2 * kexec.c - kexec system call
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
10 #include <linux/file.h>
11 #include <linux/slab.h>
13 #include <linux/kexec.h>
14 #include <linux/spinlock.h>
15 #include <linux/list.h>
16 #include <linux/highmem.h>
17 #include <linux/syscalls.h>
18 #include <linux/reboot.h>
19 #include <linux/syscalls.h>
20 #include <linux/ioport.h>
21 #include <linux/hardirq.h>
24 #include <asm/uaccess.h>
26 #include <asm/system.h>
27 #include <asm/semaphore.h>
29 /* Location of the reserved area for the crash kernel */
30 struct resource crashk_res
= {
31 .name
= "Crash kernel",
34 .flags
= IORESOURCE_BUSY
| IORESOURCE_MEM
37 int kexec_should_crash(struct task_struct
*p
)
39 if (in_interrupt() || !p
->pid
|| p
->pid
== 1 || panic_on_oops
)
45 * When kexec transitions to the new kernel there is a one-to-one
46 * mapping between physical and virtual addresses. On processors
47 * where you can disable the MMU this is trivial, and easy. For
48 * others it is still a simple predictable page table to setup.
50 * In that environment kexec copies the new kernel to its final
51 * resting place. This means I can only support memory whose
52 * physical address can fit in an unsigned long. In particular
53 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
54 * If the assembly stub has more restrictive requirements
55 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
56 * defined more restrictively in <asm/kexec.h>.
58 * The code for the transition from the current kernel to the
59 * the new kernel is placed in the control_code_buffer, whose size
60 * is given by KEXEC_CONTROL_CODE_SIZE. In the best case only a single
61 * page of memory is necessary, but some architectures require more.
62 * Because this memory must be identity mapped in the transition from
63 * virtual to physical addresses it must live in the range
64 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
67 * The assembly stub in the control code buffer is passed a linked list
68 * of descriptor pages detailing the source pages of the new kernel,
69 * and the destination addresses of those source pages. As this data
70 * structure is not used in the context of the current OS, it must
73 * The code has been made to work with highmem pages and will use a
74 * destination page in its final resting place (if it happens
75 * to allocate it). The end product of this is that most of the
76 * physical address space, and most of RAM can be used.
78 * Future directions include:
79 * - allocating a page table with the control code buffer identity
80 * mapped, to simplify machine_kexec and make kexec_on_panic more
85 * KIMAGE_NO_DEST is an impossible destination address..., for
86 * allocating pages whose destination address we do not care about.
88 #define KIMAGE_NO_DEST (-1UL)
90 static int kimage_is_destination_range(struct kimage
*image
,
91 unsigned long start
, unsigned long end
);
92 static struct page
*kimage_alloc_page(struct kimage
*image
,
93 unsigned int gfp_mask
,
96 static int do_kimage_alloc(struct kimage
**rimage
, unsigned long entry
,
97 unsigned long nr_segments
,
98 struct kexec_segment __user
*segments
)
100 size_t segment_bytes
;
101 struct kimage
*image
;
105 /* Allocate a controlling structure */
107 image
= kmalloc(sizeof(*image
), GFP_KERNEL
);
111 memset(image
, 0, sizeof(*image
));
113 image
->entry
= &image
->head
;
114 image
->last_entry
= &image
->head
;
115 image
->control_page
= ~0; /* By default this does not apply */
116 image
->start
= entry
;
117 image
->type
= KEXEC_TYPE_DEFAULT
;
119 /* Initialize the list of control pages */
120 INIT_LIST_HEAD(&image
->control_pages
);
122 /* Initialize the list of destination pages */
123 INIT_LIST_HEAD(&image
->dest_pages
);
125 /* Initialize the list of unuseable pages */
126 INIT_LIST_HEAD(&image
->unuseable_pages
);
128 /* Read in the segments */
129 image
->nr_segments
= nr_segments
;
130 segment_bytes
= nr_segments
* sizeof(*segments
);
131 result
= copy_from_user(image
->segment
, segments
, segment_bytes
);
136 * Verify we have good destination addresses. The caller is
137 * responsible for making certain we don't attempt to load
138 * the new image into invalid or reserved areas of RAM. This
139 * just verifies it is an address we can use.
141 * Since the kernel does everything in page size chunks ensure
142 * the destination addreses are page aligned. Too many
143 * special cases crop of when we don't do this. The most
144 * insidious is getting overlapping destination addresses
145 * simply because addresses are changed to page size
148 result
= -EADDRNOTAVAIL
;
149 for (i
= 0; i
< nr_segments
; i
++) {
150 unsigned long mstart
, mend
;
152 mstart
= image
->segment
[i
].mem
;
153 mend
= mstart
+ image
->segment
[i
].memsz
;
154 if ((mstart
& ~PAGE_MASK
) || (mend
& ~PAGE_MASK
))
156 if (mend
>= KEXEC_DESTINATION_MEMORY_LIMIT
)
160 /* Verify our destination addresses do not overlap.
161 * If we alloed overlapping destination addresses
162 * through very weird things can happen with no
163 * easy explanation as one segment stops on another.
166 for (i
= 0; i
< nr_segments
; i
++) {
167 unsigned long mstart
, mend
;
170 mstart
= image
->segment
[i
].mem
;
171 mend
= mstart
+ image
->segment
[i
].memsz
;
172 for (j
= 0; j
< i
; j
++) {
173 unsigned long pstart
, pend
;
174 pstart
= image
->segment
[j
].mem
;
175 pend
= pstart
+ image
->segment
[j
].memsz
;
176 /* Do the segments overlap ? */
177 if ((mend
> pstart
) && (mstart
< pend
))
182 /* Ensure our buffer sizes are strictly less than
183 * our memory sizes. This should always be the case,
184 * and it is easier to check up front than to be surprised
188 for (i
= 0; i
< nr_segments
; i
++) {
189 if (image
->segment
[i
].bufsz
> image
->segment
[i
].memsz
)
204 static int kimage_normal_alloc(struct kimage
**rimage
, unsigned long entry
,
205 unsigned long nr_segments
,
206 struct kexec_segment __user
*segments
)
209 struct kimage
*image
;
211 /* Allocate and initialize a controlling structure */
213 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
220 * Find a location for the control code buffer, and add it
221 * the vector of segments so that it's pages will also be
222 * counted as destination pages.
225 image
->control_code_page
= kimage_alloc_control_pages(image
,
226 get_order(KEXEC_CONTROL_CODE_SIZE
));
227 if (!image
->control_code_page
) {
228 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
242 static int kimage_crash_alloc(struct kimage
**rimage
, unsigned long entry
,
243 unsigned long nr_segments
,
244 struct kexec_segment
*segments
)
247 struct kimage
*image
;
251 /* Verify we have a valid entry point */
252 if ((entry
< crashk_res
.start
) || (entry
> crashk_res
.end
)) {
253 result
= -EADDRNOTAVAIL
;
257 /* Allocate and initialize a controlling structure */
258 result
= do_kimage_alloc(&image
, entry
, nr_segments
, segments
);
262 /* Enable the special crash kernel control page
265 image
->control_page
= crashk_res
.start
;
266 image
->type
= KEXEC_TYPE_CRASH
;
269 * Verify we have good destination addresses. Normally
270 * the caller is responsible for making certain we don't
271 * attempt to load the new image into invalid or reserved
272 * areas of RAM. But crash kernels are preloaded into a
273 * reserved area of ram. We must ensure the addresses
274 * are in the reserved area otherwise preloading the
275 * kernel could corrupt things.
277 result
= -EADDRNOTAVAIL
;
278 for (i
= 0; i
< nr_segments
; i
++) {
279 unsigned long mstart
, mend
;
281 mstart
= image
->segment
[i
].mem
;
282 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
283 /* Ensure we are within the crash kernel limits */
284 if ((mstart
< crashk_res
.start
) || (mend
> crashk_res
.end
))
289 * Find a location for the control code buffer, and add
290 * the vector of segments so that it's pages will also be
291 * counted as destination pages.
294 image
->control_code_page
= kimage_alloc_control_pages(image
,
295 get_order(KEXEC_CONTROL_CODE_SIZE
));
296 if (!image
->control_code_page
) {
297 printk(KERN_ERR
"Could not allocate control_code_buffer\n");
311 static int kimage_is_destination_range(struct kimage
*image
,
317 for (i
= 0; i
< image
->nr_segments
; i
++) {
318 unsigned long mstart
, mend
;
320 mstart
= image
->segment
[i
].mem
;
321 mend
= mstart
+ image
->segment
[i
].memsz
;
322 if ((end
> mstart
) && (start
< mend
))
329 static struct page
*kimage_alloc_pages(unsigned int gfp_mask
,
334 pages
= alloc_pages(gfp_mask
, order
);
336 unsigned int count
, i
;
337 pages
->mapping
= NULL
;
338 pages
->private = order
;
340 for (i
= 0; i
< count
; i
++)
341 SetPageReserved(pages
+ i
);
347 static void kimage_free_pages(struct page
*page
)
349 unsigned int order
, count
, i
;
351 order
= page
->private;
353 for (i
= 0; i
< count
; i
++)
354 ClearPageReserved(page
+ i
);
355 __free_pages(page
, order
);
358 static void kimage_free_page_list(struct list_head
*list
)
360 struct list_head
*pos
, *next
;
362 list_for_each_safe(pos
, next
, list
) {
365 page
= list_entry(pos
, struct page
, lru
);
366 list_del(&page
->lru
);
367 kimage_free_pages(page
);
371 static struct page
*kimage_alloc_normal_control_pages(struct kimage
*image
,
374 /* Control pages are special, they are the intermediaries
375 * that are needed while we copy the rest of the pages
376 * to their final resting place. As such they must
377 * not conflict with either the destination addresses
378 * or memory the kernel is already using.
380 * The only case where we really need more than one of
381 * these are for architectures where we cannot disable
382 * the MMU and must instead generate an identity mapped
383 * page table for all of the memory.
385 * At worst this runs in O(N) of the image size.
387 struct list_head extra_pages
;
392 INIT_LIST_HEAD(&extra_pages
);
394 /* Loop while I can allocate a page and the page allocated
395 * is a destination page.
398 unsigned long pfn
, epfn
, addr
, eaddr
;
400 pages
= kimage_alloc_pages(GFP_KERNEL
, order
);
403 pfn
= page_to_pfn(pages
);
405 addr
= pfn
<< PAGE_SHIFT
;
406 eaddr
= epfn
<< PAGE_SHIFT
;
407 if ((epfn
>= (KEXEC_CONTROL_MEMORY_LIMIT
>> PAGE_SHIFT
)) ||
408 kimage_is_destination_range(image
, addr
, eaddr
)) {
409 list_add(&pages
->lru
, &extra_pages
);
415 /* Remember the allocated page... */
416 list_add(&pages
->lru
, &image
->control_pages
);
418 /* Because the page is already in it's destination
419 * location we will never allocate another page at
420 * that address. Therefore kimage_alloc_pages
421 * will not return it (again) and we don't need
422 * to give it an entry in image->segment[].
425 /* Deal with the destination pages I have inadvertently allocated.
427 * Ideally I would convert multi-page allocations into single
428 * page allocations, and add everyting to image->dest_pages.
430 * For now it is simpler to just free the pages.
432 kimage_free_page_list(&extra_pages
);
437 static struct page
*kimage_alloc_crash_control_pages(struct kimage
*image
,
440 /* Control pages are special, they are the intermediaries
441 * that are needed while we copy the rest of the pages
442 * to their final resting place. As such they must
443 * not conflict with either the destination addresses
444 * or memory the kernel is already using.
446 * Control pages are also the only pags we must allocate
447 * when loading a crash kernel. All of the other pages
448 * are specified by the segments and we just memcpy
449 * into them directly.
451 * The only case where we really need more than one of
452 * these are for architectures where we cannot disable
453 * the MMU and must instead generate an identity mapped
454 * page table for all of the memory.
456 * Given the low demand this implements a very simple
457 * allocator that finds the first hole of the appropriate
458 * size in the reserved memory region, and allocates all
459 * of the memory up to and including the hole.
461 unsigned long hole_start
, hole_end
, size
;
465 size
= (1 << order
) << PAGE_SHIFT
;
466 hole_start
= (image
->control_page
+ (size
- 1)) & ~(size
- 1);
467 hole_end
= hole_start
+ size
- 1;
468 while (hole_end
<= crashk_res
.end
) {
471 if (hole_end
> KEXEC_CONTROL_MEMORY_LIMIT
)
473 if (hole_end
> crashk_res
.end
)
475 /* See if I overlap any of the segments */
476 for (i
= 0; i
< image
->nr_segments
; i
++) {
477 unsigned long mstart
, mend
;
479 mstart
= image
->segment
[i
].mem
;
480 mend
= mstart
+ image
->segment
[i
].memsz
- 1;
481 if ((hole_end
>= mstart
) && (hole_start
<= mend
)) {
482 /* Advance the hole to the end of the segment */
483 hole_start
= (mend
+ (size
- 1)) & ~(size
- 1);
484 hole_end
= hole_start
+ size
- 1;
488 /* If I don't overlap any segments I have found my hole! */
489 if (i
== image
->nr_segments
) {
490 pages
= pfn_to_page(hole_start
>> PAGE_SHIFT
);
495 image
->control_page
= hole_end
;
501 struct page
*kimage_alloc_control_pages(struct kimage
*image
,
504 struct page
*pages
= NULL
;
506 switch (image
->type
) {
507 case KEXEC_TYPE_DEFAULT
:
508 pages
= kimage_alloc_normal_control_pages(image
, order
);
510 case KEXEC_TYPE_CRASH
:
511 pages
= kimage_alloc_crash_control_pages(image
, order
);
518 static int kimage_add_entry(struct kimage
*image
, kimage_entry_t entry
)
520 if (*image
->entry
!= 0)
523 if (image
->entry
== image
->last_entry
) {
524 kimage_entry_t
*ind_page
;
527 page
= kimage_alloc_page(image
, GFP_KERNEL
, KIMAGE_NO_DEST
);
531 ind_page
= page_address(page
);
532 *image
->entry
= virt_to_phys(ind_page
) | IND_INDIRECTION
;
533 image
->entry
= ind_page
;
534 image
->last_entry
= ind_page
+
535 ((PAGE_SIZE
/sizeof(kimage_entry_t
)) - 1);
537 *image
->entry
= entry
;
544 static int kimage_set_destination(struct kimage
*image
,
545 unsigned long destination
)
549 destination
&= PAGE_MASK
;
550 result
= kimage_add_entry(image
, destination
| IND_DESTINATION
);
552 image
->destination
= destination
;
558 static int kimage_add_page(struct kimage
*image
, unsigned long page
)
563 result
= kimage_add_entry(image
, page
| IND_SOURCE
);
565 image
->destination
+= PAGE_SIZE
;
571 static void kimage_free_extra_pages(struct kimage
*image
)
573 /* Walk through and free any extra destination pages I may have */
574 kimage_free_page_list(&image
->dest_pages
);
576 /* Walk through and free any unuseable pages I have cached */
577 kimage_free_page_list(&image
->unuseable_pages
);
580 static int kimage_terminate(struct kimage
*image
)
582 if (*image
->entry
!= 0)
585 *image
->entry
= IND_DONE
;
590 #define for_each_kimage_entry(image, ptr, entry) \
591 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
592 ptr = (entry & IND_INDIRECTION)? \
593 phys_to_virt((entry & PAGE_MASK)): ptr +1)
595 static void kimage_free_entry(kimage_entry_t entry
)
599 page
= pfn_to_page(entry
>> PAGE_SHIFT
);
600 kimage_free_pages(page
);
603 static void kimage_free(struct kimage
*image
)
605 kimage_entry_t
*ptr
, entry
;
606 kimage_entry_t ind
= 0;
611 kimage_free_extra_pages(image
);
612 for_each_kimage_entry(image
, ptr
, entry
) {
613 if (entry
& IND_INDIRECTION
) {
614 /* Free the previous indirection page */
615 if (ind
& IND_INDIRECTION
)
616 kimage_free_entry(ind
);
617 /* Save this indirection page until we are
622 else if (entry
& IND_SOURCE
)
623 kimage_free_entry(entry
);
625 /* Free the final indirection page */
626 if (ind
& IND_INDIRECTION
)
627 kimage_free_entry(ind
);
629 /* Handle any machine specific cleanup */
630 machine_kexec_cleanup(image
);
632 /* Free the kexec control pages... */
633 kimage_free_page_list(&image
->control_pages
);
637 static kimage_entry_t
*kimage_dst_used(struct kimage
*image
,
640 kimage_entry_t
*ptr
, entry
;
641 unsigned long destination
= 0;
643 for_each_kimage_entry(image
, ptr
, entry
) {
644 if (entry
& IND_DESTINATION
)
645 destination
= entry
& PAGE_MASK
;
646 else if (entry
& IND_SOURCE
) {
647 if (page
== destination
)
649 destination
+= PAGE_SIZE
;
656 static struct page
*kimage_alloc_page(struct kimage
*image
,
657 unsigned int gfp_mask
,
658 unsigned long destination
)
661 * Here we implement safeguards to ensure that a source page
662 * is not copied to its destination page before the data on
663 * the destination page is no longer useful.
665 * To do this we maintain the invariant that a source page is
666 * either its own destination page, or it is not a
667 * destination page at all.
669 * That is slightly stronger than required, but the proof
670 * that no problems will not occur is trivial, and the
671 * implementation is simply to verify.
673 * When allocating all pages normally this algorithm will run
674 * in O(N) time, but in the worst case it will run in O(N^2)
675 * time. If the runtime is a problem the data structures can
682 * Walk through the list of destination pages, and see if I
685 list_for_each_entry(page
, &image
->dest_pages
, lru
) {
686 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
687 if (addr
== destination
) {
688 list_del(&page
->lru
);
696 /* Allocate a page, if we run out of memory give up */
697 page
= kimage_alloc_pages(gfp_mask
, 0);
700 /* If the page cannot be used file it away */
701 if (page_to_pfn(page
) >
702 (KEXEC_SOURCE_MEMORY_LIMIT
>> PAGE_SHIFT
)) {
703 list_add(&page
->lru
, &image
->unuseable_pages
);
706 addr
= page_to_pfn(page
) << PAGE_SHIFT
;
708 /* If it is the destination page we want use it */
709 if (addr
== destination
)
712 /* If the page is not a destination page use it */
713 if (!kimage_is_destination_range(image
, addr
,
718 * I know that the page is someones destination page.
719 * See if there is already a source page for this
720 * destination page. And if so swap the source pages.
722 old
= kimage_dst_used(image
, addr
);
725 unsigned long old_addr
;
726 struct page
*old_page
;
728 old_addr
= *old
& PAGE_MASK
;
729 old_page
= pfn_to_page(old_addr
>> PAGE_SHIFT
);
730 copy_highpage(page
, old_page
);
731 *old
= addr
| (*old
& ~PAGE_MASK
);
733 /* The old page I have found cannot be a
734 * destination page, so return it.
741 /* Place the page on the destination list I
744 list_add(&page
->lru
, &image
->dest_pages
);
751 static int kimage_load_normal_segment(struct kimage
*image
,
752 struct kexec_segment
*segment
)
755 unsigned long ubytes
, mbytes
;
761 ubytes
= segment
->bufsz
;
762 mbytes
= segment
->memsz
;
763 maddr
= segment
->mem
;
765 result
= kimage_set_destination(image
, maddr
);
772 size_t uchunk
, mchunk
;
774 page
= kimage_alloc_page(image
, GFP_HIGHUSER
, maddr
);
779 result
= kimage_add_page(image
, page_to_pfn(page
)
785 /* Start with a clear page */
786 memset(ptr
, 0, PAGE_SIZE
);
787 ptr
+= maddr
& ~PAGE_MASK
;
788 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
796 result
= copy_from_user(ptr
, buf
, uchunk
);
799 result
= (result
< 0) ? result
: -EIO
;
811 static int kimage_load_crash_segment(struct kimage
*image
,
812 struct kexec_segment
*segment
)
814 /* For crash dumps kernels we simply copy the data from
815 * user space to it's destination.
816 * We do things a page at a time for the sake of kmap.
819 unsigned long ubytes
, mbytes
;
825 ubytes
= segment
->bufsz
;
826 mbytes
= segment
->memsz
;
827 maddr
= segment
->mem
;
831 size_t uchunk
, mchunk
;
833 page
= pfn_to_page(maddr
>> PAGE_SHIFT
);
839 ptr
+= maddr
& ~PAGE_MASK
;
840 mchunk
= PAGE_SIZE
- (maddr
& ~PAGE_MASK
);
845 if (uchunk
> ubytes
) {
847 /* Zero the trailing part of the page */
848 memset(ptr
+ uchunk
, 0, mchunk
- uchunk
);
850 result
= copy_from_user(ptr
, buf
, uchunk
);
853 result
= (result
< 0) ? result
: -EIO
;
865 static int kimage_load_segment(struct kimage
*image
,
866 struct kexec_segment
*segment
)
868 int result
= -ENOMEM
;
870 switch (image
->type
) {
871 case KEXEC_TYPE_DEFAULT
:
872 result
= kimage_load_normal_segment(image
, segment
);
874 case KEXEC_TYPE_CRASH
:
875 result
= kimage_load_crash_segment(image
, segment
);
883 * Exec Kernel system call: for obvious reasons only root may call it.
885 * This call breaks up into three pieces.
886 * - A generic part which loads the new kernel from the current
887 * address space, and very carefully places the data in the
890 * - A generic part that interacts with the kernel and tells all of
891 * the devices to shut down. Preventing on-going dmas, and placing
892 * the devices in a consistent state so a later kernel can
895 * - A machine specific part that includes the syscall number
896 * and the copies the image to it's final destination. And
897 * jumps into the image at entry.
899 * kexec does not sync, or unmount filesystems so if you need
900 * that to happen you need to do that yourself.
902 struct kimage
*kexec_image
= NULL
;
903 static struct kimage
*kexec_crash_image
= NULL
;
905 * A home grown binary mutex.
906 * Nothing can wait so this mutex is safe to use
907 * in interrupt context :)
909 static int kexec_lock
= 0;
911 asmlinkage
long sys_kexec_load(unsigned long entry
, unsigned long nr_segments
,
912 struct kexec_segment __user
*segments
,
915 struct kimage
**dest_image
, *image
;
919 /* We only trust the superuser with rebooting the system. */
920 if (!capable(CAP_SYS_BOOT
))
924 * Verify we have a legal set of flags
925 * This leaves us room for future extensions.
927 if ((flags
& KEXEC_FLAGS
) != (flags
& ~KEXEC_ARCH_MASK
))
930 /* Verify we are on the appropriate architecture */
931 if (((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH
) &&
932 ((flags
& KEXEC_ARCH_MASK
) != KEXEC_ARCH_DEFAULT
))
935 /* Put an artificial cap on the number
936 * of segments passed to kexec_load.
938 if (nr_segments
> KEXEC_SEGMENT_MAX
)
944 /* Because we write directly to the reserved memory
945 * region when loading crash kernels we need a mutex here to
946 * prevent multiple crash kernels from attempting to load
947 * simultaneously, and to prevent a crash kernel from loading
948 * over the top of a in use crash kernel.
950 * KISS: always take the mutex.
952 locked
= xchg(&kexec_lock
, 1);
956 dest_image
= &kexec_image
;
957 if (flags
& KEXEC_ON_CRASH
)
958 dest_image
= &kexec_crash_image
;
959 if (nr_segments
> 0) {
962 /* Loading another kernel to reboot into */
963 if ((flags
& KEXEC_ON_CRASH
) == 0)
964 result
= kimage_normal_alloc(&image
, entry
,
965 nr_segments
, segments
);
966 /* Loading another kernel to switch to if this one crashes */
967 else if (flags
& KEXEC_ON_CRASH
) {
968 /* Free any current crash dump kernel before
971 kimage_free(xchg(&kexec_crash_image
, NULL
));
972 result
= kimage_crash_alloc(&image
, entry
,
973 nr_segments
, segments
);
978 result
= machine_kexec_prepare(image
);
982 for (i
= 0; i
< nr_segments
; i
++) {
983 result
= kimage_load_segment(image
, &image
->segment
[i
]);
987 result
= kimage_terminate(image
);
991 /* Install the new kernel, and Uninstall the old */
992 image
= xchg(dest_image
, image
);
995 xchg(&kexec_lock
, 0); /* Release the mutex */
1001 #ifdef CONFIG_COMPAT
1002 asmlinkage
long compat_sys_kexec_load(unsigned long entry
,
1003 unsigned long nr_segments
,
1004 struct compat_kexec_segment __user
*segments
,
1005 unsigned long flags
)
1007 struct compat_kexec_segment in
;
1008 struct kexec_segment out
, __user
*ksegments
;
1009 unsigned long i
, result
;
1011 /* Don't allow clients that don't understand the native
1012 * architecture to do anything.
1014 if ((flags
& KEXEC_ARCH_MASK
) == KEXEC_ARCH_DEFAULT
)
1017 if (nr_segments
> KEXEC_SEGMENT_MAX
)
1020 ksegments
= compat_alloc_user_space(nr_segments
* sizeof(out
));
1021 for (i
=0; i
< nr_segments
; i
++) {
1022 result
= copy_from_user(&in
, &segments
[i
], sizeof(in
));
1026 out
.buf
= compat_ptr(in
.buf
);
1027 out
.bufsz
= in
.bufsz
;
1029 out
.memsz
= in
.memsz
;
1031 result
= copy_to_user(&ksegments
[i
], &out
, sizeof(out
));
1036 return sys_kexec_load(entry
, nr_segments
, ksegments
, flags
);
1040 void crash_kexec(struct pt_regs
*regs
)
1042 struct kimage
*image
;
1046 /* Take the kexec_lock here to prevent sys_kexec_load
1047 * running on one cpu from replacing the crash kernel
1048 * we are using after a panic on a different cpu.
1050 * If the crash kernel was not located in a fixed area
1051 * of memory the xchg(&kexec_crash_image) would be
1052 * sufficient. But since I reuse the memory...
1054 locked
= xchg(&kexec_lock
, 1);
1056 image
= xchg(&kexec_crash_image
, NULL
);
1058 machine_crash_shutdown(regs
);
1059 machine_kexec(image
);
1061 xchg(&kexec_lock
, 0);