1 #ifndef _ASM_GENERIC_PGTABLE_H
2 #define _ASM_GENERIC_PGTABLE_H
7 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
9 * Largely same as above, but only sets the access flags (dirty,
10 * accessed, and writable). Furthermore, we know it always gets set
11 * to a "more permissive" setting, which allows most architectures
12 * to optimize this. We return whether the PTE actually changed, which
13 * in turn instructs the caller to do things like update__mmu_cache.
14 * This used to be done in the caller, but sparc needs minor faults to
15 * force that call on sun4c so we changed this macro slightly
17 #define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
19 int __changed = !pte_same(*(__ptep), __entry); \
21 set_pte_at((__vma)->vm_mm, (__address), __ptep, __entry); \
22 flush_tlb_page(__vma, __address); \
28 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
29 #define ptep_test_and_clear_young(__vma, __address, __ptep) \
31 pte_t __pte = *(__ptep); \
33 if (!pte_young(__pte)) \
36 set_pte_at((__vma)->vm_mm, (__address), \
37 (__ptep), pte_mkold(__pte)); \
42 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
43 #define ptep_clear_flush_young(__vma, __address, __ptep) \
46 __young = ptep_test_and_clear_young(__vma, __address, __ptep); \
48 flush_tlb_page(__vma, __address); \
53 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
54 #define ptep_get_and_clear(__mm, __address, __ptep) \
56 pte_t __pte = *(__ptep); \
57 pte_clear((__mm), (__address), (__ptep)); \
62 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
63 #define ptep_get_and_clear_full(__mm, __address, __ptep, __full) \
66 __pte = ptep_get_and_clear((__mm), (__address), (__ptep)); \
72 * Some architectures may be able to avoid expensive synchronization
73 * primitives when modifications are made to PTE's which are already
74 * not present, or in the process of an address space destruction.
76 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
77 #define pte_clear_not_present_full(__mm, __address, __ptep, __full) \
79 pte_clear((__mm), (__address), (__ptep)); \
83 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
84 #define ptep_clear_flush(__vma, __address, __ptep) \
87 __pte = ptep_get_and_clear((__vma)->vm_mm, __address, __ptep); \
88 flush_tlb_page(__vma, __address); \
93 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
95 static inline void ptep_set_wrprotect(struct mm_struct
*mm
, unsigned long address
, pte_t
*ptep
)
97 pte_t old_pte
= *ptep
;
98 set_pte_at(mm
, address
, ptep
, pte_wrprotect(old_pte
));
102 #ifndef __HAVE_ARCH_PTE_SAME
103 #define pte_same(A,B) (pte_val(A) == pte_val(B))
106 #ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
107 #define page_test_dirty(page) (0)
110 #ifndef __HAVE_ARCH_PAGE_CLEAR_DIRTY
111 #define page_clear_dirty(page) do { } while (0)
114 #ifndef __HAVE_ARCH_PAGE_TEST_DIRTY
115 #define pte_maybe_dirty(pte) pte_dirty(pte)
117 #define pte_maybe_dirty(pte) (1)
120 #ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
121 #define page_test_and_clear_young(page) (0)
124 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
125 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
128 #ifndef __HAVE_ARCH_MOVE_PTE
129 #define move_pte(pte, prot, old_addr, new_addr) (pte)
132 #ifndef pgprot_writecombine
133 #define pgprot_writecombine pgprot_noncached
137 * When walking page tables, get the address of the next boundary,
138 * or the end address of the range if that comes earlier. Although no
139 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
142 #define pgd_addr_end(addr, end) \
143 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
144 (__boundary - 1 < (end) - 1)? __boundary: (end); \
148 #define pud_addr_end(addr, end) \
149 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
150 (__boundary - 1 < (end) - 1)? __boundary: (end); \
155 #define pmd_addr_end(addr, end) \
156 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
157 (__boundary - 1 < (end) - 1)? __boundary: (end); \
162 * When walking page tables, we usually want to skip any p?d_none entries;
163 * and any p?d_bad entries - reporting the error before resetting to none.
164 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
166 void pgd_clear_bad(pgd_t
*);
167 void pud_clear_bad(pud_t
*);
168 void pmd_clear_bad(pmd_t
*);
170 static inline int pgd_none_or_clear_bad(pgd_t
*pgd
)
174 if (unlikely(pgd_bad(*pgd
))) {
181 static inline int pud_none_or_clear_bad(pud_t
*pud
)
185 if (unlikely(pud_bad(*pud
))) {
192 static inline int pmd_none_or_clear_bad(pmd_t
*pmd
)
196 if (unlikely(pmd_bad(*pmd
))) {
203 static inline pte_t
__ptep_modify_prot_start(struct mm_struct
*mm
,
208 * Get the current pte state, but zero it out to make it
209 * non-present, preventing the hardware from asynchronously
212 return ptep_get_and_clear(mm
, addr
, ptep
);
215 static inline void __ptep_modify_prot_commit(struct mm_struct
*mm
,
217 pte_t
*ptep
, pte_t pte
)
220 * The pte is non-present, so there's no hardware state to
223 set_pte_at(mm
, addr
, ptep
, pte
);
226 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
228 * Start a pte protection read-modify-write transaction, which
229 * protects against asynchronous hardware modifications to the pte.
230 * The intention is not to prevent the hardware from making pte
231 * updates, but to prevent any updates it may make from being lost.
233 * This does not protect against other software modifications of the
234 * pte; the appropriate pte lock must be held over the transation.
236 * Note that this interface is intended to be batchable, meaning that
237 * ptep_modify_prot_commit may not actually update the pte, but merely
238 * queue the update to be done at some later time. The update must be
239 * actually committed before the pte lock is released, however.
241 static inline pte_t
ptep_modify_prot_start(struct mm_struct
*mm
,
245 return __ptep_modify_prot_start(mm
, addr
, ptep
);
249 * Commit an update to a pte, leaving any hardware-controlled bits in
250 * the PTE unmodified.
252 static inline void ptep_modify_prot_commit(struct mm_struct
*mm
,
254 pte_t
*ptep
, pte_t pte
)
256 __ptep_modify_prot_commit(mm
, addr
, ptep
, pte
);
258 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
259 #endif /* CONFIG_MMU */
262 * A facility to provide lazy MMU batching. This allows PTE updates and
263 * page invalidations to be delayed until a call to leave lazy MMU mode
264 * is issued. Some architectures may benefit from doing this, and it is
265 * beneficial for both shadow and direct mode hypervisors, which may batch
266 * the PTE updates which happen during this window. Note that using this
267 * interface requires that read hazards be removed from the code. A read
268 * hazard could result in the direct mode hypervisor case, since the actual
269 * write to the page tables may not yet have taken place, so reads though
270 * a raw PTE pointer after it has been modified are not guaranteed to be
271 * up to date. This mode can only be entered and left under the protection of
272 * the page table locks for all page tables which may be modified. In the UP
273 * case, this is required so that preemption is disabled, and in the SMP case,
274 * it must synchronize the delayed page table writes properly on other CPUs.
276 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
277 #define arch_enter_lazy_mmu_mode() do {} while (0)
278 #define arch_leave_lazy_mmu_mode() do {} while (0)
279 #define arch_flush_lazy_mmu_mode() do {} while (0)
283 * A facility to provide batching of the reload of page tables with the
284 * actual context switch code for paravirtualized guests. By convention,
285 * only one of the lazy modes (CPU, MMU) should be active at any given
286 * time, entry should never be nested, and entry and exits should always
287 * be paired. This is for sanity of maintaining and reasoning about the
290 #ifndef __HAVE_ARCH_ENTER_LAZY_CPU_MODE
291 #define arch_enter_lazy_cpu_mode() do {} while (0)
292 #define arch_leave_lazy_cpu_mode() do {} while (0)
293 #define arch_flush_lazy_cpu_mode() do {} while (0)
296 #ifndef __HAVE_PFNMAP_TRACKING
298 * Interface that can be used by architecture code to keep track of
299 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
301 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
302 * for physical range indicated by pfn and size.
304 static inline int track_pfn_vma_new(struct vm_area_struct
*vma
, pgprot_t
*prot
,
305 unsigned long pfn
, unsigned long size
)
311 * Interface that can be used by architecture code to keep track of
312 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
314 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
315 * copied through copy_page_range().
317 static inline int track_pfn_vma_copy(struct vm_area_struct
*vma
)
323 * Interface that can be used by architecture code to keep track of
324 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
326 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
327 * untrack can be called for a specific region indicated by pfn and size or
328 * can be for the entire vma (in which case size can be zero).
330 static inline void untrack_pfn_vma(struct vm_area_struct
*vma
,
331 unsigned long pfn
, unsigned long size
)
335 extern int track_pfn_vma_new(struct vm_area_struct
*vma
, pgprot_t
*prot
,
336 unsigned long pfn
, unsigned long size
);
337 extern int track_pfn_vma_copy(struct vm_area_struct
*vma
);
338 extern void untrack_pfn_vma(struct vm_area_struct
*vma
, unsigned long pfn
,
342 #endif /* !__ASSEMBLY__ */
344 #endif /* _ASM_GENERIC_PGTABLE_H */