2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/mempool.h>
27 #include <linux/workqueue.h>
28 #include <linux/blktrace_api.h>
29 #include <trace/block.h>
30 #include <scsi/sg.h> /* for struct sg_iovec */
32 DEFINE_TRACE(block_split
);
34 static struct kmem_cache
*bio_slab __read_mostly
;
36 static mempool_t
*bio_split_pool __read_mostly
;
39 * if you change this list, also change bvec_alloc or things will
40 * break badly! cannot be bigger than what you can fit into an
44 #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
45 static struct biovec_slab bvec_slabs
[BIOVEC_NR_POOLS
] __read_mostly
= {
46 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES
),
51 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
52 * IO code that does not need private memory pools.
54 struct bio_set
*fs_bio_set
;
56 unsigned int bvec_nr_vecs(unsigned short idx
)
58 return bvec_slabs
[idx
].nr_vecs
;
61 struct bio_vec
*bvec_alloc_bs(gfp_t gfp_mask
, int nr
, unsigned long *idx
, struct bio_set
*bs
)
66 * If 'bs' is given, lookup the pool and do the mempool alloc.
67 * If not, this is a bio_kmalloc() allocation and just do a
68 * kzalloc() for the exact number of vecs right away.
72 * see comment near bvec_array define!
90 case 129 ... BIO_MAX_PAGES
:
98 * idx now points to the pool we want to allocate from
100 bvl
= mempool_alloc(bs
->bvec_pools
[*idx
], gfp_mask
);
103 bvec_nr_vecs(*idx
) * sizeof(struct bio_vec
));
105 bvl
= kzalloc(nr
* sizeof(struct bio_vec
), gfp_mask
);
110 void bio_free(struct bio
*bio
, struct bio_set
*bio_set
)
112 if (bio
->bi_io_vec
) {
113 const int pool_idx
= BIO_POOL_IDX(bio
);
115 BIO_BUG_ON(pool_idx
>= BIOVEC_NR_POOLS
);
117 mempool_free(bio
->bi_io_vec
, bio_set
->bvec_pools
[pool_idx
]);
120 if (bio_integrity(bio
))
121 bio_integrity_free(bio
, bio_set
);
123 mempool_free(bio
, bio_set
->bio_pool
);
127 * default destructor for a bio allocated with bio_alloc_bioset()
129 static void bio_fs_destructor(struct bio
*bio
)
131 bio_free(bio
, fs_bio_set
);
134 static void bio_kmalloc_destructor(struct bio
*bio
)
136 kfree(bio
->bi_io_vec
);
140 void bio_init(struct bio
*bio
)
142 memset(bio
, 0, sizeof(*bio
));
143 bio
->bi_flags
= 1 << BIO_UPTODATE
;
144 bio
->bi_comp_cpu
= -1;
145 atomic_set(&bio
->bi_cnt
, 1);
149 * bio_alloc_bioset - allocate a bio for I/O
150 * @gfp_mask: the GFP_ mask given to the slab allocator
151 * @nr_iovecs: number of iovecs to pre-allocate
152 * @bs: the bio_set to allocate from. If %NULL, just use kmalloc
155 * bio_alloc_bioset will first try its own mempool to satisfy the allocation.
156 * If %__GFP_WAIT is set then we will block on the internal pool waiting
157 * for a &struct bio to become free. If a %NULL @bs is passed in, we will
158 * fall back to just using @kmalloc to allocate the required memory.
160 * allocate bio and iovecs from the memory pools specified by the
161 * bio_set structure, or @kmalloc if none given.
163 struct bio
*bio_alloc_bioset(gfp_t gfp_mask
, int nr_iovecs
, struct bio_set
*bs
)
168 bio
= mempool_alloc(bs
->bio_pool
, gfp_mask
);
170 bio
= kmalloc(sizeof(*bio
), gfp_mask
);
173 struct bio_vec
*bvl
= NULL
;
176 if (likely(nr_iovecs
)) {
177 unsigned long uninitialized_var(idx
);
179 bvl
= bvec_alloc_bs(gfp_mask
, nr_iovecs
, &idx
, bs
);
180 if (unlikely(!bvl
)) {
182 mempool_free(bio
, bs
->bio_pool
);
188 bio
->bi_flags
|= idx
<< BIO_POOL_OFFSET
;
189 bio
->bi_max_vecs
= bvec_nr_vecs(idx
);
191 bio
->bi_io_vec
= bvl
;
197 struct bio
*bio_alloc(gfp_t gfp_mask
, int nr_iovecs
)
199 struct bio
*bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, fs_bio_set
);
202 bio
->bi_destructor
= bio_fs_destructor
;
208 * Like bio_alloc(), but doesn't use a mempool backing. This means that
209 * it CAN fail, but while bio_alloc() can only be used for allocations
210 * that have a short (finite) life span, bio_kmalloc() should be used
211 * for more permanent bio allocations (like allocating some bio's for
212 * initalization or setup purposes).
214 struct bio
*bio_kmalloc(gfp_t gfp_mask
, int nr_iovecs
)
216 struct bio
*bio
= bio_alloc_bioset(gfp_mask
, nr_iovecs
, NULL
);
219 bio
->bi_destructor
= bio_kmalloc_destructor
;
224 void zero_fill_bio(struct bio
*bio
)
230 bio_for_each_segment(bv
, bio
, i
) {
231 char *data
= bvec_kmap_irq(bv
, &flags
);
232 memset(data
, 0, bv
->bv_len
);
233 flush_dcache_page(bv
->bv_page
);
234 bvec_kunmap_irq(data
, &flags
);
237 EXPORT_SYMBOL(zero_fill_bio
);
240 * bio_put - release a reference to a bio
241 * @bio: bio to release reference to
244 * Put a reference to a &struct bio, either one you have gotten with
245 * bio_alloc or bio_get. The last put of a bio will free it.
247 void bio_put(struct bio
*bio
)
249 BIO_BUG_ON(!atomic_read(&bio
->bi_cnt
));
254 if (atomic_dec_and_test(&bio
->bi_cnt
)) {
256 bio
->bi_destructor(bio
);
260 inline int bio_phys_segments(struct request_queue
*q
, struct bio
*bio
)
262 if (unlikely(!bio_flagged(bio
, BIO_SEG_VALID
)))
263 blk_recount_segments(q
, bio
);
265 return bio
->bi_phys_segments
;
269 * __bio_clone - clone a bio
270 * @bio: destination bio
271 * @bio_src: bio to clone
273 * Clone a &bio. Caller will own the returned bio, but not
274 * the actual data it points to. Reference count of returned
277 void __bio_clone(struct bio
*bio
, struct bio
*bio_src
)
279 memcpy(bio
->bi_io_vec
, bio_src
->bi_io_vec
,
280 bio_src
->bi_max_vecs
* sizeof(struct bio_vec
));
283 * most users will be overriding ->bi_bdev with a new target,
284 * so we don't set nor calculate new physical/hw segment counts here
286 bio
->bi_sector
= bio_src
->bi_sector
;
287 bio
->bi_bdev
= bio_src
->bi_bdev
;
288 bio
->bi_flags
|= 1 << BIO_CLONED
;
289 bio
->bi_rw
= bio_src
->bi_rw
;
290 bio
->bi_vcnt
= bio_src
->bi_vcnt
;
291 bio
->bi_size
= bio_src
->bi_size
;
292 bio
->bi_idx
= bio_src
->bi_idx
;
296 * bio_clone - clone a bio
298 * @gfp_mask: allocation priority
300 * Like __bio_clone, only also allocates the returned bio
302 struct bio
*bio_clone(struct bio
*bio
, gfp_t gfp_mask
)
304 struct bio
*b
= bio_alloc_bioset(gfp_mask
, bio
->bi_max_vecs
, fs_bio_set
);
309 b
->bi_destructor
= bio_fs_destructor
;
312 if (bio_integrity(bio
)) {
315 ret
= bio_integrity_clone(b
, bio
, fs_bio_set
);
325 * bio_get_nr_vecs - return approx number of vecs
328 * Return the approximate number of pages we can send to this target.
329 * There's no guarantee that you will be able to fit this number of pages
330 * into a bio, it does not account for dynamic restrictions that vary
333 int bio_get_nr_vecs(struct block_device
*bdev
)
335 struct request_queue
*q
= bdev_get_queue(bdev
);
338 nr_pages
= ((q
->max_sectors
<< 9) + PAGE_SIZE
- 1) >> PAGE_SHIFT
;
339 if (nr_pages
> q
->max_phys_segments
)
340 nr_pages
= q
->max_phys_segments
;
341 if (nr_pages
> q
->max_hw_segments
)
342 nr_pages
= q
->max_hw_segments
;
347 static int __bio_add_page(struct request_queue
*q
, struct bio
*bio
, struct page
348 *page
, unsigned int len
, unsigned int offset
,
349 unsigned short max_sectors
)
351 int retried_segments
= 0;
352 struct bio_vec
*bvec
;
355 * cloned bio must not modify vec list
357 if (unlikely(bio_flagged(bio
, BIO_CLONED
)))
360 if (((bio
->bi_size
+ len
) >> 9) > max_sectors
)
364 * For filesystems with a blocksize smaller than the pagesize
365 * we will often be called with the same page as last time and
366 * a consecutive offset. Optimize this special case.
368 if (bio
->bi_vcnt
> 0) {
369 struct bio_vec
*prev
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
371 if (page
== prev
->bv_page
&&
372 offset
== prev
->bv_offset
+ prev
->bv_len
) {
375 if (q
->merge_bvec_fn
) {
376 struct bvec_merge_data bvm
= {
377 .bi_bdev
= bio
->bi_bdev
,
378 .bi_sector
= bio
->bi_sector
,
379 .bi_size
= bio
->bi_size
,
383 if (q
->merge_bvec_fn(q
, &bvm
, prev
) < len
) {
393 if (bio
->bi_vcnt
>= bio
->bi_max_vecs
)
397 * we might lose a segment or two here, but rather that than
398 * make this too complex.
401 while (bio
->bi_phys_segments
>= q
->max_phys_segments
402 || bio
->bi_phys_segments
>= q
->max_hw_segments
) {
404 if (retried_segments
)
407 retried_segments
= 1;
408 blk_recount_segments(q
, bio
);
412 * setup the new entry, we might clear it again later if we
413 * cannot add the page
415 bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
];
416 bvec
->bv_page
= page
;
418 bvec
->bv_offset
= offset
;
421 * if queue has other restrictions (eg varying max sector size
422 * depending on offset), it can specify a merge_bvec_fn in the
423 * queue to get further control
425 if (q
->merge_bvec_fn
) {
426 struct bvec_merge_data bvm
= {
427 .bi_bdev
= bio
->bi_bdev
,
428 .bi_sector
= bio
->bi_sector
,
429 .bi_size
= bio
->bi_size
,
434 * merge_bvec_fn() returns number of bytes it can accept
437 if (q
->merge_bvec_fn(q
, &bvm
, bvec
) < len
) {
438 bvec
->bv_page
= NULL
;
445 /* If we may be able to merge these biovecs, force a recount */
446 if (bio
->bi_vcnt
&& (BIOVEC_PHYS_MERGEABLE(bvec
-1, bvec
)))
447 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
450 bio
->bi_phys_segments
++;
457 * bio_add_pc_page - attempt to add page to bio
458 * @q: the target queue
459 * @bio: destination bio
461 * @len: vec entry length
462 * @offset: vec entry offset
464 * Attempt to add a page to the bio_vec maplist. This can fail for a
465 * number of reasons, such as the bio being full or target block
466 * device limitations. The target block device must allow bio's
467 * smaller than PAGE_SIZE, so it is always possible to add a single
468 * page to an empty bio. This should only be used by REQ_PC bios.
470 int bio_add_pc_page(struct request_queue
*q
, struct bio
*bio
, struct page
*page
,
471 unsigned int len
, unsigned int offset
)
473 return __bio_add_page(q
, bio
, page
, len
, offset
, q
->max_hw_sectors
);
477 * bio_add_page - attempt to add page to bio
478 * @bio: destination bio
480 * @len: vec entry length
481 * @offset: vec entry offset
483 * Attempt to add a page to the bio_vec maplist. This can fail for a
484 * number of reasons, such as the bio being full or target block
485 * device limitations. The target block device must allow bio's
486 * smaller than PAGE_SIZE, so it is always possible to add a single
487 * page to an empty bio.
489 int bio_add_page(struct bio
*bio
, struct page
*page
, unsigned int len
,
492 struct request_queue
*q
= bdev_get_queue(bio
->bi_bdev
);
493 return __bio_add_page(q
, bio
, page
, len
, offset
, q
->max_sectors
);
496 struct bio_map_data
{
497 struct bio_vec
*iovecs
;
498 struct sg_iovec
*sgvecs
;
503 static void bio_set_map_data(struct bio_map_data
*bmd
, struct bio
*bio
,
504 struct sg_iovec
*iov
, int iov_count
,
507 memcpy(bmd
->iovecs
, bio
->bi_io_vec
, sizeof(struct bio_vec
) * bio
->bi_vcnt
);
508 memcpy(bmd
->sgvecs
, iov
, sizeof(struct sg_iovec
) * iov_count
);
509 bmd
->nr_sgvecs
= iov_count
;
510 bmd
->is_our_pages
= is_our_pages
;
511 bio
->bi_private
= bmd
;
514 static void bio_free_map_data(struct bio_map_data
*bmd
)
521 static struct bio_map_data
*bio_alloc_map_data(int nr_segs
, int iov_count
,
524 struct bio_map_data
*bmd
= kmalloc(sizeof(*bmd
), gfp_mask
);
529 bmd
->iovecs
= kmalloc(sizeof(struct bio_vec
) * nr_segs
, gfp_mask
);
535 bmd
->sgvecs
= kmalloc(sizeof(struct sg_iovec
) * iov_count
, gfp_mask
);
544 static int __bio_copy_iov(struct bio
*bio
, struct bio_vec
*iovecs
,
545 struct sg_iovec
*iov
, int iov_count
, int uncopy
,
549 struct bio_vec
*bvec
;
551 unsigned int iov_off
= 0;
552 int read
= bio_data_dir(bio
) == READ
;
554 __bio_for_each_segment(bvec
, bio
, i
, 0) {
555 char *bv_addr
= page_address(bvec
->bv_page
);
556 unsigned int bv_len
= iovecs
[i
].bv_len
;
558 while (bv_len
&& iov_idx
< iov_count
) {
562 bytes
= min_t(unsigned int,
563 iov
[iov_idx
].iov_len
- iov_off
, bv_len
);
564 iov_addr
= iov
[iov_idx
].iov_base
+ iov_off
;
567 if (!read
&& !uncopy
)
568 ret
= copy_from_user(bv_addr
, iov_addr
,
571 ret
= copy_to_user(iov_addr
, bv_addr
,
583 if (iov
[iov_idx
].iov_len
== iov_off
) {
590 __free_page(bvec
->bv_page
);
597 * bio_uncopy_user - finish previously mapped bio
598 * @bio: bio being terminated
600 * Free pages allocated from bio_copy_user() and write back data
601 * to user space in case of a read.
603 int bio_uncopy_user(struct bio
*bio
)
605 struct bio_map_data
*bmd
= bio
->bi_private
;
608 if (!bio_flagged(bio
, BIO_NULL_MAPPED
))
609 ret
= __bio_copy_iov(bio
, bmd
->iovecs
, bmd
->sgvecs
,
610 bmd
->nr_sgvecs
, 1, bmd
->is_our_pages
);
611 bio_free_map_data(bmd
);
617 * bio_copy_user_iov - copy user data to bio
618 * @q: destination block queue
619 * @map_data: pointer to the rq_map_data holding pages (if necessary)
621 * @iov_count: number of elements in the iovec
622 * @write_to_vm: bool indicating writing to pages or not
623 * @gfp_mask: memory allocation flags
625 * Prepares and returns a bio for indirect user io, bouncing data
626 * to/from kernel pages as necessary. Must be paired with
627 * call bio_uncopy_user() on io completion.
629 struct bio
*bio_copy_user_iov(struct request_queue
*q
,
630 struct rq_map_data
*map_data
,
631 struct sg_iovec
*iov
, int iov_count
,
632 int write_to_vm
, gfp_t gfp_mask
)
634 struct bio_map_data
*bmd
;
635 struct bio_vec
*bvec
;
640 unsigned int len
= 0;
642 for (i
= 0; i
< iov_count
; i
++) {
647 uaddr
= (unsigned long)iov
[i
].iov_base
;
648 end
= (uaddr
+ iov
[i
].iov_len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
649 start
= uaddr
>> PAGE_SHIFT
;
651 nr_pages
+= end
- start
;
652 len
+= iov
[i
].iov_len
;
655 bmd
= bio_alloc_map_data(nr_pages
, iov_count
, gfp_mask
);
657 return ERR_PTR(-ENOMEM
);
660 bio
= bio_alloc(gfp_mask
, nr_pages
);
664 bio
->bi_rw
|= (!write_to_vm
<< BIO_RW
);
672 bytes
= 1U << (PAGE_SHIFT
+ map_data
->page_order
);
680 if (i
== map_data
->nr_entries
) {
684 page
= map_data
->pages
[i
++];
686 page
= alloc_page(q
->bounce_gfp
| gfp_mask
);
692 if (bio_add_pc_page(q
, bio
, page
, bytes
, 0) < bytes
)
705 ret
= __bio_copy_iov(bio
, bio
->bi_io_vec
, iov
, iov_count
, 0, 0);
710 bio_set_map_data(bmd
, bio
, iov
, iov_count
, map_data
? 0 : 1);
714 bio_for_each_segment(bvec
, bio
, i
)
715 __free_page(bvec
->bv_page
);
719 bio_free_map_data(bmd
);
724 * bio_copy_user - copy user data to bio
725 * @q: destination block queue
726 * @map_data: pointer to the rq_map_data holding pages (if necessary)
727 * @uaddr: start of user address
728 * @len: length in bytes
729 * @write_to_vm: bool indicating writing to pages or not
730 * @gfp_mask: memory allocation flags
732 * Prepares and returns a bio for indirect user io, bouncing data
733 * to/from kernel pages as necessary. Must be paired with
734 * call bio_uncopy_user() on io completion.
736 struct bio
*bio_copy_user(struct request_queue
*q
, struct rq_map_data
*map_data
,
737 unsigned long uaddr
, unsigned int len
,
738 int write_to_vm
, gfp_t gfp_mask
)
742 iov
.iov_base
= (void __user
*)uaddr
;
745 return bio_copy_user_iov(q
, map_data
, &iov
, 1, write_to_vm
, gfp_mask
);
748 static struct bio
*__bio_map_user_iov(struct request_queue
*q
,
749 struct block_device
*bdev
,
750 struct sg_iovec
*iov
, int iov_count
,
751 int write_to_vm
, gfp_t gfp_mask
)
760 for (i
= 0; i
< iov_count
; i
++) {
761 unsigned long uaddr
= (unsigned long)iov
[i
].iov_base
;
762 unsigned long len
= iov
[i
].iov_len
;
763 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
764 unsigned long start
= uaddr
>> PAGE_SHIFT
;
766 nr_pages
+= end
- start
;
768 * buffer must be aligned to at least hardsector size for now
770 if (uaddr
& queue_dma_alignment(q
))
771 return ERR_PTR(-EINVAL
);
775 return ERR_PTR(-EINVAL
);
777 bio
= bio_alloc(gfp_mask
, nr_pages
);
779 return ERR_PTR(-ENOMEM
);
782 pages
= kcalloc(nr_pages
, sizeof(struct page
*), gfp_mask
);
786 for (i
= 0; i
< iov_count
; i
++) {
787 unsigned long uaddr
= (unsigned long)iov
[i
].iov_base
;
788 unsigned long len
= iov
[i
].iov_len
;
789 unsigned long end
= (uaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
790 unsigned long start
= uaddr
>> PAGE_SHIFT
;
791 const int local_nr_pages
= end
- start
;
792 const int page_limit
= cur_page
+ local_nr_pages
;
794 ret
= get_user_pages_fast(uaddr
, local_nr_pages
,
795 write_to_vm
, &pages
[cur_page
]);
796 if (ret
< local_nr_pages
) {
801 offset
= uaddr
& ~PAGE_MASK
;
802 for (j
= cur_page
; j
< page_limit
; j
++) {
803 unsigned int bytes
= PAGE_SIZE
- offset
;
814 if (bio_add_pc_page(q
, bio
, pages
[j
], bytes
, offset
) <
824 * release the pages we didn't map into the bio, if any
826 while (j
< page_limit
)
827 page_cache_release(pages
[j
++]);
833 * set data direction, and check if mapped pages need bouncing
836 bio
->bi_rw
|= (1 << BIO_RW
);
839 bio
->bi_flags
|= (1 << BIO_USER_MAPPED
);
843 for (i
= 0; i
< nr_pages
; i
++) {
846 page_cache_release(pages
[i
]);
855 * bio_map_user - map user address into bio
856 * @q: the struct request_queue for the bio
857 * @bdev: destination block device
858 * @uaddr: start of user address
859 * @len: length in bytes
860 * @write_to_vm: bool indicating writing to pages or not
861 * @gfp_mask: memory allocation flags
863 * Map the user space address into a bio suitable for io to a block
864 * device. Returns an error pointer in case of error.
866 struct bio
*bio_map_user(struct request_queue
*q
, struct block_device
*bdev
,
867 unsigned long uaddr
, unsigned int len
, int write_to_vm
,
872 iov
.iov_base
= (void __user
*)uaddr
;
875 return bio_map_user_iov(q
, bdev
, &iov
, 1, write_to_vm
, gfp_mask
);
879 * bio_map_user_iov - map user sg_iovec table into bio
880 * @q: the struct request_queue for the bio
881 * @bdev: destination block device
883 * @iov_count: number of elements in the iovec
884 * @write_to_vm: bool indicating writing to pages or not
885 * @gfp_mask: memory allocation flags
887 * Map the user space address into a bio suitable for io to a block
888 * device. Returns an error pointer in case of error.
890 struct bio
*bio_map_user_iov(struct request_queue
*q
, struct block_device
*bdev
,
891 struct sg_iovec
*iov
, int iov_count
,
892 int write_to_vm
, gfp_t gfp_mask
)
896 bio
= __bio_map_user_iov(q
, bdev
, iov
, iov_count
, write_to_vm
,
902 * subtle -- if __bio_map_user() ended up bouncing a bio,
903 * it would normally disappear when its bi_end_io is run.
904 * however, we need it for the unmap, so grab an extra
912 static void __bio_unmap_user(struct bio
*bio
)
914 struct bio_vec
*bvec
;
918 * make sure we dirty pages we wrote to
920 __bio_for_each_segment(bvec
, bio
, i
, 0) {
921 if (bio_data_dir(bio
) == READ
)
922 set_page_dirty_lock(bvec
->bv_page
);
924 page_cache_release(bvec
->bv_page
);
931 * bio_unmap_user - unmap a bio
932 * @bio: the bio being unmapped
934 * Unmap a bio previously mapped by bio_map_user(). Must be called with
937 * bio_unmap_user() may sleep.
939 void bio_unmap_user(struct bio
*bio
)
941 __bio_unmap_user(bio
);
945 static void bio_map_kern_endio(struct bio
*bio
, int err
)
951 static struct bio
*__bio_map_kern(struct request_queue
*q
, void *data
,
952 unsigned int len
, gfp_t gfp_mask
)
954 unsigned long kaddr
= (unsigned long)data
;
955 unsigned long end
= (kaddr
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
956 unsigned long start
= kaddr
>> PAGE_SHIFT
;
957 const int nr_pages
= end
- start
;
961 bio
= bio_alloc(gfp_mask
, nr_pages
);
963 return ERR_PTR(-ENOMEM
);
965 offset
= offset_in_page(kaddr
);
966 for (i
= 0; i
< nr_pages
; i
++) {
967 unsigned int bytes
= PAGE_SIZE
- offset
;
975 if (bio_add_pc_page(q
, bio
, virt_to_page(data
), bytes
,
984 bio
->bi_end_io
= bio_map_kern_endio
;
989 * bio_map_kern - map kernel address into bio
990 * @q: the struct request_queue for the bio
991 * @data: pointer to buffer to map
992 * @len: length in bytes
993 * @gfp_mask: allocation flags for bio allocation
995 * Map the kernel address into a bio suitable for io to a block
996 * device. Returns an error pointer in case of error.
998 struct bio
*bio_map_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1003 bio
= __bio_map_kern(q
, data
, len
, gfp_mask
);
1007 if (bio
->bi_size
== len
)
1011 * Don't support partial mappings.
1014 return ERR_PTR(-EINVAL
);
1017 static void bio_copy_kern_endio(struct bio
*bio
, int err
)
1019 struct bio_vec
*bvec
;
1020 const int read
= bio_data_dir(bio
) == READ
;
1021 struct bio_map_data
*bmd
= bio
->bi_private
;
1023 char *p
= bmd
->sgvecs
[0].iov_base
;
1025 __bio_for_each_segment(bvec
, bio
, i
, 0) {
1026 char *addr
= page_address(bvec
->bv_page
);
1027 int len
= bmd
->iovecs
[i
].bv_len
;
1030 memcpy(p
, addr
, len
);
1032 __free_page(bvec
->bv_page
);
1036 bio_free_map_data(bmd
);
1041 * bio_copy_kern - copy kernel address into bio
1042 * @q: the struct request_queue for the bio
1043 * @data: pointer to buffer to copy
1044 * @len: length in bytes
1045 * @gfp_mask: allocation flags for bio and page allocation
1046 * @reading: data direction is READ
1048 * copy the kernel address into a bio suitable for io to a block
1049 * device. Returns an error pointer in case of error.
1051 struct bio
*bio_copy_kern(struct request_queue
*q
, void *data
, unsigned int len
,
1052 gfp_t gfp_mask
, int reading
)
1055 struct bio_vec
*bvec
;
1058 bio
= bio_copy_user(q
, NULL
, (unsigned long)data
, len
, 1, gfp_mask
);
1065 bio_for_each_segment(bvec
, bio
, i
) {
1066 char *addr
= page_address(bvec
->bv_page
);
1068 memcpy(addr
, p
, bvec
->bv_len
);
1073 bio
->bi_end_io
= bio_copy_kern_endio
;
1079 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1080 * for performing direct-IO in BIOs.
1082 * The problem is that we cannot run set_page_dirty() from interrupt context
1083 * because the required locks are not interrupt-safe. So what we can do is to
1084 * mark the pages dirty _before_ performing IO. And in interrupt context,
1085 * check that the pages are still dirty. If so, fine. If not, redirty them
1086 * in process context.
1088 * We special-case compound pages here: normally this means reads into hugetlb
1089 * pages. The logic in here doesn't really work right for compound pages
1090 * because the VM does not uniformly chase down the head page in all cases.
1091 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1092 * handle them at all. So we skip compound pages here at an early stage.
1094 * Note that this code is very hard to test under normal circumstances because
1095 * direct-io pins the pages with get_user_pages(). This makes
1096 * is_page_cache_freeable return false, and the VM will not clean the pages.
1097 * But other code (eg, pdflush) could clean the pages if they are mapped
1100 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1101 * deferred bio dirtying paths.
1105 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1107 void bio_set_pages_dirty(struct bio
*bio
)
1109 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1112 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1113 struct page
*page
= bvec
[i
].bv_page
;
1115 if (page
&& !PageCompound(page
))
1116 set_page_dirty_lock(page
);
1120 static void bio_release_pages(struct bio
*bio
)
1122 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1125 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1126 struct page
*page
= bvec
[i
].bv_page
;
1134 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1135 * If they are, then fine. If, however, some pages are clean then they must
1136 * have been written out during the direct-IO read. So we take another ref on
1137 * the BIO and the offending pages and re-dirty the pages in process context.
1139 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1140 * here on. It will run one page_cache_release() against each page and will
1141 * run one bio_put() against the BIO.
1144 static void bio_dirty_fn(struct work_struct
*work
);
1146 static DECLARE_WORK(bio_dirty_work
, bio_dirty_fn
);
1147 static DEFINE_SPINLOCK(bio_dirty_lock
);
1148 static struct bio
*bio_dirty_list
;
1151 * This runs in process context
1153 static void bio_dirty_fn(struct work_struct
*work
)
1155 unsigned long flags
;
1158 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1159 bio
= bio_dirty_list
;
1160 bio_dirty_list
= NULL
;
1161 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1164 struct bio
*next
= bio
->bi_private
;
1166 bio_set_pages_dirty(bio
);
1167 bio_release_pages(bio
);
1173 void bio_check_pages_dirty(struct bio
*bio
)
1175 struct bio_vec
*bvec
= bio
->bi_io_vec
;
1176 int nr_clean_pages
= 0;
1179 for (i
= 0; i
< bio
->bi_vcnt
; i
++) {
1180 struct page
*page
= bvec
[i
].bv_page
;
1182 if (PageDirty(page
) || PageCompound(page
)) {
1183 page_cache_release(page
);
1184 bvec
[i
].bv_page
= NULL
;
1190 if (nr_clean_pages
) {
1191 unsigned long flags
;
1193 spin_lock_irqsave(&bio_dirty_lock
, flags
);
1194 bio
->bi_private
= bio_dirty_list
;
1195 bio_dirty_list
= bio
;
1196 spin_unlock_irqrestore(&bio_dirty_lock
, flags
);
1197 schedule_work(&bio_dirty_work
);
1204 * bio_endio - end I/O on a bio
1206 * @error: error, if any
1209 * bio_endio() will end I/O on the whole bio. bio_endio() is the
1210 * preferred way to end I/O on a bio, it takes care of clearing
1211 * BIO_UPTODATE on error. @error is 0 on success, and and one of the
1212 * established -Exxxx (-EIO, for instance) error values in case
1213 * something went wrong. Noone should call bi_end_io() directly on a
1214 * bio unless they own it and thus know that it has an end_io
1217 void bio_endio(struct bio
*bio
, int error
)
1220 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
1221 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
1225 bio
->bi_end_io(bio
, error
);
1228 void bio_pair_release(struct bio_pair
*bp
)
1230 if (atomic_dec_and_test(&bp
->cnt
)) {
1231 struct bio
*master
= bp
->bio1
.bi_private
;
1233 bio_endio(master
, bp
->error
);
1234 mempool_free(bp
, bp
->bio2
.bi_private
);
1238 static void bio_pair_end_1(struct bio
*bi
, int err
)
1240 struct bio_pair
*bp
= container_of(bi
, struct bio_pair
, bio1
);
1245 bio_pair_release(bp
);
1248 static void bio_pair_end_2(struct bio
*bi
, int err
)
1250 struct bio_pair
*bp
= container_of(bi
, struct bio_pair
, bio2
);
1255 bio_pair_release(bp
);
1259 * split a bio - only worry about a bio with a single page
1262 struct bio_pair
*bio_split(struct bio
*bi
, int first_sectors
)
1264 struct bio_pair
*bp
= mempool_alloc(bio_split_pool
, GFP_NOIO
);
1269 trace_block_split(bdev_get_queue(bi
->bi_bdev
), bi
,
1270 bi
->bi_sector
+ first_sectors
);
1272 BUG_ON(bi
->bi_vcnt
!= 1);
1273 BUG_ON(bi
->bi_idx
!= 0);
1274 atomic_set(&bp
->cnt
, 3);
1278 bp
->bio2
.bi_sector
+= first_sectors
;
1279 bp
->bio2
.bi_size
-= first_sectors
<< 9;
1280 bp
->bio1
.bi_size
= first_sectors
<< 9;
1282 bp
->bv1
= bi
->bi_io_vec
[0];
1283 bp
->bv2
= bi
->bi_io_vec
[0];
1284 bp
->bv2
.bv_offset
+= first_sectors
<< 9;
1285 bp
->bv2
.bv_len
-= first_sectors
<< 9;
1286 bp
->bv1
.bv_len
= first_sectors
<< 9;
1288 bp
->bio1
.bi_io_vec
= &bp
->bv1
;
1289 bp
->bio2
.bi_io_vec
= &bp
->bv2
;
1291 bp
->bio1
.bi_max_vecs
= 1;
1292 bp
->bio2
.bi_max_vecs
= 1;
1294 bp
->bio1
.bi_end_io
= bio_pair_end_1
;
1295 bp
->bio2
.bi_end_io
= bio_pair_end_2
;
1297 bp
->bio1
.bi_private
= bi
;
1298 bp
->bio2
.bi_private
= bio_split_pool
;
1300 if (bio_integrity(bi
))
1301 bio_integrity_split(bi
, bp
, first_sectors
);
1307 * bio_sector_offset - Find hardware sector offset in bio
1308 * @bio: bio to inspect
1309 * @index: bio_vec index
1310 * @offset: offset in bv_page
1312 * Return the number of hardware sectors between beginning of bio
1313 * and an end point indicated by a bio_vec index and an offset
1314 * within that vector's page.
1316 sector_t
bio_sector_offset(struct bio
*bio
, unsigned short index
,
1317 unsigned int offset
)
1319 unsigned int sector_sz
= queue_hardsect_size(bio
->bi_bdev
->bd_disk
->queue
);
1326 if (index
>= bio
->bi_idx
)
1327 index
= bio
->bi_vcnt
- 1;
1329 __bio_for_each_segment(bv
, bio
, i
, 0) {
1331 if (offset
> bv
->bv_offset
)
1332 sectors
+= (offset
- bv
->bv_offset
) / sector_sz
;
1336 sectors
+= bv
->bv_len
/ sector_sz
;
1341 EXPORT_SYMBOL(bio_sector_offset
);
1344 * create memory pools for biovec's in a bio_set.
1345 * use the global biovec slabs created for general use.
1347 static int biovec_create_pools(struct bio_set
*bs
, int pool_entries
)
1351 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
1352 struct biovec_slab
*bp
= bvec_slabs
+ i
;
1353 mempool_t
**bvp
= bs
->bvec_pools
+ i
;
1355 *bvp
= mempool_create_slab_pool(pool_entries
, bp
->slab
);
1362 static void biovec_free_pools(struct bio_set
*bs
)
1366 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
1367 mempool_t
*bvp
= bs
->bvec_pools
[i
];
1370 mempool_destroy(bvp
);
1375 void bioset_free(struct bio_set
*bs
)
1378 mempool_destroy(bs
->bio_pool
);
1380 bioset_integrity_free(bs
);
1381 biovec_free_pools(bs
);
1386 struct bio_set
*bioset_create(int bio_pool_size
, int bvec_pool_size
)
1388 struct bio_set
*bs
= kzalloc(sizeof(*bs
), GFP_KERNEL
);
1393 bs
->bio_pool
= mempool_create_slab_pool(bio_pool_size
, bio_slab
);
1397 if (bioset_integrity_create(bs
, bio_pool_size
))
1400 if (!biovec_create_pools(bs
, bvec_pool_size
))
1408 static void __init
biovec_init_slabs(void)
1412 for (i
= 0; i
< BIOVEC_NR_POOLS
; i
++) {
1414 struct biovec_slab
*bvs
= bvec_slabs
+ i
;
1416 size
= bvs
->nr_vecs
* sizeof(struct bio_vec
);
1417 bvs
->slab
= kmem_cache_create(bvs
->name
, size
, 0,
1418 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1422 static int __init
init_bio(void)
1424 bio_slab
= KMEM_CACHE(bio
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
1426 bio_integrity_init_slab();
1427 biovec_init_slabs();
1429 fs_bio_set
= bioset_create(BIO_POOL_SIZE
, 2);
1431 panic("bio: can't allocate bios\n");
1433 bio_split_pool
= mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES
,
1434 sizeof(struct bio_pair
));
1435 if (!bio_split_pool
)
1436 panic("bio: can't create split pool\n");
1441 subsys_initcall(init_bio
);
1443 EXPORT_SYMBOL(bio_alloc
);
1444 EXPORT_SYMBOL(bio_kmalloc
);
1445 EXPORT_SYMBOL(bio_put
);
1446 EXPORT_SYMBOL(bio_free
);
1447 EXPORT_SYMBOL(bio_endio
);
1448 EXPORT_SYMBOL(bio_init
);
1449 EXPORT_SYMBOL(__bio_clone
);
1450 EXPORT_SYMBOL(bio_clone
);
1451 EXPORT_SYMBOL(bio_phys_segments
);
1452 EXPORT_SYMBOL(bio_add_page
);
1453 EXPORT_SYMBOL(bio_add_pc_page
);
1454 EXPORT_SYMBOL(bio_get_nr_vecs
);
1455 EXPORT_SYMBOL(bio_map_user
);
1456 EXPORT_SYMBOL(bio_unmap_user
);
1457 EXPORT_SYMBOL(bio_map_kern
);
1458 EXPORT_SYMBOL(bio_copy_kern
);
1459 EXPORT_SYMBOL(bio_pair_release
);
1460 EXPORT_SYMBOL(bio_split
);
1461 EXPORT_SYMBOL(bio_copy_user
);
1462 EXPORT_SYMBOL(bio_uncopy_user
);
1463 EXPORT_SYMBOL(bioset_create
);
1464 EXPORT_SYMBOL(bioset_free
);
1465 EXPORT_SYMBOL(bio_alloc_bioset
);