[PATCH] ext4: blk_type from sector_t to unsigned long long
[linux-2.6/mini2440.git] / fs / ext4 / balloc.c
blobdf77ea891f29e48b27b7591f787e3757faccae79
1 /*
2 * linux/fs/ext4/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/ext4_fs.h>
19 #include <linux/ext4_jbd2.h>
20 #include <linux/quotaops.h>
21 #include <linux/buffer_head.h>
24 * balloc.c contains the blocks allocation and deallocation routines
28 * The free blocks are managed by bitmaps. A file system contains several
29 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
30 * block for inodes, N blocks for the inode table and data blocks.
32 * The file system contains group descriptors which are located after the
33 * super block. Each descriptor contains the number of the bitmap block and
34 * the free blocks count in the block. The descriptors are loaded in memory
35 * when a file system is mounted (see ext4_read_super).
39 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
41 /**
42 * ext4_get_group_desc() -- load group descriptor from disk
43 * @sb: super block
44 * @block_group: given block group
45 * @bh: pointer to the buffer head to store the block
46 * group descriptor
48 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
49 unsigned int block_group,
50 struct buffer_head ** bh)
52 unsigned long group_desc;
53 unsigned long offset;
54 struct ext4_group_desc * desc;
55 struct ext4_sb_info *sbi = EXT4_SB(sb);
57 if (block_group >= sbi->s_groups_count) {
58 ext4_error (sb, "ext4_get_group_desc",
59 "block_group >= groups_count - "
60 "block_group = %d, groups_count = %lu",
61 block_group, sbi->s_groups_count);
63 return NULL;
65 smp_rmb();
67 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
68 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
69 if (!sbi->s_group_desc[group_desc]) {
70 ext4_error (sb, "ext4_get_group_desc",
71 "Group descriptor not loaded - "
72 "block_group = %d, group_desc = %lu, desc = %lu",
73 block_group, group_desc, offset);
74 return NULL;
77 desc = (struct ext4_group_desc *) sbi->s_group_desc[group_desc]->b_data;
78 if (bh)
79 *bh = sbi->s_group_desc[group_desc];
80 return desc + offset;
83 /**
84 * read_block_bitmap()
85 * @sb: super block
86 * @block_group: given block group
88 * Read the bitmap for a given block_group, reading into the specified
89 * slot in the superblock's bitmap cache.
91 * Return buffer_head on success or NULL in case of failure.
93 static struct buffer_head *
94 read_block_bitmap(struct super_block *sb, unsigned int block_group)
96 struct ext4_group_desc * desc;
97 struct buffer_head * bh = NULL;
99 desc = ext4_get_group_desc (sb, block_group, NULL);
100 if (!desc)
101 goto error_out;
102 bh = sb_bread(sb, ext4_block_bitmap(desc));
103 if (!bh)
104 ext4_error (sb, "read_block_bitmap",
105 "Cannot read block bitmap - "
106 "block_group = %d, block_bitmap = %llu",
107 block_group,
108 ext4_block_bitmap(desc));
109 error_out:
110 return bh;
113 * The reservation window structure operations
114 * --------------------------------------------
115 * Operations include:
116 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
118 * We use a red-black tree to represent per-filesystem reservation
119 * windows.
124 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
125 * @rb_root: root of per-filesystem reservation rb tree
126 * @verbose: verbose mode
127 * @fn: function which wishes to dump the reservation map
129 * If verbose is turned on, it will print the whole block reservation
130 * windows(start, end). Otherwise, it will only print out the "bad" windows,
131 * those windows that overlap with their immediate neighbors.
133 #if 1
134 static void __rsv_window_dump(struct rb_root *root, int verbose,
135 const char *fn)
137 struct rb_node *n;
138 struct ext4_reserve_window_node *rsv, *prev;
139 int bad;
141 restart:
142 n = rb_first(root);
143 bad = 0;
144 prev = NULL;
146 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
147 while (n) {
148 rsv = list_entry(n, struct ext4_reserve_window_node, rsv_node);
149 if (verbose)
150 printk("reservation window 0x%p "
151 "start: %llu, end: %llu\n",
152 rsv, rsv->rsv_start, rsv->rsv_end);
153 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
154 printk("Bad reservation %p (start >= end)\n",
155 rsv);
156 bad = 1;
158 if (prev && prev->rsv_end >= rsv->rsv_start) {
159 printk("Bad reservation %p (prev->end >= start)\n",
160 rsv);
161 bad = 1;
163 if (bad) {
164 if (!verbose) {
165 printk("Restarting reservation walk in verbose mode\n");
166 verbose = 1;
167 goto restart;
170 n = rb_next(n);
171 prev = rsv;
173 printk("Window map complete.\n");
174 if (bad)
175 BUG();
177 #define rsv_window_dump(root, verbose) \
178 __rsv_window_dump((root), (verbose), __FUNCTION__)
179 #else
180 #define rsv_window_dump(root, verbose) do {} while (0)
181 #endif
184 * goal_in_my_reservation()
185 * @rsv: inode's reservation window
186 * @grp_goal: given goal block relative to the allocation block group
187 * @group: the current allocation block group
188 * @sb: filesystem super block
190 * Test if the given goal block (group relative) is within the file's
191 * own block reservation window range.
193 * If the reservation window is outside the goal allocation group, return 0;
194 * grp_goal (given goal block) could be -1, which means no specific
195 * goal block. In this case, always return 1.
196 * If the goal block is within the reservation window, return 1;
197 * otherwise, return 0;
199 static int
200 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
201 unsigned int group, struct super_block * sb)
203 ext4_fsblk_t group_first_block, group_last_block;
205 group_first_block = ext4_group_first_block_no(sb, group);
206 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
208 if ((rsv->_rsv_start > group_last_block) ||
209 (rsv->_rsv_end < group_first_block))
210 return 0;
211 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
212 || (grp_goal + group_first_block > rsv->_rsv_end)))
213 return 0;
214 return 1;
218 * search_reserve_window()
219 * @rb_root: root of reservation tree
220 * @goal: target allocation block
222 * Find the reserved window which includes the goal, or the previous one
223 * if the goal is not in any window.
224 * Returns NULL if there are no windows or if all windows start after the goal.
226 static struct ext4_reserve_window_node *
227 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
229 struct rb_node *n = root->rb_node;
230 struct ext4_reserve_window_node *rsv;
232 if (!n)
233 return NULL;
235 do {
236 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
238 if (goal < rsv->rsv_start)
239 n = n->rb_left;
240 else if (goal > rsv->rsv_end)
241 n = n->rb_right;
242 else
243 return rsv;
244 } while (n);
246 * We've fallen off the end of the tree: the goal wasn't inside
247 * any particular node. OK, the previous node must be to one
248 * side of the interval containing the goal. If it's the RHS,
249 * we need to back up one.
251 if (rsv->rsv_start > goal) {
252 n = rb_prev(&rsv->rsv_node);
253 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
255 return rsv;
259 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
260 * @sb: super block
261 * @rsv: reservation window to add
263 * Must be called with rsv_lock hold.
265 void ext4_rsv_window_add(struct super_block *sb,
266 struct ext4_reserve_window_node *rsv)
268 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
269 struct rb_node *node = &rsv->rsv_node;
270 ext4_fsblk_t start = rsv->rsv_start;
272 struct rb_node ** p = &root->rb_node;
273 struct rb_node * parent = NULL;
274 struct ext4_reserve_window_node *this;
276 while (*p)
278 parent = *p;
279 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
281 if (start < this->rsv_start)
282 p = &(*p)->rb_left;
283 else if (start > this->rsv_end)
284 p = &(*p)->rb_right;
285 else {
286 rsv_window_dump(root, 1);
287 BUG();
291 rb_link_node(node, parent, p);
292 rb_insert_color(node, root);
296 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
297 * @sb: super block
298 * @rsv: reservation window to remove
300 * Mark the block reservation window as not allocated, and unlink it
301 * from the filesystem reservation window rb tree. Must be called with
302 * rsv_lock hold.
304 static void rsv_window_remove(struct super_block *sb,
305 struct ext4_reserve_window_node *rsv)
307 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
308 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
309 rsv->rsv_alloc_hit = 0;
310 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
314 * rsv_is_empty() -- Check if the reservation window is allocated.
315 * @rsv: given reservation window to check
317 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
319 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
321 /* a valid reservation end block could not be 0 */
322 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
326 * ext4_init_block_alloc_info()
327 * @inode: file inode structure
329 * Allocate and initialize the reservation window structure, and
330 * link the window to the ext4 inode structure at last
332 * The reservation window structure is only dynamically allocated
333 * and linked to ext4 inode the first time the open file
334 * needs a new block. So, before every ext4_new_block(s) call, for
335 * regular files, we should check whether the reservation window
336 * structure exists or not. In the latter case, this function is called.
337 * Fail to do so will result in block reservation being turned off for that
338 * open file.
340 * This function is called from ext4_get_blocks_handle(), also called
341 * when setting the reservation window size through ioctl before the file
342 * is open for write (needs block allocation).
344 * Needs truncate_mutex protection prior to call this function.
346 void ext4_init_block_alloc_info(struct inode *inode)
348 struct ext4_inode_info *ei = EXT4_I(inode);
349 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
350 struct super_block *sb = inode->i_sb;
352 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
353 if (block_i) {
354 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
356 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
357 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
360 * if filesystem is mounted with NORESERVATION, the goal
361 * reservation window size is set to zero to indicate
362 * block reservation is off
364 if (!test_opt(sb, RESERVATION))
365 rsv->rsv_goal_size = 0;
366 else
367 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
368 rsv->rsv_alloc_hit = 0;
369 block_i->last_alloc_logical_block = 0;
370 block_i->last_alloc_physical_block = 0;
372 ei->i_block_alloc_info = block_i;
376 * ext4_discard_reservation()
377 * @inode: inode
379 * Discard(free) block reservation window on last file close, or truncate
380 * or at last iput().
382 * It is being called in three cases:
383 * ext4_release_file(): last writer close the file
384 * ext4_clear_inode(): last iput(), when nobody link to this file.
385 * ext4_truncate(): when the block indirect map is about to change.
388 void ext4_discard_reservation(struct inode *inode)
390 struct ext4_inode_info *ei = EXT4_I(inode);
391 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
392 struct ext4_reserve_window_node *rsv;
393 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
395 if (!block_i)
396 return;
398 rsv = &block_i->rsv_window_node;
399 if (!rsv_is_empty(&rsv->rsv_window)) {
400 spin_lock(rsv_lock);
401 if (!rsv_is_empty(&rsv->rsv_window))
402 rsv_window_remove(inode->i_sb, rsv);
403 spin_unlock(rsv_lock);
408 * ext4_free_blocks_sb() -- Free given blocks and update quota
409 * @handle: handle to this transaction
410 * @sb: super block
411 * @block: start physcial block to free
412 * @count: number of blocks to free
413 * @pdquot_freed_blocks: pointer to quota
415 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
416 ext4_fsblk_t block, unsigned long count,
417 unsigned long *pdquot_freed_blocks)
419 struct buffer_head *bitmap_bh = NULL;
420 struct buffer_head *gd_bh;
421 unsigned long block_group;
422 ext4_grpblk_t bit;
423 unsigned long i;
424 unsigned long overflow;
425 struct ext4_group_desc * desc;
426 struct ext4_super_block * es;
427 struct ext4_sb_info *sbi;
428 int err = 0, ret;
429 ext4_grpblk_t group_freed;
431 *pdquot_freed_blocks = 0;
432 sbi = EXT4_SB(sb);
433 es = sbi->s_es;
434 if (block < le32_to_cpu(es->s_first_data_block) ||
435 block + count < block ||
436 block + count > ext4_blocks_count(es)) {
437 ext4_error (sb, "ext4_free_blocks",
438 "Freeing blocks not in datazone - "
439 "block = %llu, count = %lu", block, count);
440 goto error_return;
443 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
445 do_more:
446 overflow = 0;
447 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
449 * Check to see if we are freeing blocks across a group
450 * boundary.
452 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
453 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
454 count -= overflow;
456 brelse(bitmap_bh);
457 bitmap_bh = read_block_bitmap(sb, block_group);
458 if (!bitmap_bh)
459 goto error_return;
460 desc = ext4_get_group_desc (sb, block_group, &gd_bh);
461 if (!desc)
462 goto error_return;
464 if (in_range(ext4_block_bitmap(desc), block, count) ||
465 in_range(ext4_inode_bitmap(desc), block, count) ||
466 in_range(block, ext4_inode_table(desc), sbi->s_itb_per_group) ||
467 in_range(block + count - 1, ext4_inode_table(desc),
468 sbi->s_itb_per_group))
469 ext4_error (sb, "ext4_free_blocks",
470 "Freeing blocks in system zones - "
471 "Block = %llu, count = %lu",
472 block, count);
475 * We are about to start releasing blocks in the bitmap,
476 * so we need undo access.
478 /* @@@ check errors */
479 BUFFER_TRACE(bitmap_bh, "getting undo access");
480 err = ext4_journal_get_undo_access(handle, bitmap_bh);
481 if (err)
482 goto error_return;
485 * We are about to modify some metadata. Call the journal APIs
486 * to unshare ->b_data if a currently-committing transaction is
487 * using it
489 BUFFER_TRACE(gd_bh, "get_write_access");
490 err = ext4_journal_get_write_access(handle, gd_bh);
491 if (err)
492 goto error_return;
494 jbd_lock_bh_state(bitmap_bh);
496 for (i = 0, group_freed = 0; i < count; i++) {
498 * An HJ special. This is expensive...
500 #ifdef CONFIG_JBD_DEBUG
501 jbd_unlock_bh_state(bitmap_bh);
503 struct buffer_head *debug_bh;
504 debug_bh = sb_find_get_block(sb, block + i);
505 if (debug_bh) {
506 BUFFER_TRACE(debug_bh, "Deleted!");
507 if (!bh2jh(bitmap_bh)->b_committed_data)
508 BUFFER_TRACE(debug_bh,
509 "No commited data in bitmap");
510 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
511 __brelse(debug_bh);
514 jbd_lock_bh_state(bitmap_bh);
515 #endif
516 if (need_resched()) {
517 jbd_unlock_bh_state(bitmap_bh);
518 cond_resched();
519 jbd_lock_bh_state(bitmap_bh);
521 /* @@@ This prevents newly-allocated data from being
522 * freed and then reallocated within the same
523 * transaction.
525 * Ideally we would want to allow that to happen, but to
526 * do so requires making jbd2_journal_forget() capable of
527 * revoking the queued write of a data block, which
528 * implies blocking on the journal lock. *forget()
529 * cannot block due to truncate races.
531 * Eventually we can fix this by making jbd2_journal_forget()
532 * return a status indicating whether or not it was able
533 * to revoke the buffer. On successful revoke, it is
534 * safe not to set the allocation bit in the committed
535 * bitmap, because we know that there is no outstanding
536 * activity on the buffer any more and so it is safe to
537 * reallocate it.
539 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
540 J_ASSERT_BH(bitmap_bh,
541 bh2jh(bitmap_bh)->b_committed_data != NULL);
542 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
543 bh2jh(bitmap_bh)->b_committed_data);
546 * We clear the bit in the bitmap after setting the committed
547 * data bit, because this is the reverse order to that which
548 * the allocator uses.
550 BUFFER_TRACE(bitmap_bh, "clear bit");
551 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
552 bit + i, bitmap_bh->b_data)) {
553 jbd_unlock_bh_state(bitmap_bh);
554 ext4_error(sb, __FUNCTION__,
555 "bit already cleared for block %llu",
556 (ext4_fsblk_t)(block + i));
557 jbd_lock_bh_state(bitmap_bh);
558 BUFFER_TRACE(bitmap_bh, "bit already cleared");
559 } else {
560 group_freed++;
563 jbd_unlock_bh_state(bitmap_bh);
565 spin_lock(sb_bgl_lock(sbi, block_group));
566 desc->bg_free_blocks_count =
567 cpu_to_le16(le16_to_cpu(desc->bg_free_blocks_count) +
568 group_freed);
569 spin_unlock(sb_bgl_lock(sbi, block_group));
570 percpu_counter_mod(&sbi->s_freeblocks_counter, count);
572 /* We dirtied the bitmap block */
573 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
574 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
576 /* And the group descriptor block */
577 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
578 ret = ext4_journal_dirty_metadata(handle, gd_bh);
579 if (!err) err = ret;
580 *pdquot_freed_blocks += group_freed;
582 if (overflow && !err) {
583 block += count;
584 count = overflow;
585 goto do_more;
587 sb->s_dirt = 1;
588 error_return:
589 brelse(bitmap_bh);
590 ext4_std_error(sb, err);
591 return;
595 * ext4_free_blocks() -- Free given blocks and update quota
596 * @handle: handle for this transaction
597 * @inode: inode
598 * @block: start physical block to free
599 * @count: number of blocks to count
601 void ext4_free_blocks(handle_t *handle, struct inode *inode,
602 ext4_fsblk_t block, unsigned long count)
604 struct super_block * sb;
605 unsigned long dquot_freed_blocks;
607 sb = inode->i_sb;
608 if (!sb) {
609 printk ("ext4_free_blocks: nonexistent device");
610 return;
612 ext4_free_blocks_sb(handle, sb, block, count, &dquot_freed_blocks);
613 if (dquot_freed_blocks)
614 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
615 return;
619 * ext4_test_allocatable()
620 * @nr: given allocation block group
621 * @bh: bufferhead contains the bitmap of the given block group
623 * For ext4 allocations, we must not reuse any blocks which are
624 * allocated in the bitmap buffer's "last committed data" copy. This
625 * prevents deletes from freeing up the page for reuse until we have
626 * committed the delete transaction.
628 * If we didn't do this, then deleting something and reallocating it as
629 * data would allow the old block to be overwritten before the
630 * transaction committed (because we force data to disk before commit).
631 * This would lead to corruption if we crashed between overwriting the
632 * data and committing the delete.
634 * @@@ We may want to make this allocation behaviour conditional on
635 * data-writes at some point, and disable it for metadata allocations or
636 * sync-data inodes.
638 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
640 int ret;
641 struct journal_head *jh = bh2jh(bh);
643 if (ext4_test_bit(nr, bh->b_data))
644 return 0;
646 jbd_lock_bh_state(bh);
647 if (!jh->b_committed_data)
648 ret = 1;
649 else
650 ret = !ext4_test_bit(nr, jh->b_committed_data);
651 jbd_unlock_bh_state(bh);
652 return ret;
656 * bitmap_search_next_usable_block()
657 * @start: the starting block (group relative) of the search
658 * @bh: bufferhead contains the block group bitmap
659 * @maxblocks: the ending block (group relative) of the reservation
661 * The bitmap search --- search forward alternately through the actual
662 * bitmap on disk and the last-committed copy in journal, until we find a
663 * bit free in both bitmaps.
665 static ext4_grpblk_t
666 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
667 ext4_grpblk_t maxblocks)
669 ext4_grpblk_t next;
670 struct journal_head *jh = bh2jh(bh);
672 while (start < maxblocks) {
673 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
674 if (next >= maxblocks)
675 return -1;
676 if (ext4_test_allocatable(next, bh))
677 return next;
678 jbd_lock_bh_state(bh);
679 if (jh->b_committed_data)
680 start = ext4_find_next_zero_bit(jh->b_committed_data,
681 maxblocks, next);
682 jbd_unlock_bh_state(bh);
684 return -1;
688 * find_next_usable_block()
689 * @start: the starting block (group relative) to find next
690 * allocatable block in bitmap.
691 * @bh: bufferhead contains the block group bitmap
692 * @maxblocks: the ending block (group relative) for the search
694 * Find an allocatable block in a bitmap. We honor both the bitmap and
695 * its last-committed copy (if that exists), and perform the "most
696 * appropriate allocation" algorithm of looking for a free block near
697 * the initial goal; then for a free byte somewhere in the bitmap; then
698 * for any free bit in the bitmap.
700 static ext4_grpblk_t
701 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
702 ext4_grpblk_t maxblocks)
704 ext4_grpblk_t here, next;
705 char *p, *r;
707 if (start > 0) {
709 * The goal was occupied; search forward for a free
710 * block within the next XX blocks.
712 * end_goal is more or less random, but it has to be
713 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
714 * next 64-bit boundary is simple..
716 ext4_grpblk_t end_goal = (start + 63) & ~63;
717 if (end_goal > maxblocks)
718 end_goal = maxblocks;
719 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
720 if (here < end_goal && ext4_test_allocatable(here, bh))
721 return here;
722 ext4_debug("Bit not found near goal\n");
725 here = start;
726 if (here < 0)
727 here = 0;
729 p = ((char *)bh->b_data) + (here >> 3);
730 r = memscan(p, 0, (maxblocks - here + 7) >> 3);
731 next = (r - ((char *)bh->b_data)) << 3;
733 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
734 return next;
737 * The bitmap search --- search forward alternately through the actual
738 * bitmap and the last-committed copy until we find a bit free in
739 * both
741 here = bitmap_search_next_usable_block(here, bh, maxblocks);
742 return here;
746 * claim_block()
747 * @block: the free block (group relative) to allocate
748 * @bh: the bufferhead containts the block group bitmap
750 * We think we can allocate this block in this bitmap. Try to set the bit.
751 * If that succeeds then check that nobody has allocated and then freed the
752 * block since we saw that is was not marked in b_committed_data. If it _was_
753 * allocated and freed then clear the bit in the bitmap again and return
754 * zero (failure).
756 static inline int
757 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
759 struct journal_head *jh = bh2jh(bh);
760 int ret;
762 if (ext4_set_bit_atomic(lock, block, bh->b_data))
763 return 0;
764 jbd_lock_bh_state(bh);
765 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
766 ext4_clear_bit_atomic(lock, block, bh->b_data);
767 ret = 0;
768 } else {
769 ret = 1;
771 jbd_unlock_bh_state(bh);
772 return ret;
776 * ext4_try_to_allocate()
777 * @sb: superblock
778 * @handle: handle to this transaction
779 * @group: given allocation block group
780 * @bitmap_bh: bufferhead holds the block bitmap
781 * @grp_goal: given target block within the group
782 * @count: target number of blocks to allocate
783 * @my_rsv: reservation window
785 * Attempt to allocate blocks within a give range. Set the range of allocation
786 * first, then find the first free bit(s) from the bitmap (within the range),
787 * and at last, allocate the blocks by claiming the found free bit as allocated.
789 * To set the range of this allocation:
790 * if there is a reservation window, only try to allocate block(s) from the
791 * file's own reservation window;
792 * Otherwise, the allocation range starts from the give goal block, ends at
793 * the block group's last block.
795 * If we failed to allocate the desired block then we may end up crossing to a
796 * new bitmap. In that case we must release write access to the old one via
797 * ext4_journal_release_buffer(), else we'll run out of credits.
799 static ext4_grpblk_t
800 ext4_try_to_allocate(struct super_block *sb, handle_t *handle, int group,
801 struct buffer_head *bitmap_bh, ext4_grpblk_t grp_goal,
802 unsigned long *count, struct ext4_reserve_window *my_rsv)
804 ext4_fsblk_t group_first_block;
805 ext4_grpblk_t start, end;
806 unsigned long num = 0;
808 /* we do allocation within the reservation window if we have a window */
809 if (my_rsv) {
810 group_first_block = ext4_group_first_block_no(sb, group);
811 if (my_rsv->_rsv_start >= group_first_block)
812 start = my_rsv->_rsv_start - group_first_block;
813 else
814 /* reservation window cross group boundary */
815 start = 0;
816 end = my_rsv->_rsv_end - group_first_block + 1;
817 if (end > EXT4_BLOCKS_PER_GROUP(sb))
818 /* reservation window crosses group boundary */
819 end = EXT4_BLOCKS_PER_GROUP(sb);
820 if ((start <= grp_goal) && (grp_goal < end))
821 start = grp_goal;
822 else
823 grp_goal = -1;
824 } else {
825 if (grp_goal > 0)
826 start = grp_goal;
827 else
828 start = 0;
829 end = EXT4_BLOCKS_PER_GROUP(sb);
832 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
834 repeat:
835 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
836 grp_goal = find_next_usable_block(start, bitmap_bh, end);
837 if (grp_goal < 0)
838 goto fail_access;
839 if (!my_rsv) {
840 int i;
842 for (i = 0; i < 7 && grp_goal > start &&
843 ext4_test_allocatable(grp_goal - 1,
844 bitmap_bh);
845 i++, grp_goal--)
849 start = grp_goal;
851 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
852 grp_goal, bitmap_bh)) {
854 * The block was allocated by another thread, or it was
855 * allocated and then freed by another thread
857 start++;
858 grp_goal++;
859 if (start >= end)
860 goto fail_access;
861 goto repeat;
863 num++;
864 grp_goal++;
865 while (num < *count && grp_goal < end
866 && ext4_test_allocatable(grp_goal, bitmap_bh)
867 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
868 grp_goal, bitmap_bh)) {
869 num++;
870 grp_goal++;
872 *count = num;
873 return grp_goal - num;
874 fail_access:
875 *count = num;
876 return -1;
880 * find_next_reservable_window():
881 * find a reservable space within the given range.
882 * It does not allocate the reservation window for now:
883 * alloc_new_reservation() will do the work later.
885 * @search_head: the head of the searching list;
886 * This is not necessarily the list head of the whole filesystem
888 * We have both head and start_block to assist the search
889 * for the reservable space. The list starts from head,
890 * but we will shift to the place where start_block is,
891 * then start from there, when looking for a reservable space.
893 * @size: the target new reservation window size
895 * @group_first_block: the first block we consider to start
896 * the real search from
898 * @last_block:
899 * the maximum block number that our goal reservable space
900 * could start from. This is normally the last block in this
901 * group. The search will end when we found the start of next
902 * possible reservable space is out of this boundary.
903 * This could handle the cross boundary reservation window
904 * request.
906 * basically we search from the given range, rather than the whole
907 * reservation double linked list, (start_block, last_block)
908 * to find a free region that is of my size and has not
909 * been reserved.
912 static int find_next_reservable_window(
913 struct ext4_reserve_window_node *search_head,
914 struct ext4_reserve_window_node *my_rsv,
915 struct super_block * sb,
916 ext4_fsblk_t start_block,
917 ext4_fsblk_t last_block)
919 struct rb_node *next;
920 struct ext4_reserve_window_node *rsv, *prev;
921 ext4_fsblk_t cur;
922 int size = my_rsv->rsv_goal_size;
924 /* TODO: make the start of the reservation window byte-aligned */
925 /* cur = *start_block & ~7;*/
926 cur = start_block;
927 rsv = search_head;
928 if (!rsv)
929 return -1;
931 while (1) {
932 if (cur <= rsv->rsv_end)
933 cur = rsv->rsv_end + 1;
935 /* TODO?
936 * in the case we could not find a reservable space
937 * that is what is expected, during the re-search, we could
938 * remember what's the largest reservable space we could have
939 * and return that one.
941 * For now it will fail if we could not find the reservable
942 * space with expected-size (or more)...
944 if (cur > last_block)
945 return -1; /* fail */
947 prev = rsv;
948 next = rb_next(&rsv->rsv_node);
949 rsv = list_entry(next,struct ext4_reserve_window_node,rsv_node);
952 * Reached the last reservation, we can just append to the
953 * previous one.
955 if (!next)
956 break;
958 if (cur + size <= rsv->rsv_start) {
960 * Found a reserveable space big enough. We could
961 * have a reservation across the group boundary here
963 break;
967 * we come here either :
968 * when we reach the end of the whole list,
969 * and there is empty reservable space after last entry in the list.
970 * append it to the end of the list.
972 * or we found one reservable space in the middle of the list,
973 * return the reservation window that we could append to.
974 * succeed.
977 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
978 rsv_window_remove(sb, my_rsv);
981 * Let's book the whole avaliable window for now. We will check the
982 * disk bitmap later and then, if there are free blocks then we adjust
983 * the window size if it's larger than requested.
984 * Otherwise, we will remove this node from the tree next time
985 * call find_next_reservable_window.
987 my_rsv->rsv_start = cur;
988 my_rsv->rsv_end = cur + size - 1;
989 my_rsv->rsv_alloc_hit = 0;
991 if (prev != my_rsv)
992 ext4_rsv_window_add(sb, my_rsv);
994 return 0;
998 * alloc_new_reservation()--allocate a new reservation window
1000 * To make a new reservation, we search part of the filesystem
1001 * reservation list (the list that inside the group). We try to
1002 * allocate a new reservation window near the allocation goal,
1003 * or the beginning of the group, if there is no goal.
1005 * We first find a reservable space after the goal, then from
1006 * there, we check the bitmap for the first free block after
1007 * it. If there is no free block until the end of group, then the
1008 * whole group is full, we failed. Otherwise, check if the free
1009 * block is inside the expected reservable space, if so, we
1010 * succeed.
1011 * If the first free block is outside the reservable space, then
1012 * start from the first free block, we search for next available
1013 * space, and go on.
1015 * on succeed, a new reservation will be found and inserted into the list
1016 * It contains at least one free block, and it does not overlap with other
1017 * reservation windows.
1019 * failed: we failed to find a reservation window in this group
1021 * @rsv: the reservation
1023 * @grp_goal: The goal (group-relative). It is where the search for a
1024 * free reservable space should start from.
1025 * if we have a grp_goal(grp_goal >0 ), then start from there,
1026 * no grp_goal(grp_goal = -1), we start from the first block
1027 * of the group.
1029 * @sb: the super block
1030 * @group: the group we are trying to allocate in
1031 * @bitmap_bh: the block group block bitmap
1034 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1035 ext4_grpblk_t grp_goal, struct super_block *sb,
1036 unsigned int group, struct buffer_head *bitmap_bh)
1038 struct ext4_reserve_window_node *search_head;
1039 ext4_fsblk_t group_first_block, group_end_block, start_block;
1040 ext4_grpblk_t first_free_block;
1041 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1042 unsigned long size;
1043 int ret;
1044 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1046 group_first_block = ext4_group_first_block_no(sb, group);
1047 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1049 if (grp_goal < 0)
1050 start_block = group_first_block;
1051 else
1052 start_block = grp_goal + group_first_block;
1054 size = my_rsv->rsv_goal_size;
1056 if (!rsv_is_empty(&my_rsv->rsv_window)) {
1058 * if the old reservation is cross group boundary
1059 * and if the goal is inside the old reservation window,
1060 * we will come here when we just failed to allocate from
1061 * the first part of the window. We still have another part
1062 * that belongs to the next group. In this case, there is no
1063 * point to discard our window and try to allocate a new one
1064 * in this group(which will fail). we should
1065 * keep the reservation window, just simply move on.
1067 * Maybe we could shift the start block of the reservation
1068 * window to the first block of next group.
1071 if ((my_rsv->rsv_start <= group_end_block) &&
1072 (my_rsv->rsv_end > group_end_block) &&
1073 (start_block >= my_rsv->rsv_start))
1074 return -1;
1076 if ((my_rsv->rsv_alloc_hit >
1077 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1079 * if the previously allocation hit ratio is
1080 * greater than 1/2, then we double the size of
1081 * the reservation window the next time,
1082 * otherwise we keep the same size window
1084 size = size * 2;
1085 if (size > EXT4_MAX_RESERVE_BLOCKS)
1086 size = EXT4_MAX_RESERVE_BLOCKS;
1087 my_rsv->rsv_goal_size= size;
1091 spin_lock(rsv_lock);
1093 * shift the search start to the window near the goal block
1095 search_head = search_reserve_window(fs_rsv_root, start_block);
1098 * find_next_reservable_window() simply finds a reservable window
1099 * inside the given range(start_block, group_end_block).
1101 * To make sure the reservation window has a free bit inside it, we
1102 * need to check the bitmap after we found a reservable window.
1104 retry:
1105 ret = find_next_reservable_window(search_head, my_rsv, sb,
1106 start_block, group_end_block);
1108 if (ret == -1) {
1109 if (!rsv_is_empty(&my_rsv->rsv_window))
1110 rsv_window_remove(sb, my_rsv);
1111 spin_unlock(rsv_lock);
1112 return -1;
1116 * On success, find_next_reservable_window() returns the
1117 * reservation window where there is a reservable space after it.
1118 * Before we reserve this reservable space, we need
1119 * to make sure there is at least a free block inside this region.
1121 * searching the first free bit on the block bitmap and copy of
1122 * last committed bitmap alternatively, until we found a allocatable
1123 * block. Search start from the start block of the reservable space
1124 * we just found.
1126 spin_unlock(rsv_lock);
1127 first_free_block = bitmap_search_next_usable_block(
1128 my_rsv->rsv_start - group_first_block,
1129 bitmap_bh, group_end_block - group_first_block + 1);
1131 if (first_free_block < 0) {
1133 * no free block left on the bitmap, no point
1134 * to reserve the space. return failed.
1136 spin_lock(rsv_lock);
1137 if (!rsv_is_empty(&my_rsv->rsv_window))
1138 rsv_window_remove(sb, my_rsv);
1139 spin_unlock(rsv_lock);
1140 return -1; /* failed */
1143 start_block = first_free_block + group_first_block;
1145 * check if the first free block is within the
1146 * free space we just reserved
1148 if (start_block >= my_rsv->rsv_start && start_block < my_rsv->rsv_end)
1149 return 0; /* success */
1151 * if the first free bit we found is out of the reservable space
1152 * continue search for next reservable space,
1153 * start from where the free block is,
1154 * we also shift the list head to where we stopped last time
1156 search_head = my_rsv;
1157 spin_lock(rsv_lock);
1158 goto retry;
1162 * try_to_extend_reservation()
1163 * @my_rsv: given reservation window
1164 * @sb: super block
1165 * @size: the delta to extend
1167 * Attempt to expand the reservation window large enough to have
1168 * required number of free blocks
1170 * Since ext4_try_to_allocate() will always allocate blocks within
1171 * the reservation window range, if the window size is too small,
1172 * multiple blocks allocation has to stop at the end of the reservation
1173 * window. To make this more efficient, given the total number of
1174 * blocks needed and the current size of the window, we try to
1175 * expand the reservation window size if necessary on a best-effort
1176 * basis before ext4_new_blocks() tries to allocate blocks,
1178 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1179 struct super_block *sb, int size)
1181 struct ext4_reserve_window_node *next_rsv;
1182 struct rb_node *next;
1183 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1185 if (!spin_trylock(rsv_lock))
1186 return;
1188 next = rb_next(&my_rsv->rsv_node);
1190 if (!next)
1191 my_rsv->rsv_end += size;
1192 else {
1193 next_rsv = list_entry(next, struct ext4_reserve_window_node, rsv_node);
1195 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1196 my_rsv->rsv_end += size;
1197 else
1198 my_rsv->rsv_end = next_rsv->rsv_start - 1;
1200 spin_unlock(rsv_lock);
1204 * ext4_try_to_allocate_with_rsv()
1205 * @sb: superblock
1206 * @handle: handle to this transaction
1207 * @group: given allocation block group
1208 * @bitmap_bh: bufferhead holds the block bitmap
1209 * @grp_goal: given target block within the group
1210 * @count: target number of blocks to allocate
1211 * @my_rsv: reservation window
1212 * @errp: pointer to store the error code
1214 * This is the main function used to allocate a new block and its reservation
1215 * window.
1217 * Each time when a new block allocation is need, first try to allocate from
1218 * its own reservation. If it does not have a reservation window, instead of
1219 * looking for a free bit on bitmap first, then look up the reservation list to
1220 * see if it is inside somebody else's reservation window, we try to allocate a
1221 * reservation window for it starting from the goal first. Then do the block
1222 * allocation within the reservation window.
1224 * This will avoid keeping on searching the reservation list again and
1225 * again when somebody is looking for a free block (without
1226 * reservation), and there are lots of free blocks, but they are all
1227 * being reserved.
1229 * We use a red-black tree for the per-filesystem reservation list.
1232 static ext4_grpblk_t
1233 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1234 unsigned int group, struct buffer_head *bitmap_bh,
1235 ext4_grpblk_t grp_goal,
1236 struct ext4_reserve_window_node * my_rsv,
1237 unsigned long *count, int *errp)
1239 ext4_fsblk_t group_first_block, group_last_block;
1240 ext4_grpblk_t ret = 0;
1241 int fatal;
1242 unsigned long num = *count;
1244 *errp = 0;
1247 * Make sure we use undo access for the bitmap, because it is critical
1248 * that we do the frozen_data COW on bitmap buffers in all cases even
1249 * if the buffer is in BJ_Forget state in the committing transaction.
1251 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1252 fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1253 if (fatal) {
1254 *errp = fatal;
1255 return -1;
1259 * we don't deal with reservation when
1260 * filesystem is mounted without reservation
1261 * or the file is not a regular file
1262 * or last attempt to allocate a block with reservation turned on failed
1264 if (my_rsv == NULL ) {
1265 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1266 grp_goal, count, NULL);
1267 goto out;
1270 * grp_goal is a group relative block number (if there is a goal)
1271 * 0 < grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1272 * first block is a filesystem wide block number
1273 * first block is the block number of the first block in this group
1275 group_first_block = ext4_group_first_block_no(sb, group);
1276 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1279 * Basically we will allocate a new block from inode's reservation
1280 * window.
1282 * We need to allocate a new reservation window, if:
1283 * a) inode does not have a reservation window; or
1284 * b) last attempt to allocate a block from existing reservation
1285 * failed; or
1286 * c) we come here with a goal and with a reservation window
1288 * We do not need to allocate a new reservation window if we come here
1289 * at the beginning with a goal and the goal is inside the window, or
1290 * we don't have a goal but already have a reservation window.
1291 * then we could go to allocate from the reservation window directly.
1293 while (1) {
1294 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1295 !goal_in_my_reservation(&my_rsv->rsv_window,
1296 grp_goal, group, sb)) {
1297 if (my_rsv->rsv_goal_size < *count)
1298 my_rsv->rsv_goal_size = *count;
1299 ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1300 group, bitmap_bh);
1301 if (ret < 0)
1302 break; /* failed */
1304 if (!goal_in_my_reservation(&my_rsv->rsv_window,
1305 grp_goal, group, sb))
1306 grp_goal = -1;
1307 } else if (grp_goal > 0 &&
1308 (my_rsv->rsv_end-grp_goal+1) < *count)
1309 try_to_extend_reservation(my_rsv, sb,
1310 *count-my_rsv->rsv_end + grp_goal - 1);
1312 if ((my_rsv->rsv_start > group_last_block) ||
1313 (my_rsv->rsv_end < group_first_block)) {
1314 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1315 BUG();
1317 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1318 grp_goal, &num, &my_rsv->rsv_window);
1319 if (ret >= 0) {
1320 my_rsv->rsv_alloc_hit += num;
1321 *count = num;
1322 break; /* succeed */
1324 num = *count;
1326 out:
1327 if (ret >= 0) {
1328 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1329 "bitmap block");
1330 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1331 if (fatal) {
1332 *errp = fatal;
1333 return -1;
1335 return ret;
1338 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1339 ext4_journal_release_buffer(handle, bitmap_bh);
1340 return ret;
1344 * ext4_has_free_blocks()
1345 * @sbi: in-core super block structure.
1347 * Check if filesystem has at least 1 free block available for allocation.
1349 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1351 ext4_fsblk_t free_blocks, root_blocks;
1353 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1354 root_blocks = ext4_r_blocks_count(sbi->s_es);
1355 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1356 sbi->s_resuid != current->fsuid &&
1357 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1358 return 0;
1360 return 1;
1364 * ext4_should_retry_alloc()
1365 * @sb: super block
1366 * @retries number of attemps has been made
1368 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1369 * it is profitable to retry the operation, this function will wait
1370 * for the current or commiting transaction to complete, and then
1371 * return TRUE.
1373 * if the total number of retries exceed three times, return FALSE.
1375 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1377 if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1378 return 0;
1380 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1382 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1386 * ext4_new_blocks() -- core block(s) allocation function
1387 * @handle: handle to this transaction
1388 * @inode: file inode
1389 * @goal: given target block(filesystem wide)
1390 * @count: target number of blocks to allocate
1391 * @errp: error code
1393 * ext4_new_blocks uses a goal block to assist allocation. It tries to
1394 * allocate block(s) from the block group contains the goal block first. If that
1395 * fails, it will try to allocate block(s) from other block groups without
1396 * any specific goal block.
1399 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1400 ext4_fsblk_t goal, unsigned long *count, int *errp)
1402 struct buffer_head *bitmap_bh = NULL;
1403 struct buffer_head *gdp_bh;
1404 unsigned long group_no;
1405 int goal_group;
1406 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */
1407 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
1408 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */
1409 int bgi; /* blockgroup iteration index */
1410 int fatal = 0, err;
1411 int performed_allocation = 0;
1412 ext4_grpblk_t free_blocks; /* number of free blocks in a group */
1413 struct super_block *sb;
1414 struct ext4_group_desc *gdp;
1415 struct ext4_super_block *es;
1416 struct ext4_sb_info *sbi;
1417 struct ext4_reserve_window_node *my_rsv = NULL;
1418 struct ext4_block_alloc_info *block_i;
1419 unsigned short windowsz = 0;
1420 #ifdef EXT4FS_DEBUG
1421 static int goal_hits, goal_attempts;
1422 #endif
1423 unsigned long ngroups;
1424 unsigned long num = *count;
1426 *errp = -ENOSPC;
1427 sb = inode->i_sb;
1428 if (!sb) {
1429 printk("ext4_new_block: nonexistent device");
1430 return 0;
1434 * Check quota for allocation of this block.
1436 if (DQUOT_ALLOC_BLOCK(inode, num)) {
1437 *errp = -EDQUOT;
1438 return 0;
1441 sbi = EXT4_SB(sb);
1442 es = EXT4_SB(sb)->s_es;
1443 ext4_debug("goal=%lu.\n", goal);
1445 * Allocate a block from reservation only when
1446 * filesystem is mounted with reservation(default,-o reservation), and
1447 * it's a regular file, and
1448 * the desired window size is greater than 0 (One could use ioctl
1449 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1450 * reservation on that particular file)
1452 block_i = EXT4_I(inode)->i_block_alloc_info;
1453 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1454 my_rsv = &block_i->rsv_window_node;
1456 if (!ext4_has_free_blocks(sbi)) {
1457 *errp = -ENOSPC;
1458 goto out;
1462 * First, test whether the goal block is free.
1464 if (goal < le32_to_cpu(es->s_first_data_block) ||
1465 goal >= ext4_blocks_count(es))
1466 goal = le32_to_cpu(es->s_first_data_block);
1467 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1468 goal_group = group_no;
1469 retry_alloc:
1470 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1471 if (!gdp)
1472 goto io_error;
1474 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1476 * if there is not enough free blocks to make a new resevation
1477 * turn off reservation for this allocation
1479 if (my_rsv && (free_blocks < windowsz)
1480 && (rsv_is_empty(&my_rsv->rsv_window)))
1481 my_rsv = NULL;
1483 if (free_blocks > 0) {
1484 bitmap_bh = read_block_bitmap(sb, group_no);
1485 if (!bitmap_bh)
1486 goto io_error;
1487 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1488 group_no, bitmap_bh, grp_target_blk,
1489 my_rsv, &num, &fatal);
1490 if (fatal)
1491 goto out;
1492 if (grp_alloc_blk >= 0)
1493 goto allocated;
1496 ngroups = EXT4_SB(sb)->s_groups_count;
1497 smp_rmb();
1500 * Now search the rest of the groups. We assume that
1501 * i and gdp correctly point to the last group visited.
1503 for (bgi = 0; bgi < ngroups; bgi++) {
1504 group_no++;
1505 if (group_no >= ngroups)
1506 group_no = 0;
1507 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1508 if (!gdp) {
1509 *errp = -EIO;
1510 goto out;
1512 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1514 * skip this group if the number of
1515 * free blocks is less than half of the reservation
1516 * window size.
1518 if (free_blocks <= (windowsz/2))
1519 continue;
1521 brelse(bitmap_bh);
1522 bitmap_bh = read_block_bitmap(sb, group_no);
1523 if (!bitmap_bh)
1524 goto io_error;
1526 * try to allocate block(s) from this group, without a goal(-1).
1528 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1529 group_no, bitmap_bh, -1, my_rsv,
1530 &num, &fatal);
1531 if (fatal)
1532 goto out;
1533 if (grp_alloc_blk >= 0)
1534 goto allocated;
1537 * We may end up a bogus ealier ENOSPC error due to
1538 * filesystem is "full" of reservations, but
1539 * there maybe indeed free blocks avaliable on disk
1540 * In this case, we just forget about the reservations
1541 * just do block allocation as without reservations.
1543 if (my_rsv) {
1544 my_rsv = NULL;
1545 group_no = goal_group;
1546 goto retry_alloc;
1548 /* No space left on the device */
1549 *errp = -ENOSPC;
1550 goto out;
1552 allocated:
1554 ext4_debug("using block group %d(%d)\n",
1555 group_no, gdp->bg_free_blocks_count);
1557 BUFFER_TRACE(gdp_bh, "get_write_access");
1558 fatal = ext4_journal_get_write_access(handle, gdp_bh);
1559 if (fatal)
1560 goto out;
1562 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1564 if (in_range(ext4_block_bitmap(gdp), ret_block, num) ||
1565 in_range(ext4_block_bitmap(gdp), ret_block, num) ||
1566 in_range(ret_block, ext4_inode_table(gdp),
1567 EXT4_SB(sb)->s_itb_per_group) ||
1568 in_range(ret_block + num - 1, ext4_inode_table(gdp),
1569 EXT4_SB(sb)->s_itb_per_group))
1570 ext4_error(sb, "ext4_new_block",
1571 "Allocating block in system zone - "
1572 "blocks from %llu, length %lu",
1573 ret_block, num);
1575 performed_allocation = 1;
1577 #ifdef CONFIG_JBD_DEBUG
1579 struct buffer_head *debug_bh;
1581 /* Record bitmap buffer state in the newly allocated block */
1582 debug_bh = sb_find_get_block(sb, ret_block);
1583 if (debug_bh) {
1584 BUFFER_TRACE(debug_bh, "state when allocated");
1585 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1586 brelse(debug_bh);
1589 jbd_lock_bh_state(bitmap_bh);
1590 spin_lock(sb_bgl_lock(sbi, group_no));
1591 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1592 int i;
1594 for (i = 0; i < num; i++) {
1595 if (ext4_test_bit(grp_alloc_blk+i,
1596 bh2jh(bitmap_bh)->b_committed_data)) {
1597 printk("%s: block was unexpectedly set in "
1598 "b_committed_data\n", __FUNCTION__);
1602 ext4_debug("found bit %d\n", grp_alloc_blk);
1603 spin_unlock(sb_bgl_lock(sbi, group_no));
1604 jbd_unlock_bh_state(bitmap_bh);
1605 #endif
1607 if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1608 ext4_error(sb, "ext4_new_block",
1609 "block(%llu) >= blocks count(%llu) - "
1610 "block_group = %lu, es == %p ", ret_block,
1611 ext4_blocks_count(es), group_no, es);
1612 goto out;
1616 * It is up to the caller to add the new buffer to a journal
1617 * list of some description. We don't know in advance whether
1618 * the caller wants to use it as metadata or data.
1620 ext4_debug("allocating block %lu. Goal hits %d of %d.\n",
1621 ret_block, goal_hits, goal_attempts);
1623 spin_lock(sb_bgl_lock(sbi, group_no));
1624 gdp->bg_free_blocks_count =
1625 cpu_to_le16(le16_to_cpu(gdp->bg_free_blocks_count)-num);
1626 spin_unlock(sb_bgl_lock(sbi, group_no));
1627 percpu_counter_mod(&sbi->s_freeblocks_counter, -num);
1629 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1630 err = ext4_journal_dirty_metadata(handle, gdp_bh);
1631 if (!fatal)
1632 fatal = err;
1634 sb->s_dirt = 1;
1635 if (fatal)
1636 goto out;
1638 *errp = 0;
1639 brelse(bitmap_bh);
1640 DQUOT_FREE_BLOCK(inode, *count-num);
1641 *count = num;
1642 return ret_block;
1644 io_error:
1645 *errp = -EIO;
1646 out:
1647 if (fatal) {
1648 *errp = fatal;
1649 ext4_std_error(sb, fatal);
1652 * Undo the block allocation
1654 if (!performed_allocation)
1655 DQUOT_FREE_BLOCK(inode, *count);
1656 brelse(bitmap_bh);
1657 return 0;
1660 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1661 ext4_fsblk_t goal, int *errp)
1663 unsigned long count = 1;
1665 return ext4_new_blocks(handle, inode, goal, &count, errp);
1669 * ext4_count_free_blocks() -- count filesystem free blocks
1670 * @sb: superblock
1672 * Adds up the number of free blocks from each block group.
1674 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1676 ext4_fsblk_t desc_count;
1677 struct ext4_group_desc *gdp;
1678 int i;
1679 unsigned long ngroups = EXT4_SB(sb)->s_groups_count;
1680 #ifdef EXT4FS_DEBUG
1681 struct ext4_super_block *es;
1682 ext4_fsblk_t bitmap_count;
1683 unsigned long x;
1684 struct buffer_head *bitmap_bh = NULL;
1686 es = EXT4_SB(sb)->s_es;
1687 desc_count = 0;
1688 bitmap_count = 0;
1689 gdp = NULL;
1691 smp_rmb();
1692 for (i = 0; i < ngroups; i++) {
1693 gdp = ext4_get_group_desc(sb, i, NULL);
1694 if (!gdp)
1695 continue;
1696 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1697 brelse(bitmap_bh);
1698 bitmap_bh = read_block_bitmap(sb, i);
1699 if (bitmap_bh == NULL)
1700 continue;
1702 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1703 printk("group %d: stored = %d, counted = %lu\n",
1704 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1705 bitmap_count += x;
1707 brelse(bitmap_bh);
1708 printk("ext4_count_free_blocks: stored = %llu"
1709 ", computed = %llu, %llu\n",
1710 EXT4_FREE_BLOCKS_COUNT(es),
1711 desc_count, bitmap_count);
1712 return bitmap_count;
1713 #else
1714 desc_count = 0;
1715 smp_rmb();
1716 for (i = 0; i < ngroups; i++) {
1717 gdp = ext4_get_group_desc(sb, i, NULL);
1718 if (!gdp)
1719 continue;
1720 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1723 return desc_count;
1724 #endif
1727 static inline int
1728 block_in_use(ext4_fsblk_t block, struct super_block *sb, unsigned char *map)
1730 ext4_grpblk_t offset;
1732 ext4_get_group_no_and_offset(sb, block, NULL, &offset);
1733 return ext4_test_bit (offset, map);
1736 static inline int test_root(int a, int b)
1738 int num = b;
1740 while (a > num)
1741 num *= b;
1742 return num == a;
1745 static int ext4_group_sparse(int group)
1747 if (group <= 1)
1748 return 1;
1749 if (!(group & 1))
1750 return 0;
1751 return (test_root(group, 7) || test_root(group, 5) ||
1752 test_root(group, 3));
1756 * ext4_bg_has_super - number of blocks used by the superblock in group
1757 * @sb: superblock for filesystem
1758 * @group: group number to check
1760 * Return the number of blocks used by the superblock (primary or backup)
1761 * in this group. Currently this will be only 0 or 1.
1763 int ext4_bg_has_super(struct super_block *sb, int group)
1765 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1766 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1767 !ext4_group_sparse(group))
1768 return 0;
1769 return 1;
1772 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb, int group)
1774 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1775 unsigned long first = metagroup * EXT4_DESC_PER_BLOCK(sb);
1776 unsigned long last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
1778 if (group == first || group == first + 1 || group == last)
1779 return 1;
1780 return 0;
1783 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb, int group)
1785 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
1786 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
1787 !ext4_group_sparse(group))
1788 return 0;
1789 return EXT4_SB(sb)->s_gdb_count;
1793 * ext4_bg_num_gdb - number of blocks used by the group table in group
1794 * @sb: superblock for filesystem
1795 * @group: group number to check
1797 * Return the number of blocks used by the group descriptor table
1798 * (primary or backup) in this group. In the future there may be a
1799 * different number of descriptor blocks in each group.
1801 unsigned long ext4_bg_num_gdb(struct super_block *sb, int group)
1803 unsigned long first_meta_bg =
1804 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
1805 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
1807 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
1808 metagroup < first_meta_bg)
1809 return ext4_bg_num_gdb_nometa(sb,group);
1811 return ext4_bg_num_gdb_meta(sb,group);