2 * SuperH On-Chip RTC Support
4 * Copyright (C) 2006 - 2009 Paul Mundt
5 * Copyright (C) 2006 Jamie Lenehan
6 * Copyright (C) 2008 Angelo Castello
8 * Based on the old arch/sh/kernel/cpu/rtc.c by:
10 * Copyright (C) 2000 Philipp Rumpf <prumpf@tux.org>
11 * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka
13 * This file is subject to the terms and conditions of the GNU General Public
14 * License. See the file "COPYING" in the main directory of this archive
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
27 #include <linux/log2.h>
28 #include <linux/clk.h>
31 #define DRV_NAME "sh-rtc"
32 #define DRV_VERSION "0.2.2"
34 #define RTC_REG(r) ((r) * rtc_reg_size)
36 #define R64CNT RTC_REG(0)
38 #define RSECCNT RTC_REG(1) /* RTC sec */
39 #define RMINCNT RTC_REG(2) /* RTC min */
40 #define RHRCNT RTC_REG(3) /* RTC hour */
41 #define RWKCNT RTC_REG(4) /* RTC week */
42 #define RDAYCNT RTC_REG(5) /* RTC day */
43 #define RMONCNT RTC_REG(6) /* RTC month */
44 #define RYRCNT RTC_REG(7) /* RTC year */
45 #define RSECAR RTC_REG(8) /* ALARM sec */
46 #define RMINAR RTC_REG(9) /* ALARM min */
47 #define RHRAR RTC_REG(10) /* ALARM hour */
48 #define RWKAR RTC_REG(11) /* ALARM week */
49 #define RDAYAR RTC_REG(12) /* ALARM day */
50 #define RMONAR RTC_REG(13) /* ALARM month */
51 #define RCR1 RTC_REG(14) /* Control */
52 #define RCR2 RTC_REG(15) /* Control */
55 * Note on RYRAR and RCR3: Up until this point most of the register
56 * definitions are consistent across all of the available parts. However,
57 * the placement of the optional RYRAR and RCR3 (the RYRAR control
58 * register used to control RYRCNT/RYRAR compare) varies considerably
59 * across various parts, occasionally being mapped in to a completely
60 * unrelated address space. For proper RYRAR support a separate resource
61 * would have to be handed off, but as this is purely optional in
62 * practice, we simply opt not to support it, thereby keeping the code
63 * quite a bit more simplified.
66 /* ALARM Bits - or with BCD encoded value */
67 #define AR_ENB 0x80 /* Enable for alarm cmp */
70 #define PF_HP 0x100 /* Enable Half Period to support 8,32,128Hz */
71 #define PF_COUNT 0x200 /* Half periodic counter */
72 #define PF_OXS 0x400 /* Periodic One x Second */
73 #define PF_KOU 0x800 /* Kernel or User periodic request 1=kernel */
77 #define RCR1_CF 0x80 /* Carry Flag */
78 #define RCR1_CIE 0x10 /* Carry Interrupt Enable */
79 #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */
80 #define RCR1_AF 0x01 /* Alarm Flag */
83 #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */
84 #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */
85 #define RCR2_RTCEN 0x08 /* ENable RTC */
86 #define RCR2_ADJ 0x04 /* ADJustment (30-second) */
87 #define RCR2_RESET 0x02 /* Reset bit */
88 #define RCR2_START 0x01 /* Start bit */
91 void __iomem
*regbase
;
92 unsigned long regsize
;
98 struct rtc_device
*rtc_dev
;
100 unsigned long capabilities
; /* See asm/rtc.h for cap bits */
101 unsigned short periodic_freq
;
104 static int __sh_rtc_interrupt(struct sh_rtc
*rtc
)
106 unsigned int tmp
, pending
;
108 tmp
= readb(rtc
->regbase
+ RCR1
);
109 pending
= tmp
& RCR1_CF
;
111 writeb(tmp
, rtc
->regbase
+ RCR1
);
113 /* Users have requested One x Second IRQ */
114 if (pending
&& rtc
->periodic_freq
& PF_OXS
)
115 rtc_update_irq(rtc
->rtc_dev
, 1, RTC_UF
| RTC_IRQF
);
120 static int __sh_rtc_alarm(struct sh_rtc
*rtc
)
122 unsigned int tmp
, pending
;
124 tmp
= readb(rtc
->regbase
+ RCR1
);
125 pending
= tmp
& RCR1_AF
;
126 tmp
&= ~(RCR1_AF
| RCR1_AIE
);
127 writeb(tmp
, rtc
->regbase
+ RCR1
);
130 rtc_update_irq(rtc
->rtc_dev
, 1, RTC_AF
| RTC_IRQF
);
135 static int __sh_rtc_periodic(struct sh_rtc
*rtc
)
137 struct rtc_device
*rtc_dev
= rtc
->rtc_dev
;
138 struct rtc_task
*irq_task
;
139 unsigned int tmp
, pending
;
141 tmp
= readb(rtc
->regbase
+ RCR2
);
142 pending
= tmp
& RCR2_PEF
;
144 writeb(tmp
, rtc
->regbase
+ RCR2
);
149 /* Half period enabled than one skipped and the next notified */
150 if ((rtc
->periodic_freq
& PF_HP
) && (rtc
->periodic_freq
& PF_COUNT
))
151 rtc
->periodic_freq
&= ~PF_COUNT
;
153 if (rtc
->periodic_freq
& PF_HP
)
154 rtc
->periodic_freq
|= PF_COUNT
;
155 if (rtc
->periodic_freq
& PF_KOU
) {
156 spin_lock(&rtc_dev
->irq_task_lock
);
157 irq_task
= rtc_dev
->irq_task
;
159 irq_task
->func(irq_task
->private_data
);
160 spin_unlock(&rtc_dev
->irq_task_lock
);
162 rtc_update_irq(rtc
->rtc_dev
, 1, RTC_PF
| RTC_IRQF
);
168 static irqreturn_t
sh_rtc_interrupt(int irq
, void *dev_id
)
170 struct sh_rtc
*rtc
= dev_id
;
173 spin_lock(&rtc
->lock
);
174 ret
= __sh_rtc_interrupt(rtc
);
175 spin_unlock(&rtc
->lock
);
177 return IRQ_RETVAL(ret
);
180 static irqreturn_t
sh_rtc_alarm(int irq
, void *dev_id
)
182 struct sh_rtc
*rtc
= dev_id
;
185 spin_lock(&rtc
->lock
);
186 ret
= __sh_rtc_alarm(rtc
);
187 spin_unlock(&rtc
->lock
);
189 return IRQ_RETVAL(ret
);
192 static irqreturn_t
sh_rtc_periodic(int irq
, void *dev_id
)
194 struct sh_rtc
*rtc
= dev_id
;
197 spin_lock(&rtc
->lock
);
198 ret
= __sh_rtc_periodic(rtc
);
199 spin_unlock(&rtc
->lock
);
201 return IRQ_RETVAL(ret
);
204 static irqreturn_t
sh_rtc_shared(int irq
, void *dev_id
)
206 struct sh_rtc
*rtc
= dev_id
;
209 spin_lock(&rtc
->lock
);
210 ret
= __sh_rtc_interrupt(rtc
);
211 ret
|= __sh_rtc_alarm(rtc
);
212 ret
|= __sh_rtc_periodic(rtc
);
213 spin_unlock(&rtc
->lock
);
215 return IRQ_RETVAL(ret
);
218 static inline void sh_rtc_setpie(struct device
*dev
, unsigned int enable
)
220 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
223 spin_lock_irq(&rtc
->lock
);
225 tmp
= readb(rtc
->regbase
+ RCR2
);
228 tmp
&= ~RCR2_PEF
; /* Clear PES bit */
229 tmp
|= (rtc
->periodic_freq
& ~PF_HP
); /* Set PES2-0 */
231 tmp
&= ~(RCR2_PESMASK
| RCR2_PEF
);
233 writeb(tmp
, rtc
->regbase
+ RCR2
);
235 spin_unlock_irq(&rtc
->lock
);
238 static inline int sh_rtc_setfreq(struct device
*dev
, unsigned int freq
)
240 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
243 spin_lock_irq(&rtc
->lock
);
244 tmp
= rtc
->periodic_freq
& PF_MASK
;
248 rtc
->periodic_freq
= 0x00;
251 rtc
->periodic_freq
= 0x60;
254 rtc
->periodic_freq
= 0x50;
257 rtc
->periodic_freq
= 0x40;
260 rtc
->periodic_freq
= 0x30 | PF_HP
;
263 rtc
->periodic_freq
= 0x30;
266 rtc
->periodic_freq
= 0x20 | PF_HP
;
269 rtc
->periodic_freq
= 0x20;
272 rtc
->periodic_freq
= 0x10 | PF_HP
;
275 rtc
->periodic_freq
= 0x10;
282 rtc
->periodic_freq
|= tmp
;
283 rtc
->rtc_dev
->irq_freq
= freq
;
286 spin_unlock_irq(&rtc
->lock
);
290 static inline void sh_rtc_setaie(struct device
*dev
, unsigned int enable
)
292 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
295 spin_lock_irq(&rtc
->lock
);
297 tmp
= readb(rtc
->regbase
+ RCR1
);
304 writeb(tmp
, rtc
->regbase
+ RCR1
);
306 spin_unlock_irq(&rtc
->lock
);
309 static int sh_rtc_proc(struct device
*dev
, struct seq_file
*seq
)
311 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
314 tmp
= readb(rtc
->regbase
+ RCR1
);
315 seq_printf(seq
, "carry_IRQ\t: %s\n", (tmp
& RCR1_CIE
) ? "yes" : "no");
317 tmp
= readb(rtc
->regbase
+ RCR2
);
318 seq_printf(seq
, "periodic_IRQ\t: %s\n",
319 (tmp
& RCR2_PESMASK
) ? "yes" : "no");
324 static inline void sh_rtc_setcie(struct device
*dev
, unsigned int enable
)
326 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
329 spin_lock_irq(&rtc
->lock
);
331 tmp
= readb(rtc
->regbase
+ RCR1
);
338 writeb(tmp
, rtc
->regbase
+ RCR1
);
340 spin_unlock_irq(&rtc
->lock
);
343 static int sh_rtc_ioctl(struct device
*dev
, unsigned int cmd
, unsigned long arg
)
345 struct sh_rtc
*rtc
= dev_get_drvdata(dev
);
346 unsigned int ret
= 0;
351 sh_rtc_setpie(dev
, cmd
== RTC_PIE_ON
);
355 sh_rtc_setaie(dev
, cmd
== RTC_AIE_ON
);
358 rtc
->periodic_freq
&= ~PF_OXS
;
359 sh_rtc_setcie(dev
, 0);
362 rtc
->periodic_freq
|= PF_OXS
;
363 sh_rtc_setcie(dev
, 1);
366 ret
= put_user(rtc
->rtc_dev
->irq_freq
,
367 (unsigned long __user
*)arg
);
370 ret
= sh_rtc_setfreq(dev
, arg
);
379 static int sh_rtc_read_time(struct device
*dev
, struct rtc_time
*tm
)
381 struct platform_device
*pdev
= to_platform_device(dev
);
382 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
383 unsigned int sec128
, sec2
, yr
, yr100
, cf_bit
;
388 spin_lock_irq(&rtc
->lock
);
390 tmp
= readb(rtc
->regbase
+ RCR1
);
391 tmp
&= ~RCR1_CF
; /* Clear CF-bit */
393 writeb(tmp
, rtc
->regbase
+ RCR1
);
395 sec128
= readb(rtc
->regbase
+ R64CNT
);
397 tm
->tm_sec
= bcd2bin(readb(rtc
->regbase
+ RSECCNT
));
398 tm
->tm_min
= bcd2bin(readb(rtc
->regbase
+ RMINCNT
));
399 tm
->tm_hour
= bcd2bin(readb(rtc
->regbase
+ RHRCNT
));
400 tm
->tm_wday
= bcd2bin(readb(rtc
->regbase
+ RWKCNT
));
401 tm
->tm_mday
= bcd2bin(readb(rtc
->regbase
+ RDAYCNT
));
402 tm
->tm_mon
= bcd2bin(readb(rtc
->regbase
+ RMONCNT
)) - 1;
404 if (rtc
->capabilities
& RTC_CAP_4_DIGIT_YEAR
) {
405 yr
= readw(rtc
->regbase
+ RYRCNT
);
406 yr100
= bcd2bin(yr
>> 8);
409 yr
= readb(rtc
->regbase
+ RYRCNT
);
410 yr100
= bcd2bin((yr
== 0x99) ? 0x19 : 0x20);
413 tm
->tm_year
= (yr100
* 100 + bcd2bin(yr
)) - 1900;
415 sec2
= readb(rtc
->regbase
+ R64CNT
);
416 cf_bit
= readb(rtc
->regbase
+ RCR1
) & RCR1_CF
;
418 spin_unlock_irq(&rtc
->lock
);
419 } while (cf_bit
!= 0 || ((sec128
^ sec2
) & RTC_BIT_INVERTED
) != 0);
421 #if RTC_BIT_INVERTED != 0
422 if ((sec128
& RTC_BIT_INVERTED
))
426 /* only keep the carry interrupt enabled if UIE is on */
427 if (!(rtc
->periodic_freq
& PF_OXS
))
428 sh_rtc_setcie(dev
, 0);
430 dev_dbg(dev
, "%s: tm is secs=%d, mins=%d, hours=%d, "
431 "mday=%d, mon=%d, year=%d, wday=%d\n",
433 tm
->tm_sec
, tm
->tm_min
, tm
->tm_hour
,
434 tm
->tm_mday
, tm
->tm_mon
+ 1, tm
->tm_year
, tm
->tm_wday
);
436 return rtc_valid_tm(tm
);
439 static int sh_rtc_set_time(struct device
*dev
, struct rtc_time
*tm
)
441 struct platform_device
*pdev
= to_platform_device(dev
);
442 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
446 spin_lock_irq(&rtc
->lock
);
448 /* Reset pre-scaler & stop RTC */
449 tmp
= readb(rtc
->regbase
+ RCR2
);
452 writeb(tmp
, rtc
->regbase
+ RCR2
);
454 writeb(bin2bcd(tm
->tm_sec
), rtc
->regbase
+ RSECCNT
);
455 writeb(bin2bcd(tm
->tm_min
), rtc
->regbase
+ RMINCNT
);
456 writeb(bin2bcd(tm
->tm_hour
), rtc
->regbase
+ RHRCNT
);
457 writeb(bin2bcd(tm
->tm_wday
), rtc
->regbase
+ RWKCNT
);
458 writeb(bin2bcd(tm
->tm_mday
), rtc
->regbase
+ RDAYCNT
);
459 writeb(bin2bcd(tm
->tm_mon
+ 1), rtc
->regbase
+ RMONCNT
);
461 if (rtc
->capabilities
& RTC_CAP_4_DIGIT_YEAR
) {
462 year
= (bin2bcd((tm
->tm_year
+ 1900) / 100) << 8) |
463 bin2bcd(tm
->tm_year
% 100);
464 writew(year
, rtc
->regbase
+ RYRCNT
);
466 year
= tm
->tm_year
% 100;
467 writeb(bin2bcd(year
), rtc
->regbase
+ RYRCNT
);
471 tmp
= readb(rtc
->regbase
+ RCR2
);
473 tmp
|= RCR2_RTCEN
| RCR2_START
;
474 writeb(tmp
, rtc
->regbase
+ RCR2
);
476 spin_unlock_irq(&rtc
->lock
);
481 static inline int sh_rtc_read_alarm_value(struct sh_rtc
*rtc
, int reg_off
)
484 int value
= 0xff; /* return 0xff for ignored values */
486 byte
= readb(rtc
->regbase
+ reg_off
);
488 byte
&= ~AR_ENB
; /* strip the enable bit */
489 value
= bcd2bin(byte
);
495 static int sh_rtc_read_alarm(struct device
*dev
, struct rtc_wkalrm
*wkalrm
)
497 struct platform_device
*pdev
= to_platform_device(dev
);
498 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
499 struct rtc_time
*tm
= &wkalrm
->time
;
501 spin_lock_irq(&rtc
->lock
);
503 tm
->tm_sec
= sh_rtc_read_alarm_value(rtc
, RSECAR
);
504 tm
->tm_min
= sh_rtc_read_alarm_value(rtc
, RMINAR
);
505 tm
->tm_hour
= sh_rtc_read_alarm_value(rtc
, RHRAR
);
506 tm
->tm_wday
= sh_rtc_read_alarm_value(rtc
, RWKAR
);
507 tm
->tm_mday
= sh_rtc_read_alarm_value(rtc
, RDAYAR
);
508 tm
->tm_mon
= sh_rtc_read_alarm_value(rtc
, RMONAR
);
510 tm
->tm_mon
-= 1; /* RTC is 1-12, tm_mon is 0-11 */
511 tm
->tm_year
= 0xffff;
513 wkalrm
->enabled
= (readb(rtc
->regbase
+ RCR1
) & RCR1_AIE
) ? 1 : 0;
515 spin_unlock_irq(&rtc
->lock
);
520 static inline void sh_rtc_write_alarm_value(struct sh_rtc
*rtc
,
521 int value
, int reg_off
)
523 /* < 0 for a value that is ignored */
525 writeb(0, rtc
->regbase
+ reg_off
);
527 writeb(bin2bcd(value
) | AR_ENB
, rtc
->regbase
+ reg_off
);
530 static int sh_rtc_check_alarm(struct rtc_time
*tm
)
533 * The original rtc says anything > 0xc0 is "don't care" or "match
534 * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
535 * The original rtc doesn't support years - some things use -1 and
536 * some 0xffff. We use -1 to make out tests easier.
538 if (tm
->tm_year
== 0xffff)
540 if (tm
->tm_mon
>= 0xff)
542 if (tm
->tm_mday
>= 0xff)
544 if (tm
->tm_wday
>= 0xff)
546 if (tm
->tm_hour
>= 0xff)
548 if (tm
->tm_min
>= 0xff)
550 if (tm
->tm_sec
>= 0xff)
553 if (tm
->tm_year
> 9999 ||
555 tm
->tm_mday
== 0 || tm
->tm_mday
>= 32 ||
565 static int sh_rtc_set_alarm(struct device
*dev
, struct rtc_wkalrm
*wkalrm
)
567 struct platform_device
*pdev
= to_platform_device(dev
);
568 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
570 struct rtc_time
*tm
= &wkalrm
->time
;
573 err
= sh_rtc_check_alarm(tm
);
574 if (unlikely(err
< 0))
577 spin_lock_irq(&rtc
->lock
);
579 /* disable alarm interrupt and clear the alarm flag */
580 rcr1
= readb(rtc
->regbase
+ RCR1
);
581 rcr1
&= ~(RCR1_AF
| RCR1_AIE
);
582 writeb(rcr1
, rtc
->regbase
+ RCR1
);
585 sh_rtc_write_alarm_value(rtc
, tm
->tm_sec
, RSECAR
);
586 sh_rtc_write_alarm_value(rtc
, tm
->tm_min
, RMINAR
);
587 sh_rtc_write_alarm_value(rtc
, tm
->tm_hour
, RHRAR
);
588 sh_rtc_write_alarm_value(rtc
, tm
->tm_wday
, RWKAR
);
589 sh_rtc_write_alarm_value(rtc
, tm
->tm_mday
, RDAYAR
);
593 sh_rtc_write_alarm_value(rtc
, mon
, RMONAR
);
595 if (wkalrm
->enabled
) {
597 writeb(rcr1
, rtc
->regbase
+ RCR1
);
600 spin_unlock_irq(&rtc
->lock
);
605 static int sh_rtc_irq_set_state(struct device
*dev
, int enabled
)
607 struct platform_device
*pdev
= to_platform_device(dev
);
608 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
611 rtc
->periodic_freq
|= PF_KOU
;
612 return sh_rtc_ioctl(dev
, RTC_PIE_ON
, 0);
614 rtc
->periodic_freq
&= ~PF_KOU
;
615 return sh_rtc_ioctl(dev
, RTC_PIE_OFF
, 0);
619 static int sh_rtc_irq_set_freq(struct device
*dev
, int freq
)
621 if (!is_power_of_2(freq
))
624 return sh_rtc_ioctl(dev
, RTC_IRQP_SET
, freq
);
627 static struct rtc_class_ops sh_rtc_ops
= {
628 .ioctl
= sh_rtc_ioctl
,
629 .read_time
= sh_rtc_read_time
,
630 .set_time
= sh_rtc_set_time
,
631 .read_alarm
= sh_rtc_read_alarm
,
632 .set_alarm
= sh_rtc_set_alarm
,
633 .irq_set_state
= sh_rtc_irq_set_state
,
634 .irq_set_freq
= sh_rtc_irq_set_freq
,
638 static int __devinit
sh_rtc_probe(struct platform_device
*pdev
)
641 struct resource
*res
;
646 rtc
= kzalloc(sizeof(struct sh_rtc
), GFP_KERNEL
);
650 spin_lock_init(&rtc
->lock
);
652 /* get periodic/carry/alarm irqs */
653 ret
= platform_get_irq(pdev
, 0);
654 if (unlikely(ret
<= 0)) {
656 dev_err(&pdev
->dev
, "No IRQ resource\n");
660 rtc
->periodic_irq
= ret
;
661 rtc
->carry_irq
= platform_get_irq(pdev
, 1);
662 rtc
->alarm_irq
= platform_get_irq(pdev
, 2);
664 res
= platform_get_resource(pdev
, IORESOURCE_IO
, 0);
665 if (unlikely(res
== NULL
)) {
667 dev_err(&pdev
->dev
, "No IO resource\n");
671 rtc
->regsize
= resource_size(res
);
673 rtc
->res
= request_mem_region(res
->start
, rtc
->regsize
, pdev
->name
);
674 if (unlikely(!rtc
->res
)) {
679 rtc
->regbase
= ioremap_nocache(rtc
->res
->start
, rtc
->regsize
);
680 if (unlikely(!rtc
->regbase
)) {
686 /* With a single device, the clock id is still "rtc0" */
690 snprintf(clk_name
, sizeof(clk_name
), "rtc%d", clk_id
);
692 rtc
->clk
= clk_get(&pdev
->dev
, clk_name
);
693 if (IS_ERR(rtc
->clk
)) {
695 * No error handling for rtc->clk intentionally, not all
696 * platforms will have a unique clock for the RTC, and
697 * the clk API can handle the struct clk pointer being
703 clk_enable(rtc
->clk
);
705 rtc
->rtc_dev
= rtc_device_register("sh", &pdev
->dev
,
706 &sh_rtc_ops
, THIS_MODULE
);
707 if (IS_ERR(rtc
->rtc_dev
)) {
708 ret
= PTR_ERR(rtc
->rtc_dev
);
712 rtc
->capabilities
= RTC_DEF_CAPABILITIES
;
713 if (pdev
->dev
.platform_data
) {
714 struct sh_rtc_platform_info
*pinfo
= pdev
->dev
.platform_data
;
717 * Some CPUs have special capabilities in addition to the
718 * default set. Add those in here.
720 rtc
->capabilities
|= pinfo
->capabilities
;
723 rtc
->rtc_dev
->max_user_freq
= 256;
725 platform_set_drvdata(pdev
, rtc
);
727 if (rtc
->carry_irq
<= 0) {
728 /* register shared periodic/carry/alarm irq */
729 ret
= request_irq(rtc
->periodic_irq
, sh_rtc_shared
,
730 IRQF_DISABLED
, "sh-rtc", rtc
);
733 "request IRQ failed with %d, IRQ %d\n", ret
,
738 /* register periodic/carry/alarm irqs */
739 ret
= request_irq(rtc
->periodic_irq
, sh_rtc_periodic
,
740 IRQF_DISABLED
, "sh-rtc period", rtc
);
743 "request period IRQ failed with %d, IRQ %d\n",
744 ret
, rtc
->periodic_irq
);
748 ret
= request_irq(rtc
->carry_irq
, sh_rtc_interrupt
,
749 IRQF_DISABLED
, "sh-rtc carry", rtc
);
752 "request carry IRQ failed with %d, IRQ %d\n",
753 ret
, rtc
->carry_irq
);
754 free_irq(rtc
->periodic_irq
, rtc
);
758 ret
= request_irq(rtc
->alarm_irq
, sh_rtc_alarm
,
759 IRQF_DISABLED
, "sh-rtc alarm", rtc
);
762 "request alarm IRQ failed with %d, IRQ %d\n",
763 ret
, rtc
->alarm_irq
);
764 free_irq(rtc
->carry_irq
, rtc
);
765 free_irq(rtc
->periodic_irq
, rtc
);
770 /* everything disabled by default */
771 rtc
->periodic_freq
= 0;
772 rtc
->rtc_dev
->irq_freq
= 0;
773 sh_rtc_setpie(&pdev
->dev
, 0);
774 sh_rtc_setaie(&pdev
->dev
, 0);
775 sh_rtc_setcie(&pdev
->dev
, 0);
777 /* reset rtc to epoch 0 if time is invalid */
778 if (rtc_read_time(rtc
->rtc_dev
, &r
) < 0) {
779 rtc_time_to_tm(0, &r
);
780 rtc_set_time(rtc
->rtc_dev
, &r
);
783 device_init_wakeup(&pdev
->dev
, 1);
787 clk_disable(rtc
->clk
);
789 iounmap(rtc
->regbase
);
791 release_resource(rtc
->res
);
798 static int __devexit
sh_rtc_remove(struct platform_device
*pdev
)
800 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
802 if (likely(rtc
->rtc_dev
))
803 rtc_device_unregister(rtc
->rtc_dev
);
805 sh_rtc_setpie(&pdev
->dev
, 0);
806 sh_rtc_setaie(&pdev
->dev
, 0);
807 sh_rtc_setcie(&pdev
->dev
, 0);
809 free_irq(rtc
->periodic_irq
, rtc
);
811 if (rtc
->carry_irq
> 0) {
812 free_irq(rtc
->carry_irq
, rtc
);
813 free_irq(rtc
->alarm_irq
, rtc
);
816 release_resource(rtc
->res
);
818 iounmap(rtc
->regbase
);
820 clk_disable(rtc
->clk
);
823 platform_set_drvdata(pdev
, NULL
);
830 static void sh_rtc_set_irq_wake(struct device
*dev
, int enabled
)
832 struct platform_device
*pdev
= to_platform_device(dev
);
833 struct sh_rtc
*rtc
= platform_get_drvdata(pdev
);
835 set_irq_wake(rtc
->periodic_irq
, enabled
);
837 if (rtc
->carry_irq
> 0) {
838 set_irq_wake(rtc
->carry_irq
, enabled
);
839 set_irq_wake(rtc
->alarm_irq
, enabled
);
843 static int sh_rtc_suspend(struct device
*dev
)
845 if (device_may_wakeup(dev
))
846 sh_rtc_set_irq_wake(dev
, 1);
851 static int sh_rtc_resume(struct device
*dev
)
853 if (device_may_wakeup(dev
))
854 sh_rtc_set_irq_wake(dev
, 0);
859 static struct dev_pm_ops sh_rtc_dev_pm_ops
= {
860 .suspend
= sh_rtc_suspend
,
861 .resume
= sh_rtc_resume
,
864 static struct platform_driver sh_rtc_platform_driver
= {
867 .owner
= THIS_MODULE
,
868 .pm
= &sh_rtc_dev_pm_ops
,
870 .probe
= sh_rtc_probe
,
871 .remove
= __devexit_p(sh_rtc_remove
),
874 static int __init
sh_rtc_init(void)
876 return platform_driver_register(&sh_rtc_platform_driver
);
879 static void __exit
sh_rtc_exit(void)
881 platform_driver_unregister(&sh_rtc_platform_driver
);
884 module_init(sh_rtc_init
);
885 module_exit(sh_rtc_exit
);
887 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
888 MODULE_VERSION(DRV_VERSION
);
889 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
890 "Jamie Lenehan <lenehan@twibble.org>, "
891 "Angelo Castello <angelo.castello@st.com>");
892 MODULE_LICENSE("GPL");
893 MODULE_ALIAS("platform:" DRV_NAME
);