1 /* SCTP kernel reference Implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel reference Implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * The SCTP reference implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * The SCTP reference implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, write to
26 * the Free Software Foundation, 59 Temple Place - Suite 330,
27 * Boston, MA 02111-1307, USA.
29 * Please send any bug reports or fixes you make to the
31 * lksctp developers <lksctp-developers@lists.sourceforge.net>
33 * Or submit a bug report through the following website:
34 * http://www.sf.net/projects/lksctp
36 * Written or modified by:
37 * La Monte H.P. Yarroll <piggy@acm.org>
38 * Karl Knutson <karl@athena.chicago.il.us>
39 * Perry Melange <pmelange@null.cc.uic.edu>
40 * Xingang Guo <xingang.guo@intel.com>
41 * Hui Huang <hui.huang@nokia.com>
42 * Sridhar Samudrala <sri@us.ibm.com>
43 * Jon Grimm <jgrimm@us.ibm.com>
45 * Any bugs reported given to us we will try to fix... any fixes shared will
46 * be incorporated into the next SCTP release.
49 #include <linux/types.h>
50 #include <linux/list.h> /* For struct list_head */
51 #include <linux/socket.h>
53 #include <net/sock.h> /* For skb_set_owner_w */
55 #include <net/sctp/sctp.h>
56 #include <net/sctp/sm.h>
58 /* Declare internal functions here. */
59 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
);
60 static void sctp_check_transmitted(struct sctp_outq
*q
,
61 struct list_head
*transmitted_queue
,
62 struct sctp_transport
*transport
,
63 struct sctp_sackhdr
*sack
,
64 __u32 highest_new_tsn
);
66 static void sctp_mark_missing(struct sctp_outq
*q
,
67 struct list_head
*transmitted_queue
,
68 struct sctp_transport
*transport
,
69 __u32 highest_new_tsn
,
70 int count_of_newacks
);
72 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 sack_ctsn
);
74 /* Add data to the front of the queue. */
75 static inline void sctp_outq_head_data(struct sctp_outq
*q
,
76 struct sctp_chunk
*ch
)
78 list_add(&ch
->list
, &q
->out_chunk_list
);
79 q
->out_qlen
+= ch
->skb
->len
;
83 /* Take data from the front of the queue. */
84 static inline struct sctp_chunk
*sctp_outq_dequeue_data(struct sctp_outq
*q
)
86 struct sctp_chunk
*ch
= NULL
;
88 if (!list_empty(&q
->out_chunk_list
)) {
89 struct list_head
*entry
= q
->out_chunk_list
.next
;
91 ch
= list_entry(entry
, struct sctp_chunk
, list
);
93 q
->out_qlen
-= ch
->skb
->len
;
97 /* Add data chunk to the end of the queue. */
98 static inline void sctp_outq_tail_data(struct sctp_outq
*q
,
99 struct sctp_chunk
*ch
)
101 list_add_tail(&ch
->list
, &q
->out_chunk_list
);
102 q
->out_qlen
+= ch
->skb
->len
;
107 * SFR-CACC algorithm:
108 * D) If count_of_newacks is greater than or equal to 2
109 * and t was not sent to the current primary then the
110 * sender MUST NOT increment missing report count for t.
112 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport
*primary
,
113 struct sctp_transport
*transport
,
114 int count_of_newacks
)
116 if (count_of_newacks
>=2 && transport
!= primary
)
122 * SFR-CACC algorithm:
123 * F) If count_of_newacks is less than 2, let d be the
124 * destination to which t was sent. If cacc_saw_newack
125 * is 0 for destination d, then the sender MUST NOT
126 * increment missing report count for t.
128 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport
*transport
,
129 int count_of_newacks
)
131 if (count_of_newacks
< 2 && !transport
->cacc
.cacc_saw_newack
)
137 * SFR-CACC algorithm:
138 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
139 * execute steps C, D, F.
141 * C has been implemented in sctp_outq_sack
143 static inline int sctp_cacc_skip_3_1(struct sctp_transport
*primary
,
144 struct sctp_transport
*transport
,
145 int count_of_newacks
)
147 if (!primary
->cacc
.cycling_changeover
) {
148 if (sctp_cacc_skip_3_1_d(primary
, transport
, count_of_newacks
))
150 if (sctp_cacc_skip_3_1_f(transport
, count_of_newacks
))
158 * SFR-CACC algorithm:
159 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
160 * than next_tsn_at_change of the current primary, then
161 * the sender MUST NOT increment missing report count
164 static inline int sctp_cacc_skip_3_2(struct sctp_transport
*primary
, __u32 tsn
)
166 if (primary
->cacc
.cycling_changeover
&&
167 TSN_lt(tsn
, primary
->cacc
.next_tsn_at_change
))
173 * SFR-CACC algorithm:
174 * 3) If the missing report count for TSN t is to be
175 * incremented according to [RFC2960] and
176 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
177 * then the sender MUST futher execute steps 3.1 and
178 * 3.2 to determine if the missing report count for
179 * TSN t SHOULD NOT be incremented.
181 * 3.3) If 3.1 and 3.2 do not dictate that the missing
182 * report count for t should not be incremented, then
183 * the sender SOULD increment missing report count for
184 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
186 static inline int sctp_cacc_skip(struct sctp_transport
*primary
,
187 struct sctp_transport
*transport
,
188 int count_of_newacks
,
191 if (primary
->cacc
.changeover_active
&&
192 (sctp_cacc_skip_3_1(primary
, transport
, count_of_newacks
)
193 || sctp_cacc_skip_3_2(primary
, tsn
)))
198 /* Initialize an existing sctp_outq. This does the boring stuff.
199 * You still need to define handlers if you really want to DO
200 * something with this structure...
202 void sctp_outq_init(struct sctp_association
*asoc
, struct sctp_outq
*q
)
205 INIT_LIST_HEAD(&q
->out_chunk_list
);
206 INIT_LIST_HEAD(&q
->control_chunk_list
);
207 INIT_LIST_HEAD(&q
->retransmit
);
208 INIT_LIST_HEAD(&q
->sacked
);
209 INIT_LIST_HEAD(&q
->abandoned
);
211 q
->outstanding_bytes
= 0;
219 /* Free the outqueue structure and any related pending chunks.
221 void sctp_outq_teardown(struct sctp_outq
*q
)
223 struct sctp_transport
*transport
;
224 struct list_head
*lchunk
, *pos
, *temp
;
225 struct sctp_chunk
*chunk
, *tmp
;
227 /* Throw away unacknowledged chunks. */
228 list_for_each(pos
, &q
->asoc
->peer
.transport_addr_list
) {
229 transport
= list_entry(pos
, struct sctp_transport
, transports
);
230 while ((lchunk
= sctp_list_dequeue(&transport
->transmitted
)) != NULL
) {
231 chunk
= list_entry(lchunk
, struct sctp_chunk
,
233 /* Mark as part of a failed message. */
234 sctp_chunk_fail(chunk
, q
->error
);
235 sctp_chunk_free(chunk
);
239 /* Throw away chunks that have been gap ACKed. */
240 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
241 list_del_init(lchunk
);
242 chunk
= list_entry(lchunk
, struct sctp_chunk
,
244 sctp_chunk_fail(chunk
, q
->error
);
245 sctp_chunk_free(chunk
);
248 /* Throw away any chunks in the retransmit queue. */
249 list_for_each_safe(lchunk
, temp
, &q
->retransmit
) {
250 list_del_init(lchunk
);
251 chunk
= list_entry(lchunk
, struct sctp_chunk
,
253 sctp_chunk_fail(chunk
, q
->error
);
254 sctp_chunk_free(chunk
);
257 /* Throw away any chunks that are in the abandoned queue. */
258 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
259 list_del_init(lchunk
);
260 chunk
= list_entry(lchunk
, struct sctp_chunk
,
262 sctp_chunk_fail(chunk
, q
->error
);
263 sctp_chunk_free(chunk
);
266 /* Throw away any leftover data chunks. */
267 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
269 /* Mark as send failure. */
270 sctp_chunk_fail(chunk
, q
->error
);
271 sctp_chunk_free(chunk
);
276 /* Throw away any leftover control chunks. */
277 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
278 list_del_init(&chunk
->list
);
279 sctp_chunk_free(chunk
);
283 /* Free the outqueue structure and any related pending chunks. */
284 void sctp_outq_free(struct sctp_outq
*q
)
286 /* Throw away leftover chunks. */
287 sctp_outq_teardown(q
);
289 /* If we were kmalloc()'d, free the memory. */
294 /* Put a new chunk in an sctp_outq. */
295 int sctp_outq_tail(struct sctp_outq
*q
, struct sctp_chunk
*chunk
)
299 SCTP_DEBUG_PRINTK("sctp_outq_tail(%p, %p[%s])\n",
300 q
, chunk
, chunk
&& chunk
->chunk_hdr
?
301 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
))
304 /* If it is data, queue it up, otherwise, send it
307 if (SCTP_CID_DATA
== chunk
->chunk_hdr
->type
) {
308 /* Is it OK to queue data chunks? */
309 /* From 9. Termination of Association
311 * When either endpoint performs a shutdown, the
312 * association on each peer will stop accepting new
313 * data from its user and only deliver data in queue
314 * at the time of sending or receiving the SHUTDOWN
317 switch (q
->asoc
->state
) {
318 case SCTP_STATE_EMPTY
:
319 case SCTP_STATE_CLOSED
:
320 case SCTP_STATE_SHUTDOWN_PENDING
:
321 case SCTP_STATE_SHUTDOWN_SENT
:
322 case SCTP_STATE_SHUTDOWN_RECEIVED
:
323 case SCTP_STATE_SHUTDOWN_ACK_SENT
:
324 /* Cannot send after transport endpoint shutdown */
329 SCTP_DEBUG_PRINTK("outqueueing (%p, %p[%s])\n",
330 q
, chunk
, chunk
&& chunk
->chunk_hdr
?
331 sctp_cname(SCTP_ST_CHUNK(chunk
->chunk_hdr
->type
))
334 sctp_outq_tail_data(q
, chunk
);
335 if (chunk
->chunk_hdr
->flags
& SCTP_DATA_UNORDERED
)
336 SCTP_INC_STATS(SCTP_MIB_OUTUNORDERCHUNKS
);
338 SCTP_INC_STATS(SCTP_MIB_OUTORDERCHUNKS
);
343 list_add_tail(&chunk
->list
, &q
->control_chunk_list
);
344 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS
);
351 error
= sctp_outq_flush(q
, 0);
356 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
357 * and the abandoned list are in ascending order.
359 static void sctp_insert_list(struct list_head
*head
, struct list_head
*new)
361 struct list_head
*pos
;
362 struct sctp_chunk
*nchunk
, *lchunk
;
366 nchunk
= list_entry(new, struct sctp_chunk
, transmitted_list
);
367 ntsn
= ntohl(nchunk
->subh
.data_hdr
->tsn
);
369 list_for_each(pos
, head
) {
370 lchunk
= list_entry(pos
, struct sctp_chunk
, transmitted_list
);
371 ltsn
= ntohl(lchunk
->subh
.data_hdr
->tsn
);
372 if (TSN_lt(ntsn
, ltsn
)) {
373 list_add(new, pos
->prev
);
379 list_add_tail(new, head
);
382 /* Mark all the eligible packets on a transport for retransmission. */
383 void sctp_retransmit_mark(struct sctp_outq
*q
,
384 struct sctp_transport
*transport
,
385 __u8 fast_retransmit
)
387 struct list_head
*lchunk
, *ltemp
;
388 struct sctp_chunk
*chunk
;
390 /* Walk through the specified transmitted queue. */
391 list_for_each_safe(lchunk
, ltemp
, &transport
->transmitted
) {
392 chunk
= list_entry(lchunk
, struct sctp_chunk
,
395 /* If the chunk is abandoned, move it to abandoned list. */
396 if (sctp_chunk_abandoned(chunk
)) {
397 list_del_init(lchunk
);
398 sctp_insert_list(&q
->abandoned
, lchunk
);
402 /* If we are doing retransmission due to a fast retransmit,
403 * only the chunk's that are marked for fast retransmit
404 * should be added to the retransmit queue. If we are doing
405 * retransmission due to a timeout or pmtu discovery, only the
406 * chunks that are not yet acked should be added to the
409 if ((fast_retransmit
&& chunk
->fast_retransmit
) ||
410 (!fast_retransmit
&& !chunk
->tsn_gap_acked
)) {
411 /* RFC 2960 6.2.1 Processing a Received SACK
413 * C) Any time a DATA chunk is marked for
414 * retransmission (via either T3-rtx timer expiration
415 * (Section 6.3.3) or via fast retransmit
416 * (Section 7.2.4)), add the data size of those
417 * chunks to the rwnd.
419 q
->asoc
->peer
.rwnd
+= sctp_data_size(chunk
);
420 q
->outstanding_bytes
-= sctp_data_size(chunk
);
421 transport
->flight_size
-= sctp_data_size(chunk
);
423 /* sctpimpguide-05 Section 2.8.2
424 * M5) If a T3-rtx timer expires, the
425 * 'TSN.Missing.Report' of all affected TSNs is set
428 chunk
->tsn_missing_report
= 0;
430 /* If a chunk that is being used for RTT measurement
431 * has to be retransmitted, we cannot use this chunk
432 * anymore for RTT measurements. Reset rto_pending so
433 * that a new RTT measurement is started when a new
434 * data chunk is sent.
436 if (chunk
->rtt_in_progress
) {
437 chunk
->rtt_in_progress
= 0;
438 transport
->rto_pending
= 0;
441 /* Move the chunk to the retransmit queue. The chunks
442 * on the retransmit queue are always kept in order.
444 list_del_init(lchunk
);
445 sctp_insert_list(&q
->retransmit
, lchunk
);
449 SCTP_DEBUG_PRINTK("%s: transport: %p, fast_retransmit: %d, "
450 "cwnd: %d, ssthresh: %d, flight_size: %d, "
451 "pba: %d\n", __FUNCTION__
,
452 transport
, fast_retransmit
,
453 transport
->cwnd
, transport
->ssthresh
,
454 transport
->flight_size
,
455 transport
->partial_bytes_acked
);
459 /* Mark all the eligible packets on a transport for retransmission and force
462 void sctp_retransmit(struct sctp_outq
*q
, struct sctp_transport
*transport
,
463 sctp_retransmit_reason_t reason
)
466 __u8 fast_retransmit
= 0;
469 case SCTP_RTXR_T3_RTX
:
470 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_T3_RTX
);
471 /* Update the retran path if the T3-rtx timer has expired for
472 * the current retran path.
474 if (transport
== transport
->asoc
->peer
.retran_path
)
475 sctp_assoc_update_retran_path(transport
->asoc
);
477 case SCTP_RTXR_FAST_RTX
:
478 sctp_transport_lower_cwnd(transport
, SCTP_LOWER_CWND_FAST_RTX
);
481 case SCTP_RTXR_PMTUD
:
486 sctp_retransmit_mark(q
, transport
, fast_retransmit
);
488 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
489 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
490 * following the procedures outlined in C1 - C5.
492 sctp_generate_fwdtsn(q
, q
->asoc
->ctsn_ack_point
);
494 error
= sctp_outq_flush(q
, /* rtx_timeout */ 1);
497 q
->asoc
->base
.sk
->sk_err
= -error
;
501 * Transmit DATA chunks on the retransmit queue. Upon return from
502 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
503 * need to be transmitted by the caller.
504 * We assume that pkt->transport has already been set.
506 * The return value is a normal kernel error return value.
508 static int sctp_outq_flush_rtx(struct sctp_outq
*q
, struct sctp_packet
*pkt
,
509 int rtx_timeout
, int *start_timer
)
511 struct list_head
*lqueue
;
512 struct list_head
*lchunk
, *lchunk1
;
513 struct sctp_transport
*transport
= pkt
->transport
;
515 struct sctp_chunk
*chunk
, *chunk1
;
516 struct sctp_association
*asoc
;
520 lqueue
= &q
->retransmit
;
522 /* RFC 2960 6.3.3 Handle T3-rtx Expiration
524 * E3) Determine how many of the earliest (i.e., lowest TSN)
525 * outstanding DATA chunks for the address for which the
526 * T3-rtx has expired will fit into a single packet, subject
527 * to the MTU constraint for the path corresponding to the
528 * destination transport address to which the retransmission
529 * is being sent (this may be different from the address for
530 * which the timer expires [see Section 6.4]). Call this value
531 * K. Bundle and retransmit those K DATA chunks in a single
532 * packet to the destination endpoint.
534 * [Just to be painfully clear, if we are retransmitting
535 * because a timeout just happened, we should send only ONE
536 * packet of retransmitted data.]
538 lchunk
= sctp_list_dequeue(lqueue
);
541 chunk
= list_entry(lchunk
, struct sctp_chunk
,
544 /* Make sure that Gap Acked TSNs are not retransmitted. A
545 * simple approach is just to move such TSNs out of the
546 * way and into a 'transmitted' queue and skip to the
549 if (chunk
->tsn_gap_acked
) {
550 list_add_tail(lchunk
, &transport
->transmitted
);
551 lchunk
= sctp_list_dequeue(lqueue
);
555 /* Attempt to append this chunk to the packet. */
556 status
= sctp_packet_append_chunk(pkt
, chunk
);
559 case SCTP_XMIT_PMTU_FULL
:
560 /* Send this packet. */
561 if ((error
= sctp_packet_transmit(pkt
)) == 0)
564 /* If we are retransmitting, we should only
565 * send a single packet.
568 list_add(lchunk
, lqueue
);
572 /* Bundle lchunk in the next round. */
575 case SCTP_XMIT_RWND_FULL
:
576 /* Send this packet. */
577 if ((error
= sctp_packet_transmit(pkt
)) == 0)
580 /* Stop sending DATA as there is no more room
583 list_add(lchunk
, lqueue
);
587 case SCTP_XMIT_NAGLE_DELAY
:
588 /* Send this packet. */
589 if ((error
= sctp_packet_transmit(pkt
)) == 0)
592 /* Stop sending DATA because of nagle delay. */
593 list_add(lchunk
, lqueue
);
598 /* The append was successful, so add this chunk to
599 * the transmitted list.
601 list_add_tail(lchunk
, &transport
->transmitted
);
603 /* Mark the chunk as ineligible for fast retransmit
604 * after it is retransmitted.
606 chunk
->fast_retransmit
= 0;
611 /* Retrieve a new chunk to bundle. */
612 lchunk
= sctp_list_dequeue(lqueue
);
616 /* If we are here due to a retransmit timeout or a fast
617 * retransmit and if there are any chunks left in the retransmit
618 * queue that could not fit in the PMTU sized packet, they need * to be marked as ineligible for a subsequent fast retransmit.
620 if (rtx_timeout
&& !lchunk
) {
621 list_for_each(lchunk1
, lqueue
) {
622 chunk1
= list_entry(lchunk1
, struct sctp_chunk
,
624 chunk1
->fast_retransmit
= 0;
632 /* Cork the outqueue so queued chunks are really queued. */
633 int sctp_outq_uncork(struct sctp_outq
*q
)
638 error
= sctp_outq_flush(q
, 0);
644 * Try to flush an outqueue.
646 * Description: Send everything in q which we legally can, subject to
647 * congestion limitations.
648 * * Note: This function can be called from multiple contexts so appropriate
649 * locking concerns must be made. Today we use the sock lock to protect
652 int sctp_outq_flush(struct sctp_outq
*q
, int rtx_timeout
)
654 struct sctp_packet
*packet
;
655 struct sctp_packet singleton
;
656 struct sctp_association
*asoc
= q
->asoc
;
657 __u16 sport
= asoc
->base
.bind_addr
.port
;
658 __u16 dport
= asoc
->peer
.port
;
659 __u32 vtag
= asoc
->peer
.i
.init_tag
;
660 struct sctp_transport
*transport
= NULL
;
661 struct sctp_transport
*new_transport
;
662 struct sctp_chunk
*chunk
, *tmp
;
667 /* These transports have chunks to send. */
668 struct list_head transport_list
;
669 struct list_head
*ltransport
;
671 INIT_LIST_HEAD(&transport_list
);
677 * When bundling control chunks with DATA chunks, an
678 * endpoint MUST place control chunks first in the outbound
679 * SCTP packet. The transmitter MUST transmit DATA chunks
680 * within a SCTP packet in increasing order of TSN.
684 list_for_each_entry_safe(chunk
, tmp
, &q
->control_chunk_list
, list
) {
685 list_del_init(&chunk
->list
);
687 /* Pick the right transport to use. */
688 new_transport
= chunk
->transport
;
690 if (!new_transport
) {
691 new_transport
= asoc
->peer
.active_path
;
692 } else if (new_transport
->state
== SCTP_INACTIVE
) {
693 /* If the chunk is Heartbeat or Heartbeat Ack,
694 * send it to chunk->transport, even if it's
697 * 3.3.6 Heartbeat Acknowledgement:
699 * A HEARTBEAT ACK is always sent to the source IP
700 * address of the IP datagram containing the
701 * HEARTBEAT chunk to which this ack is responding.
704 if (chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT
&&
705 chunk
->chunk_hdr
->type
!= SCTP_CID_HEARTBEAT_ACK
)
706 new_transport
= asoc
->peer
.active_path
;
709 /* Are we switching transports?
710 * Take care of transport locks.
712 if (new_transport
!= transport
) {
713 transport
= new_transport
;
714 if (list_empty(&transport
->send_ready
)) {
715 list_add_tail(&transport
->send_ready
,
718 packet
= &transport
->packet
;
719 sctp_packet_config(packet
, vtag
,
720 asoc
->peer
.ecn_capable
);
723 switch (chunk
->chunk_hdr
->type
) {
727 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
728 * COMPLETE with any other chunks. [Send them immediately.]
731 case SCTP_CID_INIT_ACK
:
732 case SCTP_CID_SHUTDOWN_COMPLETE
:
733 sctp_packet_init(&singleton
, transport
, sport
, dport
);
734 sctp_packet_config(&singleton
, vtag
, 0);
735 sctp_packet_append_chunk(&singleton
, chunk
);
736 error
= sctp_packet_transmit(&singleton
);
743 case SCTP_CID_HEARTBEAT
:
744 case SCTP_CID_HEARTBEAT_ACK
:
745 case SCTP_CID_SHUTDOWN
:
746 case SCTP_CID_SHUTDOWN_ACK
:
748 case SCTP_CID_COOKIE_ECHO
:
749 case SCTP_CID_COOKIE_ACK
:
750 case SCTP_CID_ECN_ECNE
:
751 case SCTP_CID_ECN_CWR
:
752 case SCTP_CID_ASCONF
:
753 case SCTP_CID_ASCONF_ACK
:
754 case SCTP_CID_FWD_TSN
:
755 sctp_packet_transmit_chunk(packet
, chunk
);
759 /* We built a chunk with an illegal type! */
764 /* Is it OK to send data chunks? */
765 switch (asoc
->state
) {
766 case SCTP_STATE_COOKIE_ECHOED
:
767 /* Only allow bundling when this packet has a COOKIE-ECHO
770 if (!packet
|| !packet
->has_cookie_echo
)
774 case SCTP_STATE_ESTABLISHED
:
775 case SCTP_STATE_SHUTDOWN_PENDING
:
776 case SCTP_STATE_SHUTDOWN_RECEIVED
:
778 * RFC 2960 6.1 Transmission of DATA Chunks
780 * C) When the time comes for the sender to transmit,
781 * before sending new DATA chunks, the sender MUST
782 * first transmit any outstanding DATA chunks which
783 * are marked for retransmission (limited by the
786 if (!list_empty(&q
->retransmit
)) {
787 if (transport
== asoc
->peer
.retran_path
)
790 /* Switch transports & prepare the packet. */
792 transport
= asoc
->peer
.retran_path
;
794 if (list_empty(&transport
->send_ready
)) {
795 list_add_tail(&transport
->send_ready
,
799 packet
= &transport
->packet
;
800 sctp_packet_config(packet
, vtag
,
801 asoc
->peer
.ecn_capable
);
803 error
= sctp_outq_flush_rtx(q
, packet
,
804 rtx_timeout
, &start_timer
);
807 sctp_transport_reset_timers(transport
);
809 /* This can happen on COOKIE-ECHO resend. Only
810 * one chunk can get bundled with a COOKIE-ECHO.
812 if (packet
->has_cookie_echo
)
815 /* Don't send new data if there is still data
816 * waiting to retransmit.
818 if (!list_empty(&q
->retransmit
))
822 /* Finally, transmit new packets. */
824 while ((chunk
= sctp_outq_dequeue_data(q
)) != NULL
) {
825 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
828 if (chunk
->sinfo
.sinfo_stream
>=
829 asoc
->c
.sinit_num_ostreams
) {
831 /* Mark as failed send. */
832 sctp_chunk_fail(chunk
, SCTP_ERROR_INV_STRM
);
833 sctp_chunk_free(chunk
);
837 /* Has this chunk expired? */
838 if (sctp_chunk_abandoned(chunk
)) {
839 sctp_chunk_fail(chunk
, 0);
840 sctp_chunk_free(chunk
);
844 /* If there is a specified transport, use it.
845 * Otherwise, we want to use the active path.
847 new_transport
= chunk
->transport
;
848 if (!new_transport
||
849 new_transport
->state
== SCTP_INACTIVE
)
850 new_transport
= asoc
->peer
.active_path
;
852 /* Change packets if necessary. */
853 if (new_transport
!= transport
) {
854 transport
= new_transport
;
856 /* Schedule to have this transport's
859 if (list_empty(&transport
->send_ready
)) {
860 list_add_tail(&transport
->send_ready
,
864 packet
= &transport
->packet
;
865 sctp_packet_config(packet
, vtag
,
866 asoc
->peer
.ecn_capable
);
869 SCTP_DEBUG_PRINTK("sctp_outq_flush(%p, %p[%s]), ",
871 chunk
&& chunk
->chunk_hdr
?
872 sctp_cname(SCTP_ST_CHUNK(
873 chunk
->chunk_hdr
->type
))
876 SCTP_DEBUG_PRINTK("TX TSN 0x%x skb->head "
877 "%p skb->users %d.\n",
878 ntohl(chunk
->subh
.data_hdr
->tsn
),
879 chunk
->skb
?chunk
->skb
->head
: NULL
,
881 atomic_read(&chunk
->skb
->users
) : -1);
883 /* Add the chunk to the packet. */
884 status
= sctp_packet_transmit_chunk(packet
, chunk
);
887 case SCTP_XMIT_PMTU_FULL
:
888 case SCTP_XMIT_RWND_FULL
:
889 case SCTP_XMIT_NAGLE_DELAY
:
890 /* We could not append this chunk, so put
891 * the chunk back on the output queue.
893 SCTP_DEBUG_PRINTK("sctp_outq_flush: could "
894 "not transmit TSN: 0x%x, status: %d\n",
895 ntohl(chunk
->subh
.data_hdr
->tsn
),
897 sctp_outq_head_data(q
, chunk
);
908 /* BUG: We assume that the sctp_packet_transmit()
909 * call below will succeed all the time and add the
910 * chunk to the transmitted list and restart the
912 * It is possible that the call can fail under OOM
915 * Is this really a problem? Won't this behave
918 list_add_tail(&chunk
->transmitted_list
,
919 &transport
->transmitted
);
921 sctp_transport_reset_timers(transport
);
925 /* Only let one DATA chunk get bundled with a
928 if (packet
->has_cookie_echo
)
940 /* Before returning, examine all the transports touched in
941 * this call. Right now, we bluntly force clear all the
942 * transports. Things might change after we implement Nagle.
943 * But such an examination is still required.
947 while ((ltransport
= sctp_list_dequeue(&transport_list
)) != NULL
) {
948 struct sctp_transport
*t
= list_entry(ltransport
,
949 struct sctp_transport
,
952 if (!sctp_packet_empty(packet
))
953 error
= sctp_packet_transmit(packet
);
959 /* Update unack_data based on the incoming SACK chunk */
960 static void sctp_sack_update_unack_data(struct sctp_association
*assoc
,
961 struct sctp_sackhdr
*sack
)
963 sctp_sack_variable_t
*frags
;
967 unack_data
= assoc
->next_tsn
- assoc
->ctsn_ack_point
- 1;
969 frags
= sack
->variable
;
970 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); i
++) {
971 unack_data
-= ((ntohs(frags
[i
].gab
.end
) -
972 ntohs(frags
[i
].gab
.start
) + 1));
975 assoc
->unack_data
= unack_data
;
978 /* Return the highest new tsn that is acknowledged by the given SACK chunk. */
979 static __u32
sctp_highest_new_tsn(struct sctp_sackhdr
*sack
,
980 struct sctp_association
*asoc
)
982 struct list_head
*ltransport
, *lchunk
;
983 struct sctp_transport
*transport
;
984 struct sctp_chunk
*chunk
;
985 __u32 highest_new_tsn
, tsn
;
986 struct list_head
*transport_list
= &asoc
->peer
.transport_addr_list
;
988 highest_new_tsn
= ntohl(sack
->cum_tsn_ack
);
990 list_for_each(ltransport
, transport_list
) {
991 transport
= list_entry(ltransport
, struct sctp_transport
,
993 list_for_each(lchunk
, &transport
->transmitted
) {
994 chunk
= list_entry(lchunk
, struct sctp_chunk
,
996 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
998 if (!chunk
->tsn_gap_acked
&&
999 TSN_lt(highest_new_tsn
, tsn
) &&
1000 sctp_acked(sack
, tsn
))
1001 highest_new_tsn
= tsn
;
1005 return highest_new_tsn
;
1008 /* This is where we REALLY process a SACK.
1010 * Process the SACK against the outqueue. Mostly, this just frees
1011 * things off the transmitted queue.
1013 int sctp_outq_sack(struct sctp_outq
*q
, struct sctp_sackhdr
*sack
)
1015 struct sctp_association
*asoc
= q
->asoc
;
1016 struct sctp_transport
*transport
;
1017 struct sctp_chunk
*tchunk
= NULL
;
1018 struct list_head
*lchunk
, *transport_list
, *pos
, *temp
;
1019 sctp_sack_variable_t
*frags
= sack
->variable
;
1020 __u32 sack_ctsn
, ctsn
, tsn
;
1021 __u32 highest_tsn
, highest_new_tsn
;
1023 unsigned outstanding
;
1024 struct sctp_transport
*primary
= asoc
->peer
.primary_path
;
1025 int count_of_newacks
= 0;
1027 /* Grab the association's destination address list. */
1028 transport_list
= &asoc
->peer
.transport_addr_list
;
1030 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1033 * SFR-CACC algorithm:
1034 * On receipt of a SACK the sender SHOULD execute the
1035 * following statements.
1037 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1038 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1039 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1042 if (TSN_lte(primary
->cacc
.next_tsn_at_change
, sack_ctsn
)) {
1043 primary
->cacc
.changeover_active
= 0;
1044 list_for_each(pos
, transport_list
) {
1045 transport
= list_entry(pos
, struct sctp_transport
,
1047 transport
->cacc
.cycling_changeover
= 0;
1052 * SFR-CACC algorithm:
1053 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1054 * is set the receiver of the SACK MUST take the following actions:
1056 * A) Initialize the cacc_saw_newack to 0 for all destination
1059 if (sack
->num_gap_ack_blocks
> 0 &&
1060 primary
->cacc
.changeover_active
) {
1061 list_for_each(pos
, transport_list
) {
1062 transport
= list_entry(pos
, struct sctp_transport
,
1064 transport
->cacc
.cacc_saw_newack
= 0;
1068 /* Get the highest TSN in the sack. */
1069 highest_tsn
= sack_ctsn
;
1070 if (sack
->num_gap_ack_blocks
)
1072 ntohs(frags
[ntohs(sack
->num_gap_ack_blocks
) - 1].gab
.end
);
1074 if (TSN_lt(asoc
->highest_sacked
, highest_tsn
)) {
1075 highest_new_tsn
= highest_tsn
;
1076 asoc
->highest_sacked
= highest_tsn
;
1078 highest_new_tsn
= sctp_highest_new_tsn(sack
, asoc
);
1081 /* Run through the retransmit queue. Credit bytes received
1082 * and free those chunks that we can.
1084 sctp_check_transmitted(q
, &q
->retransmit
, NULL
, sack
, highest_new_tsn
);
1085 sctp_mark_missing(q
, &q
->retransmit
, NULL
, highest_new_tsn
, 0);
1087 /* Run through the transmitted queue.
1088 * Credit bytes received and free those chunks which we can.
1090 * This is a MASSIVE candidate for optimization.
1092 list_for_each(pos
, transport_list
) {
1093 transport
= list_entry(pos
, struct sctp_transport
,
1095 sctp_check_transmitted(q
, &transport
->transmitted
,
1096 transport
, sack
, highest_new_tsn
);
1098 * SFR-CACC algorithm:
1099 * C) Let count_of_newacks be the number of
1100 * destinations for which cacc_saw_newack is set.
1102 if (transport
->cacc
.cacc_saw_newack
)
1103 count_of_newacks
++;
1106 list_for_each(pos
, transport_list
) {
1107 transport
= list_entry(pos
, struct sctp_transport
,
1109 sctp_mark_missing(q
, &transport
->transmitted
, transport
,
1110 highest_new_tsn
, count_of_newacks
);
1113 /* Move the Cumulative TSN Ack Point if appropriate. */
1114 if (TSN_lt(asoc
->ctsn_ack_point
, sack_ctsn
))
1115 asoc
->ctsn_ack_point
= sack_ctsn
;
1117 /* Update unack_data field in the assoc. */
1118 sctp_sack_update_unack_data(asoc
, sack
);
1120 ctsn
= asoc
->ctsn_ack_point
;
1122 /* Throw away stuff rotting on the sack queue. */
1123 list_for_each_safe(lchunk
, temp
, &q
->sacked
) {
1124 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1126 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1127 if (TSN_lte(tsn
, ctsn
))
1128 sctp_chunk_free(tchunk
);
1131 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1132 * number of bytes still outstanding after processing the
1133 * Cumulative TSN Ack and the Gap Ack Blocks.
1136 sack_a_rwnd
= ntohl(sack
->a_rwnd
);
1137 outstanding
= q
->outstanding_bytes
;
1139 if (outstanding
< sack_a_rwnd
)
1140 sack_a_rwnd
-= outstanding
;
1144 asoc
->peer
.rwnd
= sack_a_rwnd
;
1146 sctp_generate_fwdtsn(q
, sack_ctsn
);
1148 SCTP_DEBUG_PRINTK("%s: sack Cumulative TSN Ack is 0x%x.\n",
1149 __FUNCTION__
, sack_ctsn
);
1150 SCTP_DEBUG_PRINTK("%s: Cumulative TSN Ack of association, "
1151 "%p is 0x%x. Adv peer ack point: 0x%x\n",
1152 __FUNCTION__
, asoc
, ctsn
, asoc
->adv_peer_ack_point
);
1154 /* See if all chunks are acked.
1155 * Make sure the empty queue handler will get run later.
1157 q
->empty
= (list_empty(&q
->out_chunk_list
) &&
1158 list_empty(&q
->control_chunk_list
) &&
1159 list_empty(&q
->retransmit
));
1163 list_for_each(pos
, transport_list
) {
1164 transport
= list_entry(pos
, struct sctp_transport
,
1166 q
->empty
= q
->empty
&& list_empty(&transport
->transmitted
);
1171 SCTP_DEBUG_PRINTK("sack queue is empty.\n");
1176 /* Is the outqueue empty? */
1177 int sctp_outq_is_empty(const struct sctp_outq
*q
)
1182 /********************************************************************
1183 * 2nd Level Abstractions
1184 ********************************************************************/
1186 /* Go through a transport's transmitted list or the association's retransmit
1187 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1188 * The retransmit list will not have an associated transport.
1190 * I added coherent debug information output. --xguo
1192 * Instead of printing 'sacked' or 'kept' for each TSN on the
1193 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1194 * KEPT TSN6-TSN7, etc.
1196 static void sctp_check_transmitted(struct sctp_outq
*q
,
1197 struct list_head
*transmitted_queue
,
1198 struct sctp_transport
*transport
,
1199 struct sctp_sackhdr
*sack
,
1200 __u32 highest_new_tsn_in_sack
)
1202 struct list_head
*lchunk
;
1203 struct sctp_chunk
*tchunk
;
1204 struct list_head tlist
;
1208 __u8 restart_timer
= 0;
1209 int bytes_acked
= 0;
1211 /* These state variables are for coherent debug output. --xguo */
1214 __u32 dbg_ack_tsn
= 0; /* An ACKed TSN range starts here... */
1215 __u32 dbg_last_ack_tsn
= 0; /* ...and finishes here. */
1216 __u32 dbg_kept_tsn
= 0; /* An un-ACKed range starts here... */
1217 __u32 dbg_last_kept_tsn
= 0; /* ...and finishes here. */
1219 /* 0 : The last TSN was ACKed.
1220 * 1 : The last TSN was NOT ACKed (i.e. KEPT).
1221 * -1: We need to initialize.
1223 int dbg_prt_state
= -1;
1224 #endif /* SCTP_DEBUG */
1226 sack_ctsn
= ntohl(sack
->cum_tsn_ack
);
1228 INIT_LIST_HEAD(&tlist
);
1230 /* The while loop will skip empty transmitted queues. */
1231 while (NULL
!= (lchunk
= sctp_list_dequeue(transmitted_queue
))) {
1232 tchunk
= list_entry(lchunk
, struct sctp_chunk
,
1235 if (sctp_chunk_abandoned(tchunk
)) {
1236 /* Move the chunk to abandoned list. */
1237 sctp_insert_list(&q
->abandoned
, lchunk
);
1241 tsn
= ntohl(tchunk
->subh
.data_hdr
->tsn
);
1242 if (sctp_acked(sack
, tsn
)) {
1243 /* If this queue is the retransmit queue, the
1244 * retransmit timer has already reclaimed
1245 * the outstanding bytes for this chunk, so only
1246 * count bytes associated with a transport.
1249 /* If this chunk is being used for RTT
1250 * measurement, calculate the RTT and update
1251 * the RTO using this value.
1253 * 6.3.1 C5) Karn's algorithm: RTT measurements
1254 * MUST NOT be made using packets that were
1255 * retransmitted (and thus for which it is
1256 * ambiguous whether the reply was for the
1257 * first instance of the packet or a later
1260 if (!tchunk
->tsn_gap_acked
&&
1262 tchunk
->rtt_in_progress
) {
1263 rtt
= jiffies
- tchunk
->sent_at
;
1264 sctp_transport_update_rto(transport
,
1268 if (TSN_lte(tsn
, sack_ctsn
)) {
1269 /* RFC 2960 6.3.2 Retransmission Timer Rules
1271 * R3) Whenever a SACK is received
1272 * that acknowledges the DATA chunk
1273 * with the earliest outstanding TSN
1274 * for that address, restart T3-rtx
1275 * timer for that address with its
1280 if (!tchunk
->tsn_gap_acked
) {
1281 tchunk
->tsn_gap_acked
= 1;
1282 bytes_acked
+= sctp_data_size(tchunk
);
1284 * SFR-CACC algorithm:
1285 * 2) If the SACK contains gap acks
1286 * and the flag CHANGEOVER_ACTIVE is
1287 * set the receiver of the SACK MUST
1288 * take the following action:
1290 * B) For each TSN t being acked that
1291 * has not been acked in any SACK so
1292 * far, set cacc_saw_newack to 1 for
1293 * the destination that the TSN was
1297 sack
->num_gap_ack_blocks
&&
1298 q
->asoc
->peer
.primary_path
->cacc
.
1300 transport
->cacc
.cacc_saw_newack
1304 list_add_tail(&tchunk
->transmitted_list
,
1307 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1308 * M2) Each time a SACK arrives reporting
1309 * 'Stray DATA chunk(s)' record the highest TSN
1310 * reported as newly acknowledged, call this
1311 * value 'HighestTSNinSack'. A newly
1312 * acknowledged DATA chunk is one not
1313 * previously acknowledged in a SACK.
1315 * When the SCTP sender of data receives a SACK
1316 * chunk that acknowledges, for the first time,
1317 * the receipt of a DATA chunk, all the still
1318 * unacknowledged DATA chunks whose TSN is
1319 * older than that newly acknowledged DATA
1320 * chunk, are qualified as 'Stray DATA chunks'.
1322 if (!tchunk
->tsn_gap_acked
) {
1323 tchunk
->tsn_gap_acked
= 1;
1324 bytes_acked
+= sctp_data_size(tchunk
);
1326 list_add_tail(lchunk
, &tlist
);
1330 switch (dbg_prt_state
) {
1331 case 0: /* last TSN was ACKed */
1332 if (dbg_last_ack_tsn
+ 1 == tsn
) {
1333 /* This TSN belongs to the
1334 * current ACK range.
1339 if (dbg_last_ack_tsn
!= dbg_ack_tsn
) {
1340 /* Display the end of the
1343 SCTP_DEBUG_PRINTK("-%08x",
1347 /* Start a new range. */
1348 SCTP_DEBUG_PRINTK(",%08x", tsn
);
1352 case 1: /* The last TSN was NOT ACKed. */
1353 if (dbg_last_kept_tsn
!= dbg_kept_tsn
) {
1354 /* Display the end of current range. */
1355 SCTP_DEBUG_PRINTK("-%08x",
1359 SCTP_DEBUG_PRINTK("\n");
1361 /* FALL THROUGH... */
1363 /* This is the first-ever TSN we examined. */
1364 /* Start a new range of ACK-ed TSNs. */
1365 SCTP_DEBUG_PRINTK("ACKed: %08x", tsn
);
1370 dbg_last_ack_tsn
= tsn
;
1371 #endif /* SCTP_DEBUG */
1374 if (tchunk
->tsn_gap_acked
) {
1375 SCTP_DEBUG_PRINTK("%s: Receiver reneged on "
1379 tchunk
->tsn_gap_acked
= 0;
1381 bytes_acked
-= sctp_data_size(tchunk
);
1383 /* RFC 2960 6.3.2 Retransmission Timer Rules
1385 * R4) Whenever a SACK is received missing a
1386 * TSN that was previously acknowledged via a
1387 * Gap Ack Block, start T3-rtx for the
1388 * destination address to which the DATA
1389 * chunk was originally
1390 * transmitted if it is not already running.
1395 list_add_tail(lchunk
, &tlist
);
1398 /* See the above comments on ACK-ed TSNs. */
1399 switch (dbg_prt_state
) {
1401 if (dbg_last_kept_tsn
+ 1 == tsn
)
1404 if (dbg_last_kept_tsn
!= dbg_kept_tsn
)
1405 SCTP_DEBUG_PRINTK("-%08x",
1408 SCTP_DEBUG_PRINTK(",%08x", tsn
);
1413 if (dbg_last_ack_tsn
!= dbg_ack_tsn
)
1414 SCTP_DEBUG_PRINTK("-%08x",
1416 SCTP_DEBUG_PRINTK("\n");
1418 /* FALL THROUGH... */
1420 SCTP_DEBUG_PRINTK("KEPT: %08x",tsn
);
1425 dbg_last_kept_tsn
= tsn
;
1426 #endif /* SCTP_DEBUG */
1431 /* Finish off the last range, displaying its ending TSN. */
1432 switch (dbg_prt_state
) {
1434 if (dbg_last_ack_tsn
!= dbg_ack_tsn
) {
1435 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_ack_tsn
);
1437 SCTP_DEBUG_PRINTK("\n");
1442 if (dbg_last_kept_tsn
!= dbg_kept_tsn
) {
1443 SCTP_DEBUG_PRINTK("-%08x\n", dbg_last_kept_tsn
);
1445 SCTP_DEBUG_PRINTK("\n");
1448 #endif /* SCTP_DEBUG */
1451 /* 8.2. When an outstanding TSN is acknowledged,
1452 * the endpoint shall clear the error counter of
1453 * the destination transport address to which the
1454 * DATA chunk was last sent.
1455 * The association's overall error counter is
1458 transport
->error_count
= 0;
1459 transport
->asoc
->overall_error_count
= 0;
1461 /* Mark the destination transport address as
1462 * active if it is not so marked.
1464 if (transport
->state
== SCTP_INACTIVE
) {
1465 sctp_assoc_control_transport(
1469 SCTP_RECEIVED_SACK
);
1472 sctp_transport_raise_cwnd(transport
, sack_ctsn
,
1475 transport
->flight_size
-= bytes_acked
;
1476 q
->outstanding_bytes
-= bytes_acked
;
1478 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1479 * When a sender is doing zero window probing, it
1480 * should not timeout the association if it continues
1481 * to receive new packets from the receiver. The
1482 * reason is that the receiver MAY keep its window
1483 * closed for an indefinite time.
1484 * A sender is doing zero window probing when the
1485 * receiver's advertised window is zero, and there is
1486 * only one data chunk in flight to the receiver.
1488 if (!q
->asoc
->peer
.rwnd
&&
1489 !list_empty(&tlist
) &&
1490 (sack_ctsn
+2 == q
->asoc
->next_tsn
)) {
1491 SCTP_DEBUG_PRINTK("%s: SACK received for zero "
1492 "window probe: %u\n",
1493 __FUNCTION__
, sack_ctsn
);
1494 q
->asoc
->overall_error_count
= 0;
1495 transport
->error_count
= 0;
1499 /* RFC 2960 6.3.2 Retransmission Timer Rules
1501 * R2) Whenever all outstanding data sent to an address have
1502 * been acknowledged, turn off the T3-rtx timer of that
1505 if (!transport
->flight_size
) {
1506 if (timer_pending(&transport
->T3_rtx_timer
) &&
1507 del_timer(&transport
->T3_rtx_timer
)) {
1508 sctp_transport_put(transport
);
1510 } else if (restart_timer
) {
1511 if (!mod_timer(&transport
->T3_rtx_timer
,
1512 jiffies
+ transport
->rto
))
1513 sctp_transport_hold(transport
);
1517 list_splice(&tlist
, transmitted_queue
);
1520 /* Mark chunks as missing and consequently may get retransmitted. */
1521 static void sctp_mark_missing(struct sctp_outq
*q
,
1522 struct list_head
*transmitted_queue
,
1523 struct sctp_transport
*transport
,
1524 __u32 highest_new_tsn_in_sack
,
1525 int count_of_newacks
)
1527 struct sctp_chunk
*chunk
;
1528 struct list_head
*pos
;
1530 char do_fast_retransmit
= 0;
1531 struct sctp_transport
*primary
= q
->asoc
->peer
.primary_path
;
1533 list_for_each(pos
, transmitted_queue
) {
1535 chunk
= list_entry(pos
, struct sctp_chunk
, transmitted_list
);
1536 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1538 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1539 * 'Unacknowledged TSN's', if the TSN number of an
1540 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1541 * value, increment the 'TSN.Missing.Report' count on that
1542 * chunk if it has NOT been fast retransmitted or marked for
1543 * fast retransmit already.
1545 if (!chunk
->fast_retransmit
&&
1546 !chunk
->tsn_gap_acked
&&
1547 TSN_lt(tsn
, highest_new_tsn_in_sack
)) {
1549 /* SFR-CACC may require us to skip marking
1550 * this chunk as missing.
1552 if (!transport
|| !sctp_cacc_skip(primary
, transport
,
1553 count_of_newacks
, tsn
)) {
1554 chunk
->tsn_missing_report
++;
1557 "%s: TSN 0x%x missing counter: %d\n",
1559 chunk
->tsn_missing_report
);
1563 * M4) If any DATA chunk is found to have a
1564 * 'TSN.Missing.Report'
1565 * value larger than or equal to 4, mark that chunk for
1566 * retransmission and start the fast retransmit procedure.
1569 if (chunk
->tsn_missing_report
>= 4) {
1570 chunk
->fast_retransmit
= 1;
1571 do_fast_retransmit
= 1;
1576 if (do_fast_retransmit
)
1577 sctp_retransmit(q
, transport
, SCTP_RTXR_FAST_RTX
);
1579 SCTP_DEBUG_PRINTK("%s: transport: %p, cwnd: %d, "
1580 "ssthresh: %d, flight_size: %d, pba: %d\n",
1581 __FUNCTION__
, transport
, transport
->cwnd
,
1582 transport
->ssthresh
, transport
->flight_size
,
1583 transport
->partial_bytes_acked
);
1587 /* Is the given TSN acked by this packet? */
1588 static int sctp_acked(struct sctp_sackhdr
*sack
, __u32 tsn
)
1591 sctp_sack_variable_t
*frags
;
1593 __u32 ctsn
= ntohl(sack
->cum_tsn_ack
);
1595 if (TSN_lte(tsn
, ctsn
))
1598 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1601 * These fields contain the Gap Ack Blocks. They are repeated
1602 * for each Gap Ack Block up to the number of Gap Ack Blocks
1603 * defined in the Number of Gap Ack Blocks field. All DATA
1604 * chunks with TSNs greater than or equal to (Cumulative TSN
1605 * Ack + Gap Ack Block Start) and less than or equal to
1606 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1607 * Block are assumed to have been received correctly.
1610 frags
= sack
->variable
;
1612 for (i
= 0; i
< ntohs(sack
->num_gap_ack_blocks
); ++i
) {
1613 if (TSN_lte(ntohs(frags
[i
].gab
.start
), gap
) &&
1614 TSN_lte(gap
, ntohs(frags
[i
].gab
.end
)))
1623 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip
*skiplist
,
1624 int nskips
, __u16 stream
)
1628 for (i
= 0; i
< nskips
; i
++) {
1629 if (skiplist
[i
].stream
== stream
)
1635 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1636 static void sctp_generate_fwdtsn(struct sctp_outq
*q
, __u32 ctsn
)
1638 struct sctp_association
*asoc
= q
->asoc
;
1639 struct sctp_chunk
*ftsn_chunk
= NULL
;
1640 struct sctp_fwdtsn_skip ftsn_skip_arr
[10];
1644 struct sctp_chunk
*chunk
;
1645 struct list_head
*lchunk
, *temp
;
1647 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1650 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1651 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1653 if (TSN_lt(asoc
->adv_peer_ack_point
, ctsn
))
1654 asoc
->adv_peer_ack_point
= ctsn
;
1656 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1657 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1658 * the chunk next in the out-queue space is marked as "abandoned" as
1659 * shown in the following example:
1661 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1662 * and the Advanced.Peer.Ack.Point is updated to this value:
1664 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1665 * normal SACK processing local advancement
1667 * Adv.Ack.Pt-> 102 acked 102 acked
1668 * 103 abandoned 103 abandoned
1669 * 104 abandoned Adv.Ack.P-> 104 abandoned
1671 * 106 acked 106 acked
1674 * In this example, the data sender successfully advanced the
1675 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1677 list_for_each_safe(lchunk
, temp
, &q
->abandoned
) {
1678 chunk
= list_entry(lchunk
, struct sctp_chunk
,
1680 tsn
= ntohl(chunk
->subh
.data_hdr
->tsn
);
1682 /* Remove any chunks in the abandoned queue that are acked by
1685 if (TSN_lte(tsn
, ctsn
)) {
1686 list_del_init(lchunk
);
1687 if (!chunk
->tsn_gap_acked
) {
1688 chunk
->transport
->flight_size
-=
1689 sctp_data_size(chunk
);
1690 q
->outstanding_bytes
-= sctp_data_size(chunk
);
1692 sctp_chunk_free(chunk
);
1694 if (TSN_lte(tsn
, asoc
->adv_peer_ack_point
+1)) {
1695 asoc
->adv_peer_ack_point
= tsn
;
1696 if (chunk
->chunk_hdr
->flags
&
1697 SCTP_DATA_UNORDERED
)
1699 skip_pos
= sctp_get_skip_pos(&ftsn_skip_arr
[0],
1701 chunk
->subh
.data_hdr
->stream
);
1702 ftsn_skip_arr
[skip_pos
].stream
=
1703 chunk
->subh
.data_hdr
->stream
;
1704 ftsn_skip_arr
[skip_pos
].ssn
=
1705 chunk
->subh
.data_hdr
->ssn
;
1706 if (skip_pos
== nskips
)
1715 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1716 * is greater than the Cumulative TSN ACK carried in the received
1717 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1718 * chunk containing the latest value of the
1719 * "Advanced.Peer.Ack.Point".
1721 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1722 * list each stream and sequence number in the forwarded TSN. This
1723 * information will enable the receiver to easily find any
1724 * stranded TSN's waiting on stream reorder queues. Each stream
1725 * SHOULD only be reported once; this means that if multiple
1726 * abandoned messages occur in the same stream then only the
1727 * highest abandoned stream sequence number is reported. If the
1728 * total size of the FORWARD TSN does NOT fit in a single MTU then
1729 * the sender of the FORWARD TSN SHOULD lower the
1730 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1733 if (asoc
->adv_peer_ack_point
> ctsn
)
1734 ftsn_chunk
= sctp_make_fwdtsn(asoc
, asoc
->adv_peer_ack_point
,
1735 nskips
, &ftsn_skip_arr
[0]);
1738 list_add_tail(&ftsn_chunk
->list
, &q
->control_chunk_list
);
1739 SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS
);