64, &bar0->tx_w_round_robin_4);
1327 break;
1328 case 7:
1329 val64 = 0x0001020001020300ULL;
1330 writeq(val64, &bar0->tx_w_round_robin_0);
1331 val64 = 0x0102030400010203ULL;
1332 writeq(val64, &bar0->tx_w_round_robin_1);
1333 val64 = 0x0405060001020001ULL;
1334 writeq(val64, &bar0->tx_w_round_robin_2);
1335 val64 = 0x0304050000010200ULL;
1336 writeq(val64, &bar0->tx_w_round_robin_3);
1337 val64 = 0x0102030000000000ULL;
1338 writeq(val64, &bar0->tx_w_round_robin_4);
1339 break;
1340 case 8:
1341 val64 = 0x0001020300040105ULL;
1342 writeq(val64, &bar0->tx_w_round_robin_0);
1343 val64 = 0x0200030106000204ULL;
1344 writeq(val64, &bar0->tx_w_round_robin_1);
1345 val64 = 0x0103000502010007ULL;
1346 writeq(val64, &bar0->tx_w_round_robin_2);
1347 val64 = 0x0304010002060500ULL;
1348 writeq(val64, &bar0->tx_w_round_robin_3);
1349 val64 = 0x0103020400000000ULL;
1350 writeq(val64, &bar0->tx_w_round_robin_4);
1351 break;
1354 /* Enable all configured Tx FIFO partitions */
1355 val64 = readq(&bar0->tx_fifo_partition_0);
1356 val64 |= (TX_FIFO_PARTITION_EN);
1357 writeq(val64, &bar0->tx_fifo_partition_0);
1359 /* Filling the Rx round robin registers as per the
1360 * number of Rings and steering based on QoS.
1362 switch (config->rx_ring_num) {
1363 case 1:
1364 val64 = 0x8080808080808080ULL;
1365 writeq(val64, &bar0->rts_qos_steering);
1366 break;
1367 case 2:
1368 val64 = 0x0000010000010000ULL;
1369 writeq(val64, &bar0->rx_w_round_robin_0);
1370 val64 = 0x0100000100000100ULL;
1371 writeq(val64, &bar0->rx_w_round_robin_1);
1372 val64 = 0x0001000001000001ULL;
1373 writeq(val64, &bar0->rx_w_round_robin_2);
1374 val64 = 0x0000010000010000ULL;
1375 writeq(val64, &bar0->rx_w_round_robin_3);
1376 val64 = 0x0100000000000000ULL;
1377 writeq(val64, &bar0->rx_w_round_robin_4);
1379 val64 = 0x8080808040404040ULL;
1380 writeq(val64, &bar0->rts_qos_steering);
1381 break;
1382 case 3:
1383 val64 = 0x0001000102000001ULL;
1384 writeq(val64, &bar0->rx_w_round_robin_0);
1385 val64 = 0x0001020000010001ULL;
1386 writeq(val64, &bar0->rx_w_round_robin_1);
1387 val64 = 0x0200000100010200ULL;
1388 writeq(val64, &bar0->rx_w_round_robin_2);
1389 val64 = 0x0001000102000001ULL;
1390 writeq(val64, &bar0->rx_w_round_robin_3);
1391 val64 = 0x0001020000000000ULL;
1392 writeq(val64, &bar0->rx_w_round_robin_4);
1394 val64 = 0x8080804040402020ULL;
1395 writeq(val64, &bar0->rts_qos_steering);
1396 break;
1397 case 4:
1398 val64 = 0x0001020300010200ULL;
1399 writeq(val64, &bar0->rx_w_round_robin_0);
1400 val64 = 0x0100000102030001ULL;
1401 writeq(val64, &bar0->rx_w_round_robin_1);
1402 val64 = 0x0200010000010203ULL;
1403 writeq(val64, &bar0->rx_w_round_robin_2);
1404 val64 = 0x0001020001000001ULL;
1405 writeq(val64, &bar0->rx_w_round_robin_3);
1406 val64 = 0x0203000100000000ULL;
1407 writeq(val64, &bar0->rx_w_round_robin_4);
1409 val64 = 0x8080404020201010ULL;
1410 writeq(val64, &bar0->rts_qos_steering);
1411 break;
1412 case 5:
1413 val64 = 0x0001000203000102ULL;
1414 writeq(val64, &bar0->rx_w_round_robin_0);
1415 val64 = 0x0001020001030004ULL;
1416 writeq(val64, &bar0->rx_w_round_robin_1);
1417 val64 = 0x0001000203000102ULL;
1418 writeq(val64, &bar0->rx_w_round_robin_2);
1419 val64 = 0x0001020001030004ULL;
1420 writeq(val64, &bar0->rx_w_round_robin_3);
1421 val64 = 0x0001000000000000ULL;
1422 writeq(val64, &bar0->rx_w_round_robin_4);
1424 val64 = 0x8080404020201008ULL;
1425 writeq(val64, &bar0->rts_qos_steering);
1426 break;
1427 case 6:
1428 val64 = 0x0001020304000102ULL;
1429 writeq(val64, &bar0->rx_w_round_robin_0);
1430 val64 = 0x0304050001020001ULL;
1431 writeq(val64, &bar0->rx_w_round_robin_1);
1432 val64 = 0x0203000100000102ULL;
1433 writeq(val64, &bar0->rx_w_round_robin_2);
1434 val64 = 0x0304000102030405ULL;
1435 writeq(val64, &bar0->rx_w_round_robin_3);
1436 val64 = 0x0001000200000000ULL;
1437 writeq(val64, &bar0->rx_w_round_robin_4);
1439 val64 = 0x8080404020100804ULL;
1440 writeq(val64, &bar0->rts_qos_steering);
1441 break;
1442 case 7:
1443 val64 = 0x0001020001020300ULL;
1444 writeq(val64, &bar0->rx_w_round_robin_0);
1445 val64 = 0x0102030400010203ULL;
1446 writeq(val64, &bar0->rx_w_round_robin_1);
1447 val64 = 0x0405060001020001ULL;
1448 writeq(val64, &bar0->rx_w_round_robin_2);
1449 val64 = 0x0304050000010200ULL;
1450 writeq(val64, &bar0->rx_w_round_robin_3);
1451 val64 = 0x0102030000000000ULL;
1452 writeq(val64, &bar0->rx_w_round_robin_4);
1454 val64 = 0x8080402010080402ULL;
1455 writeq(val64, &bar0->rts_qos_steering);
1456 break;
1457 case 8:
1458 val64 = 0x0001020300040105ULL;
1459 writeq(val64, &bar0->rx_w_round_robin_0);
1460 val64 = 0x0200030106000204ULL;
1461 writeq(val64, &bar0->rx_w_round_robin_1);
1462 val64 = 0x0103000502010007ULL;
1463 writeq(val64, &bar0->rx_w_round_robin_2);
1464 val64 = 0x0304010002060500ULL;
1465 writeq(val64, &bar0->rx_w_round_robin_3);
1466 val64 = 0x0103020400000000ULL;
1467 writeq(val64, &bar0->rx_w_round_robin_4);
1469 val64 = 0x8040201008040201ULL;
1470 writeq(val64, &bar0->rts_qos_steering);
1471 break;
1474 /* UDP Fix */
1475 val64 = 0;
1476 for (i = 0; i < 8; i++)
1477 writeq(val64, &bar0->rts_frm_len_n[i]);
1479 /* Set the default rts frame length for the rings configured */
1480 val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1481 for (i = 0 ; i < config->rx_ring_num ; i++)
1482 writeq(val64, &bar0->rts_frm_len_n[i]);
1484 /* Set the frame length for the configured rings
1485 * desired by the user
1487 for (i = 0; i < config->rx_ring_num; i++) {
1488 /* If rts_frm_len[i] == 0 then it is assumed that user not
1489 * specified frame length steering.
1490 * If the user provides the frame length then program
1491 * the rts_frm_len register for those values or else
1492 * leave it as it is.
1494 if (rts_frm_len[i] != 0) {
1495 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1496 &bar0->rts_frm_len_n[i]);
1500 /* Disable differentiated services steering logic */
1501 for (i = 0; i < 64; i++) {
1502 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1503 DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1504 dev->name);
1505 DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1506 return -ENODEV;
1510 /* Program statistics memory */
1511 writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1513 if (nic->device_type == XFRAME_II_DEVICE) {
1514 val64 = STAT_BC(0x320);
1515 writeq(val64, &bar0->stat_byte_cnt);
1519 * Initializing the sampling rate for the device to calculate the
1520 * bandwidth utilization.
1522 val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1523 MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1524 writeq(val64, &bar0->mac_link_util);
1528 * Initializing the Transmit and Receive Traffic Interrupt
1529 * Scheme.
1532 * TTI Initialization. Default Tx timer gets us about
1533 * 250 interrupts per sec. Continuous interrupts are enabled
1534 * by default.
1536 if (nic->device_type == XFRAME_II_DEVICE) {
1537 int count = (nic->config.bus_speed * 125)/2;
1538 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1539 } else {
1541 val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1543 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1544 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1545 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN;
1546 if (use_continuous_tx_intrs)
1547 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1548 writeq(val64, &bar0->tti_data1_mem);
1550 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1551 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1552 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1553 writeq(val64, &bar0->tti_data2_mem);
1555 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD;
1556 writeq(val64, &bar0->tti_command_mem);
1559 * Once the operation completes, the Strobe bit of the command
1560 * register will be reset. We poll for this particular condition
1561 * We wait for a maximum of 500ms for the operation to complete,
1562 * if it's not complete by then we return error.
1564 time = 0;
1565 while (TRUE) {
1566 val64 = readq(&bar0->tti_command_mem);
1567 if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) {
1568 break;
1570 if (time > 10) {
1571 DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n",
1572 dev->name);
1573 return -ENODEV;
1575 msleep(50);
1576 time++;
1579 /* RTI Initialization */
1580 if (nic->device_type == XFRAME_II_DEVICE) {
1582 * Programmed to generate Apprx 500 Intrs per
1583 * second
1585 int count = (nic->config.bus_speed * 125)/4;
1586 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1587 } else
1588 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1589 val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1590 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1591 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1593 writeq(val64, &bar0->rti_data1_mem);
1595 val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1596 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1597 if (nic->config.intr_type == MSI_X)
1598 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1599 RTI_DATA2_MEM_RX_UFC_D(0x40));
1600 else
1601 val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1602 RTI_DATA2_MEM_RX_UFC_D(0x80));
1603 writeq(val64, &bar0->rti_data2_mem);
1605 for (i = 0; i < config->rx_ring_num; i++) {
1606 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1607 | RTI_CMD_MEM_OFFSET(i);
1608 writeq(val64, &bar0->rti_command_mem);
1611 * Once the operation completes, the Strobe bit of the
1612 * command register will be reset. We poll for this
1613 * particular condition. We wait for a maximum of 500ms
1614 * for the operation to complete, if it's not complete
1615 * by then we return error.
1617 time = 0;
1618 while (TRUE) {
1619 val64 = readq(&bar0->rti_command_mem);
1620 if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1621 break;
1623 if (time > 10) {
1624 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1625 dev->name);
1626 return -ENODEV;
1628 time++;
1629 msleep(50);
1634 * Initializing proper values as Pause threshold into all
1635 * the 8 Queues on Rx side.
1637 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1638 writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1640 /* Disable RMAC PAD STRIPPING */
1641 add = &bar0->mac_cfg;
1642 val64 = readq(&bar0->mac_cfg);
1643 val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1644 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1645 writel((u32) (val64), add);
1646 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1647 writel((u32) (val64 >> 32), (add + 4));
1648 val64 = readq(&bar0->mac_cfg);
1650 /* Enable FCS stripping by adapter */
1651 add = &bar0->mac_cfg;
1652 val64 = readq(&bar0->mac_cfg);
1653 val64 |= MAC_CFG_RMAC_STRIP_FCS;
1654 if (nic->device_type == XFRAME_II_DEVICE)
1655 writeq(val64, &bar0->mac_cfg);
1656 else {
1657 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1658 writel((u32) (val64), add);
1659 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1660 writel((u32) (val64 >> 32), (add + 4));
1664 * Set the time value to be inserted in the pause frame
1665 * generated by xena.
1667 val64 = readq(&bar0->rmac_pause_cfg);
1668 val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1669 val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1670 writeq(val64, &bar0->rmac_pause_cfg);
1673 * Set the Threshold Limit for Generating the pause frame
1674 * If the amount of data in any Queue exceeds ratio of
1675 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1676 * pause frame is generated
1678 val64 = 0;
1679 for (i = 0; i < 4; i++) {
1680 val64 |=
1681 (((u64) 0xFF00 | nic->mac_control.
1682 mc_pause_threshold_q0q3)
1683 << (i * 2 * 8));
1685 writeq(val64, &bar0->mc_pause_thresh_q0q3);
1687 val64 = 0;
1688 for (i = 0; i < 4; i++) {
1689 val64 |=
1690 (((u64) 0xFF00 | nic->mac_control.
1691 mc_pause_threshold_q4q7)
1692 << (i * 2 * 8));
1694 writeq(val64, &bar0->mc_pause_thresh_q4q7);
1697 * TxDMA will stop Read request if the number of read split has
1698 * exceeded the limit pointed by shared_splits
1700 val64 = readq(&bar0->pic_control);
1701 val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1702 writeq(val64, &bar0->pic_control);
1704 if (nic->config.bus_speed == 266) {
1705 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1706 writeq(0x0, &bar0->read_retry_delay);
1707 writeq(0x0, &bar0->write_retry_delay);
1711 * Programming the Herc to split every write transaction
1712 * that does not start on an ADB to reduce disconnects.
1714 if (nic->device_type == XFRAME_II_DEVICE) {
1715 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1716 MISC_LINK_STABILITY_PRD(3);
1717 writeq(val64, &bar0->misc_control);
1718 val64 = readq(&bar0->pic_control2);
1719 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1720 writeq(val64, &bar0->pic_control2);
1722 if (strstr(nic->product_name, "CX4")) {
1723 val64 = TMAC_AVG_IPG(0x17);
1724 writeq(val64, &bar0->tmac_avg_ipg);
1727 return SUCCESS;
1729 #define LINK_UP_DOWN_INTERRUPT 1
1730 #define MAC_RMAC_ERR_TIMER 2
1732 static int s2io_link_fault_indication(struct s2io_nic *nic)
1734 if (nic->config.intr_type != INTA)
1735 return MAC_RMAC_ERR_TIMER;
1736 if (nic->device_type == XFRAME_II_DEVICE)
1737 return LINK_UP_DOWN_INTERRUPT;
1738 else
1739 return MAC_RMAC_ERR_TIMER;
1743 * do_s2io_write_bits - update alarm bits in alarm register
1744 * @value: alarm bits
1745 * @flag: interrupt status
1746 * @addr: address value
1747 * Description: update alarm bits in alarm register
1748 * Return Value:
1749 * NONE.
1751 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1753 u64 temp64;
1755 temp64 = readq(addr);
1757 if(flag == ENABLE_INTRS)
1758 temp64 &= ~((u64) value);
1759 else
1760 temp64 |= ((u64) value);
1761 writeq(temp64, addr);
1764 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1766 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1767 register u64 gen_int_mask = 0;
1769 if (mask & TX_DMA_INTR) {
1771 gen_int_mask |= TXDMA_INT_M;
1773 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1774 TXDMA_PCC_INT | TXDMA_TTI_INT |
1775 TXDMA_LSO_INT | TXDMA_TPA_INT |
1776 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1778 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1779 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1780 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1781 &bar0->pfc_err_mask);
1783 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1784 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1785 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1787 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1788 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1789 PCC_N_SERR | PCC_6_COF_OV_ERR |
1790 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1791 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1792 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1794 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1795 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1797 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1798 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1799 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1800 flag, &bar0->lso_err_mask);
1802 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1803 flag, &bar0->tpa_err_mask);
1805 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1809 if (mask & TX_MAC_INTR) {
1810 gen_int_mask |= TXMAC_INT_M;
1811 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1812 &bar0->mac_int_mask);
1813 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1814 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1815 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1816 flag, &bar0->mac_tmac_err_mask);
1819 if (mask & TX_XGXS_INTR) {
1820 gen_int_mask |= TXXGXS_INT_M;
1821 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1822 &bar0->xgxs_int_mask);
1823 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1824 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1825 flag, &bar0->xgxs_txgxs_err_mask);
1828 if (mask & RX_DMA_INTR) {
1829 gen_int_mask |= RXDMA_INT_M;
1830 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1831 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1832 flag, &bar0->rxdma_int_mask);
1833 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1834 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1835 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1836 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1837 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1838 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1839 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1840 &bar0->prc_pcix_err_mask);
1841 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1842 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1843 &bar0->rpa_err_mask);
1844 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1845 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1846 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1847 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1848 flag, &bar0->rda_err_mask);
1849 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1850 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1851 flag, &bar0->rti_err_mask);
1854 if (mask & RX_MAC_INTR) {
1855 gen_int_mask |= RXMAC_INT_M;
1856 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1857 &bar0->mac_int_mask);
1858 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1859 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1860 RMAC_DOUBLE_ECC_ERR |
1861 RMAC_LINK_STATE_CHANGE_INT,
1862 flag, &bar0->mac_rmac_err_mask);
1865 if (mask & RX_XGXS_INTR)
1867 gen_int_mask |= RXXGXS_INT_M;
1868 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1869 &bar0->xgxs_int_mask);
1870 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1871 &bar0->xgxs_rxgxs_err_mask);
1874 if (mask & MC_INTR) {
1875 gen_int_mask |= MC_INT_M;
1876 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1877 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1878 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1879 &bar0->mc_err_mask);
1881 nic->general_int_mask = gen_int_mask;
1883 /* Remove this line when alarm interrupts are enabled */
1884 nic->general_int_mask = 0;
1887 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1888 * @nic: device private variable,
1889 * @mask: A mask indicating which Intr block must be modified and,
1890 * @flag: A flag indicating whether to enable or disable the Intrs.
1891 * Description: This function will either disable or enable the interrupts
1892 * depending on the flag argument. The mask argument can be used to
1893 * enable/disable any Intr block.
1894 * Return Value: NONE.
1897 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1899 struct XENA_dev_config __iomem *bar0 = nic->bar0;
1900 register u64 temp64 = 0, intr_mask = 0;
1902 intr_mask = nic->general_int_mask;
1904 /* Top level interrupt classification */
1905 /* PIC Interrupts */
1906 if (mask & TX_PIC_INTR) {
1907 /* Enable PIC Intrs in the general intr mask register */
1908 intr_mask |= TXPIC_INT_M;
1909 if (flag == ENABLE_INTRS) {
1911 * If Hercules adapter enable GPIO otherwise
1912 * disable all PCIX, Flash, MDIO, IIC and GPIO
1913 * interrupts for now.
1914 * TODO
1916 if (s2io_link_fault_indication(nic) ==
1917 LINK_UP_DOWN_INTERRUPT ) {
1918 do_s2io_write_bits(PIC_INT_GPIO, flag,
1919 &bar0->pic_int_mask);
1920 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1921 &bar0->gpio_int_mask);
1922 } else
1923 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1924 } else if (flag == DISABLE_INTRS) {
1926 * Disable PIC Intrs in the general
1927 * intr mask register
1929 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1933 /* Tx traffic interrupts */
1934 if (mask & TX_TRAFFIC_INTR) {
1935 intr_mask |= TXTRAFFIC_INT_M;
1936 if (flag == ENABLE_INTRS) {
1938 * Enable all the Tx side interrupts
1939 * writing 0 Enables all 64 TX interrupt levels
1941 writeq(0x0, &bar0->tx_traffic_mask);
1942 } else if (flag == DISABLE_INTRS) {
1944 * Disable Tx Traffic Intrs in the general intr mask
1945 * register.
1947 writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
1951 /* Rx traffic interrupts */
1952 if (mask & RX_TRAFFIC_INTR) {
1953 intr_mask |= RXTRAFFIC_INT_M;
1954 if (flag == ENABLE_INTRS) {
1955 /* writing 0 Enables all 8 RX interrupt levels */
1956 writeq(0x0, &bar0->rx_traffic_mask);
1957 } else if (flag == DISABLE_INTRS) {
1959 * Disable Rx Traffic Intrs in the general intr mask
1960 * register.
1962 writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
1966 temp64 = readq(&bar0->general_int_mask);
1967 if (flag == ENABLE_INTRS)
1968 temp64 &= ~((u64) intr_mask);
1969 else
1970 temp64 = DISABLE_ALL_INTRS;
1971 writeq(temp64, &bar0->general_int_mask);
1973 nic->general_int_mask = readq(&bar0->general_int_mask);
1977 * verify_pcc_quiescent- Checks for PCC quiescent state
1978 * Return: 1 If PCC is quiescence
1979 * 0 If PCC is not quiescence
1981 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
1983 int ret = 0, herc;
1984 struct XENA_dev_config __iomem *bar0 = sp->bar0;
1985 u64 val64 = readq(&bar0->adapter_status);
1987 herc = (sp->device_type == XFRAME_II_DEVICE);
1989 if (flag == FALSE) {
1990 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1991 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
1992 ret = 1;
1993 } else {
1994 if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
1995 ret = 1;
1997 } else {
1998 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
1999 if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2000 ADAPTER_STATUS_RMAC_PCC_IDLE))
2001 ret = 1;
2002 } else {
2003 if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2004 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2005 ret = 1;
2009 return ret;
2012 * verify_xena_quiescence - Checks whether the H/W is ready
2013 * Description: Returns whether the H/W is ready to go or not. Depending
2014 * on whether adapter enable bit was written or not the comparison
2015 * differs and the calling function passes the input argument flag to
2016 * indicate this.
2017 * Return: 1 If xena is quiescence
2018 * 0 If Xena is not quiescence
2021 static int verify_xena_quiescence(struct s2io_nic *sp)
2023 int mode;
2024 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2025 u64 val64 = readq(&bar0->adapter_status);
2026 mode = s2io_verify_pci_mode(sp);
2028 if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2029 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2030 return 0;
2032 if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2033 DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2034 return 0;
2036 if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2037 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2038 return 0;
2040 if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2041 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2042 return 0;
2044 if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2045 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2046 return 0;
2048 if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2049 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2050 return 0;
2052 if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2053 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2054 return 0;
2056 if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2057 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2058 return 0;
2062 * In PCI 33 mode, the P_PLL is not used, and therefore,
2063 * the the P_PLL_LOCK bit in the adapter_status register will
2064 * not be asserted.
2066 if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2067 sp->device_type == XFRAME_II_DEVICE && mode !=
2068 PCI_MODE_PCI_33) {
2069 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2070 return 0;
2072 if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2073 ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2074 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2075 return 0;
2077 return 1;
2081 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
2082 * @sp: Pointer to device specifc structure
2083 * Description :
2084 * New procedure to clear mac address reading problems on Alpha platforms
2088 static void fix_mac_address(struct s2io_nic * sp)
2090 struct XENA_dev_config __iomem *bar0 = sp->bar0;
2091 u64 val64;
2092 int i = 0;
2094 while (fix_mac[i] != END_SIGN) {
2095 writeq(fix_mac[i++], &bar0->gpio_control);
2096 udelay(10);
2097 val64 = readq(&bar0->gpio_control);
2102 * start_nic - Turns the device on
2103 * @nic : device private variable.
2104 * Description:
2105 * This function actually turns the device on. Before this function is
2106 * called,all Registers are configured from their reset states
2107 * and shared memory is allocated but the NIC is still quiescent. On
2108 * calling this function, the device interrupts are cleared and the NIC is
2109 * literally switched on by writing into the adapter control register.
2110 * Return Value:
2111 * SUCCESS on success and -1 on failure.
2114 static int start_nic(struct s2io_nic *nic)
2116 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2117 struct net_device *dev = nic->dev;
2118 register u64 val64 = 0;
2119 u16 subid, i;
2120 struct mac_info *mac_control;
2121 struct config_param *config;
2123 mac_control = &nic->mac_control;
2124 config = &nic->config;
2126 /* PRC Initialization and configuration */
2127 for (i = 0; i < config->rx_ring_num; i++) {
2128 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2129 &bar0->prc_rxd0_n[i]);
2131 val64 = readq(&bar0->prc_ctrl_n[i]);
2132 if (nic->rxd_mode == RXD_MODE_1)
2133 val64 |= PRC_CTRL_RC_ENABLED;
2134 else
2135 val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2136 if (nic->device_type == XFRAME_II_DEVICE)
2137 val64 |= PRC_CTRL_GROUP_READS;
2138 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2139 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2140 writeq(val64, &bar0->prc_ctrl_n[i]);
2143 if (nic->rxd_mode == RXD_MODE_3B) {
2144 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2145 val64 = readq(&bar0->rx_pa_cfg);
2146 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2147 writeq(val64, &bar0->rx_pa_cfg);
2150 if (vlan_tag_strip == 0) {
2151 val64 = readq(&bar0->rx_pa_cfg);
2152 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2153 writeq(val64, &bar0->rx_pa_cfg);
2154 vlan_strip_flag = 0;
2158 * Enabling MC-RLDRAM. After enabling the device, we timeout
2159 * for around 100ms, which is approximately the time required
2160 * for the device to be ready for operation.
2162 val64 = readq(&bar0->mc_rldram_mrs);
2163 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2164 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2165 val64 = readq(&bar0->mc_rldram_mrs);
2167 msleep(100); /* Delay by around 100 ms. */
2169 /* Enabling ECC Protection. */
2170 val64 = readq(&bar0->adapter_control);
2171 val64 &= ~ADAPTER_ECC_EN;
2172 writeq(val64, &bar0->adapter_control);
2175 * Verify if the device is ready to be enabled, if so enable
2176 * it.
2178 val64 = readq(&bar0->adapter_status);
2179 if (!verify_xena_quiescence(nic)) {
2180 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2181 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2182 (unsigned long long) val64);
2183 return FAILURE;
2187 * With some switches, link might be already up at this point.
2188 * Because of this weird behavior, when we enable laser,
2189 * we may not get link. We need to handle this. We cannot
2190 * figure out which switch is misbehaving. So we are forced to
2191 * make a global change.
2194 /* Enabling Laser. */
2195 val64 = readq(&bar0->adapter_control);
2196 val64 |= ADAPTER_EOI_TX_ON;
2197 writeq(val64, &bar0->adapter_control);
2199 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2201 * Dont see link state interrupts initally on some switches,
2202 * so directly scheduling the link state task here.
2204 schedule_work(&nic->set_link_task);
2206 /* SXE-002: Initialize link and activity LED */
2207 subid = nic->pdev->subsystem_device;
2208 if (((subid & 0xFF) >= 0x07) &&
2209 (nic->device_type == XFRAME_I_DEVICE)) {
2210 val64 = readq(&bar0->gpio_control);
2211 val64 |= 0x0000800000000000ULL;
2212 writeq(val64, &bar0->gpio_control);
2213 val64 = 0x0411040400000000ULL;
2214 writeq(val64, (void __iomem *)bar0 + 0x2700);
2217 return SUCCESS;
2220 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2222 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2223 TxD *txdlp, int get_off)
2225 struct s2io_nic *nic = fifo_data->nic;
2226 struct sk_buff *skb;
2227 struct TxD *txds;
2228 u16 j, frg_cnt;
2230 txds = txdlp;
2231 if (txds->Host_Control == (u64)(long)nic->ufo_in_band_v) {
2232 pci_unmap_single(nic->pdev, (dma_addr_t)
2233 txds->Buffer_Pointer, sizeof(u64),
2234 PCI_DMA_TODEVICE);
2235 txds++;
2238 skb = (struct sk_buff *) ((unsigned long)
2239 txds->Host_Control);
2240 if (!skb) {
2241 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2242 return NULL;
2244 pci_unmap_single(nic->pdev, (dma_addr_t)
2245 txds->Buffer_Pointer,
2246 skb->len - skb->data_len,
2247 PCI_DMA_TODEVICE);
2248 frg_cnt = skb_shinfo(skb)->nr_frags;
2249 if (frg_cnt) {
2250 txds++;
2251 for (j = 0; j < frg_cnt; j++, txds++) {
2252 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2253 if (!txds->Buffer_Pointer)
2254 break;
2255 pci_unmap_page(nic->pdev, (dma_addr_t)
2256 txds->Buffer_Pointer,
2257 frag->size, PCI_DMA_TODEVICE);
2260 memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2261 return(skb);
2265 * free_tx_buffers - Free all queued Tx buffers
2266 * @nic : device private variable.
2267 * Description:
2268 * Free all queued Tx buffers.
2269 * Return Value: void
2272 static void free_tx_buffers(struct s2io_nic *nic)
2274 struct net_device *dev = nic->dev;
2275 struct sk_buff *skb;
2276 struct TxD *txdp;
2277 int i, j;
2278 struct mac_info *mac_control;
2279 struct config_param *config;
2280 int cnt = 0;
2282 mac_control = &nic->mac_control;
2283 config = &nic->config;
2285 for (i = 0; i < config->tx_fifo_num; i++) {
2286 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2287 txdp = (struct TxD *) \
2288 mac_control->fifos[i].list_info[j].list_virt_addr;
2289 skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2290 if (skb) {
2291 nic->mac_control.stats_info->sw_stat.mem_freed
2292 += skb->truesize;
2293 dev_kfree_skb(skb);
2294 cnt++;
2297 DBG_PRINT(INTR_DBG,
2298 "%s:forcibly freeing %d skbs on FIFO%d\n",
2299 dev->name, cnt, i);
2300 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2301 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2306 * stop_nic - To stop the nic
2307 * @nic ; device private variable.
2308 * Description:
2309 * This function does exactly the opposite of what the start_nic()
2310 * function does. This function is called to stop the device.
2311 * Return Value:
2312 * void.
2315 static void stop_nic(struct s2io_nic *nic)
2317 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2318 register u64 val64 = 0;
2319 u16 interruptible;
2320 struct mac_info *mac_control;
2321 struct config_param *config;
2323 mac_control = &nic->mac_control;
2324 config = &nic->config;
2326 /* Disable all interrupts */
2327 en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2328 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2329 interruptible |= TX_PIC_INTR;
2330 en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2332 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2333 val64 = readq(&bar0->adapter_control);
2334 val64 &= ~(ADAPTER_CNTL_EN);
2335 writeq(val64, &bar0->adapter_control);
2339 * fill_rx_buffers - Allocates the Rx side skbs
2340 * @nic: device private variable
2341 * @ring_no: ring number
2342 * Description:
2343 * The function allocates Rx side skbs and puts the physical
2344 * address of these buffers into the RxD buffer pointers, so that the NIC
2345 * can DMA the received frame into these locations.
2346 * The NIC supports 3 receive modes, viz
2347 * 1. single buffer,
2348 * 2. three buffer and
2349 * 3. Five buffer modes.
2350 * Each mode defines how many fragments the received frame will be split
2351 * up into by the NIC. The frame is split into L3 header, L4 Header,
2352 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2353 * is split into 3 fragments. As of now only single buffer mode is
2354 * supported.
2355 * Return Value:
2356 * SUCCESS on success or an appropriate -ve value on failure.
2359 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2361 struct net_device *dev = nic->dev;
2362 struct sk_buff *skb;
2363 struct RxD_t *rxdp;
2364 int off, off1, size, block_no, block_no1;
2365 u32 alloc_tab = 0;
2366 u32 alloc_cnt;
2367 struct mac_info *mac_control;
2368 struct config_param *config;
2369 u64 tmp;
2370 struct buffAdd *ba;
2371 unsigned long flags;
2372 struct RxD_t *first_rxdp = NULL;
2373 u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2374 struct RxD1 *rxdp1;
2375 struct RxD3 *rxdp3;
2376 struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2378 mac_control = &nic->mac_control;
2379 config = &nic->config;
2380 alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2381 atomic_read(&nic->rx_bufs_left[ring_no]);
2383 block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2384 off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2385 while (alloc_tab < alloc_cnt) {
2386 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2387 block_index;
2388 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2390 rxdp = mac_control->rings[ring_no].
2391 rx_blocks[block_no].rxds[off].virt_addr;
2393 if ((block_no == block_no1) && (off == off1) &&
2394 (rxdp->Host_Control)) {
2395 DBG_PRINT(INTR_DBG, "%s: Get and Put",
2396 dev->name);
2397 DBG_PRINT(INTR_DBG, " info equated\n");
2398 goto end;
2400 if (off && (off == rxd_count[nic->rxd_mode])) {
2401 mac_control->rings[ring_no].rx_curr_put_info.
2402 block_index++;
2403 if (mac_control->rings[ring_no].rx_curr_put_info.
2404 block_index == mac_control->rings[ring_no].
2405 block_count)
2406 mac_control->rings[ring_no].rx_curr_put_info.
2407 block_index = 0;
2408 block_no = mac_control->rings[ring_no].
2409 rx_curr_put_info.block_index;
2410 if (off == rxd_count[nic->rxd_mode])
2411 off = 0;
2412 mac_control->rings[ring_no].rx_curr_put_info.
2413 offset = off;
2414 rxdp = mac_control->rings[ring_no].
2415 rx_blocks[block_no].block_virt_addr;
2416 DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2417 dev->name, rxdp);
2419 if(!napi) {
2420 spin_lock_irqsave(&nic->put_lock, flags);
2421 mac_control->rings[ring_no].put_pos =
2422 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2423 spin_unlock_irqrestore(&nic->put_lock, flags);
2424 } else {
2425 mac_control->rings[ring_no].put_pos =
2426 (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2428 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2429 ((nic->rxd_mode == RXD_MODE_3B) &&
2430 (rxdp->Control_2 & s2BIT(0)))) {
2431 mac_control->rings[ring_no].rx_curr_put_info.
2432 offset = off;
2433 goto end;
2435 /* calculate size of skb based on ring mode */
2436 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2437 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2438 if (nic->rxd_mode == RXD_MODE_1)
2439 size += NET_IP_ALIGN;
2440 else
2441 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2443 /* allocate skb */
2444 skb = dev_alloc_skb(size);
2445 if(!skb) {
2446 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2447 DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2448 if (first_rxdp) {
2449 wmb();
2450 first_rxdp->Control_1 |= RXD_OWN_XENA;
2452 nic->mac_control.stats_info->sw_stat. \
2453 mem_alloc_fail_cnt++;
2454 return -ENOMEM ;
2456 nic->mac_control.stats_info->sw_stat.mem_allocated
2457 += skb->truesize;
2458 if (nic->rxd_mode == RXD_MODE_1) {
2459 /* 1 buffer mode - normal operation mode */
2460 rxdp1 = (struct RxD1*)rxdp;
2461 memset(rxdp, 0, sizeof(struct RxD1));
2462 skb_reserve(skb, NET_IP_ALIGN);
2463 rxdp1->Buffer0_ptr = pci_map_single
2464 (nic->pdev, skb->data, size - NET_IP_ALIGN,
2465 PCI_DMA_FROMDEVICE);
2466 if( (rxdp1->Buffer0_ptr == 0) ||
2467 (rxdp1->Buffer0_ptr ==
2468 DMA_ERROR_CODE))
2469 goto pci_map_failed;
2471 rxdp->Control_2 =
2472 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2474 } else if (nic->rxd_mode == RXD_MODE_3B) {
2476 * 2 buffer mode -
2477 * 2 buffer mode provides 128
2478 * byte aligned receive buffers.
2481 rxdp3 = (struct RxD3*)rxdp;
2482 /* save buffer pointers to avoid frequent dma mapping */
2483 Buffer0_ptr = rxdp3->Buffer0_ptr;
2484 Buffer1_ptr = rxdp3->Buffer1_ptr;
2485 memset(rxdp, 0, sizeof(struct RxD3));
2486 /* restore the buffer pointers for dma sync*/
2487 rxdp3->Buffer0_ptr = Buffer0_ptr;
2488 rxdp3->Buffer1_ptr = Buffer1_ptr;
2490 ba = &mac_control->rings[ring_no].ba[block_no][off];
2491 skb_reserve(skb, BUF0_LEN);
2492 tmp = (u64)(unsigned long) skb->data;
2493 tmp += ALIGN_SIZE;
2494 tmp &= ~ALIGN_SIZE;
2495 skb->data = (void *) (unsigned long)tmp;
2496 skb_reset_tail_pointer(skb);
2498 if (!(rxdp3->Buffer0_ptr))
2499 rxdp3->Buffer0_ptr =
2500 pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2501 PCI_DMA_FROMDEVICE);
2502 else
2503 pci_dma_sync_single_for_device(nic->pdev,
2504 (dma_addr_t) rxdp3->Buffer0_ptr,
2505 BUF0_LEN, PCI_DMA_FROMDEVICE);
2506 if( (rxdp3->Buffer0_ptr == 0) ||
2507 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2508 goto pci_map_failed;
2510 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2511 if (nic->rxd_mode == RXD_MODE_3B) {
2512 /* Two buffer mode */
2515 * Buffer2 will have L3/L4 header plus
2516 * L4 payload
2518 rxdp3->Buffer2_ptr = pci_map_single
2519 (nic->pdev, skb->data, dev->mtu + 4,
2520 PCI_DMA_FROMDEVICE);
2522 if( (rxdp3->Buffer2_ptr == 0) ||
2523 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2524 goto pci_map_failed;
2526 rxdp3->Buffer1_ptr =
2527 pci_map_single(nic->pdev,
2528 ba->ba_1, BUF1_LEN,
2529 PCI_DMA_FROMDEVICE);
2530 if( (rxdp3->Buffer1_ptr == 0) ||
2531 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2532 pci_unmap_single
2533 (nic->pdev,
2534 (dma_addr_t)rxdp3->Buffer2_ptr,
2535 dev->mtu + 4,
2536 PCI_DMA_FROMDEVICE);
2537 goto pci_map_failed;
2539 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2540 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2541 (dev->mtu + 4);
2543 rxdp->Control_2 |= s2BIT(0);
2545 rxdp->Host_Control = (unsigned long) (skb);
2546 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2547 rxdp->Control_1 |= RXD_OWN_XENA;
2548 off++;
2549 if (off == (rxd_count[nic->rxd_mode] + 1))
2550 off = 0;
2551 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2553 rxdp->Control_2 |= SET_RXD_MARKER;
2554 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2555 if (first_rxdp) {
2556 wmb();
2557 first_rxdp->Control_1 |= RXD_OWN_XENA;
2559 first_rxdp = rxdp;
2561 atomic_inc(&nic->rx_bufs_left[ring_no]);
2562 alloc_tab++;
2565 end:
2566 /* Transfer ownership of first descriptor to adapter just before
2567 * exiting. Before that, use memory barrier so that ownership
2568 * and other fields are seen by adapter correctly.
2570 if (first_rxdp) {
2571 wmb();
2572 first_rxdp->Control_1 |= RXD_OWN_XENA;
2575 return SUCCESS;
2576 pci_map_failed:
2577 stats->pci_map_fail_cnt++;
2578 stats->mem_freed += skb->truesize;
2579 dev_kfree_skb_irq(skb);
2580 return -ENOMEM;
2583 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2585 struct net_device *dev = sp->dev;
2586 int j;
2587 struct sk_buff *skb;
2588 struct RxD_t *rxdp;
2589 struct mac_info *mac_control;
2590 struct buffAdd *ba;
2591 struct RxD1 *rxdp1;
2592 struct RxD3 *rxdp3;
2594 mac_control = &sp->mac_control;
2595 for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2596 rxdp = mac_control->rings[ring_no].
2597 rx_blocks[blk].rxds[j].virt_addr;
2598 skb = (struct sk_buff *)
2599 ((unsigned long) rxdp->Host_Control);
2600 if (!skb) {
2601 continue;
2603 if (sp->rxd_mode == RXD_MODE_1) {
2604 rxdp1 = (struct RxD1*)rxdp;
2605 pci_unmap_single(sp->pdev, (dma_addr_t)
2606 rxdp1->Buffer0_ptr,
2607 dev->mtu +
2608 HEADER_ETHERNET_II_802_3_SIZE
2609 + HEADER_802_2_SIZE +
2610 HEADER_SNAP_SIZE,
2611 PCI_DMA_FROMDEVICE);
2612 memset(rxdp, 0, sizeof(struct RxD1));
2613 } else if(sp->rxd_mode == RXD_MODE_3B) {
2614 rxdp3 = (struct RxD3*)rxdp;
2615 ba = &mac_control->rings[ring_no].
2616 ba[blk][j];
2617 pci_unmap_single(sp->pdev, (dma_addr_t)
2618 rxdp3->Buffer0_ptr,
2619 BUF0_LEN,
2620 PCI_DMA_FROMDEVICE);
2621 pci_unmap_single(sp->pdev, (dma_addr_t)
2622 rxdp3->Buffer1_ptr,
2623 BUF1_LEN,
2624 PCI_DMA_FROMDEVICE);
2625 pci_unmap_single(sp->pdev, (dma_addr_t)
2626 rxdp3->Buffer2_ptr,
2627 dev->mtu + 4,
2628 PCI_DMA_FROMDEVICE);
2629 memset(rxdp, 0, sizeof(struct RxD3));
2631 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2632 dev_kfree_skb(skb);
2633 atomic_dec(&sp->rx_bufs_left[ring_no]);
2638 * free_rx_buffers - Frees all Rx buffers
2639 * @sp: device private variable.
2640 * Description:
2641 * This function will free all Rx buffers allocated by host.
2642 * Return Value:
2643 * NONE.
2646 static void free_rx_buffers(struct s2io_nic *sp)
2648 struct net_device *dev = sp->dev;
2649 int i, blk = 0, buf_cnt = 0;
2650 struct mac_info *mac_control;
2651 struct config_param *config;
2653 mac_control = &sp->mac_control;
2654 config = &sp->config;
2656 for (i = 0; i < config->rx_ring_num; i++) {
2657 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2658 free_rxd_blk(sp,i,blk);
2660 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2661 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2662 mac_control->rings[i].rx_curr_put_info.offset = 0;
2663 mac_control->rings[i].rx_curr_get_info.offset = 0;
2664 atomic_set(&sp->rx_bufs_left[i], 0);
2665 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2666 dev->name, buf_cnt, i);
2671 * s2io_poll - Rx interrupt handler for NAPI support
2672 * @napi : pointer to the napi structure.
2673 * @budget : The number of packets that were budgeted to be processed
2674 * during one pass through the 'Poll" function.
2675 * Description:
2676 * Comes into picture only if NAPI support has been incorporated. It does
2677 * the same thing that rx_intr_handler does, but not in a interrupt context
2678 * also It will process only a given number of packets.
2679 * Return value:
2680 * 0 on success and 1 if there are No Rx packets to be processed.
2683 static int s2io_poll(struct napi_struct *napi, int budget)
2685 struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2686 struct net_device *dev = nic->dev;
2687 int pkt_cnt = 0, org_pkts_to_process;
2688 struct mac_info *mac_control;
2689 struct config_param *config;
2690 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2691 int i;
2693 if (!is_s2io_card_up(nic))
2694 return 0;
2696 mac_control = &nic->mac_control;
2697 config = &nic->config;
2699 nic->pkts_to_process = budget;
2700 org_pkts_to_process = nic->pkts_to_process;
2702 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2703 readl(&bar0->rx_traffic_int);
2705 for (i = 0; i < config->rx_ring_num; i++) {
2706 rx_intr_handler(&mac_control->rings[i]);
2707 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2708 if (!nic->pkts_to_process) {
2709 /* Quota for the current iteration has been met */
2710 goto no_rx;
2714 netif_rx_complete(dev, napi);
2716 for (i = 0; i < config->rx_ring_num; i++) {
2717 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2718 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2719 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2720 break;
2723 /* Re enable the Rx interrupts. */
2724 writeq(0x0, &bar0->rx_traffic_mask);
2725 readl(&bar0->rx_traffic_mask);
2726 return pkt_cnt;
2728 no_rx:
2729 for (i = 0; i < config->rx_ring_num; i++) {
2730 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2731 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2732 DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2733 break;
2736 return pkt_cnt;
2739 #ifdef CONFIG_NET_POLL_CONTROLLER
2741 * s2io_netpoll - netpoll event handler entry point
2742 * @dev : pointer to the device structure.
2743 * Description:
2744 * This function will be called by upper layer to check for events on the
2745 * interface in situations where interrupts are disabled. It is used for
2746 * specific in-kernel networking tasks, such as remote consoles and kernel
2747 * debugging over the network (example netdump in RedHat).
2749 static void s2io_netpoll(struct net_device *dev)
2751 struct s2io_nic *nic = dev->priv;
2752 struct mac_info *mac_control;
2753 struct config_param *config;
2754 struct XENA_dev_config __iomem *bar0 = nic->bar0;
2755 u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2756 int i;
2758 if (pci_channel_offline(nic->pdev))
2759 return;
2761 disable_irq(dev->irq);
2763 mac_control = &nic->mac_control;
2764 config = &nic->config;
2766 writeq(val64, &bar0->rx_traffic_int);
2767 writeq(val64, &bar0->tx_traffic_int);
2769 /* we need to free up the transmitted skbufs or else netpoll will
2770 * run out of skbs and will fail and eventually netpoll application such
2771 * as netdump will fail.
2773 for (i = 0; i < config->tx_fifo_num; i++)
2774 tx_intr_handler(&mac_control->fifos[i]);
2776 /* check for received packet and indicate up to network */
2777 for (i = 0; i < config->rx_ring_num; i++)
2778 rx_intr_handler(&mac_control->rings[i]);
2780 for (i = 0; i < config->rx_ring_num; i++) {
2781 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2782 DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2783 DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2784 break;
2787 enable_irq(dev->irq);
2788 return;
2790 #endif
2793 * rx_intr_handler - Rx interrupt handler
2794 * @nic: device private variable.
2795 * Description:
2796 * If the interrupt is because of a received frame or if the
2797 * receive ring contains fresh as yet un-processed frames,this function is
2798 * called. It picks out the RxD at which place the last Rx processing had
2799 * stopped and sends the skb to the OSM's Rx handler and then increments
2800 * the offset.
2801 * Return Value:
2802 * NONE.
2804 static void rx_intr_handler(struct ring_info *ring_data)
2806 struct s2io_nic *nic = ring_data->nic;
2807 struct net_device *dev = (struct net_device *) nic->dev;
2808 int get_block, put_block, put_offset;
2809 struct rx_curr_get_info get_info, put_info;
2810 struct RxD_t *rxdp;
2811 struct sk_buff *skb;
2812 int pkt_cnt = 0;
2813 int i;
2814 struct RxD1* rxdp1;
2815 struct RxD3* rxdp3;
2817 spin_lock(&nic->rx_lock);
2819 get_info = ring_data->rx_curr_get_info;
2820 get_block = get_info.block_index;
2821 memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2822 put_block = put_info.block_index;
2823 rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2824 if (!napi) {
2825 spin_lock(&nic->put_lock);
2826 put_offset = ring_data->put_pos;
2827 spin_unlock(&nic->put_lock);
2828 } else
2829 put_offset = ring_data->put_pos;
2831 while (RXD_IS_UP2DT(rxdp)) {
2833 * If your are next to put index then it's
2834 * FIFO full condition
2836 if ((get_block == put_block) &&
2837 (get_info.offset + 1) == put_info.offset) {
2838 DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2839 break;
2841 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2842 if (skb == NULL) {
2843 DBG_PRINT(ERR_DBG, "%s: The skb is ",
2844 dev->name);
2845 DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2846 spin_unlock(&nic->rx_lock);
2847 return;
2849 if (nic->rxd_mode == RXD_MODE_1) {
2850 rxdp1 = (struct RxD1*)rxdp;
2851 pci_unmap_single(nic->pdev, (dma_addr_t)
2852 rxdp1->Buffer0_ptr,
2853 dev->mtu +
2854 HEADER_ETHERNET_II_802_3_SIZE +
2855 HEADER_802_2_SIZE +
2856 HEADER_SNAP_SIZE,
2857 PCI_DMA_FROMDEVICE);
2858 } else if (nic->rxd_mode == RXD_MODE_3B) {
2859 rxdp3 = (struct RxD3*)rxdp;
2860 pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2861 rxdp3->Buffer0_ptr,
2862 BUF0_LEN, PCI_DMA_FROMDEVICE);
2863 pci_unmap_single(nic->pdev, (dma_addr_t)
2864 rxdp3->Buffer2_ptr,
2865 dev->mtu + 4,
2866 PCI_DMA_FROMDEVICE);
2868 prefetch(skb->data);
2869 rx_osm_handler(ring_data, rxdp);
2870 get_info.offset++;
2871 ring_data->rx_curr_get_info.offset = get_info.offset;
2872 rxdp = ring_data->rx_blocks[get_block].
2873 rxds[get_info.offset].virt_addr;
2874 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2875 get_info.offset = 0;
2876 ring_data->rx_curr_get_info.offset = get_info.offset;
2877 get_block++;
2878 if (get_block == ring_data->block_count)
2879 get_block = 0;
2880 ring_data->rx_curr_get_info.block_index = get_block;
2881 rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2884 nic->pkts_to_process -= 1;
2885 if ((napi) && (!nic->pkts_to_process))
2886 break;
2887 pkt_cnt++;
2888 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2889 break;
2891 if (nic->lro) {
2892 /* Clear all LRO sessions before exiting */
2893 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2894 struct lro *lro = &nic->lro0_n[i];
2895 if (lro->in_use) {
2896 update_L3L4_header(nic, lro);
2897 queue_rx_frame(lro->parent);
2898 clear_lro_session(lro);
2903 spin_unlock(&nic->rx_lock);
2907 * tx_intr_handler - Transmit interrupt handler
2908 * @nic : device private variable
2909 * Description:
2910 * If an interrupt was raised to indicate DMA complete of the
2911 * Tx packet, this function is called. It identifies the last TxD
2912 * whose buffer was freed and frees all skbs whose data have already
2913 * DMA'ed into the NICs internal memory.
2914 * Return Value:
2915 * NONE
2918 static void tx_intr_handler(struct fifo_info *fifo_data)
2920 struct s2io_nic *nic = fifo_data->nic;
2921 struct net_device *dev = (struct net_device *) nic->dev;
2922 struct tx_curr_get_info get_info, put_info;
2923 struct sk_buff *skb;
2924 struct TxD *txdlp;
2925 u8 err_mask;
2927 get_info = fifo_data->tx_curr_get_info;
2928 memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2929 txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2930 list_virt_addr;
2931 while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2932 (get_info.offset != put_info.offset) &&
2933 (txdlp->Host_Control)) {
2934 /* Check for TxD errors */
2935 if (txdlp->Control_1 & TXD_T_CODE) {
2936 unsigned long long err;
2937 err = txdlp->Control_1 & TXD_T_CODE;
2938 if (err & 0x1) {
2939 nic->mac_control.stats_info->sw_stat.
2940 parity_err_cnt++;
2943 /* update t_code statistics */
2944 err_mask = err >> 48;
2945 switch(err_mask) {
2946 case 2:
2947 nic->mac_control.stats_info->sw_stat.
2948 tx_buf_abort_cnt++;
2949 break;
2951 case 3:
2952 nic->mac_control.stats_info->sw_stat.
2953 tx_desc_abort_cnt++;
2954 break;
2956 case 7:
2957 nic->mac_control.stats_info->sw_stat.
2958 tx_parity_err_cnt++;
2959 break;
2961 case 10:
2962 nic->mac_control.stats_info->sw_stat.
2963 tx_link_loss_cnt++;
2964 break;
2966 case 15:
2967 nic->mac_control.stats_info->sw_stat.
2968 tx_list_proc_err_cnt++;
2969 break;
2973 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
2974 if (skb == NULL) {
2975 DBG_PRINT(ERR_DBG, "%s: Null skb ",
2976 __FUNCTION__);
2977 DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
2978 return;
2981 /* Updating the statistics block */
2982 nic->stats.tx_bytes += skb->len;
2983 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2984 dev_kfree_skb_irq(skb);
2986 get_info.offset++;
2987 if (get_info.offset == get_info.fifo_len + 1)
2988 get_info.offset = 0;
2989 txdlp = (struct TxD *) fifo_data->list_info
2990 [get_info.offset].list_virt_addr;
2991 fifo_data->tx_curr_get_info.offset =
2992 get_info.offset;
2995 spin_lock(&nic->tx_lock);
2996 if (netif_queue_stopped(dev))
2997 netif_wake_queue(dev);
2998 spin_unlock(&nic->tx_lock);
3002 * s2io_mdio_write - Function to write in to MDIO registers
3003 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3004 * @addr : address value
3005 * @value : data value
3006 * @dev : pointer to net_device structure
3007 * Description:
3008 * This function is used to write values to the MDIO registers
3009 * NONE
3011 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3013 u64 val64 = 0x0;
3014 struct s2io_nic *sp = dev->priv;
3015 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3017 //address transaction
3018 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3019 | MDIO_MMD_DEV_ADDR(mmd_type)
3020 | MDIO_MMS_PRT_ADDR(0x0);
3021 writeq(val64, &bar0->mdio_control);
3022 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3023 writeq(val64, &bar0->mdio_control);
3024 udelay(100);
3026 //Data transaction
3027 val64 = 0x0;
3028 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3029 | MDIO_MMD_DEV_ADDR(mmd_type)
3030 | MDIO_MMS_PRT_ADDR(0x0)
3031 | MDIO_MDIO_DATA(value)
3032 | MDIO_OP(MDIO_OP_WRITE_TRANS);
3033 writeq(val64, &bar0->mdio_control);
3034 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3035 writeq(val64, &bar0->mdio_control);
3036 udelay(100);
3038 val64 = 0x0;
3039 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3040 | MDIO_MMD_DEV_ADDR(mmd_type)
3041 | MDIO_MMS_PRT_ADDR(0x0)
3042 | MDIO_OP(MDIO_OP_READ_TRANS);
3043 writeq(val64, &bar0->mdio_control);
3044 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3045 writeq(val64, &bar0->mdio_control);
3046 udelay(100);
3051 * s2io_mdio_read - Function to write in to MDIO registers
3052 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3053 * @addr : address value
3054 * @dev : pointer to net_device structure
3055 * Description:
3056 * This function is used to read values to the MDIO registers
3057 * NONE
3059 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3061 u64 val64 = 0x0;
3062 u64 rval64 = 0x0;
3063 struct s2io_nic *sp = dev->priv;
3064 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3066 /* address transaction */
3067 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3068 | MDIO_MMD_DEV_ADDR(mmd_type)
3069 | MDIO_MMS_PRT_ADDR(0x0);
3070 writeq(val64, &bar0->mdio_control);
3071 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3072 writeq(val64, &bar0->mdio_control);
3073 udelay(100);
3075 /* Data transaction */
3076 val64 = 0x0;
3077 val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3078 | MDIO_MMD_DEV_ADDR(mmd_type)
3079 | MDIO_MMS_PRT_ADDR(0x0)
3080 | MDIO_OP(MDIO_OP_READ_TRANS);
3081 writeq(val64, &bar0->mdio_control);
3082 val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3083 writeq(val64, &bar0->mdio_control);
3084 udelay(100);
3086 /* Read the value from regs */
3087 rval64 = readq(&bar0->mdio_control);
3088 rval64 = rval64 & 0xFFFF0000;
3089 rval64 = rval64 >> 16;
3090 return rval64;
3093 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3094 * @counter : couter value to be updated
3095 * @flag : flag to indicate the status
3096 * @type : counter type
3097 * Description:
3098 * This function is to check the status of the xpak counters value
3099 * NONE
3102 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3104 u64 mask = 0x3;
3105 u64 val64;
3106 int i;
3107 for(i = 0; i <index; i++)
3108 mask = mask << 0x2;
3110 if(flag > 0)
3112 *counter = *counter + 1;
3113 val64 = *regs_stat & mask;
3114 val64 = val64 >> (index * 0x2);
3115 val64 = val64 + 1;
3116 if(val64 == 3)
3118 switch(type)
3120 case 1:
3121 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3122 "service. Excessive temperatures may "
3123 "result in premature transceiver "
3124 "failure \n");
3125 break;
3126 case 2:
3127 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3128 "service Excessive bias currents may "
3129 "indicate imminent laser diode "
3130 "failure \n");
3131 break;
3132 case 3:
3133 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3134 "service Excessive laser output "
3135 "power may saturate far-end "
3136 "receiver\n");
3137 break;
3138 default:
3139 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3140 "type \n");
3142 val64 = 0x0;
3144 val64 = val64 << (index * 0x2);
3145 *regs_stat = (*regs_stat & (~mask)) | (val64);
3147 } else {
3148 *regs_stat = *regs_stat & (~mask);
3153 * s2io_updt_xpak_counter - Function to update the xpak counters
3154 * @dev : pointer to net_device struct
3155 * Description:
3156 * This function is to upate the status of the xpak counters value
3157 * NONE
3159 static void s2io_updt_xpak_counter(struct net_device *dev)
3161 u16 flag = 0x0;
3162 u16 type = 0x0;
3163 u16 val16 = 0x0;
3164 u64 val64 = 0x0;
3165 u64 addr = 0x0;
3167 struct s2io_nic *sp = dev->priv;
3168 struct stat_block *stat_info = sp->mac_control.stats_info;
3170 /* Check the communication with the MDIO slave */
3171 addr = 0x0000;
3172 val64 = 0x0;
3173 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3174 if((val64 == 0xFFFF) || (val64 == 0x0000))
3176 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3177 "Returned %llx\n", (unsigned long long)val64);
3178 return;
3181 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3182 if(val64 != 0x2040)
3184 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3185 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3186 (unsigned long long)val64);
3187 return;
3190 /* Loading the DOM register to MDIO register */
3191 addr = 0xA100;
3192 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3193 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3195 /* Reading the Alarm flags */
3196 addr = 0xA070;
3197 val64 = 0x0;
3198 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3200 flag = CHECKBIT(val64, 0x7);
3201 type = 1;
3202 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3203 &stat_info->xpak_stat.xpak_regs_stat,
3204 0x0, flag, type);
3206 if(CHECKBIT(val64, 0x6))
3207 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3209 flag = CHECKBIT(val64, 0x3);
3210 type = 2;
3211 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3212 &stat_info->xpak_stat.xpak_regs_stat,
3213 0x2, flag, type);
3215 if(CHECKBIT(val64, 0x2))
3216 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3218 flag = CHECKBIT(val64, 0x1);
3219 type = 3;
3220 s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3221 &stat_info->xpak_stat.xpak_regs_stat,
3222 0x4, flag, type);
3224 if(CHECKBIT(val64, 0x0))
3225 stat_info->xpak_stat.alarm_laser_output_power_low++;
3227 /* Reading the Warning flags */
3228 addr = 0xA074;
3229 val64 = 0x0;
3230 val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3232 if(CHECKBIT(val64, 0x7))
3233 stat_info->xpak_stat.warn_transceiver_temp_high++;
3235 if(CHECKBIT(val64, 0x6))
3236 stat_info->xpak_stat.warn_transceiver_temp_low++;
3238 if(CHECKBIT(val64, 0x3))
3239 stat_info->xpak_stat.warn_laser_bias_current_high++;
3241 if(CHECKBIT(val64, 0x2))
3242 stat_info->xpak_stat.warn_laser_bias_current_low++;
3244 if(CHECKBIT(val64, 0x1))
3245 stat_info->xpak_stat.warn_laser_output_power_high++;
3247 if(CHECKBIT(val64, 0x0))
3248 stat_info->xpak_stat.warn_laser_output_power_low++;
3252 * wait_for_cmd_complete - waits for a command to complete.
3253 * @sp : private member of the device structure, which is a pointer to the
3254 * s2io_nic structure.
3255 * Description: Function that waits for a command to Write into RMAC
3256 * ADDR DATA registers to be completed and returns either success or
3257 * error depending on whether the command was complete or not.
3258 * Return value:
3259 * SUCCESS on success and FAILURE on failure.
3262 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3263 int bit_state)
3265 int ret = FAILURE, cnt = 0, delay = 1;
3266 u64 val64;
3268 if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3269 return FAILURE;
3271 do {
3272 val64 = readq(addr);
3273 if (bit_state == S2IO_BIT_RESET) {
3274 if (!(val64 & busy_bit)) {
3275 ret = SUCCESS;
3276 break;
3278 } else {
3279 if (!(val64 & busy_bit)) {
3280 ret = SUCCESS;
3281 break;
3285 if(in_interrupt())
3286 mdelay(delay);
3287 else
3288 msleep(delay);
3290 if (++cnt >= 10)
3291 delay = 50;
3292 } while (cnt < 20);
3293 return ret;
3296 * check_pci_device_id - Checks if the device id is supported
3297 * @id : device id
3298 * Description: Function to check if the pci device id is supported by driver.
3299 * Return value: Actual device id if supported else PCI_ANY_ID
3301 static u16 check_pci_device_id(u16 id)
3303 switch (id) {
3304 case PCI_DEVICE_ID_HERC_WIN:
3305 case PCI_DEVICE_ID_HERC_UNI:
3306 return XFRAME_II_DEVICE;
3307 case PCI_DEVICE_ID_S2IO_UNI:
3308 case PCI_DEVICE_ID_S2IO_WIN:
3309 return XFRAME_I_DEVICE;
3310 default:
3311 return PCI_ANY_ID;
3316 * s2io_reset - Resets the card.
3317 * @sp : private member of the device structure.
3318 * Description: Function to Reset the card. This function then also
3319 * restores the previously saved PCI configuration space registers as
3320 * the card reset also resets the configuration space.
3321 * Return value:
3322 * void.
3325 static void s2io_reset(struct s2io_nic * sp)
3327 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3328 u64 val64;
3329 u16 subid, pci_cmd;
3330 int i;
3331 u16 val16;
3332 unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3333 unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3335 DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3336 __FUNCTION__, sp->dev->name);
3338 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3339 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3341 val64 = SW_RESET_ALL;
3342 writeq(val64, &bar0->sw_reset);
3343 if (strstr(sp->product_name, "CX4")) {
3344 msleep(750);
3346 msleep(250);
3347 for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3349 /* Restore the PCI state saved during initialization. */
3350 pci_restore_state(sp->pdev);
3351 pci_read_config_word(sp->pdev, 0x2, &val16);
3352 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3353 break;
3354 msleep(200);
3357 if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3358 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3361 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3363 s2io_init_pci(sp);
3365 /* Set swapper to enable I/O register access */
3366 s2io_set_swapper(sp);
3368 /* Restore the MSIX table entries from local variables */
3369 restore_xmsi_data(sp);
3371 /* Clear certain PCI/PCI-X fields after reset */
3372 if (sp->device_type == XFRAME_II_DEVICE) {
3373 /* Clear "detected parity error" bit */
3374 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3376 /* Clearing PCIX Ecc status register */
3377 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3379 /* Clearing PCI_STATUS error reflected here */
3380 writeq(s2BIT(62), &bar0->txpic_int_reg);
3383 /* Reset device statistics maintained by OS */
3384 memset(&sp->stats, 0, sizeof (struct net_device_stats));
3386 up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3387 down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3388 up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3389 down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3390 reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3391 mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3392 mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3393 watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3394 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3395 memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3396 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3397 sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3398 sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3399 sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3400 sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3401 sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3402 sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3403 sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3404 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3406 /* SXE-002: Configure link and activity LED to turn it off */
3407 subid = sp->pdev->subsystem_device;
3408 if (((subid & 0xFF) >= 0x07) &&
3409 (sp->device_type == XFRAME_I_DEVICE)) {
3410 val64 = readq(&bar0->gpio_control);
3411 val64 |= 0x0000800000000000ULL;
3412 writeq(val64, &bar0->gpio_control);
3413 val64 = 0x0411040400000000ULL;
3414 writeq(val64, (void __iomem *)bar0 + 0x2700);
3418 * Clear spurious ECC interrupts that would have occured on
3419 * XFRAME II cards after reset.
3421 if (sp->device_type == XFRAME_II_DEVICE) {
3422 val64 = readq(&bar0->pcc_err_reg);
3423 writeq(val64, &bar0->pcc_err_reg);
3426 /* restore the previously assigned mac address */
3427 do_s2io_prog_unicast(sp->dev, (u8 *)&sp->def_mac_addr[0].mac_addr);
3429 sp->device_enabled_once = FALSE;
3433 * s2io_set_swapper - to set the swapper controle on the card
3434 * @sp : private member of the device structure,
3435 * pointer to the s2io_nic structure.
3436 * Description: Function to set the swapper control on the card
3437 * correctly depending on the 'endianness' of the system.
3438 * Return value:
3439 * SUCCESS on success and FAILURE on failure.
3442 static int s2io_set_swapper(struct s2io_nic * sp)
3444 struct net_device *dev = sp->dev;
3445 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3446 u64 val64, valt, valr;
3449 * Set proper endian settings and verify the same by reading
3450 * the PIF Feed-back register.
3453 val64 = readq(&bar0->pif_rd_swapper_fb);
3454 if (val64 != 0x0123456789ABCDEFULL) {
3455 int i = 0;
3456 u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */
3457 0x8100008181000081ULL, /* FE=1, SE=0 */
3458 0x4200004242000042ULL, /* FE=0, SE=1 */
3459 0}; /* FE=0, SE=0 */
3461 while(i<4) {
3462 writeq(value[i], &bar0->swapper_ctrl);
3463 val64 = readq(&bar0->pif_rd_swapper_fb);
3464 if (val64 == 0x0123456789ABCDEFULL)
3465 break;
3466 i++;
3468 if (i == 4) {
3469 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3470 dev->name);
3471 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3472 (unsigned long long) val64);
3473 return FAILURE;
3475 valr = value[i];
3476 } else {
3477 valr = readq(&bar0->swapper_ctrl);
3480 valt = 0x0123456789ABCDEFULL;
3481 writeq(valt, &bar0->xmsi_address);
3482 val64 = readq(&bar0->xmsi_address);
3484 if(val64 != valt) {
3485 int i = 0;
3486 u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */
3487 0x0081810000818100ULL, /* FE=1, SE=0 */
3488 0x0042420000424200ULL, /* FE=0, SE=1 */
3489 0}; /* FE=0, SE=0 */
3491 while(i<4) {
3492 writeq((value[i] | valr), &bar0->swapper_ctrl);
3493 writeq(valt, &bar0->xmsi_address);
3494 val64 = readq(&bar0->xmsi_address);
3495 if(val64 == valt)
3496 break;
3497 i++;
3499 if(i == 4) {
3500 unsigned long long x = val64;
3501 DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3502 DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3503 return FAILURE;
3506 val64 = readq(&bar0->swapper_ctrl);
3507 val64 &= 0xFFFF000000000000ULL;
3509 #ifdef __BIG_ENDIAN
3511 * The device by default set to a big endian format, so a
3512 * big endian driver need not set anything.
3514 val64 |= (SWAPPER_CTRL_TXP_FE |
3515 SWAPPER_CTRL_TXP_SE |
3516 SWAPPER_CTRL_TXD_R_FE |
3517 SWAPPER_CTRL_TXD_W_FE |
3518 SWAPPER_CTRL_TXF_R_FE |
3519 SWAPPER_CTRL_RXD_R_FE |
3520 SWAPPER_CTRL_RXD_W_FE |
3521 SWAPPER_CTRL_RXF_W_FE |
3522 SWAPPER_CTRL_XMSI_FE |
3523 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3524 if (sp->config.intr_type == INTA)
3525 val64 |= SWAPPER_CTRL_XMSI_SE;
3526 writeq(val64, &bar0->swapper_ctrl);
3527 #else
3529 * Initially we enable all bits to make it accessible by the
3530 * driver, then we selectively enable only those bits that
3531 * we want to set.
3533 val64 |= (SWAPPER_CTRL_TXP_FE |
3534 SWAPPER_CTRL_TXP_SE |
3535 SWAPPER_CTRL_TXD_R_FE |
3536 SWAPPER_CTRL_TXD_R_SE |
3537 SWAPPER_CTRL_TXD_W_FE |
3538 SWAPPER_CTRL_TXD_W_SE |
3539 SWAPPER_CTRL_TXF_R_FE |
3540 SWAPPER_CTRL_RXD_R_FE |
3541 SWAPPER_CTRL_RXD_R_SE |
3542 SWAPPER_CTRL_RXD_W_FE |
3543 SWAPPER_CTRL_RXD_W_SE |
3544 SWAPPER_CTRL_RXF_W_FE |
3545 SWAPPER_CTRL_XMSI_FE |
3546 SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3547 if (sp->config.intr_type == INTA)
3548 val64 |= SWAPPER_CTRL_XMSI_SE;
3549 writeq(val64, &bar0->swapper_ctrl);
3550 #endif
3551 val64 = readq(&bar0->swapper_ctrl);
3554 * Verifying if endian settings are accurate by reading a
3555 * feedback register.
3557 val64 = readq(&bar0->pif_rd_swapper_fb);
3558 if (val64 != 0x0123456789ABCDEFULL) {
3559 /* Endian settings are incorrect, calls for another dekko. */
3560 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3561 dev->name);
3562 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3563 (unsigned long long) val64);
3564 return FAILURE;
3567 return SUCCESS;
3570 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3572 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3573 u64 val64;
3574 int ret = 0, cnt = 0;
3576 do {
3577 val64 = readq(&bar0->xmsi_access);
3578 if (!(val64 & s2BIT(15)))
3579 break;
3580 mdelay(1);
3581 cnt++;
3582 } while(cnt < 5);
3583 if (cnt == 5) {
3584 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3585 ret = 1;
3588 return ret;
3591 static void restore_xmsi_data(struct s2io_nic *nic)
3593 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3594 u64 val64;
3595 int i;
3597 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3598 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3599 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3600 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3601 writeq(val64, &bar0->xmsi_access);
3602 if (wait_for_msix_trans(nic, i)) {
3603 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3604 continue;
3609 static void store_xmsi_data(struct s2io_nic *nic)
3611 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3612 u64 val64, addr, data;
3613 int i;
3615 /* Store and display */
3616 for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3617 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3618 writeq(val64, &bar0->xmsi_access);
3619 if (wait_for_msix_trans(nic, i)) {
3620 DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3621 continue;
3623 addr = readq(&bar0->xmsi_address);
3624 data = readq(&bar0->xmsi_data);
3625 if (addr && data) {
3626 nic->msix_info[i].addr = addr;
3627 nic->msix_info[i].data = data;
3632 static int s2io_enable_msi_x(struct s2io_nic *nic)
3634 struct XENA_dev_config __iomem *bar0 = nic->bar0;
3635 u64 tx_mat, rx_mat;
3636 u16 msi_control; /* Temp variable */
3637 int ret, i, j, msix_indx = 1;
3639 nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3640 GFP_KERNEL);
3641 if (!nic->entries) {
3642 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3643 __FUNCTION__);
3644 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3645 return -ENOMEM;
3647 nic->mac_control.stats_info->sw_stat.mem_allocated
3648 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3650 nic->s2io_entries =
3651 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3652 GFP_KERNEL);
3653 if (!nic->s2io_entries) {
3654 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3655 __FUNCTION__);
3656 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3657 kfree(nic->entries);
3658 nic->mac_control.stats_info->sw_stat.mem_freed
3659 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3660 return -ENOMEM;
3662 nic->mac_control.stats_info->sw_stat.mem_allocated
3663 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3665 for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3666 nic->entries[i].entry = i;
3667 nic->s2io_entries[i].entry = i;
3668 nic->s2io_entries[i].arg = NULL;
3669 nic->s2io_entries[i].in_use = 0;
3672 tx_mat = readq(&bar0->tx_mat0_n[0]);
3673 for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3674 tx_mat |= TX_MAT_SET(i, msix_indx);
3675 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3676 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3677 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3679 writeq(tx_mat, &bar0->tx_mat0_n[0]);
3681 rx_mat = readq(&bar0->rx_mat);
3682 for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3683 rx_mat |= RX_MAT_SET(j, msix_indx);
3684 nic->s2io_entries[msix_indx].arg
3685 = &nic->mac_control.rings[j];
3686 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3687 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3689 writeq(rx_mat, &bar0->rx_mat);
3691 nic->avail_msix_vectors = 0;
3692 ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3693 /* We fail init if error or we get less vectors than min required */
3694 if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3695 nic->avail_msix_vectors = ret;
3696 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3698 if (ret) {
3699 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3700 kfree(nic->entries);
3701 nic->mac_control.stats_info->sw_stat.mem_freed
3702 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3703 kfree(nic->s2io_entries);
3704 nic->mac_control.stats_info->sw_stat.mem_freed
3705 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3706 nic->entries = NULL;
3707 nic->s2io_entries = NULL;
3708 nic->avail_msix_vectors = 0;
3709 return -ENOMEM;
3711 if (!nic->avail_msix_vectors)
3712 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3715 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3716 * in the herc NIC. (Temp change, needs to be removed later)
3718 pci_read_config_word(nic->pdev, 0x42, &msi_control);
3719 msi_control |= 0x1; /* Enable MSI */
3720 pci_write_config_word(nic->pdev, 0x42, msi_control);
3722 return 0;
3725 /* Handle software interrupt used during MSI(X) test */
3726 static irqreturn_t __devinit s2io_test_intr(int irq, void *dev_id)
3728 struct s2io_nic *sp = dev_id;
3730 sp->msi_detected = 1;
3731 wake_up(&sp->msi_wait);
3733 return IRQ_HANDLED;
3736 /* Test interrupt path by forcing a a software IRQ */
3737 static int __devinit s2io_test_msi(struct s2io_nic *sp)
3739 struct pci_dev *pdev = sp->pdev;
3740 struct XENA_dev_config __iomem *bar0 = sp->bar0;
3741 int err;
3742 u64 val64, saved64;
3744 err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3745 sp->name, sp);
3746 if (err) {
3747 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3748 sp->dev->name, pci_name(pdev), pdev->irq);
3749 return err;
3752 init_waitqueue_head (&sp->msi_wait);
3753 sp->msi_detected = 0;
3755 saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3756 val64 |= SCHED_INT_CTRL_ONE_SHOT;
3757 val64 |= SCHED_INT_CTRL_TIMER_EN;
3758 val64 |= SCHED_INT_CTRL_INT2MSI(1);
3759 writeq(val64, &bar0->scheduled_int_ctrl);
3761 wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3763 if (!sp->msi_detected) {
3764 /* MSI(X) test failed, go back to INTx mode */
3765 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated"
3766 "using MSI(X) during test\n", sp->dev->name,
3767 pci_name(pdev));
3769 err = -EOPNOTSUPP;
3772 free_irq(sp->entries[1].vector, sp);
3774 writeq(saved64, &bar0->scheduled_int_ctrl);
3776 return err;
3779 static void remove_msix_isr(struct s2io_nic *sp)
3781 int i;
3782 u16 msi_control;
3784 for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3785 if (sp->s2io_entries[i].in_use ==
3786 MSIX_REGISTERED_SUCCESS) {
3787 int vector = sp->entries[i].vector;
3788 void *arg = sp->s2io_entries[i].arg;
3789 free_irq(vector, arg);
3793 kfree(sp->entries);
3794 kfree(sp->s2io_entries);
3795 sp->entries = NULL;
3796 sp->s2io_entries = NULL;
3798 pci_read_config_word(sp->pdev, 0x42, &msi_control);
3799 msi_control &= 0xFFFE; /* Disable MSI */
3800 pci_write_config_word(sp->pdev, 0x42, msi_control);
3802 pci_disable_msix(sp->pdev);
3805 static void remove_inta_isr(struct s2io_nic *sp)
3807 struct net_device *dev = sp->dev;
3809 free_irq(sp->pdev->irq, dev);
3812 /* ********************************************************* *
3813 * Functions defined below concern the OS part of the driver *
3814 * ********************************************************* */
3817 * s2io_open - open entry point of the driver
3818 * @dev : pointer to the device structure.
3819 * Description:
3820 * This function is the open entry point of the driver. It mainly calls a
3821 * function to allocate Rx buffers and inserts them into the buffer
3822 * descriptors and then enables the Rx part of the NIC.
3823 * Return value:
3824 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3825 * file on failure.
3828 static int s2io_open(struct net_device *dev)
3830 struct s2io_nic *sp = dev->priv;
3831 int err = 0;
3834 * Make sure you have link off by default every time
3835 * Nic is initialized
3837 netif_carrier_off(dev);
3838 sp->last_link_state = 0;
3840 napi_enable(&sp->napi);
3842 if (sp->config.intr_type == MSI_X) {
3843 int ret = s2io_enable_msi_x(sp);
3845 if (!ret) {
3846 ret = s2io_test_msi(sp);
3847 /* rollback MSI-X, will re-enable during add_isr() */
3848 remove_msix_isr(sp);
3850 if (ret) {
3852 DBG_PRINT(ERR_DBG,
3853 "%s: MSI-X requested but failed to enable\n",
3854 dev->name);
3855 sp->config.intr_type = INTA;
3859 /* NAPI doesn't work well with MSI(X) */
3860 if (sp->config.intr_type != INTA) {
3861 if(sp->config.napi)
3862 sp->config.napi = 0;
3865 /* Initialize H/W and enable interrupts */
3866 err = s2io_card_up(sp);
3867 if (err) {
3868 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3869 dev->name);
3870 goto hw_init_failed;
3873 if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3874 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3875 s2io_card_down(sp);
3876 err = -ENODEV;
3877 goto hw_init_failed;
3880 netif_start_queue(dev);
3881 return 0;
3883 hw_init_failed:
3884 napi_disable(&sp->napi);
3885 if (sp->config.intr_type == MSI_X) {
3886 if (sp->entries) {
3887 kfree(sp->entries);
3888 sp->mac_control.stats_info->sw_stat.mem_freed
3889 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3891 if (sp->s2io_entries) {
3892 kfree(sp->s2io_entries);
3893 sp->mac_control.stats_info->sw_stat.mem_freed
3894 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3897 return err;
3901 * s2io_close -close entry point of the driver
3902 * @dev : device pointer.
3903 * Description:
3904 * This is the stop entry point of the driver. It needs to undo exactly
3905 * whatever was done by the open entry point,thus it's usually referred to
3906 * as the close function.Among other things this function mainly stops the
3907 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3908 * Return value:
3909 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3910 * file on failure.
3913 static int s2io_close(struct net_device *dev)
3915 struct s2io_nic *sp = dev->priv;
3917 /* Return if the device is already closed *
3918 * Can happen when s2io_card_up failed in change_mtu *
3920 if (!is_s2io_card_up(sp))
3921 return 0;
3923 netif_stop_queue(dev);
3924 napi_disable(&sp->napi);
3925 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3926 s2io_card_down(sp);
3928 return 0;
3932 * s2io_xmit - Tx entry point of te driver
3933 * @skb : the socket buffer containing the Tx data.
3934 * @dev : device pointer.
3935 * Description :
3936 * This function is the Tx entry point of the driver. S2IO NIC supports
3937 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3938 * NOTE: when device cant queue the pkt,just the trans_start variable will
3939 * not be upadted.
3940 * Return value:
3941 * 0 on success & 1 on failure.
3944 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
3946 struct s2io_nic *sp = dev->priv;
3947 u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
3948 register u64 val64;
3949 struct TxD *txdp;
3950 struct TxFIFO_element __iomem *tx_fifo;
3951 unsigned long flags;
3952 u16 vlan_tag = 0;
3953 int vlan_priority = 0;
3954 struct mac_info *mac_control;
3955 struct config_param *config;
3956 int offload_type;
3957 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
3959 mac_control = &sp->mac_control;
3960 config = &sp->config;
3962 DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
3964 if (unlikely(skb->len <= 0)) {
3965 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
3966 dev_kfree_skb_any(skb);
3967 return 0;
3970 spin_lock_irqsave(&sp->tx_lock, flags);
3971 if (!is_s2io_card_up(sp)) {
3972 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
3973 dev->name);
3974 spin_unlock_irqrestore(&sp->tx_lock, flags);
3975 dev_kfree_skb(skb);
3976 return 0;
3979 queue = 0;
3980 /* Get Fifo number to Transmit based on vlan priority */
3981 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
3982 vlan_tag = vlan_tx_tag_get(skb);
3983 vlan_priority = vlan_tag >> 13;
3984 queue = config->fifo_mapping[vlan_priority];
3987 put_off = (u16) mac_control->fifos[queue].tx_curr_put_info.offset;
3988 get_off = (u16) mac_control->fifos[queue].tx_curr_get_info.offset;
3989 txdp = (struct TxD *) mac_control->fifos[queue].list_info[put_off].
3990 list_virt_addr;
3992 queue_len = mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1;
3993 /* Avoid "put" pointer going beyond "get" pointer */
3994 if (txdp->Host_Control ||
3995 ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
3996 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
3997 netif_stop_queue(dev);
3998 dev_kfree_skb(skb);
3999 spin_unlock_irqrestore(&sp->tx_lock, flags);
4000 return 0;
4003 offload_type = s2io_offload_type(skb);
4004 if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4005 txdp->Control_1 |= TXD_TCP_LSO_EN;
4006 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4008 if (skb->ip_summed == CHECKSUM_PARTIAL) {
4009 txdp->Control_2 |=
4010 (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4011 TXD_TX_CKO_UDP_EN);
4013 txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4014 txdp->Control_1 |= TXD_LIST_OWN_XENA;
4015 txdp->Control_2 |= config->tx_intr_type;
4017 if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4018 txdp->Control_2 |= TXD_VLAN_ENABLE;
4019 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4022 frg_len = skb->len - skb->data_len;
4023 if (offload_type == SKB_GSO_UDP) {
4024 int ufo_size;
4026 ufo_size = s2io_udp_mss(skb);
4027 ufo_size &= ~7;
4028 txdp->Control_1 |= TXD_UFO_EN;
4029 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4030 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4031 #ifdef __BIG_ENDIAN
4032 sp->ufo_in_band_v[put_off] =
4033 (u64)skb_shinfo(skb)->ip6_frag_id;
4034 #else
4035 sp->ufo_in_band_v[put_off] =
4036 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4037 #endif
4038 txdp->Host_Control = (unsigned long)sp->ufo_in_band_v;
4039 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4040 sp->ufo_in_band_v,
4041 sizeof(u64), PCI_DMA_TODEVICE);
4042 if((txdp->Buffer_Pointer == 0) ||
4043 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4044 goto pci_map_failed;
4045 txdp++;
4048 txdp->Buffer_Pointer = pci_map_single
4049 (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4050 if((txdp->Buffer_Pointer == 0) ||
4051 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4052 goto pci_map_failed;
4054 txdp->Host_Control = (unsigned long) skb;
4055 txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4056 if (offload_type == SKB_GSO_UDP)
4057 txdp->Control_1 |= TXD_UFO_EN;
4059 frg_cnt = skb_shinfo(skb)->nr_frags;
4060 /* For fragmented SKB. */
4061 for (i = 0; i < frg_cnt; i++) {
4062 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4063 /* A '0' length fragment will be ignored */
4064 if (!frag->size)
4065 continue;
4066 txdp++;
4067 txdp->Buffer_Pointer = (u64) pci_map_page
4068 (sp->pdev, frag->page, frag->page_offset,
4069 frag->size, PCI_DMA_TODEVICE);
4070 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4071 if (offload_type == SKB_GSO_UDP)
4072 txdp->Control_1 |= TXD_UFO_EN;
4074 txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4076 if (offload_type == SKB_GSO_UDP)
4077 frg_cnt++; /* as Txd0 was used for inband header */
4079 tx_fifo = mac_control->tx_FIFO_start[queue];
4080 val64 = mac_control->fifos[queue].list_info[put_off].list_phy_addr;
4081 writeq(val64, &tx_fifo->TxDL_Pointer);
4083 val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4084 TX_FIFO_LAST_LIST);
4085 if (offload_type)
4086 val64 |= TX_FIFO_SPECIAL_FUNC;
4088 writeq(val64, &tx_fifo->List_Control);
4090 mmiowb();
4092 put_off++;
4093 if (put_off == mac_control->fifos[queue].tx_curr_put_info.fifo_len + 1)
4094 put_off = 0;
4095 mac_control->fifos[queue].tx_curr_put_info.offset = put_off;
4097 /* Avoid "put" pointer going beyond "get" pointer */
4098 if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4099 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4100 DBG_PRINT(TX_DBG,
4101 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4102 put_off, get_off);
4103 netif_stop_queue(dev);
4105 mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4106 dev->trans_start = jiffies;
4107 spin_unlock_irqrestore(&sp->tx_lock, flags);
4109 return 0;
4110 pci_map_failed:
4111 stats->pci_map_fail_cnt++;
4112 netif_stop_queue(dev);
4113 stats->mem_freed += skb->truesize;
4114 dev_kfree_skb(skb);
4115 spin_unlock_irqrestore(&sp->tx_lock, flags);
4116 return 0;
4119 static void
4120 s2io_alarm_handle(unsigned long data)
4122 struct s2io_nic *sp = (struct s2io_nic *)data;
4123 struct net_device *dev = sp->dev;
4125 s2io_handle_errors(dev);
4126 mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4129 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4131 int rxb_size, level;
4133 if (!sp->lro) {
4134 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4135 level = rx_buffer_level(sp, rxb_size, rng_n);
4137 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4138 int ret;
4139 DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4140 DBG_PRINT(INTR_DBG, "PANIC levels\n");
4141 if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4142 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4143 __FUNCTION__);
4144 clear_bit(0, (&sp->tasklet_status));
4145 return -1;
4147 clear_bit(0, (&sp->tasklet_status));
4148 } else if (level == LOW)
4149 tasklet_schedule(&sp->task);
4151 } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4152 DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4153 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4155 return 0;
4158 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4160 struct ring_info *ring = (struct ring_info *)dev_id;
4161 struct s2io_nic *sp = ring->nic;
4163 if (!is_s2io_card_up(sp))
4164 return IRQ_HANDLED;
4166 rx_intr_handler(ring);
4167 s2io_chk_rx_buffers(sp, ring->ring_no);
4169 return IRQ_HANDLED;
4172 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4174 struct fifo_info *fifo = (struct fifo_info *)dev_id;
4175 struct s2io_nic *sp = fifo->nic;
4177 if (!is_s2io_card_up(sp))
4178 return IRQ_HANDLED;
4180 tx_intr_handler(fifo);
4181 return IRQ_HANDLED;
4183 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4185 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4186 u64 val64;
4188 val64 = readq(&bar0->pic_int_status);
4189 if (val64 & PIC_INT_GPIO) {
4190 val64 = readq(&bar0->gpio_int_reg);
4191 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4192 (val64 & GPIO_INT_REG_LINK_UP)) {
4194 * This is unstable state so clear both up/down
4195 * interrupt and adapter to re-evaluate the link state.
4197 val64 |= GPIO_INT_REG_LINK_DOWN;
4198 val64 |= GPIO_INT_REG_LINK_UP;
4199 writeq(val64, &bar0->gpio_int_reg);
4200 val64 = readq(&bar0->gpio_int_mask);
4201 val64 &= ~(GPIO_INT_MASK_LINK_UP |
4202 GPIO_INT_MASK_LINK_DOWN);
4203 writeq(val64, &bar0->gpio_int_mask);
4205 else if (val64 & GPIO_INT_REG_LINK_UP) {
4206 val64 = readq(&bar0->adapter_status);
4207 /* Enable Adapter */
4208 val64 = readq(&bar0->adapter_control);
4209 val64 |= ADAPTER_CNTL_EN;
4210 writeq(val64, &bar0->adapter_control);
4211 val64 |= ADAPTER_LED_ON;
4212 writeq(val64, &bar0->adapter_control);
4213 if (!sp->device_enabled_once)
4214 sp->device_enabled_once = 1;
4216 s2io_link(sp, LINK_UP);
4218 * unmask link down interrupt and mask link-up
4219 * intr
4221 val64 = readq(&bar0->gpio_int_mask);
4222 val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4223 val64 |= GPIO_INT_MASK_LINK_UP;
4224 writeq(val64, &bar0->gpio_int_mask);
4226 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4227 val64 = readq(&bar0->adapter_status);
4228 s2io_link(sp, LINK_DOWN);
4229 /* Link is down so unmaks link up interrupt */
4230 val64 = readq(&bar0->gpio_int_mask);
4231 val64 &= ~GPIO_INT_MASK_LINK_UP;
4232 val64 |= GPIO_INT_MASK_LINK_DOWN;
4233 writeq(val64, &bar0->gpio_int_mask);
4235 /* turn off LED */
4236 val64 = readq(&bar0->adapter_control);
4237 val64 = val64 &(~ADAPTER_LED_ON);
4238 writeq(val64, &bar0->adapter_control);
4241 val64 = readq(&bar0->gpio_int_mask);
4245 * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4246 * @value: alarm bits
4247 * @addr: address value
4248 * @cnt: counter variable
4249 * Description: Check for alarm and increment the counter
4250 * Return Value:
4251 * 1 - if alarm bit set
4252 * 0 - if alarm bit is not set
4254 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4255 unsigned long long *cnt)
4257 u64 val64;
4258 val64 = readq(addr);
4259 if ( val64 & value ) {
4260 writeq(val64, addr);
4261 (*cnt)++;
4262 return 1;
4264 return 0;
4269 * s2io_handle_errors - Xframe error indication handler
4270 * @nic: device private variable
4271 * Description: Handle alarms such as loss of link, single or
4272 * double ECC errors, critical and serious errors.
4273 * Return Value:
4274 * NONE
4276 static void s2io_handle_errors(void * dev_id)
4278 struct net_device *dev = (struct net_device *) dev_id;
4279 struct s2io_nic *sp = dev->priv;
4280 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4281 u64 temp64 = 0,val64=0;
4282 int i = 0;
4284 struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4285 struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4287 if (!is_s2io_card_up(sp))
4288 return;
4290 if (pci_channel_offline(sp->pdev))
4291 return;
4293 memset(&sw_stat->ring_full_cnt, 0,
4294 sizeof(sw_stat->ring_full_cnt));
4296 /* Handling the XPAK counters update */
4297 if(stats->xpak_timer_count < 72000) {
4298 /* waiting for an hour */
4299 stats->xpak_timer_count++;
4300 } else {
4301 s2io_updt_xpak_counter(dev);
4302 /* reset the count to zero */
4303 stats->xpak_timer_count = 0;
4306 /* Handling link status change error Intr */
4307 if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4308 val64 = readq(&bar0->mac_rmac_err_reg);
4309 writeq(val64, &bar0->mac_rmac_err_reg);
4310 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4311 schedule_work(&sp->set_link_task);
4314 /* In case of a serious error, the device will be Reset. */
4315 if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4316 &sw_stat->serious_err_cnt))
4317 goto reset;
4319 /* Check for data parity error */
4320 if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4321 &sw_stat->parity_err_cnt))
4322 goto reset;
4324 /* Check for ring full counter */
4325 if (sp->device_type == XFRAME_II_DEVICE) {
4326 val64 = readq(&bar0->ring_bump_counter1);
4327 for (i=0; i<4; i++) {
4328 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4329 temp64 >>= 64 - ((i+1)*16);
4330 sw_stat->ring_full_cnt[i] += temp64;
4333 val64 = readq(&bar0->ring_bump_counter2);
4334 for (i=0; i<4; i++) {
4335 temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4336 temp64 >>= 64 - ((i+1)*16);
4337 sw_stat->ring_full_cnt[i+4] += temp64;
4341 val64 = readq(&bar0->txdma_int_status);
4342 /*check for pfc_err*/
4343 if (val64 & TXDMA_PFC_INT) {
4344 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4345 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4346 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4347 &sw_stat->pfc_err_cnt))
4348 goto reset;
4349 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4350 &sw_stat->pfc_err_cnt);
4353 /*check for tda_err*/
4354 if (val64 & TXDMA_TDA_INT) {
4355 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4356 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4357 &sw_stat->tda_err_cnt))
4358 goto reset;
4359 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4360 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4362 /*check for pcc_err*/
4363 if (val64 & TXDMA_PCC_INT) {
4364 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4365 | PCC_N_SERR | PCC_6_COF_OV_ERR
4366 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4367 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4368 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4369 &sw_stat->pcc_err_cnt))
4370 goto reset;
4371 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4372 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4375 /*check for tti_err*/
4376 if (val64 & TXDMA_TTI_INT) {
4377 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4378 &sw_stat->tti_err_cnt))
4379 goto reset;
4380 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4381 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4384 /*check for lso_err*/
4385 if (val64 & TXDMA_LSO_INT) {
4386 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4387 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4388 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4389 goto reset;
4390 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4391 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4394 /*check for tpa_err*/
4395 if (val64 & TXDMA_TPA_INT) {
4396 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4397 &sw_stat->tpa_err_cnt))
4398 goto reset;
4399 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4400 &sw_stat->tpa_err_cnt);
4403 /*check for sm_err*/
4404 if (val64 & TXDMA_SM_INT) {
4405 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4406 &sw_stat->sm_err_cnt))
4407 goto reset;
4410 val64 = readq(&bar0->mac_int_status);
4411 if (val64 & MAC_INT_STATUS_TMAC_INT) {
4412 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4413 &bar0->mac_tmac_err_reg,
4414 &sw_stat->mac_tmac_err_cnt))
4415 goto reset;
4416 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4417 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4418 &bar0->mac_tmac_err_reg,
4419 &sw_stat->mac_tmac_err_cnt);
4422 val64 = readq(&bar0->xgxs_int_status);
4423 if (val64 & XGXS_INT_STATUS_TXGXS) {
4424 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4425 &bar0->xgxs_txgxs_err_reg,
4426 &sw_stat->xgxs_txgxs_err_cnt))
4427 goto reset;
4428 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4429 &bar0->xgxs_txgxs_err_reg,
4430 &sw_stat->xgxs_txgxs_err_cnt);
4433 val64 = readq(&bar0->rxdma_int_status);
4434 if (val64 & RXDMA_INT_RC_INT_M) {
4435 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4436 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4437 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4438 goto reset;
4439 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4440 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4441 &sw_stat->rc_err_cnt);
4442 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4443 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4444 &sw_stat->prc_pcix_err_cnt))
4445 goto reset;
4446 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4447 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4448 &sw_stat->prc_pcix_err_cnt);
4451 if (val64 & RXDMA_INT_RPA_INT_M) {
4452 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4453 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4454 goto reset;
4455 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4456 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4459 if (val64 & RXDMA_INT_RDA_INT_M) {
4460 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4461 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4462 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4463 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4464 goto reset;
4465 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4466 | RDA_MISC_ERR | RDA_PCIX_ERR,
4467 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4470 if (val64 & RXDMA_INT_RTI_INT_M) {
4471 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4472 &sw_stat->rti_err_cnt))
4473 goto reset;
4474 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4475 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4478 val64 = readq(&bar0->mac_int_status);
4479 if (val64 & MAC_INT_STATUS_RMAC_INT) {
4480 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4481 &bar0->mac_rmac_err_reg,
4482 &sw_stat->mac_rmac_err_cnt))
4483 goto reset;
4484 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4485 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4486 &sw_stat->mac_rmac_err_cnt);
4489 val64 = readq(&bar0->xgxs_int_status);
4490 if (val64 & XGXS_INT_STATUS_RXGXS) {
4491 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4492 &bar0->xgxs_rxgxs_err_reg,
4493 &sw_stat->xgxs_rxgxs_err_cnt))
4494 goto reset;
4497 val64 = readq(&bar0->mc_int_status);
4498 if(val64 & MC_INT_STATUS_MC_INT) {
4499 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4500 &sw_stat->mc_err_cnt))
4501 goto reset;
4503 /* Handling Ecc errors */
4504 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4505 writeq(val64, &bar0->mc_err_reg);
4506 if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4507 sw_stat->double_ecc_errs++;
4508 if (sp->device_type != XFRAME_II_DEVICE) {
4510 * Reset XframeI only if critical error
4512 if (val64 &
4513 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4514 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4515 goto reset;
4517 } else
4518 sw_stat->single_ecc_errs++;
4521 return;
4523 reset:
4524 netif_stop_queue(dev);
4525 schedule_work(&sp->rst_timer_task);
4526 sw_stat->soft_reset_cnt++;
4527 return;
4531 * s2io_isr - ISR handler of the device .
4532 * @irq: the irq of the device.
4533 * @dev_id: a void pointer to the dev structure of the NIC.
4534 * Description: This function is the ISR handler of the device. It
4535 * identifies the reason for the interrupt and calls the relevant
4536 * service routines. As a contongency measure, this ISR allocates the
4537 * recv buffers, if their numbers are below the panic value which is
4538 * presently set to 25% of the original number of rcv buffers allocated.
4539 * Return value:
4540 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4541 * IRQ_NONE: will be returned if interrupt is not from our device
4543 static irqreturn_t s2io_isr(int irq, void *dev_id)
4545 struct net_device *dev = (struct net_device *) dev_id;
4546 struct s2io_nic *sp = dev->priv;
4547 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4548 int i;
4549 u64 reason = 0;
4550 struct mac_info *mac_control;
4551 struct config_param *config;
4553 /* Pretend we handled any irq's from a disconnected card */
4554 if (pci_channel_offline(sp->pdev))
4555 return IRQ_NONE;
4557 if (!is_s2io_card_up(sp))
4558 return IRQ_NONE;
4560 mac_control = &sp->mac_control;
4561 config = &sp->config;
4564 * Identify the cause for interrupt and call the appropriate
4565 * interrupt handler. Causes for the interrupt could be;
4566 * 1. Rx of packet.
4567 * 2. Tx complete.
4568 * 3. Link down.
4570 reason = readq(&bar0->general_int_status);
4572 if (unlikely(reason == S2IO_MINUS_ONE) ) {
4573 /* Nothing much can be done. Get out */
4574 return IRQ_HANDLED;
4577 if (reason & (GEN_INTR_RXTRAFFIC |
4578 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4580 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4582 if (config->napi) {
4583 if (reason & GEN_INTR_RXTRAFFIC) {
4584 if (likely(netif_rx_schedule_prep(dev,
4585 &sp->napi))) {
4586 __netif_rx_schedule(dev, &sp->napi);
4587 writeq(S2IO_MINUS_ONE,
4588 &bar0->rx_traffic_mask);
4589 } else
4590 writeq(S2IO_MINUS_ONE,
4591 &bar0->rx_traffic_int);
4593 } else {
4595 * rx_traffic_int reg is an R1 register, writing all 1's
4596 * will ensure that the actual interrupt causing bit
4597 * get's cleared and hence a read can be avoided.
4599 if (reason & GEN_INTR_RXTRAFFIC)
4600 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4602 for (i = 0; i < config->rx_ring_num; i++)
4603 rx_intr_handler(&mac_control->rings[i]);
4607 * tx_traffic_int reg is an R1 register, writing all 1's
4608 * will ensure that the actual interrupt causing bit get's
4609 * cleared and hence a read can be avoided.
4611 if (reason & GEN_INTR_TXTRAFFIC)
4612 writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4614 for (i = 0; i < config->tx_fifo_num; i++)
4615 tx_intr_handler(&mac_control->fifos[i]);
4617 if (reason & GEN_INTR_TXPIC)
4618 s2io_txpic_intr_handle(sp);
4621 * Reallocate the buffers from the interrupt handler itself.
4623 if (!config->napi) {
4624 for (i = 0; i < config->rx_ring_num; i++)
4625 s2io_chk_rx_buffers(sp, i);
4627 writeq(sp->general_int_mask, &bar0->general_int_mask);
4628 readl(&bar0->general_int_status);
4630 return IRQ_HANDLED;
4633 else if (!reason) {
4634 /* The interrupt was not raised by us */
4635 return IRQ_NONE;
4638 return IRQ_HANDLED;
4642 * s2io_updt_stats -
4644 static void s2io_updt_stats(struct s2io_nic *sp)
4646 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4647 u64 val64;
4648 int cnt = 0;
4650 if (is_s2io_card_up(sp)) {
4651 /* Apprx 30us on a 133 MHz bus */
4652 val64 = SET_UPDT_CLICKS(10) |
4653 STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4654 writeq(val64, &bar0->stat_cfg);
4655 do {
4656 udelay(100);
4657 val64 = readq(&bar0->stat_cfg);
4658 if (!(val64 & s2BIT(0)))
4659 break;
4660 cnt++;
4661 if (cnt == 5)
4662 break; /* Updt failed */
4663 } while(1);
4668 * s2io_get_stats - Updates the device statistics structure.
4669 * @dev : pointer to the device structure.
4670 * Description:
4671 * This function updates the device statistics structure in the s2io_nic
4672 * structure and returns a pointer to the same.
4673 * Return value:
4674 * pointer to the updated net_device_stats structure.
4677 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4679 struct s2io_nic *sp = dev->priv;
4680 struct mac_info *mac_control;
4681 struct config_param *config;
4684 mac_control = &sp->mac_control;
4685 config = &sp->config;
4687 /* Configure Stats for immediate updt */
4688 s2io_updt_stats(sp);
4690 sp->stats.tx_packets =
4691 le32_to_cpu(mac_control->stats_info->tmac_frms);
4692 sp->stats.tx_errors =
4693 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4694 sp->stats.rx_errors =
4695 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4696 sp->stats.multicast =
4697 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4698 sp->stats.rx_length_errors =
4699 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4701 return (&sp->stats);
4705 * s2io_set_multicast - entry point for multicast address enable/disable.
4706 * @dev : pointer to the device structure
4707 * Description:
4708 * This function is a driver entry point which gets called by the kernel
4709 * whenever multicast addresses must be enabled/disabled. This also gets
4710 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4711 * determine, if multicast address must be enabled or if promiscuous mode
4712 * is to be disabled etc.
4713 * Return value:
4714 * void.
4717 static void s2io_set_multicast(struct net_device *dev)
4719 int i, j, prev_cnt;
4720 struct dev_mc_list *mclist;
4721 struct s2io_nic *sp = dev->priv;
4722 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4723 u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4724 0xfeffffffffffULL;
4725 u64 dis_addr = 0xffffffffffffULL, mac_addr = 0;
4726 void __iomem *add;
4728 if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4729 /* Enable all Multicast addresses */
4730 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4731 &bar0->rmac_addr_data0_mem);
4732 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4733 &bar0->rmac_addr_data1_mem);
4734 val64 = RMAC_ADDR_CMD_MEM_WE |
4735 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4736 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET);
4737 writeq(val64, &bar0->rmac_addr_cmd_mem);
4738 /* Wait till command completes */
4739 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4740 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4741 S2IO_BIT_RESET);
4743 sp->m_cast_flg = 1;
4744 sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET;
4745 } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4746 /* Disable all Multicast addresses */
4747 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4748 &bar0->rmac_addr_data0_mem);
4749 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4750 &bar0->rmac_addr_data1_mem);
4751 val64 = RMAC_ADDR_CMD_MEM_WE |
4752 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4753 RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4754 writeq(val64, &bar0->rmac_addr_cmd_mem);
4755 /* Wait till command completes */
4756 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4757 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4758 S2IO_BIT_RESET);
4760 sp->m_cast_flg = 0;
4761 sp->all_multi_pos = 0;
4764 if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4765 /* Put the NIC into promiscuous mode */
4766 add = &bar0->mac_cfg;
4767 val64 = readq(&bar0->mac_cfg);
4768 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4770 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4771 writel((u32) val64, add);
4772 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4773 writel((u32) (val64 >> 32), (add + 4));
4775 if (vlan_tag_strip != 1) {
4776 val64 = readq(&bar0->rx_pa_cfg);
4777 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4778 writeq(val64, &bar0->rx_pa_cfg);
4779 vlan_strip_flag = 0;
4782 val64 = readq(&bar0->mac_cfg);
4783 sp->promisc_flg = 1;
4784 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4785 dev->name);
4786 } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4787 /* Remove the NIC from promiscuous mode */
4788 add = &bar0->mac_cfg;
4789 val64 = readq(&bar0->mac_cfg);
4790 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4792 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4793 writel((u32) val64, add);
4794 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4795 writel((u32) (val64 >> 32), (add + 4));
4797 if (vlan_tag_strip != 0) {
4798 val64 = readq(&bar0->rx_pa_cfg);
4799 val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4800 writeq(val64, &bar0->rx_pa_cfg);
4801 vlan_strip_flag = 1;
4804 val64 = readq(&bar0->mac_cfg);
4805 sp->promisc_flg = 0;
4806 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4807 dev->name);
4810 /* Update individual M_CAST address list */
4811 if ((!sp->m_cast_flg) && dev->mc_count) {
4812 if (dev->mc_count >
4813 (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) {
4814 DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4815 dev->name);
4816 DBG_PRINT(ERR_DBG, "can be added, please enable ");
4817 DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4818 return;
4821 prev_cnt = sp->mc_addr_count;
4822 sp->mc_addr_count = dev->mc_count;
4824 /* Clear out the previous list of Mc in the H/W. */
4825 for (i = 0; i < prev_cnt; i++) {
4826 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4827 &bar0->rmac_addr_data0_mem);
4828 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4829 &bar0->rmac_addr_data1_mem);
4830 val64 = RMAC_ADDR_CMD_MEM_WE |
4831 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4832 RMAC_ADDR_CMD_MEM_OFFSET
4833 (MAC_MC_ADDR_START_OFFSET + i);
4834 writeq(val64, &bar0->rmac_addr_cmd_mem);
4836 /* Wait for command completes */
4837 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4838 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4839 S2IO_BIT_RESET)) {
4840 DBG_PRINT(ERR_DBG, "%s: Adding ",
4841 dev->name);
4842 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4843 return;
4847 /* Create the new Rx filter list and update the same in H/W. */
4848 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4849 i++, mclist = mclist->next) {
4850 memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4851 ETH_ALEN);
4852 mac_addr = 0;
4853 for (j = 0; j < ETH_ALEN; j++) {
4854 mac_addr |= mclist->dmi_addr[j];
4855 mac_addr <<= 8;
4857 mac_addr >>= 8;
4858 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4859 &bar0->rmac_addr_data0_mem);
4860 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4861 &bar0->rmac_addr_data1_mem);
4862 val64 = RMAC_ADDR_CMD_MEM_WE |
4863 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4864 RMAC_ADDR_CMD_MEM_OFFSET
4865 (i + MAC_MC_ADDR_START_OFFSET);
4866 writeq(val64, &bar0->rmac_addr_cmd_mem);
4868 /* Wait for command completes */
4869 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4870 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4871 S2IO_BIT_RESET)) {
4872 DBG_PRINT(ERR_DBG, "%s: Adding ",
4873 dev->name);
4874 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4875 return;
4881 /* add unicast MAC address to CAM */
4882 static int do_s2io_add_unicast(struct s2io_nic *sp, u64 addr, int off)
4884 u64 val64;
4885 struct XENA_dev_config __iomem *bar0 = sp->bar0;
4887 writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
4888 &bar0->rmac_addr_data0_mem);
4890 val64 =
4891 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4892 RMAC_ADDR_CMD_MEM_OFFSET(off);
4893 writeq(val64, &bar0->rmac_addr_cmd_mem);
4895 /* Wait till command completes */
4896 if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4897 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4898 S2IO_BIT_RESET)) {
4899 DBG_PRINT(INFO_DBG, "add_mac_addr failed\n");
4900 return FAILURE;
4902 return SUCCESS;
4906 * s2io_set_mac_addr driver entry point
4908 static int s2io_set_mac_addr(struct net_device *dev, void *p)
4910 struct sockaddr *addr = p;
4912 if (!is_valid_ether_addr(addr->sa_data))
4913 return -EINVAL;
4915 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4917 /* store the MAC address in CAM */
4918 return (do_s2io_prog_unicast(dev, dev->dev_addr));
4922 * do_s2io_prog_unicast - Programs the Xframe mac address
4923 * @dev : pointer to the device structure.
4924 * @addr: a uchar pointer to the new mac address which is to be set.
4925 * Description : This procedure will program the Xframe to receive
4926 * frames with new Mac Address
4927 * Return value: SUCCESS on success and an appropriate (-)ve integer
4928 * as defined in errno.h file on failure.
4930 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
4932 struct s2io_nic *sp = dev->priv;
4933 register u64 mac_addr = 0, perm_addr = 0;
4934 int i;
4937 * Set the new MAC address as the new unicast filter and reflect this
4938 * change on the device address registered with the OS. It will be
4939 * at offset 0.
4941 for (i = 0; i < ETH_ALEN; i++) {
4942 mac_addr <<= 8;
4943 mac_addr |= addr[i];
4944 perm_addr <<= 8;
4945 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
4948 /* check if the dev_addr is different than perm_addr */
4949 if (mac_addr == perm_addr)
4950 return SUCCESS;
4952 /* Update the internal structure with this new mac address */
4953 do_s2io_copy_mac_addr(sp, 0, mac_addr);
4954 return (do_s2io_add_unicast(sp, mac_addr, 0));
4958 * s2io_ethtool_sset - Sets different link parameters.
4959 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4960 * @info: pointer to the structure with parameters given by ethtool to set
4961 * link information.
4962 * Description:
4963 * The function sets different link parameters provided by the user onto
4964 * the NIC.
4965 * Return value:
4966 * 0 on success.
4969 static int s2io_ethtool_sset(struct net_device *dev,
4970 struct ethtool_cmd *info)
4972 struct s2io_nic *sp = dev->priv;
4973 if ((info->autoneg == AUTONEG_ENABLE) ||
4974 (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
4975 return -EINVAL;
4976 else {
4977 s2io_close(sp->dev);
4978 s2io_open(sp->dev);
4981 return 0;
4985 * s2io_ethtol_gset - Return link specific information.
4986 * @sp : private member of the device structure, pointer to the
4987 * s2io_nic structure.
4988 * @info : pointer to the structure with parameters given by ethtool
4989 * to return link information.
4990 * Description:
4991 * Returns link specific information like speed, duplex etc.. to ethtool.
4992 * Return value :
4993 * return 0 on success.
4996 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
4998 struct s2io_nic *sp = dev->priv;
4999 info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5000 info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5001 info->port = PORT_FIBRE;
5003 /* info->transceiver */
5004 info->transceiver = XCVR_EXTERNAL;
5006 if (netif_carrier_ok(sp->dev)) {
5007 info->speed = 10000;
5008 info->duplex = DUPLEX_FULL;
5009 } else {
5010 info->speed = -1;
5011 info->duplex = -1;
5014 info->autoneg = AUTONEG_DISABLE;
5015 return 0;
5019 * s2io_ethtool_gdrvinfo - Returns driver specific information.
5020 * @sp : private member of the device structure, which is a pointer to the
5021 * s2io_nic structure.
5022 * @info : pointer to the structure with parameters given by ethtool to
5023 * return driver information.
5024 * Description:
5025 * Returns driver specefic information like name, version etc.. to ethtool.
5026 * Return value:
5027 * void
5030 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5031 struct ethtool_drvinfo *info)
5033 struct s2io_nic *sp = dev->priv;
5035 strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5036 strncpy(info->version, s2io_driver_version, sizeof(info->version));
5037 strncpy(info->fw_version, "", sizeof(info->fw_version));
5038 strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5039 info->regdump_len = XENA_REG_SPACE;
5040 info->eedump_len = XENA_EEPROM_SPACE;
5044 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5045 * @sp: private member of the device structure, which is a pointer to the
5046 * s2io_nic structure.
5047 * @regs : pointer to the structure with parameters given by ethtool for
5048 * dumping the registers.
5049 * @reg_space: The input argumnet into which all the registers are dumped.
5050 * Description:
5051 * Dumps the entire register space of xFrame NIC into the user given
5052 * buffer area.
5053 * Return value :
5054 * void .
5057 static void s2io_ethtool_gregs(struct net_device *dev,
5058 struct ethtool_regs *regs, void *space)
5060 int i;
5061 u64 reg;
5062 u8 *reg_space = (u8 *) space;
5063 struct s2io_nic *sp = dev->priv;
5065 regs->len = XENA_REG_SPACE;
5066 regs->version = sp->pdev->subsystem_device;
5068 for (i = 0; i < regs->len; i += 8) {
5069 reg = readq(sp->bar0 + i);
5070 memcpy((reg_space + i), &reg, 8);
5075 * s2io_phy_id - timer function that alternates adapter LED.
5076 * @data : address of the private member of the device structure, which
5077 * is a pointer to the s2io_nic structure, provided as an u32.
5078 * Description: This is actually the timer function that alternates the
5079 * adapter LED bit of the adapter control bit to set/reset every time on
5080 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5081 * once every second.
5083 static void s2io_phy_id(unsigned long data)
5085 struct s2io_nic *sp = (struct s2io_nic *) data;
5086 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5087 u64 val64 = 0;
5088 u16 subid;
5090 subid = sp->pdev->subsystem_device;
5091 if ((sp->device_type == XFRAME_II_DEVICE) ||
5092 ((subid & 0xFF) >= 0x07)) {
5093 val64 = readq(&bar0->gpio_control);
5094 val64 ^= GPIO_CTRL_GPIO_0;
5095 writeq(val64, &bar0->gpio_control);
5096 } else {
5097 val64 = readq(&bar0->adapter_control);
5098 val64 ^= ADAPTER_LED_ON;
5099 writeq(val64, &bar0->adapter_control);
5102 mod_timer(&sp->id_timer, jiffies + HZ / 2);
5106 * s2io_ethtool_idnic - To physically identify the nic on the system.
5107 * @sp : private member of the device structure, which is a pointer to the
5108 * s2io_nic structure.
5109 * @id : pointer to the structure with identification parameters given by
5110 * ethtool.
5111 * Description: Used to physically identify the NIC on the system.
5112 * The Link LED will blink for a time specified by the user for
5113 * identification.
5114 * NOTE: The Link has to be Up to be able to blink the LED. Hence
5115 * identification is possible only if it's link is up.
5116 * Return value:
5117 * int , returns 0 on success
5120 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5122 u64 val64 = 0, last_gpio_ctrl_val;
5123 struct s2io_nic *sp = dev->priv;
5124 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5125 u16 subid;
5127 subid = sp->pdev->subsystem_device;
5128 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5129 if ((sp->device_type == XFRAME_I_DEVICE) &&
5130 ((subid & 0xFF) < 0x07)) {
5131 val64 = readq(&bar0->adapter_control);
5132 if (!(val64 & ADAPTER_CNTL_EN)) {
5133 printk(KERN_ERR
5134 "Adapter Link down, cannot blink LED\n");
5135 return -EFAULT;
5138 if (sp->id_timer.function == NULL) {
5139 init_timer(&sp->id_timer);
5140 sp->id_timer.function = s2io_phy_id;
5141 sp->id_timer.data = (unsigned long) sp;
5143 mod_timer(&sp->id_timer, jiffies);
5144 if (data)
5145 msleep_interruptible(data * HZ);
5146 else
5147 msleep_interruptible(MAX_FLICKER_TIME);
5148 del_timer_sync(&sp->id_timer);
5150 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5151 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5152 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5155 return 0;
5158 static void s2io_ethtool_gringparam(struct net_device *dev,
5159 struct ethtool_ringparam *ering)
5161 struct s2io_nic *sp = dev->priv;
5162 int i,tx_desc_count=0,rx_desc_count=0;
5164 if (sp->rxd_mode == RXD_MODE_1)
5165 ering->rx_max_pending = MAX_RX_DESC_1;
5166 else if (sp->rxd_mode == RXD_MODE_3B)
5167 ering->rx_max_pending = MAX_RX_DESC_2;
5169 ering->tx_max_pending = MAX_TX_DESC;
5170 for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5171 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5173 DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5174 ering->tx_pending = tx_desc_count;
5175 rx_desc_count = 0;
5176 for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5177 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5179 ering->rx_pending = rx_desc_count;
5181 ering->rx_mini_max_pending = 0;
5182 ering->rx_mini_pending = 0;
5183 if(sp->rxd_mode == RXD_MODE_1)
5184 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5185 else if (sp->rxd_mode == RXD_MODE_3B)
5186 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5187 ering->rx_jumbo_pending = rx_desc_count;
5191 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5192 * @sp : private member of the device structure, which is a pointer to the
5193 * s2io_nic structure.
5194 * @ep : pointer to the structure with pause parameters given by ethtool.
5195 * Description:
5196 * Returns the Pause frame generation and reception capability of the NIC.
5197 * Return value:
5198 * void
5200 static void s2io_ethtool_getpause_data(struct net_device *dev,
5201 struct ethtool_pauseparam *ep)
5203 u64 val64;
5204 struct s2io_nic *sp = dev->priv;
5205 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5207 val64 = readq(&bar0->rmac_pause_cfg);
5208 if (val64 & RMAC_PAUSE_GEN_ENABLE)
5209 ep->tx_pause = TRUE;
5210 if (val64 & RMAC_PAUSE_RX_ENABLE)
5211 ep->rx_pause = TRUE;
5212 ep->autoneg = FALSE;
5216 * s2io_ethtool_setpause_data - set/reset pause frame generation.
5217 * @sp : private member of the device structure, which is a pointer to the
5218 * s2io_nic structure.
5219 * @ep : pointer to the structure with pause parameters given by ethtool.
5220 * Description:
5221 * It can be used to set or reset Pause frame generation or reception
5222 * support of the NIC.
5223 * Return value:
5224 * int, returns 0 on Success
5227 static int s2io_ethtool_setpause_data(struct net_device *dev,
5228 struct ethtool_pauseparam *ep)
5230 u64 val64;
5231 struct s2io_nic *sp = dev->priv;
5232 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5234 val64 = readq(&bar0->rmac_pause_cfg);
5235 if (ep->tx_pause)
5236 val64 |= RMAC_PAUSE_GEN_ENABLE;
5237 else
5238 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5239 if (ep->rx_pause)
5240 val64 |= RMAC_PAUSE_RX_ENABLE;
5241 else
5242 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5243 writeq(val64, &bar0->rmac_pause_cfg);
5244 return 0;
5248 * read_eeprom - reads 4 bytes of data from user given offset.
5249 * @sp : private member of the device structure, which is a pointer to the
5250 * s2io_nic structure.
5251 * @off : offset at which the data must be written
5252 * @data : Its an output parameter where the data read at the given
5253 * offset is stored.
5254 * Description:
5255 * Will read 4 bytes of data from the user given offset and return the
5256 * read data.
5257 * NOTE: Will allow to read only part of the EEPROM visible through the
5258 * I2C bus.
5259 * Return value:
5260 * -1 on failure and 0 on success.
5263 #define S2IO_DEV_ID 5
5264 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5266 int ret = -1;
5267 u32 exit_cnt = 0;
5268 u64 val64;
5269 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5271 if (sp->device_type == XFRAME_I_DEVICE) {
5272 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5273 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5274 I2C_CONTROL_CNTL_START;
5275 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5277 while (exit_cnt < 5) {
5278 val64 = readq(&bar0->i2c_control);
5279 if (I2C_CONTROL_CNTL_END(val64)) {
5280 *data = I2C_CONTROL_GET_DATA(val64);
5281 ret = 0;
5282 break;
5284 msleep(50);
5285 exit_cnt++;
5289 if (sp->device_type == XFRAME_II_DEVICE) {
5290 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5291 SPI_CONTROL_BYTECNT(0x3) |
5292 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5293 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5294 val64 |= SPI_CONTROL_REQ;
5295 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5296 while (exit_cnt < 5) {
5297 val64 = readq(&bar0->spi_control);
5298 if (val64 & SPI_CONTROL_NACK) {
5299 ret = 1;
5300 break;
5301 } else if (val64 & SPI_CONTROL_DONE) {
5302 *data = readq(&bar0->spi_data);
5303 *data &= 0xffffff;
5304 ret = 0;
5305 break;
5307 msleep(50);
5308 exit_cnt++;
5311 return ret;
5315 * write_eeprom - actually writes the relevant part of the data value.
5316 * @sp : private member of the device structure, which is a pointer to the
5317 * s2io_nic structure.
5318 * @off : offset at which the data must be written
5319 * @data : The data that is to be written
5320 * @cnt : Number of bytes of the data that are actually to be written into
5321 * the Eeprom. (max of 3)
5322 * Description:
5323 * Actually writes the relevant part of the data value into the Eeprom
5324 * through the I2C bus.
5325 * Return value:
5326 * 0 on success, -1 on failure.
5329 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5331 int exit_cnt = 0, ret = -1;
5332 u64 val64;
5333 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5335 if (sp->device_type == XFRAME_I_DEVICE) {
5336 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5337 I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5338 I2C_CONTROL_CNTL_START;
5339 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5341 while (exit_cnt < 5) {
5342 val64 = readq(&bar0->i2c_control);
5343 if (I2C_CONTROL_CNTL_END(val64)) {
5344 if (!(val64 & I2C_CONTROL_NACK))
5345 ret = 0;
5346 break;
5348 msleep(50);
5349 exit_cnt++;
5353 if (sp->device_type == XFRAME_II_DEVICE) {
5354 int write_cnt = (cnt == 8) ? 0 : cnt;
5355 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5357 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5358 SPI_CONTROL_BYTECNT(write_cnt) |
5359 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5360 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5361 val64 |= SPI_CONTROL_REQ;
5362 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5363 while (exit_cnt < 5) {
5364 val64 = readq(&bar0->spi_control);
5365 if (val64 & SPI_CONTROL_NACK) {
5366 ret = 1;
5367 break;
5368 } else if (val64 & SPI_CONTROL_DONE) {
5369 ret = 0;
5370 break;
5372 msleep(50);
5373 exit_cnt++;
5376 return ret;
5378 static void s2io_vpd_read(struct s2io_nic *nic)
5380 u8 *vpd_data;
5381 u8 data;
5382 int i=0, cnt, fail = 0;
5383 int vpd_addr = 0x80;
5385 if (nic->device_type == XFRAME_II_DEVICE) {
5386 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5387 vpd_addr = 0x80;
5389 else {
5390 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5391 vpd_addr = 0x50;
5393 strcpy(nic->serial_num, "NOT AVAILABLE");
5395 vpd_data = kmalloc(256, GFP_KERNEL);
5396 if (!vpd_data) {
5397 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5398 return;
5400 nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5402 for (i = 0; i < 256; i +=4 ) {
5403 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5404 pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data);
5405 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5406 for (cnt = 0; cnt <5; cnt++) {
5407 msleep(2);
5408 pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5409 if (data == 0x80)
5410 break;
5412 if (cnt >= 5) {
5413 DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5414 fail = 1;
5415 break;
5417 pci_read_config_dword(nic->pdev, (vpd_addr + 4),
5418 (u32 *)&vpd_data[i]);
5421 if(!fail) {
5422 /* read serial number of adapter */
5423 for (cnt = 0; cnt < 256; cnt++) {
5424 if ((vpd_data[cnt] == 'S') &&
5425 (vpd_data[cnt+1] == 'N') &&
5426 (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5427 memset(nic->serial_num, 0, VPD_STRING_LEN);
5428 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5429 vpd_data[cnt+2]);
5430 break;
5435 if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5436 memset(nic->product_name, 0, vpd_data[1]);
5437 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5439 kfree(vpd_data);
5440 nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5444 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5445 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5446 * @eeprom : pointer to the user level structure provided by ethtool,
5447 * containing all relevant information.
5448 * @data_buf : user defined value to be written into Eeprom.
5449 * Description: Reads the values stored in the Eeprom at given offset
5450 * for a given length. Stores these values int the input argument data
5451 * buffer 'data_buf' and returns these to the caller (ethtool.)
5452 * Return value:
5453 * int 0 on success
5456 static int s2io_ethtool_geeprom(struct net_device *dev,
5457 struct ethtool_eeprom *eeprom, u8 * data_buf)
5459 u32 i, valid;
5460 u64 data;
5461 struct s2io_nic *sp = dev->priv;
5463 eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5465 if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5466 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5468 for (i = 0; i < eeprom->len; i += 4) {
5469 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5470 DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5471 return -EFAULT;
5473 valid = INV(data);
5474 memcpy((data_buf + i), &valid, 4);
5476 return 0;
5480 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5481 * @sp : private member of the device structure, which is a pointer to the
5482 * s2io_nic structure.
5483 * @eeprom : pointer to the user level structure provided by ethtool,
5484 * containing all relevant information.
5485 * @data_buf ; user defined value to be written into Eeprom.
5486 * Description:
5487 * Tries to write the user provided value in the Eeprom, at the offset
5488 * given by the user.
5489 * Return value:
5490 * 0 on success, -EFAULT on failure.
5493 static int s2io_ethtool_seeprom(struct net_device *dev,
5494 struct ethtool_eeprom *eeprom,
5495 u8 * data_buf)
5497 int len = eeprom->len, cnt = 0;
5498 u64 valid = 0, data;
5499 struct s2io_nic *sp = dev->priv;
5501 if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5502 DBG_PRINT(ERR_DBG,
5503 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5504 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5505 eeprom->magic);
5506 return -EFAULT;
5509 while (len) {
5510 data = (u32) data_buf[cnt] & 0x000000FF;
5511 if (data) {
5512 valid = (u32) (data << 24);
5513 } else
5514 valid = data;
5516 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5517 DBG_PRINT(ERR_DBG,
5518 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5519 DBG_PRINT(ERR_DBG,
5520 "write into the specified offset\n");
5521 return -EFAULT;
5523 cnt++;
5524 len--;
5527 return 0;
5531 * s2io_register_test - reads and writes into all clock domains.
5532 * @sp : private member of the device structure, which is a pointer to the
5533 * s2io_nic structure.
5534 * @data : variable that returns the result of each of the test conducted b
5535 * by the driver.
5536 * Description:
5537 * Read and write into all clock domains. The NIC has 3 clock domains,
5538 * see that registers in all the three regions are accessible.
5539 * Return value:
5540 * 0 on success.
5543 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5545 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5546 u64 val64 = 0, exp_val;
5547 int fail = 0;
5549 val64 = readq(&bar0->pif_rd_swapper_fb);
5550 if (val64 != 0x123456789abcdefULL) {
5551 fail = 1;
5552 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5555 val64 = readq(&bar0->rmac_pause_cfg);
5556 if (val64 != 0xc000ffff00000000ULL) {
5557 fail = 1;
5558 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5561 val64 = readq(&bar0->rx_queue_cfg);
5562 if (sp->device_type == XFRAME_II_DEVICE)
5563 exp_val = 0x0404040404040404ULL;
5564 else
5565 exp_val = 0x0808080808080808ULL;
5566 if (val64 != exp_val) {
5567 fail = 1;
5568 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5571 val64 = readq(&bar0->xgxs_efifo_cfg);
5572 if (val64 != 0x000000001923141EULL) {
5573 fail = 1;
5574 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5577 val64 = 0x5A5A5A5A5A5A5A5AULL;
5578 writeq(val64, &bar0->xmsi_data);
5579 val64 = readq(&bar0->xmsi_data);
5580 if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5581 fail = 1;
5582 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5585 val64 = 0xA5A5A5A5A5A5A5A5ULL;
5586 writeq(val64, &bar0->xmsi_data);
5587 val64 = readq(&bar0->xmsi_data);
5588 if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5589 fail = 1;
5590 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5593 *data = fail;
5594 return fail;
5598 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5599 * @sp : private member of the device structure, which is a pointer to the
5600 * s2io_nic structure.
5601 * @data:variable that returns the result of each of the test conducted by
5602 * the driver.
5603 * Description:
5604 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5605 * register.
5606 * Return value:
5607 * 0 on success.
5610 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5612 int fail = 0;
5613 u64 ret_data, org_4F0, org_7F0;
5614 u8 saved_4F0 = 0, saved_7F0 = 0;
5615 struct net_device *dev = sp->dev;
5617 /* Test Write Error at offset 0 */
5618 /* Note that SPI interface allows write access to all areas
5619 * of EEPROM. Hence doing all negative testing only for Xframe I.
5621 if (sp->device_type == XFRAME_I_DEVICE)
5622 if (!write_eeprom(sp, 0, 0, 3))
5623 fail = 1;
5625 /* Save current values at offsets 0x4F0 and 0x7F0 */
5626 if (!read_eeprom(sp, 0x4F0, &org_4F0))
5627 saved_4F0 = 1;
5628 if (!read_eeprom(sp, 0x7F0, &org_7F0))
5629 saved_7F0 = 1;
5631 /* Test Write at offset 4f0 */
5632 if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5633 fail = 1;
5634 if (read_eeprom(sp, 0x4F0, &ret_data))
5635 fail = 1;
5637 if (ret_data != 0x012345) {
5638 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5639 "Data written %llx Data read %llx\n",
5640 dev->name, (unsigned long long)0x12345,
5641 (unsigned long long)ret_data);
5642 fail = 1;
5645 /* Reset the EEPROM data go FFFF */
5646 write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5648 /* Test Write Request Error at offset 0x7c */
5649 if (sp->device_type == XFRAME_I_DEVICE)
5650 if (!write_eeprom(sp, 0x07C, 0, 3))
5651 fail = 1;
5653 /* Test Write Request at offset 0x7f0 */
5654 if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5655 fail = 1;
5656 if (read_eeprom(sp, 0x7F0, &ret_data))
5657 fail = 1;
5659 if (ret_data != 0x012345) {
5660 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5661 "Data written %llx Data read %llx\n",
5662 dev->name, (unsigned long long)0x12345,
5663 (unsigned long long)ret_data);
5664 fail = 1;
5667 /* Reset the EEPROM data go FFFF */
5668 write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5670 if (sp->device_type == XFRAME_I_DEVICE) {
5671 /* Test Write Error at offset 0x80 */
5672 if (!write_eeprom(sp, 0x080, 0, 3))
5673 fail = 1;
5675 /* Test Write Error at offset 0xfc */
5676 if (!write_eeprom(sp, 0x0FC, 0, 3))
5677 fail = 1;
5679 /* Test Write Error at offset 0x100 */
5680 if (!write_eeprom(sp, 0x100, 0, 3))
5681 fail = 1;
5683 /* Test Write Error at offset 4ec */
5684 if (!write_eeprom(sp, 0x4EC, 0, 3))
5685 fail = 1;
5688 /* Restore values at offsets 0x4F0 and 0x7F0 */
5689 if (saved_4F0)
5690 write_eeprom(sp, 0x4F0, org_4F0, 3);
5691 if (saved_7F0)
5692 write_eeprom(sp, 0x7F0, org_7F0, 3);
5694 *data = fail;
5695 return fail;
5699 * s2io_bist_test - invokes the MemBist test of the card .
5700 * @sp : private member of the device structure, which is a pointer to the
5701 * s2io_nic structure.
5702 * @data:variable that returns the result of each of the test conducted by
5703 * the driver.
5704 * Description:
5705 * This invokes the MemBist test of the card. We give around
5706 * 2 secs time for the Test to complete. If it's still not complete
5707 * within this peiod, we consider that the test failed.
5708 * Return value:
5709 * 0 on success and -1 on failure.
5712 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5714 u8 bist = 0;
5715 int cnt = 0, ret = -1;
5717 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5718 bist |= PCI_BIST_START;
5719 pci_write_config_word(sp->pdev, PCI_BIST, bist);
5721 while (cnt < 20) {
5722 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5723 if (!(bist & PCI_BIST_START)) {
5724 *data = (bist & PCI_BIST_CODE_MASK);
5725 ret = 0;
5726 break;
5728 msleep(100);
5729 cnt++;
5732 return ret;
5736 * s2io-link_test - verifies the link state of the nic
5737 * @sp ; private member of the device structure, which is a pointer to the
5738 * s2io_nic structure.
5739 * @data: variable that returns the result of each of the test conducted by
5740 * the driver.
5741 * Description:
5742 * The function verifies the link state of the NIC and updates the input
5743 * argument 'data' appropriately.
5744 * Return value:
5745 * 0 on success.
5748 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5750 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5751 u64 val64;
5753 val64 = readq(&bar0->adapter_status);
5754 if(!(LINK_IS_UP(val64)))
5755 *data = 1;
5756 else
5757 *data = 0;
5759 return *data;
5763 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5764 * @sp - private member of the device structure, which is a pointer to the
5765 * s2io_nic structure.
5766 * @data - variable that returns the result of each of the test
5767 * conducted by the driver.
5768 * Description:
5769 * This is one of the offline test that tests the read and write
5770 * access to the RldRam chip on the NIC.
5771 * Return value:
5772 * 0 on success.
5775 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5777 struct XENA_dev_config __iomem *bar0 = sp->bar0;
5778 u64 val64;
5779 int cnt, iteration = 0, test_fail = 0;
5781 val64 = readq(&bar0->adapter_control);
5782 val64 &= ~ADAPTER_ECC_EN;
5783 writeq(val64, &bar0->adapter_control);
5785 val64 = readq(&bar0->mc_rldram_test_ctrl);
5786 val64 |= MC_RLDRAM_TEST_MODE;
5787 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5789 val64 = readq(&bar0->mc_rldram_mrs);
5790 val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5791 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5793 val64 |= MC_RLDRAM_MRS_ENABLE;
5794 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5796 while (iteration < 2) {
5797 val64 = 0x55555555aaaa0000ULL;
5798 if (iteration == 1) {
5799 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5801 writeq(val64, &bar0->mc_rldram_test_d0);
5803 val64 = 0xaaaa5a5555550000ULL;
5804 if (iteration == 1) {
5805 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5807 writeq(val64, &bar0->mc_rldram_test_d1);
5809 val64 = 0x55aaaaaaaa5a0000ULL;
5810 if (iteration == 1) {
5811 val64 ^= 0xFFFFFFFFFFFF0000ULL;
5813 writeq(val64, &bar0->mc_rldram_test_d2);
5815 val64 = (u64) (0x0000003ffffe0100ULL);
5816 writeq(val64, &bar0->mc_rldram_test_add);
5818 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
5819 MC_RLDRAM_TEST_GO;
5820 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5822 for (cnt = 0; cnt < 5; cnt++) {
5823 val64 = readq(&bar0->mc_rldram_test_ctrl);
5824 if (val64 & MC_RLDRAM_TEST_DONE)
5825 break;
5826 msleep(200);
5829 if (cnt == 5)
5830 break;
5832 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
5833 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5835 for (cnt = 0; cnt < 5; cnt++) {
5836 val64 = readq(&bar0->mc_rldram_test_ctrl);
5837 if (val64 & MC_RLDRAM_TEST_DONE)
5838 break;
5839 msleep(500);
5842 if (cnt == 5)
5843 break;
5845 val64 = readq(&bar0->mc_rldram_test_ctrl);
5846 if (!(val64 & MC_RLDRAM_TEST_PASS))
5847 test_fail = 1;
5849 iteration++;
5852 *data = test_fail;
5854 /* Bring the adapter out of test mode */
5855 SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
5857 return test_fail;
5861 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5862 * @sp : private member of the device structure, which is a pointer to the
5863 * s2io_nic structure.
5864 * @ethtest : pointer to a ethtool command specific structure that will be
5865 * returned to the user.
5866 * @data : variable that returns the result of each of the test
5867 * conducted by the driver.
5868 * Description:
5869 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5870 * the health of the card.
5871 * Return value:
5872 * void
5875 static void s2io_ethtool_test(struct net_device *dev,
5876 struct ethtool_test *ethtest,
5877 uint64_t * data)
5879 struct s2io_nic *sp = dev->priv;
5880 int orig_state = netif_running(sp->dev);
5882 if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
5883 /* Offline Tests. */
5884 if (orig_state)
5885 s2io_close(sp->dev);
5887 if (s2io_register_test(sp, &data[0]))
5888 ethtest->flags |= ETH_TEST_FL_FAILED;
5890 s2io_reset(sp);
5892 if (s2io_rldram_test(sp, &data[3]))
5893 ethtest->flags |= ETH_TEST_FL_FAILED;
5895 s2io_reset(sp);
5897 if (s2io_eeprom_test(sp, &data[1]))
5898 ethtest->flags |= ETH_TEST_FL_FAILED;
5900 if (s2io_bist_test(sp, &data[4]))
5901 ethtest->flags |= ETH_TEST_FL_FAILED;
5903 if (orig_state)
5904 s2io_open(sp->dev);
5906 data[2] = 0;
5907 } else {
5908 /* Online Tests. */
5909 if (!orig_state) {
5910 DBG_PRINT(ERR_DBG,
5911 "%s: is not up, cannot run test\n",
5912 dev->name);
5913 data[0] = -1;
5914 data[1] = -1;
5915 data[2] = -1;
5916 data[3] = -1;
5917 data[4] = -1;
5920 if (s2io_link_test(sp, &data[2]))
5921 ethtest->flags |= ETH_TEST_FL_FAILED;
5923 data[0] = 0;
5924 data[1] = 0;
5925 data[3] = 0;
5926 data[4] = 0;
5930 static void s2io_get_ethtool_stats(struct net_device *dev,
5931 struct ethtool_stats *estats,
5932 u64 * tmp_stats)
5934 int i = 0, k;
5935 struct s2io_nic *sp = dev->priv;
5936 struct stat_block *stat_info = sp->mac_control.stats_info;
5938 s2io_updt_stats(sp);
5939 tmp_stats[i++] =
5940 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32 |
5941 le32_to_cpu(stat_info->tmac_frms);
5942 tmp_stats[i++] =
5943 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
5944 le32_to_cpu(stat_info->tmac_data_octets);
5945 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
5946 tmp_stats[i++] =
5947 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
5948 le32_to_cpu(stat_info->tmac_mcst_frms);
5949 tmp_stats[i++] =
5950 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
5951 le32_to_cpu(stat_info->tmac_bcst_frms);
5952 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
5953 tmp_stats[i++] =
5954 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
5955 le32_to_cpu(stat_info->tmac_ttl_octets);
5956 tmp_stats[i++] =
5957 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
5958 le32_to_cpu(stat_info->tmac_ucst_frms);
5959 tmp_stats[i++] =
5960 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
5961 le32_to_cpu(stat_info->tmac_nucst_frms);
5962 tmp_stats[i++] =
5963 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
5964 le32_to_cpu(stat_info->tmac_any_err_frms);
5965 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
5966 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
5967 tmp_stats[i++] =
5968 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
5969 le32_to_cpu(stat_info->tmac_vld_ip);
5970 tmp_stats[i++] =
5971 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
5972 le32_to_cpu(stat_info->tmac_drop_ip);
5973 tmp_stats[i++] =
5974 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
5975 le32_to_cpu(stat_info->tmac_icmp);
5976 tmp_stats[i++] =
5977 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
5978 le32_to_cpu(stat_info->tmac_rst_tcp);
5979 tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
5980 tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
5981 le32_to_cpu(stat_info->tmac_udp);
5982 tmp_stats[i++] =
5983 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
5984 le32_to_cpu(stat_info->rmac_vld_frms);
5985 tmp_stats[i++] =
5986 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
5987 le32_to_cpu(stat_info->rmac_data_octets);
5988 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
5989 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
5990 tmp_stats[i++] =
5991 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
5992 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
5993 tmp_stats[i++] =
5994 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
5995 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
5996 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
5997 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
5998 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
5999 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6000 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6001 tmp_stats[i++] =
6002 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6003 le32_to_cpu(stat_info->rmac_ttl_octets);
6004 tmp_stats[i++] =
6005 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6006 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6007 tmp_stats[i++] =
6008 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6009 << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6010 tmp_stats[i++] =
6011 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6012 le32_to_cpu(stat_info->rmac_discarded_frms);
6013 tmp_stats[i++] =
6014 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6015 << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6016 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6017 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6018 tmp_stats[i++] =
6019 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6020 le32_to_cpu(stat_info->rmac_usized_frms);
6021 tmp_stats[i++] =
6022 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6023 le32_to_cpu(stat_info->rmac_osized_frms);
6024 tmp_stats[i++] =
6025 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6026 le32_to_cpu(stat_info->rmac_frag_frms);
6027 tmp_stats[i++] =
6028 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6029 le32_to_cpu(stat_info->rmac_jabber_frms);
6030 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6031 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6032 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6033 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6034 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6035 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6036 tmp_stats[i++] =
6037 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6038 le32_to_cpu(stat_info->rmac_ip);
6039 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6040 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6041 tmp_stats[i++] =
6042 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6043 le32_to_cpu(stat_info->rmac_drop_ip);
6044 tmp_stats[i++] =
6045 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6046 le32_to_cpu(stat_info->rmac_icmp);
6047 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6048 tmp_stats[i++] =
6049 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6050 le32_to_cpu(stat_info->rmac_udp);
6051 tmp_stats[i++] =
6052 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6053 le32_to_cpu(stat_info->rmac_err_drp_udp);
6054 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6055 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6056 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6057 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6058 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6059 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6060 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6061 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6062 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6063 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6064 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6065 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6066 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6067 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6068 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6069 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6070 tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6071 tmp_stats[i++] =
6072 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6073 le32_to_cpu(stat_info->rmac_pause_cnt);
6074 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6075 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6076 tmp_stats[i++] =
6077 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6078 le32_to_cpu(stat_info->rmac_accepted_ip);
6079 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6080 tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6081 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6082 tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6083 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6084 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6085 tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6086 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6087 tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6088 tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6089 tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6090 tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6091 tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6092 tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6093 tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6094 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6095 tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6096 tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6097 tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6099 /* Enhanced statistics exist only for Hercules */
6100 if(sp->device_type == XFRAME_II_DEVICE) {
6101 tmp_stats[i++] =
6102 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6103 tmp_stats[i++] =
6104 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6105 tmp_stats[i++] =
6106 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6107 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6108 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6109 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6110 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6111 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6112 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6113 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6114 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6115 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6116 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6117 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6118 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6119 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6122 tmp_stats[i++] = 0;
6123 tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6124 tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6125 tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6126 tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6127 tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6128 tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6129 for (k = 0; k < MAX_RX_RINGS; k++)
6130 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6131 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6132 tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6133 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6134 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6135 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6136 tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6137 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6138 tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6139 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6140 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6141 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6142 tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6143 tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6144 tmp_stats[i++] = stat_info->sw_stat.sending_both;
6145 tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6146 tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6147 if (stat_info->sw_stat.num_aggregations) {
6148 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6149 int count = 0;
6151 * Since 64-bit divide does not work on all platforms,
6152 * do repeated subtraction.
6154 while (tmp >= stat_info->sw_stat.num_aggregations) {
6155 tmp -= stat_info->sw_stat.num_aggregations;
6156 count++;
6158 tmp_stats[i++] = count;
6160 else
6161 tmp_stats[i++] = 0;
6162 tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6163 tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6164 tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6165 tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6166 tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6167 tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6168 tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6169 tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6170 tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6172 tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6173 tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6174 tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6175 tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6176 tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6178 tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6179 tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6180 tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6181 tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6182 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6183 tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6184 tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6185 tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6186 tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6187 tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6188 tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6189 tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6190 tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6191 tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6192 tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6193 tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6194 tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6195 tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6196 tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6197 tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6198 tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6199 tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6200 tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6201 tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6202 tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6203 tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6206 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6208 return (XENA_REG_SPACE);
6212 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6214 struct s2io_nic *sp = dev->priv;
6216 return (sp->rx_csum);
6219 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6221 struct s2io_nic *sp = dev->priv;
6223 if (data)
6224 sp->rx_csum = 1;
6225 else
6226 sp->rx_csum = 0;
6228 return 0;
6231 static int s2io_get_eeprom_len(struct net_device *dev)
6233 return (XENA_EEPROM_SPACE);
6236 static int s2io_get_sset_count(struct net_device *dev, int sset)
6238 struct s2io_nic *sp = dev->priv;
6240 switch (sset) {
6241 case ETH_SS_TEST:
6242 return S2IO_TEST_LEN;
6243 case ETH_SS_STATS:
6244 switch(sp->device_type) {
6245 case XFRAME_I_DEVICE:
6246 return XFRAME_I_STAT_LEN;
6247 case XFRAME_II_DEVICE:
6248 return XFRAME_II_STAT_LEN;
6249 default:
6250 return 0;
6252 default:
6253 return -EOPNOTSUPP;
6257 static void s2io_ethtool_get_strings(struct net_device *dev,
6258 u32 stringset, u8 * data)
6260 int stat_size = 0;
6261 struct s2io_nic *sp = dev->priv;
6263 switch (stringset) {
6264 case ETH_SS_TEST:
6265 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6266 break;
6267 case ETH_SS_STATS:
6268 stat_size = sizeof(ethtool_xena_stats_keys);
6269 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6270 if(sp->device_type == XFRAME_II_DEVICE) {
6271 memcpy(data + stat_size,
6272 &ethtool_enhanced_stats_keys,
6273 sizeof(ethtool_enhanced_stats_keys));
6274 stat_size += sizeof(ethtool_enhanced_stats_keys);
6277 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6278 sizeof(ethtool_driver_stats_keys));
6282 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6284 if (data)
6285 dev->features |= NETIF_F_IP_CSUM;
6286 else
6287 dev->features &= ~NETIF_F_IP_CSUM;
6289 return 0;
6292 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6294 return (dev->features & NETIF_F_TSO) != 0;
6296 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6298 if (data)
6299 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6300 else
6301 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6303 return 0;
6306 static const struct ethtool_ops netdev_ethtool_ops = {
6307 .get_settings = s2io_ethtool_gset,
6308 .set_settings = s2io_ethtool_sset,
6309 .get_drvinfo = s2io_ethtool_gdrvinfo,
6310 .get_regs_len = s2io_ethtool_get_regs_len,
6311 .get_regs = s2io_ethtool_gregs,
6312 .get_link = ethtool_op_get_link,
6313 .get_eeprom_len = s2io_get_eeprom_len,
6314 .get_eeprom = s2io_ethtool_geeprom,
6315 .set_eeprom = s2io_ethtool_seeprom,
6316 .get_ringparam = s2io_ethtool_gringparam,
6317 .get_pauseparam = s2io_ethtool_getpause_data,
6318 .set_pauseparam = s2io_ethtool_setpause_data,
6319 .get_rx_csum = s2io_ethtool_get_rx_csum,
6320 .set_rx_csum = s2io_ethtool_set_rx_csum,
6321 .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6322 .set_sg = ethtool_op_set_sg,
6323 .get_tso = s2io_ethtool_op_get_tso,
6324 .set_tso = s2io_ethtool_op_set_tso,
6325 .set_ufo = ethtool_op_set_ufo,
6326 .self_test = s2io_ethtool_test,
6327 .get_strings = s2io_ethtool_get_strings,
6328 .phys_id = s2io_ethtool_idnic,
6329 .get_ethtool_stats = s2io_get_ethtool_stats,
6330 .get_sset_count = s2io_get_sset_count,
6334 * s2io_ioctl - Entry point for the Ioctl
6335 * @dev : Device pointer.
6336 * @ifr : An IOCTL specefic structure, that can contain a pointer to
6337 * a proprietary structure used to pass information to the driver.
6338 * @cmd : This is used to distinguish between the different commands that
6339 * can be passed to the IOCTL functions.
6340 * Description:
6341 * Currently there are no special functionality supported in IOCTL, hence
6342 * function always return EOPNOTSUPPORTED
6345 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6347 return -EOPNOTSUPP;
6351 * s2io_change_mtu - entry point to change MTU size for the device.
6352 * @dev : device pointer.
6353 * @new_mtu : the new MTU size for the device.
6354 * Description: A driver entry point to change MTU size for the device.
6355 * Before changing the MTU the device must be stopped.
6356 * Return value:
6357 * 0 on success and an appropriate (-)ve integer as defined in errno.h
6358 * file on failure.
6361 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6363 struct s2io_nic *sp = dev->priv;
6364 int ret = 0;
6366 if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6367 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6368 dev->name);
6369 return -EPERM;
6372 dev->mtu = new_mtu;
6373 if (netif_running(dev)) {
6374 s2io_card_down(sp);
6375 netif_stop_queue(dev);
6376 ret = s2io_card_up(sp);
6377 if (ret) {
6378 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6379 __FUNCTION__);
6380 return ret;
6382 if (netif_queue_stopped(dev))
6383 netif_wake_queue(dev);
6384 } else { /* Device is down */
6385 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6386 u64 val64 = new_mtu;
6388 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6391 return ret;
6395 * s2io_tasklet - Bottom half of the ISR.
6396 * @dev_adr : address of the device structure in dma_addr_t format.
6397 * Description:
6398 * This is the tasklet or the bottom half of the ISR. This is
6399 * an extension of the ISR which is scheduled by the scheduler to be run
6400 * when the load on the CPU is low. All low priority tasks of the ISR can
6401 * be pushed into the tasklet. For now the tasklet is used only to
6402 * replenish the Rx buffers in the Rx buffer descriptors.
6403 * Return value:
6404 * void.
6407 static void s2io_tasklet(unsigned long dev_addr)
6409 struct net_device *dev = (struct net_device *) dev_addr;
6410 struct s2io_nic *sp = dev->priv;
6411 int i, ret;
6412 struct mac_info *mac_control;
6413 struct config_param *config;
6415 mac_control = &sp->mac_control;
6416 config = &sp->config;
6418 if (!TASKLET_IN_USE) {
6419 for (i = 0; i < config->rx_ring_num; i++) {
6420 ret = fill_rx_buffers(sp, i);
6421 if (ret == -ENOMEM) {
6422 DBG_PRINT(INFO_DBG, "%s: Out of ",
6423 dev->name);
6424 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6425 break;
6426 } else if (ret == -EFILL) {
6427 DBG_PRINT(INFO_DBG,
6428 "%s: Rx Ring %d is full\n",
6429 dev->name, i);
6430 break;
6433 clear_bit(0, (&sp->tasklet_status));
6438 * s2io_set_link - Set the LInk status
6439 * @data: long pointer to device private structue
6440 * Description: Sets the link status for the adapter
6443 static void s2io_set_link(struct work_struct *work)
6445 struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6446 struct net_device *dev = nic->dev;
6447 struct XENA_dev_config __iomem *bar0 = nic->bar0;
6448 register u64 val64;
6449 u16 subid;
6451 rtnl_lock();
6453 if (!netif_running(dev))
6454 goto out_unlock;
6456 if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6457 /* The card is being reset, no point doing anything */
6458 goto out_unlock;
6461 subid = nic->pdev->subsystem_device;
6462 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6464 * Allow a small delay for the NICs self initiated
6465 * cleanup to complete.
6467 msleep(100);
6470 val64 = readq(&bar0->adapter_status);
6471 if (LINK_IS_UP(val64)) {
6472 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6473 if (verify_xena_quiescence(nic)) {
6474 val64 = readq(&bar0->adapter_control);
6475 val64 |= ADAPTER_CNTL_EN;
6476 writeq(val64, &bar0->adapter_control);
6477 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6478 nic->device_type, subid)) {
6479 val64 = readq(&bar0->gpio_control);
6480 val64 |= GPIO_CTRL_GPIO_0;
6481 writeq(val64, &bar0->gpio_control);
6482 val64 = readq(&bar0->gpio_control);
6483 } else {
6484 val64 |= ADAPTER_LED_ON;
6485 writeq(val64, &bar0->adapter_control);
6487 nic->device_enabled_once = TRUE;
6488 } else {
6489 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6490 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6491 netif_stop_queue(dev);
6494 val64 = readq(&bar0->adapter_control);
6495 val64 |= ADAPTER_LED_ON;
6496 writeq(val64, &bar0->adapter_control);
6497 s2io_link(nic, LINK_UP);
6498 } else {
6499 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6500 subid)) {
6501 val64 = readq(&bar0->gpio_control);
6502 val64 &= ~GPIO_CTRL_GPIO_0;
6503 writeq(val64, &bar0->gpio_control);
6504 val64 = readq(&bar0->gpio_control);
6506 /* turn off LED */
6507 val64 = readq(&bar0->adapter_control);
6508 val64 = val64 &(~ADAPTER_LED_ON);
6509 writeq(val64, &bar0->adapter_control);
6510 s2io_link(nic, LINK_DOWN);
6512 clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6514 out_unlock:
6515 rtnl_unlock();
6518 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6519 struct buffAdd *ba,
6520 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6521 u64 *temp2, int size)
6523 struct net_device *dev = sp->dev;
6524 struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6526 if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6527 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6528 /* allocate skb */
6529 if (*skb) {
6530 DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6532 * As Rx frame are not going to be processed,
6533 * using same mapped address for the Rxd
6534 * buffer pointer
6536 rxdp1->Buffer0_ptr = *temp0;
6537 } else {
6538 *skb = dev_alloc_skb(size);
6539 if (!(*skb)) {
6540 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6541 DBG_PRINT(INFO_DBG, "memory to allocate ");
6542 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6543 sp->mac_control.stats_info->sw_stat. \
6544 mem_alloc_fail_cnt++;
6545 return -ENOMEM ;
6547 sp->mac_control.stats_info->sw_stat.mem_allocated
6548 += (*skb)->truesize;
6549 /* storing the mapped addr in a temp variable
6550 * such it will be used for next rxd whose
6551 * Host Control is NULL
6553 rxdp1->Buffer0_ptr = *temp0 =
6554 pci_map_single( sp->pdev, (*skb)->data,
6555 size - NET_IP_ALIGN,
6556 PCI_DMA_FROMDEVICE);
6557 if( (rxdp1->Buffer0_ptr == 0) ||
6558 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6559 goto memalloc_failed;
6561 rxdp->Host_Control = (unsigned long) (*skb);
6563 } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6564 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6565 /* Two buffer Mode */
6566 if (*skb) {
6567 rxdp3->Buffer2_ptr = *temp2;
6568 rxdp3->Buffer0_ptr = *temp0;
6569 rxdp3->Buffer1_ptr = *temp1;
6570 } else {
6571 *skb = dev_alloc_skb(size);
6572 if (!(*skb)) {
6573 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6574 DBG_PRINT(INFO_DBG, "memory to allocate ");
6575 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6576 sp->mac_control.stats_info->sw_stat. \
6577 mem_alloc_fail_cnt++;
6578 return -ENOMEM;
6580 sp->mac_control.stats_info->sw_stat.mem_allocated
6581 += (*skb)->truesize;
6582 rxdp3->Buffer2_ptr = *temp2 =
6583 pci_map_single(sp->pdev, (*skb)->data,
6584 dev->mtu + 4,
6585 PCI_DMA_FROMDEVICE);
6586 if( (rxdp3->Buffer2_ptr == 0) ||
6587 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6588 goto memalloc_failed;
6590 rxdp3->Buffer0_ptr = *temp0 =
6591 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6592 PCI_DMA_FROMDEVICE);
6593 if( (rxdp3->Buffer0_ptr == 0) ||
6594 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6595 pci_unmap_single (sp->pdev,
6596 (dma_addr_t)rxdp3->Buffer2_ptr,
6597 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6598 goto memalloc_failed;
6600 rxdp->Host_Control = (unsigned long) (*skb);
6602 /* Buffer-1 will be dummy buffer not used */
6603 rxdp3->Buffer1_ptr = *temp1 =
6604 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6605 PCI_DMA_FROMDEVICE);
6606 if( (rxdp3->Buffer1_ptr == 0) ||
6607 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6608 pci_unmap_single (sp->pdev,
6609 (dma_addr_t)rxdp3->Buffer0_ptr,
6610 BUF0_LEN, PCI_DMA_FROMDEVICE);
6611 pci_unmap_single (sp->pdev,
6612 (dma_addr_t)rxdp3->Buffer2_ptr,
6613 dev->mtu + 4, PCI_DMA_FROMDEVICE);
6614 goto memalloc_failed;
6618 return 0;
6619 memalloc_failed:
6620 stats->pci_map_fail_cnt++;
6621 stats->mem_freed += (*skb)->truesize;
6622 dev_kfree_skb(*skb);
6623 return -ENOMEM;
6626 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6627 int size)
6629 struct net_device *dev = sp->dev;
6630 if (sp->rxd_mode == RXD_MODE_1) {
6631 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6632 } else if (sp->rxd_mode == RXD_MODE_3B) {
6633 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6634 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6635 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6639 static int rxd_owner_bit_reset(struct s2io_nic *sp)
6641 int i, j, k, blk_cnt = 0, size;
6642 struct mac_info * mac_control = &sp->mac_control;
6643 struct config_param *config = &sp->config;
6644 struct net_device *dev = sp->dev;
6645 struct RxD_t *rxdp = NULL;
6646 struct sk_buff *skb = NULL;
6647 struct buffAdd *ba = NULL;
6648 u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6650 /* Calculate the size based on ring mode */
6651 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6652 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6653 if (sp->rxd_mode == RXD_MODE_1)
6654 size += NET_IP_ALIGN;
6655 else if (sp->rxd_mode == RXD_MODE_3B)
6656 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6658 for (i = 0; i < config->rx_ring_num; i++) {
6659 blk_cnt = config->rx_cfg[i].num_rxd /
6660 (rxd_count[sp->rxd_mode] +1);
6662 for (j = 0; j < blk_cnt; j++) {
6663 for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6664 rxdp = mac_control->rings[i].
6665 rx_blocks[j].rxds[k].virt_addr;
6666 if(sp->rxd_mode == RXD_MODE_3B)
6667 ba = &mac_control->rings[i].ba[j][k];
6668 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6669 &skb,(u64 *)&temp0_64,
6670 (u64 *)&temp1_64,
6671 (u64 *)&temp2_64,
6672 size) == ENOMEM) {
6673 return 0;
6676 set_rxd_buffer_size(sp, rxdp, size);
6677 wmb();
6678 /* flip the Ownership bit to Hardware */
6679 rxdp->Control_1 |= RXD_OWN_XENA;
6683 return 0;
6687 static int s2io_add_isr(struct s2io_nic * sp)
6689 int ret = 0;
6690 struct net_device *dev = sp->dev;
6691 int err = 0;
6693 if (sp->config.intr_type == MSI_X)
6694 ret = s2io_enable_msi_x(sp);
6695 if (ret) {
6696 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6697 sp->config.intr_type = INTA;
6700 /* Store the values of the MSIX table in the struct s2io_nic structure */
6701 store_xmsi_data(sp);
6703 /* After proper initialization of H/W, register ISR */
6704 if (sp->config.intr_type == MSI_X) {
6705 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6707 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6708 if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6709 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6710 dev->name, i);
6711 err = request_irq(sp->entries[i].vector,
6712 s2io_msix_fifo_handle, 0, sp->desc[i],
6713 sp->s2io_entries[i].arg);
6714 /* If either data or addr is zero print it */
6715 if(!(sp->msix_info[i].addr &&
6716 sp->msix_info[i].data)) {
6717 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6718 "Data:0x%lx\n",sp->desc[i],
6719 (unsigned long long)
6720 sp->msix_info[i].addr,
6721 (unsigned long)
6722 ntohl(sp->msix_info[i].data));
6723 } else {
6724 msix_tx_cnt++;
6726 } else {
6727 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6728 dev->name, i);
6729 err = request_irq(sp->entries[i].vector,
6730 s2io_msix_ring_handle, 0, sp->desc[i],
6731 sp->s2io_entries[i].arg);
6732 /* If either data or addr is zero print it */
6733 if(!(sp->msix_info[i].addr &&
6734 sp->msix_info[i].data)) {
6735 DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx"
6736 "Data:0x%lx\n",sp->desc[i],
6737 (unsigned long long)
6738 sp->msix_info[i].addr,
6739 (unsigned long)
6740 ntohl(sp->msix_info[i].data));
6741 } else {
6742 msix_rx_cnt++;
6745 if (err) {
6746 remove_msix_isr(sp);
6747 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6748 "failed\n", dev->name, i);
6749 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6750 dev->name);
6751 sp->config.intr_type = INTA;
6752 break;
6754 sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6756 if (!err) {
6757 printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6758 msix_tx_cnt);
6759 printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6760 msix_rx_cnt);
6763 if (sp->config.intr_type == INTA) {
6764 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6765 sp->name, dev);
6766 if (err) {
6767 DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6768 dev->name);
6769 return -1;
6772 return 0;
6774 static void s2io_rem_isr(struct s2io_nic * sp)
6776 if (sp->config.intr_type == MSI_X)
6777 remove_msix_isr(sp);
6778 else
6779 remove_inta_isr(sp);
6782 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6784 int cnt = 0;
6785 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6786 unsigned long flags;
6787 register u64 val64 = 0;
6789 if (!is_s2io_card_up(sp))
6790 return;
6792 del_timer_sync(&sp->alarm_timer);
6793 /* If s2io_set_link task is executing, wait till it completes. */
6794 while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
6795 msleep(50);
6797 clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
6799 /* disable Tx and Rx traffic on the NIC */
6800 if (do_io)
6801 stop_nic(sp);
6803 s2io_rem_isr(sp);
6805 /* Kill tasklet. */
6806 tasklet_kill(&sp->task);
6808 /* Check if the device is Quiescent and then Reset the NIC */
6809 while(do_io) {
6810 /* As per the HW requirement we need to replenish the
6811 * receive buffer to avoid the ring bump. Since there is
6812 * no intention of processing the Rx frame at this pointwe are
6813 * just settting the ownership bit of rxd in Each Rx
6814 * ring to HW and set the appropriate buffer size
6815 * based on the ring mode
6817 rxd_owner_bit_reset(sp);
6819 val64 = readq(&bar0->adapter_status);
6820 if (verify_xena_quiescence(sp)) {
6821 if(verify_pcc_quiescent(sp, sp->device_enabled_once))
6822 break;
6825 msleep(50);
6826 cnt++;
6827 if (cnt == 10) {
6828 DBG_PRINT(ERR_DBG,
6829 "s2io_close:Device not Quiescent ");
6830 DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
6831 (unsigned long long) val64);
6832 break;
6835 if (do_io)
6836 s2io_reset(sp);
6838 spin_lock_irqsave(&sp->tx_lock, flags);
6839 /* Free all Tx buffers */
6840 free_tx_buffers(sp);
6841 spin_unlock_irqrestore(&sp->tx_lock, flags);
6843 /* Free all Rx buffers */
6844 spin_lock_irqsave(&sp->rx_lock, flags);
6845 free_rx_buffers(sp);
6846 spin_unlock_irqrestore(&sp->rx_lock, flags);
6848 clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
6851 static void s2io_card_down(struct s2io_nic * sp)
6853 do_s2io_card_down(sp, 1);
6856 static int s2io_card_up(struct s2io_nic * sp)
6858 int i, ret = 0;
6859 struct mac_info *mac_control;
6860 struct config_param *config;
6861 struct net_device *dev = (struct net_device *) sp->dev;
6862 u16 interruptible;
6864 /* Initialize the H/W I/O registers */
6865 ret = init_nic(sp);
6866 if (ret != 0) {
6867 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
6868 dev->name);
6869 if (ret != -EIO)
6870 s2io_reset(sp);
6871 return ret;
6875 * Initializing the Rx buffers. For now we are considering only 1
6876 * Rx ring and initializing buffers into 30 Rx blocks
6878 mac_control = &sp->mac_control;
6879 config = &sp->config;
6881 for (i = 0; i < config->rx_ring_num; i++) {
6882 if ((ret = fill_rx_buffers(sp, i))) {
6883 DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
6884 dev->name);
6885 s2io_reset(sp);
6886 free_rx_buffers(sp);
6887 return -ENOMEM;
6889 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
6890 atomic_read(&sp->rx_bufs_left[i]));
6892 /* Maintain the state prior to the open */
6893 if (sp->promisc_flg)
6894 sp->promisc_flg = 0;
6895 if (sp->m_cast_flg) {
6896 sp->m_cast_flg = 0;
6897 sp->all_multi_pos= 0;
6900 /* Setting its receive mode */
6901 s2io_set_multicast(dev);
6903 if (sp->lro) {
6904 /* Initialize max aggregatable pkts per session based on MTU */
6905 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
6906 /* Check if we can use(if specified) user provided value */
6907 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
6908 sp->lro_max_aggr_per_sess = lro_max_pkts;
6911 /* Enable Rx Traffic and interrupts on the NIC */
6912 if (start_nic(sp)) {
6913 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
6914 s2io_reset(sp);
6915 free_rx_buffers(sp);
6916 return -ENODEV;
6919 /* Add interrupt service routine */
6920 if (s2io_add_isr(sp) != 0) {
6921 if (sp->config.intr_type == MSI_X)
6922 s2io_rem_isr(sp);
6923 s2io_reset(sp);
6924 free_rx_buffers(sp);
6925 return -ENODEV;
6928 S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
6930 /* Enable tasklet for the device */
6931 tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
6933 /* Enable select interrupts */
6934 en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
6935 if (sp->config.intr_type != INTA)
6936 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
6937 else {
6938 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
6939 interruptible |= TX_PIC_INTR;
6940 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
6943 set_bit(__S2IO_STATE_CARD_UP, &sp->state);
6944 return 0;
6948 * s2io_restart_nic - Resets the NIC.
6949 * @data : long pointer to the device private structure
6950 * Description:
6951 * This function is scheduled to be run by the s2io_tx_watchdog
6952 * function after 0.5 secs to reset the NIC. The idea is to reduce
6953 * the run time of the watch dog routine which is run holding a
6954 * spin lock.
6957 static void s2io_restart_nic(struct work_struct *work)
6959 struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
6960 struct net_device *dev = sp->dev;
6962 rtnl_lock();
6964 if (!netif_running(dev))
6965 goto out_unlock;
6967 s2io_card_down(sp);
6968 if (s2io_card_up(sp)) {
6969 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6970 dev->name);
6972 netif_wake_queue(dev);
6973 DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
6974 dev->name);
6975 out_unlock:
6976 rtnl_unlock();
6980 * s2io_tx_watchdog - Watchdog for transmit side.
6981 * @dev : Pointer to net device structure
6982 * Description:
6983 * This function is triggered if the Tx Queue is stopped
6984 * for a pre-defined amount of time when the Interface is still up.
6985 * If the Interface is jammed in such a situation, the hardware is
6986 * reset (by s2io_close) and restarted again (by s2io_open) to
6987 * overcome any problem that might have been caused in the hardware.
6988 * Return value:
6989 * void
6992 static void s2io_tx_watchdog(struct net_device *dev)
6994 struct s2io_nic *sp = dev->priv;
6996 if (netif_carrier_ok(dev)) {
6997 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
6998 schedule_work(&sp->rst_timer_task);
6999 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7004 * rx_osm_handler - To perform some OS related operations on SKB.
7005 * @sp: private member of the device structure,pointer to s2io_nic structure.
7006 * @skb : the socket buffer pointer.
7007 * @len : length of the packet
7008 * @cksum : FCS checksum of the frame.
7009 * @ring_no : the ring from which this RxD was extracted.
7010 * Description:
7011 * This function is called by the Rx interrupt serivce routine to perform
7012 * some OS related operations on the SKB before passing it to the upper
7013 * layers. It mainly checks if the checksum is OK, if so adds it to the
7014 * SKBs cksum variable, increments the Rx packet count and passes the SKB
7015 * to the upper layer. If the checksum is wrong, it increments the Rx
7016 * packet error count, frees the SKB and returns error.
7017 * Return value:
7018 * SUCCESS on success and -1 on failure.
7020 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7022 struct s2io_nic *sp = ring_data->nic;
7023 struct net_device *dev = (struct net_device *) sp->dev;
7024 struct sk_buff *skb = (struct sk_buff *)
7025 ((unsigned long) rxdp->Host_Control);
7026 int ring_no = ring_data->ring_no;
7027 u16 l3_csum, l4_csum;
7028 unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7029 struct lro *lro;
7030 u8 err_mask;
7032 skb->dev = dev;
7034 if (err) {
7035 /* Check for parity error */
7036 if (err & 0x1) {
7037 sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7039 err_mask = err >> 48;
7040 switch(err_mask) {
7041 case 1:
7042 sp->mac_control.stats_info->sw_stat.
7043 rx_parity_err_cnt++;
7044 break;
7046 case 2:
7047 sp->mac_control.stats_info->sw_stat.
7048 rx_abort_cnt++;
7049 break;
7051 case 3:
7052 sp->mac_control.stats_info->sw_stat.
7053 rx_parity_abort_cnt++;
7054 break;
7056 case 4:
7057 sp->mac_control.stats_info->sw_stat.
7058 rx_rda_fail_cnt++;
7059 break;
7061 case 5:
7062 sp->mac_control.stats_info->sw_stat.
7063 rx_unkn_prot_cnt++;
7064 break;
7066 case 6:
7067 sp->mac_control.stats_info->sw_stat.
7068 rx_fcs_err_cnt++;
7069 break;
7071 case 7:
7072 sp->mac_control.stats_info->sw_stat.
7073 rx_buf_size_err_cnt++;
7074 break;
7076 case 8:
7077 sp->mac_control.stats_info->sw_stat.
7078 rx_rxd_corrupt_cnt++;
7079 break;
7081 case 15:
7082 sp->mac_control.stats_info->sw_stat.
7083 rx_unkn_err_cnt++;
7084 break;
7087 * Drop the packet if bad transfer code. Exception being
7088 * 0x5, which could be due to unsupported IPv6 extension header.
7089 * In this case, we let stack handle the packet.
7090 * Note that in this case, since checksum will be incorrect,
7091 * stack will validate the same.
7093 if (err_mask != 0x5) {
7094 DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7095 dev->name, err_mask);
7096 sp->stats.rx_crc_errors++;
7097 sp->mac_control.stats_info->sw_stat.mem_freed
7098 += skb->truesize;
7099 dev_kfree_skb(skb);
7100 atomic_dec(&sp->rx_bufs_left[ring_no]);
7101 rxdp->Host_Control = 0;
7102 return 0;
7106 /* Updating statistics */
7107 sp->stats.rx_packets++;
7108 rxdp->Host_Control = 0;
7109 if (sp->rxd_mode == RXD_MODE_1) {
7110 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7112 sp->stats.rx_bytes += len;
7113 skb_put(skb, len);
7115 } else if (sp->rxd_mode == RXD_MODE_3B) {
7116 int get_block = ring_data->rx_curr_get_info.block_index;
7117 int get_off = ring_data->rx_curr_get_info.offset;
7118 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7119 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7120 unsigned char *buff = skb_push(skb, buf0_len);
7122 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7123 sp->stats.rx_bytes += buf0_len + buf2_len;
7124 memcpy(buff, ba->ba_0, buf0_len);
7125 skb_put(skb, buf2_len);
7128 if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7129 (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7130 (sp->rx_csum)) {
7131 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7132 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7133 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7135 * NIC verifies if the Checksum of the received
7136 * frame is Ok or not and accordingly returns
7137 * a flag in the RxD.
7139 skb->ip_summed = CHECKSUM_UNNECESSARY;
7140 if (sp->lro) {
7141 u32 tcp_len;
7142 u8 *tcp;
7143 int ret = 0;
7145 ret = s2io_club_tcp_session(skb->data, &tcp,
7146 &tcp_len, &lro,
7147 rxdp, sp);
7148 switch (ret) {
7149 case 3: /* Begin anew */
7150 lro->parent = skb;
7151 goto aggregate;
7152 case 1: /* Aggregate */
7154 lro_append_pkt(sp, lro,
7155 skb, tcp_len);
7156 goto aggregate;
7158 case 4: /* Flush session */
7160 lro_append_pkt(sp, lro,
7161 skb, tcp_len);
7162 queue_rx_frame(lro->parent);
7163 clear_lro_session(lro);
7164 sp->mac_control.stats_info->
7165 sw_stat.flush_max_pkts++;
7166 goto aggregate;
7168 case 2: /* Flush both */
7169 lro->parent->data_len =
7170 lro->frags_len;
7171 sp->mac_control.stats_info->
7172 sw_stat.sending_both++;
7173 queue_rx_frame(lro->parent);
7174 clear_lro_session(lro);
7175 goto send_up;
7176 case 0: /* sessions exceeded */
7177 case -1: /* non-TCP or not
7178 * L2 aggregatable
7180 case 5: /*
7181 * First pkt in session not
7182 * L3/L4 aggregatable
7184 break;
7185 default:
7186 DBG_PRINT(ERR_DBG,
7187 "%s: Samadhana!!\n",
7188 __FUNCTION__);
7189 BUG();
7192 } else {
7194 * Packet with erroneous checksum, let the
7195 * upper layers deal with it.
7197 skb->ip_summed = CHECKSUM_NONE;
7199 } else {
7200 skb->ip_summed = CHECKSUM_NONE;
7202 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7203 if (!sp->lro) {
7204 skb->protocol = eth_type_trans(skb, dev);
7205 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7206 vlan_strip_flag)) {
7207 /* Queueing the vlan frame to the upper layer */
7208 if (napi)
7209 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7210 RXD_GET_VLAN_TAG(rxdp->Control_2));
7211 else
7212 vlan_hwaccel_rx(skb, sp->vlgrp,
7213 RXD_GET_VLAN_TAG(rxdp->Control_2));
7214 } else {
7215 if (napi)
7216 netif_receive_skb(skb);
7217 else
7218 netif_rx(skb);
7220 } else {
7221 send_up:
7222 queue_rx_frame(skb);
7224 dev->last_rx = jiffies;
7225 aggregate:
7226 atomic_dec(&sp->rx_bufs_left[ring_no]);
7227 return SUCCESS;
7231 * s2io_link - stops/starts the Tx queue.
7232 * @sp : private member of the device structure, which is a pointer to the
7233 * s2io_nic structure.
7234 * @link : inidicates whether link is UP/DOWN.
7235 * Description:
7236 * This function stops/starts the Tx queue depending on whether the link
7237 * status of the NIC is is down or up. This is called by the Alarm
7238 * interrupt handler whenever a link change interrupt comes up.
7239 * Return value:
7240 * void.
7243 static void s2io_link(struct s2io_nic * sp, int link)
7245 struct net_device *dev = (struct net_device *) sp->dev;
7247 if (link != sp->last_link_state) {
7248 if (link == LINK_DOWN) {
7249 DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7250 netif_carrier_off(dev);
7251 if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7252 sp->mac_control.stats_info->sw_stat.link_up_time =
7253 jiffies - sp->start_time;
7254 sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7255 } else {
7256 DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7257 if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7258 sp->mac_control.stats_info->sw_stat.link_down_time =
7259 jiffies - sp->start_time;
7260 sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7261 netif_carrier_on(dev);
7264 sp->last_link_state = link;
7265 sp->start_time = jiffies;
7269 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7270 * @sp : private member of the device structure, which is a pointer to the
7271 * s2io_nic structure.
7272 * Description:
7273 * This function initializes a few of the PCI and PCI-X configuration registers
7274 * with recommended values.
7275 * Return value:
7276 * void
7279 static void s2io_init_pci(struct s2io_nic * sp)
7281 u16 pci_cmd = 0, pcix_cmd = 0;
7283 /* Enable Data Parity Error Recovery in PCI-X command register. */
7284 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7285 &(pcix_cmd));
7286 pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7287 (pcix_cmd | 1));
7288 pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7289 &(pcix_cmd));
7291 /* Set the PErr Response bit in PCI command register. */
7292 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7293 pci_write_config_word(sp->pdev, PCI_COMMAND,
7294 (pci_cmd | PCI_COMMAND_PARITY));
7295 pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7298 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7300 if ( tx_fifo_num > 8) {
7301 DBG_PRINT(ERR_DBG, "s2io: Requested number of Tx fifos not "
7302 "supported\n");
7303 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Tx fifos\n");
7304 tx_fifo_num = 8;
7306 if ( rx_ring_num > 8) {
7307 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7308 "supported\n");
7309 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7310 rx_ring_num = 8;
7312 if (*dev_intr_type != INTA)
7313 napi = 0;
7315 if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7316 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7317 "Defaulting to INTA\n");
7318 *dev_intr_type = INTA;
7321 if ((*dev_intr_type == MSI_X) &&
7322 ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7323 (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7324 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7325 "Defaulting to INTA\n");
7326 *dev_intr_type = INTA;
7329 if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7330 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7331 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7332 rx_ring_mode = 1;
7334 return SUCCESS;
7338 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7339 * or Traffic class respectively.
7340 * @nic: device peivate variable
7341 * Description: The function configures the receive steering to
7342 * desired receive ring.
7343 * Return Value: SUCCESS on success and
7344 * '-1' on failure (endian settings incorrect).
7346 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7348 struct XENA_dev_config __iomem *bar0 = nic->bar0;
7349 register u64 val64 = 0;
7351 if (ds_codepoint > 63)
7352 return FAILURE;
7354 val64 = RTS_DS_MEM_DATA(ring);
7355 writeq(val64, &bar0->rts_ds_mem_data);
7357 val64 = RTS_DS_MEM_CTRL_WE |
7358 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7359 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7361 writeq(val64, &bar0->rts_ds_mem_ctrl);
7363 return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7364 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7365 S2IO_BIT_RESET);
7369 * s2io_init_nic - Initialization of the adapter .
7370 * @pdev : structure containing the PCI related information of the device.
7371 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7372 * Description:
7373 * The function initializes an adapter identified by the pci_dec structure.
7374 * All OS related initialization including memory and device structure and
7375 * initlaization of the device private variable is done. Also the swapper
7376 * control register is initialized to enable read and write into the I/O
7377 * registers of the device.
7378 * Return value:
7379 * returns 0 on success and negative on failure.
7382 static int __devinit
7383 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7385 struct s2io_nic *sp;
7386 struct net_device *dev;
7387 int i, j, ret;
7388 int dma_flag = FALSE;
7389 u32 mac_up, mac_down;
7390 u64 val64 = 0, tmp64 = 0;
7391 struct XENA_dev_config __iomem *bar0 = NULL;
7392 u16 subid;
7393 struct mac_info *mac_control;
7394 struct config_param *config;
7395 int mode;
7396 u8 dev_intr_type = intr_type;
7397 DECLARE_MAC_BUF(mac);
7399 if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7400 return ret;
7402 if ((ret = pci_enable_device(pdev))) {
7403 DBG_PRINT(ERR_DBG,
7404 "s2io_init_nic: pci_enable_device failed\n");
7405 return ret;
7408 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7409 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7410 dma_flag = TRUE;
7411 if (pci_set_consistent_dma_mask
7412 (pdev, DMA_64BIT_MASK)) {
7413 DBG_PRINT(ERR_DBG,
7414 "Unable to obtain 64bit DMA for \
7415 consistent allocations\n");
7416 pci_disable_device(pdev);
7417 return -ENOMEM;
7419 } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7420 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7421 } else {
7422 pci_disable_device(pdev);
7423 return -ENOMEM;
7425 if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7426 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7427 pci_disable_device(pdev);
7428 return -ENODEV;
7431 dev = alloc_etherdev(sizeof(struct s2io_nic));
7432 if (dev == NULL) {
7433 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7434 pci_disable_device(pdev);
7435 pci_release_regions(pdev);
7436 return -ENODEV;
7439 pci_set_master(pdev);
7440 pci_set_drvdata(pdev, dev);
7441 SET_NETDEV_DEV(dev, &pdev->dev);
7443 /* Private member variable initialized to s2io NIC structure */
7444 sp = dev->priv;
7445 memset(sp, 0, sizeof(struct s2io_nic));
7446 sp->dev = dev;
7447 sp->pdev = pdev;
7448 sp->high_dma_flag = dma_flag;
7449 sp->device_enabled_once = FALSE;
7450 if (rx_ring_mode == 1)
7451 sp->rxd_mode = RXD_MODE_1;
7452 if (rx_ring_mode == 2)
7453 sp->rxd_mode = RXD_MODE_3B;
7455 sp->config.intr_type = dev_intr_type;
7457 if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7458 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7459 sp->device_type = XFRAME_II_DEVICE;
7460 else
7461 sp->device_type = XFRAME_I_DEVICE;
7463 sp->lro = lro_enable;
7465 /* Initialize some PCI/PCI-X fields of the NIC. */
7466 s2io_init_pci(sp);
7469 * Setting the device configuration parameters.
7470 * Most of these parameters can be specified by the user during
7471 * module insertion as they are module loadable parameters. If
7472 * these parameters are not not specified during load time, they
7473 * are initialized with default values.
7475 mac_control = &sp->mac_control;
7476 config = &sp->config;
7478 config->napi = napi;
7480 /* Tx side parameters. */
7481 config->tx_fifo_num = tx_fifo_num;
7482 for (i = 0; i < MAX_TX_FIFOS; i++) {
7483 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7484 config->tx_cfg[i].fifo_priority = i;
7487 /* mapping the QoS priority to the configured fifos */
7488 for (i = 0; i < MAX_TX_FIFOS; i++)
7489 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7491 config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7492 for (i = 0; i < config->tx_fifo_num; i++) {
7493 config->tx_cfg[i].f_no_snoop =
7494 (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7495 if (config->tx_cfg[i].fifo_len < 65) {
7496 config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7497 break;
7500 /* + 2 because one Txd for skb->data and one Txd for UFO */
7501 config->max_txds = MAX_SKB_FRAGS + 2;
7503 /* Rx side parameters. */
7504 config->rx_ring_num = rx_ring_num;
7505 for (i = 0; i < MAX_RX_RINGS; i++) {
7506 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7507 (rxd_count[sp->rxd_mode] + 1);
7508 config->rx_cfg[i].ring_priority = i;
7511 for (i = 0; i < rx_ring_num; i++) {
7512 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7513 config->rx_cfg[i].f_no_snoop =
7514 (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7517 /* Setting Mac Control parameters */
7518 mac_control->rmac_pause_time = rmac_pause_time;
7519 mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7520 mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7523 /* Initialize Ring buffer parameters. */
7524 for (i = 0; i < config->rx_ring_num; i++)
7525 atomic_set(&sp->rx_bufs_left[i], 0);
7527 /* initialize the shared memory used by the NIC and the host */
7528 if (init_shared_mem(sp)) {
7529 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7530 dev->name);
7531 ret = -ENOMEM;
7532 goto mem_alloc_failed;
7535 sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7536 pci_resource_len(pdev, 0));
7537 if (!sp->bar0) {
7538 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7539 dev->name);
7540 ret = -ENOMEM;
7541 goto bar0_remap_failed;
7544 sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7545 pci_resource_len(pdev, 2));
7546 if (!sp->bar1) {
7547 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7548 dev->name);
7549 ret = -ENOMEM;
7550 goto bar1_remap_failed;
7553 dev->irq = pdev->irq;
7554 dev->base_addr = (unsigned long) sp->bar0;
7556 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7557 for (j = 0; j < MAX_TX_FIFOS; j++) {
7558 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7559 (sp->bar1 + (j * 0x00020000));
7562 /* Driver entry points */
7563 dev->open = &s2io_open;
7564 dev->stop = &s2io_close;
7565 dev->hard_start_xmit = &s2io_xmit;
7566 dev->get_stats = &s2io_get_stats;
7567 dev->set_multicast_list = &s2io_set_multicast;
7568 dev->do_ioctl = &s2io_ioctl;
7569 dev->set_mac_address = &s2io_set_mac_addr;
7570 dev->change_mtu = &s2io_change_mtu;
7571 SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7572 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7573 dev->vlan_rx_register = s2io_vlan_rx_register;
7576 * will use eth_mac_addr() for dev->set_mac_address
7577 * mac address will be set every time dev->open() is called
7579 netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7581 #ifdef CONFIG_NET_POLL_CONTROLLER
7582 dev->poll_controller = s2io_netpoll;
7583 #endif
7585 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7586 if (sp->high_dma_flag == TRUE)
7587 dev->features |= NETIF_F_HIGHDMA;
7588 dev->features |= NETIF_F_TSO;
7589 dev->features |= NETIF_F_TSO6;
7590 if ((sp->device_type & XFRAME_II_DEVICE) && (ufo)) {
7591 dev->features |= NETIF_F_UFO;
7592 dev->features |= NETIF_F_HW_CSUM;
7595 dev->tx_timeout = &s2io_tx_watchdog;
7596 dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7597 INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7598 INIT_WORK(&sp->set_link_task, s2io_set_link);
7600 pci_save_state(sp->pdev);
7602 /* Setting swapper control on the NIC, for proper reset operation */
7603 if (s2io_set_swapper(sp)) {
7604 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7605 dev->name);
7606 ret = -EAGAIN;
7607 goto set_swap_failed;
7610 /* Verify if the Herc works on the slot its placed into */
7611 if (sp->device_type & XFRAME_II_DEVICE) {
7612 mode = s2io_verify_pci_mode(sp);
7613 if (mode < 0) {
7614 DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7615 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7616 ret = -EBADSLT;
7617 goto set_swap_failed;
7621 /* Not needed for Herc */
7622 if (sp->device_type & XFRAME_I_DEVICE) {
7624 * Fix for all "FFs" MAC address problems observed on
7625 * Alpha platforms
7627 fix_mac_address(sp);
7628 s2io_reset(sp);
7632 * MAC address initialization.
7633 * For now only one mac address will be read and used.
7635 bar0 = sp->bar0;
7636 val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7637 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET);
7638 writeq(val64, &bar0->rmac_addr_cmd_mem);
7639 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7640 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7641 tmp64 = readq(&bar0->rmac_addr_data0_mem);
7642 mac_down = (u32) tmp64;
7643 mac_up = (u32) (tmp64 >> 32);
7645 sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7646 sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7647 sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7648 sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7649 sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7650 sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7652 /* Set the factory defined MAC address initially */
7653 dev->addr_len = ETH_ALEN;
7654 memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7655 memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7657 /* Store the values of the MSIX table in the s2io_nic structure */
7658 store_xmsi_data(sp);
7659 /* reset Nic and bring it to known state */
7660 s2io_reset(sp);
7663 * Initialize the tasklet status and link state flags
7664 * and the card state parameter
7666 sp->tasklet_status = 0;
7667 sp->state = 0;
7669 /* Initialize spinlocks */
7670 spin_lock_init(&sp->tx_lock);
7672 if (!napi)
7673 spin_lock_init(&sp->put_lock);
7674 spin_lock_init(&sp->rx_lock);
7677 * SXE-002: Configure link and activity LED to init state
7678 * on driver load.
7680 subid = sp->pdev->subsystem_device;
7681 if ((subid & 0xFF) >= 0x07) {
7682 val64 = readq(&bar0->gpio_control);
7683 val64 |= 0x0000800000000000ULL;
7684 writeq(val64, &bar0->gpio_control);
7685 val64 = 0x0411040400000000ULL;
7686 writeq(val64, (void __iomem *) bar0 + 0x2700);
7687 val64 = readq(&bar0->gpio_control);
7690 sp->rx_csum = 1; /* Rx chksum verify enabled by default */
7692 if (register_netdev(dev)) {
7693 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7694 ret = -ENODEV;
7695 goto register_failed;
7697 s2io_vpd_read(sp);
7698 DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7699 DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7700 sp->product_name, pdev->revision);
7701 DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7702 s2io_driver_version);
7703 DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7704 dev->name, print_mac(mac, dev->dev_addr));
7705 DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7706 if (sp->device_type & XFRAME_II_DEVICE) {
7707 mode = s2io_print_pci_mode(sp);
7708 if (mode < 0) {
7709 DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7710 ret = -EBADSLT;
7711 unregister_netdev(dev);
7712 goto set_swap_failed;
7715 switch(sp->rxd_mode) {
7716 case RXD_MODE_1:
7717 DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7718 dev->name);
7719 break;
7720 case RXD_MODE_3B:
7721 DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7722 dev->name);
7723 break;
7726 if (napi)
7727 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7728 switch(sp->config.intr_type) {
7729 case INTA:
7730 DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7731 break;
7732 case MSI_X:
7733 DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7734 break;
7736 if (sp->lro)
7737 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7738 dev->name);
7739 if (ufo)
7740 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7741 " enabled\n", dev->name);
7742 /* Initialize device name */
7743 sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7746 * Make Link state as off at this point, when the Link change
7747 * interrupt comes the state will be automatically changed to
7748 * the right state.
7750 netif_carrier_off(dev);
7752 return 0;
7754 register_failed:
7755 set_swap_failed:
7756 iounmap(sp->bar1);
7757 bar1_remap_failed:
7758 iounmap(sp->bar0);
7759 bar0_remap_failed:
7760 mem_alloc_failed:
7761 free_shared_mem(sp);
7762 pci_disable_device(pdev);
7763 pci_release_regions(pdev);
7764 pci_set_drvdata(pdev, NULL);
7765 free_netdev(dev);
7767 return ret;
7771 * s2io_rem_nic - Free the PCI device
7772 * @pdev: structure containing the PCI related information of the device.
7773 * Description: This function is called by the Pci subsystem to release a
7774 * PCI device and free up all resource held up by the device. This could
7775 * be in response to a Hot plug event or when the driver is to be removed
7776 * from memory.
7779 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
7781 struct net_device *dev =
7782 (struct net_device *) pci_get_drvdata(pdev);
7783 struct s2io_nic *sp;
7785 if (dev == NULL) {
7786 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
7787 return;
7790 flush_scheduled_work();
7792 sp = dev->priv;
7793 unregister_netdev(dev);
7795 free_shared_mem(sp);
7796 iounmap(sp->bar0);
7797 iounmap(sp->bar1);
7798 pci_release_regions(pdev);
7799 pci_set_drvdata(pdev, NULL);
7800 free_netdev(dev);
7801 pci_disable_device(pdev);
7805 * s2io_starter - Entry point for the driver
7806 * Description: This function is the entry point for the driver. It verifies
7807 * the module loadable parameters and initializes PCI configuration space.
7810 static int __init s2io_starter(void)
7812 return pci_register_driver(&s2io_driver);
7816 * s2io_closer - Cleanup routine for the driver
7817 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7820 static __exit void s2io_closer(void)
7822 pci_unregister_driver(&s2io_driver);
7823 DBG_PRINT(INIT_DBG, "cleanup done\n");
7826 module_init(s2io_starter);
7827 module_exit(s2io_closer);
7829 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
7830 struct tcphdr **tcp, struct RxD_t *rxdp)
7832 int ip_off;
7833 u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
7835 if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
7836 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
7837 __FUNCTION__);
7838 return -1;
7841 /* TODO:
7842 * By default the VLAN field in the MAC is stripped by the card, if this
7843 * feature is turned off in rx_pa_cfg register, then the ip_off field
7844 * has to be shifted by a further 2 bytes
7846 switch (l2_type) {
7847 case 0: /* DIX type */
7848 case 4: /* DIX type with VLAN */
7849 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
7850 break;
7851 /* LLC, SNAP etc are considered non-mergeable */
7852 default:
7853 return -1;
7856 *ip = (struct iphdr *)((u8 *)buffer + ip_off);
7857 ip_len = (u8)((*ip)->ihl);
7858 ip_len <<= 2;
7859 *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
7861 return 0;
7864 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
7865 struct tcphdr *tcp)
7867 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7868 if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
7869 (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
7870 return -1;
7871 return 0;
7874 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
7876 return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
7879 static void initiate_new_session(struct lro *lro, u8 *l2h,
7880 struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
7882 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7883 lro->l2h = l2h;
7884 lro->iph = ip;
7885 lro->tcph = tcp;
7886 lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
7887 lro->tcp_ack = ntohl(tcp->ack_seq);
7888 lro->sg_num = 1;
7889 lro->total_len = ntohs(ip->tot_len);
7890 lro->frags_len = 0;
7892 * check if we saw TCP timestamp. Other consistency checks have
7893 * already been done.
7895 if (tcp->doff == 8) {
7896 u32 *ptr;
7897 ptr = (u32 *)(tcp+1);
7898 lro->saw_ts = 1;
7899 lro->cur_tsval = *(ptr+1);
7900 lro->cur_tsecr = *(ptr+2);
7902 lro->in_use = 1;
7905 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
7907 struct iphdr *ip = lro->iph;
7908 struct tcphdr *tcp = lro->tcph;
7909 __sum16 nchk;
7910 struct stat_block *statinfo = sp->mac_control.stats_info;
7911 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7913 /* Update L3 header */
7914 ip->tot_len = htons(lro->total_len);
7915 ip->check = 0;
7916 nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
7917 ip->check = nchk;
7919 /* Update L4 header */
7920 tcp->ack_seq = lro->tcp_ack;
7921 tcp->window = lro->window;
7923 /* Update tsecr field if this session has timestamps enabled */
7924 if (lro->saw_ts) {
7925 u32 *ptr = (u32 *)(tcp + 1);
7926 *(ptr+2) = lro->cur_tsecr;
7929 /* Update counters required for calculation of
7930 * average no. of packets aggregated.
7932 statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
7933 statinfo->sw_stat.num_aggregations++;
7936 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
7937 struct tcphdr *tcp, u32 l4_pyld)
7939 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7940 lro->total_len += l4_pyld;
7941 lro->frags_len += l4_pyld;
7942 lro->tcp_next_seq += l4_pyld;
7943 lro->sg_num++;
7945 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7946 lro->tcp_ack = tcp->ack_seq;
7947 lro->window = tcp->window;
7949 if (lro->saw_ts) {
7950 u32 *ptr;
7951 /* Update tsecr and tsval from this packet */
7952 ptr = (u32 *) (tcp + 1);
7953 lro->cur_tsval = *(ptr + 1);
7954 lro->cur_tsecr = *(ptr + 2);
7958 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
7959 struct tcphdr *tcp, u32 tcp_pyld_len)
7961 u8 *ptr;
7963 DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
7965 if (!tcp_pyld_len) {
7966 /* Runt frame or a pure ack */
7967 return -1;
7970 if (ip->ihl != 5) /* IP has options */
7971 return -1;
7973 /* If we see CE codepoint in IP header, packet is not mergeable */
7974 if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
7975 return -1;
7977 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7978 if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
7979 tcp->ece || tcp->cwr || !tcp->ack) {
7981 * Currently recognize only the ack control word and
7982 * any other control field being set would result in
7983 * flushing the LRO session
7985 return -1;
7989 * Allow only one TCP timestamp option. Don't aggregate if
7990 * any other options are detected.
7992 if (tcp->doff != 5 && tcp->doff != 8)
7993 return -1;
7995 if (tcp->doff == 8) {
7996 ptr = (u8 *)(tcp + 1);
7997 while (*ptr == TCPOPT_NOP)
7998 ptr++;
7999 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8000 return -1;
8002 /* Ensure timestamp value increases monotonically */
8003 if (l_lro)
8004 if (l_lro->cur_tsval > *((u32 *)(ptr+2)))
8005 return -1;
8007 /* timestamp echo reply should be non-zero */
8008 if (*((u32 *)(ptr+6)) == 0)
8009 return -1;
8012 return 0;
8015 static int
8016 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8017 struct RxD_t *rxdp, struct s2io_nic *sp)
8019 struct iphdr *ip;
8020 struct tcphdr *tcph;
8021 int ret = 0, i;
8023 if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8024 rxdp))) {
8025 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8026 ip->saddr, ip->daddr);
8027 } else {
8028 return ret;
8031 tcph = (struct tcphdr *)*tcp;
8032 *tcp_len = get_l4_pyld_length(ip, tcph);
8033 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8034 struct lro *l_lro = &sp->lro0_n[i];
8035 if (l_lro->in_use) {
8036 if (check_for_socket_match(l_lro, ip, tcph))
8037 continue;
8038 /* Sock pair matched */
8039 *lro = l_lro;
8041 if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8042 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8043 "0x%x, actual 0x%x\n", __FUNCTION__,
8044 (*lro)->tcp_next_seq,
8045 ntohl(tcph->seq));
8047 sp->mac_control.stats_info->
8048 sw_stat.outof_sequence_pkts++;
8049 ret = 2;
8050 break;
8053 if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8054 ret = 1; /* Aggregate */
8055 else
8056 ret = 2; /* Flush both */
8057 break;
8061 if (ret == 0) {
8062 /* Before searching for available LRO objects,
8063 * check if the pkt is L3/L4 aggregatable. If not
8064 * don't create new LRO session. Just send this
8065 * packet up.
8067 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8068 return 5;
8071 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8072 struct lro *l_lro = &sp->lro0_n[i];
8073 if (!(l_lro->in_use)) {
8074 *lro = l_lro;
8075 ret = 3; /* Begin anew */
8076 break;
8081 if (ret == 0) { /* sessions exceeded */
8082 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8083 __FUNCTION__);
8084 *lro = NULL;
8085 return ret;
8088 switch (ret) {
8089 case 3:
8090 initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8091 break;
8092 case 2:
8093 update_L3L4_header(sp, *lro);
8094 break;
8095 case 1:
8096 aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8097 if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8098 update_L3L4_header(sp, *lro);
8099 ret = 4; /* Flush the LRO */
8101 break;
8102 default:
8103 DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8104 __FUNCTION__);
8105 break;
8108 return ret;
8111 static void clear_lro_session(struct lro *lro)
8113 static u16 lro_struct_size = sizeof(struct lro);
8115 memset(lro, 0, lro_struct_size);
8118 static void queue_rx_frame(struct sk_buff *skb)
8120 struct net_device *dev = skb->dev;
8122 skb->protocol = eth_type_trans(skb, dev);
8123 if (napi)
8124 netif_receive_skb(skb);
8125 else
8126 netif_rx(skb);
8129 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8130 struct sk_buff *skb,
8131 u32 tcp_len)
8133 struct sk_buff *first = lro->parent;
8135 first->len += tcp_len;
8136 first->data_len = lro->frags_len;
8137 skb_pull(skb, (skb->len - tcp_len));
8138 if (skb_shinfo(first)->frag_list)
8139 lro->last_frag->next = skb;
8140 else
8141 skb_shinfo(first)->frag_list = skb;
8142 first->truesize += skb->truesize;
8143 lro->last_frag = skb;
8144 sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8145 return;
8149 * s2io_io_error_detected - called when PCI error is detected
8150 * @pdev: Pointer to PCI device
8151 * @state: The current pci connection state
8153 * This function is called after a PCI bus error affecting
8154 * this device has been detected.
8156 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8157 pci_channel_state_t state)
8159 struct net_device *netdev = pci_get_drvdata(pdev);
8160 struct s2io_nic *sp = netdev->priv;
8162 netif_device_detach(netdev);
8164 if (netif_running(netdev)) {
8165 /* Bring down the card, while avoiding PCI I/O */
8166 do_s2io_card_down(sp, 0);
8168 pci_disable_device(pdev);
8170 return PCI_ERS_RESULT_NEED_RESET;
8174 * s2io_io_slot_reset - called after the pci bus has been reset.
8175 * @pdev: Pointer to PCI device
8177 * Restart the card from scratch, as if from a cold-boot.
8178 * At this point, the card has exprienced a hard reset,
8179 * followed by fixups by BIOS, and has its config space
8180 * set up identically to what it was at cold boot.
8182 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8184 struct net_device *netdev = pci_get_drvdata(pdev);
8185 struct s2io_nic *sp = netdev->priv;
8187 if (pci_enable_device(pdev)) {
8188 printk(KERN_ERR "s2io: "
8189 "Cannot re-enable PCI device after reset.\n");
8190 return PCI_ERS_RESULT_DISCONNECT;
8193 pci_set_master(pdev);
8194 s2io_reset(sp);
8196 return PCI_ERS_RESULT_RECOVERED;
8200 * s2io_io_resume - called when traffic can start flowing again.
8201 * @pdev: Pointer to PCI device
8203 * This callback is called when the error recovery driver tells
8204 * us that its OK to resume normal operation.
8206 static void s2io_io_resume(struct pci_dev *pdev)
8208 struct net_device *netdev = pci_get_drvdata(pdev);
8209 struct s2io_nic *sp = netdev->priv;
8211 if (netif_running(netdev)) {
8212 if (s2io_card_up(sp)) {
8213 printk(KERN_ERR "s2io: "
8214 "Can't bring device back up after reset.\n");
8215 return;
8218 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8219 s2io_card_down(sp);
8220 printk(KERN_ERR "s2io: "
8221 "Can't resetore mac addr after reset.\n");
8222 return;
8226 netif_device_attach(netdev);
8227 netif_wake_queue(netdev);