2 * soc-core.c -- ALSA SoC Audio Layer
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
7 * Author: Liam Girdwood
8 * liam.girdwood@wolfsonmicro.com or linux@wolfsonmicro.com
9 * with code, comments and ideas from :-
10 * Richard Purdie <richard@openedhand.com>
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
18 * o Add hw rules to enforce rates, etc.
19 * o More testing with other codecs/machines.
20 * o Add more codecs and platforms to ensure good API coverage.
21 * o Support TDM on PCM and I2S
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/init.h>
27 #include <linux/delay.h>
29 #include <linux/bitops.h>
30 #include <linux/platform_device.h>
31 #include <sound/core.h>
32 #include <sound/pcm.h>
33 #include <sound/pcm_params.h>
34 #include <sound/soc.h>
35 #include <sound/soc-dapm.h>
36 #include <sound/initval.h>
41 #define dbg(format, arg...) printk(format, ## arg)
43 #define dbg(format, arg...)
46 static DEFINE_MUTEX(pcm_mutex
);
47 static DEFINE_MUTEX(io_mutex
);
48 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq
);
51 * This is a timeout to do a DAPM powerdown after a stream is closed().
52 * It can be used to eliminate pops between different playback streams, e.g.
53 * between two audio tracks.
55 static int pmdown_time
= 5000;
56 module_param(pmdown_time
, int, 0);
57 MODULE_PARM_DESC(pmdown_time
, "DAPM stream powerdown time (msecs)");
60 * This function forces any delayed work to be queued and run.
62 static int run_delayed_work(struct delayed_work
*dwork
)
66 /* cancel any work waiting to be queued. */
67 ret
= cancel_delayed_work(dwork
);
69 /* if there was any work waiting then we run it now and
70 * wait for it's completion */
72 schedule_delayed_work(dwork
, 0);
73 flush_scheduled_work();
78 #ifdef CONFIG_SND_SOC_AC97_BUS
79 /* unregister ac97 codec */
80 static int soc_ac97_dev_unregister(struct snd_soc_codec
*codec
)
82 if (codec
->ac97
->dev
.bus
)
83 device_unregister(&codec
->ac97
->dev
);
87 /* stop no dev release warning */
88 static void soc_ac97_device_release(struct device
*dev
){}
90 /* register ac97 codec to bus */
91 static int soc_ac97_dev_register(struct snd_soc_codec
*codec
)
95 codec
->ac97
->dev
.bus
= &ac97_bus_type
;
96 codec
->ac97
->dev
.parent
= NULL
;
97 codec
->ac97
->dev
.release
= soc_ac97_device_release
;
99 snprintf(codec
->ac97
->dev
.bus_id
, BUS_ID_SIZE
, "%d-%d:%s",
100 codec
->card
->number
, 0, codec
->name
);
101 err
= device_register(&codec
->ac97
->dev
);
103 snd_printk(KERN_ERR
"Can't register ac97 bus\n");
104 codec
->ac97
->dev
.bus
= NULL
;
111 static inline const char *get_dai_name(int type
)
114 case SND_SOC_DAI_AC97_BUS
:
115 case SND_SOC_DAI_AC97
:
117 case SND_SOC_DAI_I2S
:
119 case SND_SOC_DAI_PCM
:
126 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
127 * then initialized and any private data can be allocated. This also calls
128 * startup for the cpu DAI, platform, machine and codec DAI.
130 static int soc_pcm_open(struct snd_pcm_substream
*substream
)
132 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
133 struct snd_soc_device
*socdev
= rtd
->socdev
;
134 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
135 struct snd_soc_dai_link
*machine
= rtd
->dai
;
136 struct snd_soc_platform
*platform
= socdev
->platform
;
137 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
138 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
141 mutex_lock(&pcm_mutex
);
143 /* startup the audio subsystem */
144 if (cpu_dai
->ops
.startup
) {
145 ret
= cpu_dai
->ops
.startup(substream
);
147 printk(KERN_ERR
"asoc: can't open interface %s\n",
153 if (platform
->pcm_ops
->open
) {
154 ret
= platform
->pcm_ops
->open(substream
);
156 printk(KERN_ERR
"asoc: can't open platform %s\n", platform
->name
);
161 if (codec_dai
->ops
.startup
) {
162 ret
= codec_dai
->ops
.startup(substream
);
164 printk(KERN_ERR
"asoc: can't open codec %s\n",
170 if (machine
->ops
&& machine
->ops
->startup
) {
171 ret
= machine
->ops
->startup(substream
);
173 printk(KERN_ERR
"asoc: %s startup failed\n", machine
->name
);
178 /* Check that the codec and cpu DAI's are compatible */
179 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
180 runtime
->hw
.rate_min
=
181 max(codec_dai
->playback
.rate_min
,
182 cpu_dai
->playback
.rate_min
);
183 runtime
->hw
.rate_max
=
184 min(codec_dai
->playback
.rate_max
,
185 cpu_dai
->playback
.rate_max
);
186 runtime
->hw
.channels_min
=
187 max(codec_dai
->playback
.channels_min
,
188 cpu_dai
->playback
.channels_min
);
189 runtime
->hw
.channels_max
=
190 min(codec_dai
->playback
.channels_max
,
191 cpu_dai
->playback
.channels_max
);
192 runtime
->hw
.formats
=
193 codec_dai
->playback
.formats
& cpu_dai
->playback
.formats
;
195 codec_dai
->playback
.rates
& cpu_dai
->playback
.rates
;
197 runtime
->hw
.rate_min
=
198 max(codec_dai
->capture
.rate_min
,
199 cpu_dai
->capture
.rate_min
);
200 runtime
->hw
.rate_max
=
201 min(codec_dai
->capture
.rate_max
,
202 cpu_dai
->capture
.rate_max
);
203 runtime
->hw
.channels_min
=
204 max(codec_dai
->capture
.channels_min
,
205 cpu_dai
->capture
.channels_min
);
206 runtime
->hw
.channels_max
=
207 min(codec_dai
->capture
.channels_max
,
208 cpu_dai
->capture
.channels_max
);
209 runtime
->hw
.formats
=
210 codec_dai
->capture
.formats
& cpu_dai
->capture
.formats
;
212 codec_dai
->capture
.rates
& cpu_dai
->capture
.rates
;
215 snd_pcm_limit_hw_rates(runtime
);
216 if (!runtime
->hw
.rates
) {
217 printk(KERN_ERR
"asoc: %s <-> %s No matching rates\n",
218 codec_dai
->name
, cpu_dai
->name
);
221 if (!runtime
->hw
.formats
) {
222 printk(KERN_ERR
"asoc: %s <-> %s No matching formats\n",
223 codec_dai
->name
, cpu_dai
->name
);
226 if (!runtime
->hw
.channels_min
|| !runtime
->hw
.channels_max
) {
227 printk(KERN_ERR
"asoc: %s <-> %s No matching channels\n",
228 codec_dai
->name
, cpu_dai
->name
);
232 dbg("asoc: %s <-> %s info:\n", codec_dai
->name
, cpu_dai
->name
);
233 dbg("asoc: rate mask 0x%x\n", runtime
->hw
.rates
);
234 dbg("asoc: min ch %d max ch %d\n", runtime
->hw
.channels_min
,
235 runtime
->hw
.channels_max
);
236 dbg("asoc: min rate %d max rate %d\n", runtime
->hw
.rate_min
,
237 runtime
->hw
.rate_max
);
239 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
240 cpu_dai
->playback
.active
= codec_dai
->playback
.active
= 1;
242 cpu_dai
->capture
.active
= codec_dai
->capture
.active
= 1;
243 cpu_dai
->active
= codec_dai
->active
= 1;
244 cpu_dai
->runtime
= runtime
;
245 socdev
->codec
->active
++;
246 mutex_unlock(&pcm_mutex
);
250 if (machine
->ops
&& machine
->ops
->shutdown
)
251 machine
->ops
->shutdown(substream
);
254 if (platform
->pcm_ops
->close
)
255 platform
->pcm_ops
->close(substream
);
258 if (cpu_dai
->ops
.shutdown
)
259 cpu_dai
->ops
.shutdown(substream
);
261 mutex_unlock(&pcm_mutex
);
266 * Power down the audio subsystem pmdown_time msecs after close is called.
267 * This is to ensure there are no pops or clicks in between any music tracks
268 * due to DAPM power cycling.
270 static void close_delayed_work(struct work_struct
*work
)
272 struct snd_soc_device
*socdev
=
273 container_of(work
, struct snd_soc_device
, delayed_work
.work
);
274 struct snd_soc_codec
*codec
= socdev
->codec
;
275 struct snd_soc_dai
*codec_dai
;
278 mutex_lock(&pcm_mutex
);
279 for (i
= 0; i
< codec
->num_dai
; i
++) {
280 codec_dai
= &codec
->dai
[i
];
282 dbg("pop wq checking: %s status: %s waiting: %s\n",
283 codec_dai
->playback
.stream_name
,
284 codec_dai
->playback
.active
? "active" : "inactive",
285 codec_dai
->pop_wait
? "yes" : "no");
287 /* are we waiting on this codec DAI stream */
288 if (codec_dai
->pop_wait
== 1) {
290 /* Reduce power if no longer active */
291 if (codec
->active
== 0) {
292 dbg("pop wq D1 %s %s\n", codec
->name
,
293 codec_dai
->playback
.stream_name
);
294 snd_soc_dapm_set_bias_level(socdev
,
295 SND_SOC_BIAS_PREPARE
);
298 codec_dai
->pop_wait
= 0;
299 snd_soc_dapm_stream_event(codec
,
300 codec_dai
->playback
.stream_name
,
301 SND_SOC_DAPM_STREAM_STOP
);
303 /* Fall into standby if no longer active */
304 if (codec
->active
== 0) {
305 dbg("pop wq D3 %s %s\n", codec
->name
,
306 codec_dai
->playback
.stream_name
);
307 snd_soc_dapm_set_bias_level(socdev
,
308 SND_SOC_BIAS_STANDBY
);
312 mutex_unlock(&pcm_mutex
);
316 * Called by ALSA when a PCM substream is closed. Private data can be
317 * freed here. The cpu DAI, codec DAI, machine and platform are also
320 static int soc_codec_close(struct snd_pcm_substream
*substream
)
322 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
323 struct snd_soc_device
*socdev
= rtd
->socdev
;
324 struct snd_soc_dai_link
*machine
= rtd
->dai
;
325 struct snd_soc_platform
*platform
= socdev
->platform
;
326 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
327 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
328 struct snd_soc_codec
*codec
= socdev
->codec
;
330 mutex_lock(&pcm_mutex
);
332 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
333 cpu_dai
->playback
.active
= codec_dai
->playback
.active
= 0;
335 cpu_dai
->capture
.active
= codec_dai
->capture
.active
= 0;
337 if (codec_dai
->playback
.active
== 0 &&
338 codec_dai
->capture
.active
== 0) {
339 cpu_dai
->active
= codec_dai
->active
= 0;
343 if (cpu_dai
->ops
.shutdown
)
344 cpu_dai
->ops
.shutdown(substream
);
346 if (codec_dai
->ops
.shutdown
)
347 codec_dai
->ops
.shutdown(substream
);
349 if (machine
->ops
&& machine
->ops
->shutdown
)
350 machine
->ops
->shutdown(substream
);
352 if (platform
->pcm_ops
->close
)
353 platform
->pcm_ops
->close(substream
);
354 cpu_dai
->runtime
= NULL
;
356 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
357 /* start delayed pop wq here for playback streams */
358 codec_dai
->pop_wait
= 1;
359 schedule_delayed_work(&socdev
->delayed_work
,
360 msecs_to_jiffies(pmdown_time
));
362 /* capture streams can be powered down now */
363 snd_soc_dapm_stream_event(codec
,
364 codec_dai
->capture
.stream_name
,
365 SND_SOC_DAPM_STREAM_STOP
);
367 if (codec
->active
== 0 && codec_dai
->pop_wait
== 0)
368 snd_soc_dapm_set_bias_level(socdev
,
369 SND_SOC_BIAS_STANDBY
);
372 mutex_unlock(&pcm_mutex
);
377 * Called by ALSA when the PCM substream is prepared, can set format, sample
378 * rate, etc. This function is non atomic and can be called multiple times,
379 * it can refer to the runtime info.
381 static int soc_pcm_prepare(struct snd_pcm_substream
*substream
)
383 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
384 struct snd_soc_device
*socdev
= rtd
->socdev
;
385 struct snd_soc_dai_link
*machine
= rtd
->dai
;
386 struct snd_soc_platform
*platform
= socdev
->platform
;
387 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
388 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
389 struct snd_soc_codec
*codec
= socdev
->codec
;
392 mutex_lock(&pcm_mutex
);
394 if (machine
->ops
&& machine
->ops
->prepare
) {
395 ret
= machine
->ops
->prepare(substream
);
397 printk(KERN_ERR
"asoc: machine prepare error\n");
402 if (platform
->pcm_ops
->prepare
) {
403 ret
= platform
->pcm_ops
->prepare(substream
);
405 printk(KERN_ERR
"asoc: platform prepare error\n");
410 if (codec_dai
->ops
.prepare
) {
411 ret
= codec_dai
->ops
.prepare(substream
);
413 printk(KERN_ERR
"asoc: codec DAI prepare error\n");
418 if (cpu_dai
->ops
.prepare
) {
419 ret
= cpu_dai
->ops
.prepare(substream
);
421 printk(KERN_ERR
"asoc: cpu DAI prepare error\n");
426 /* we only want to start a DAPM playback stream if we are not waiting
427 * on an existing one stopping */
428 if (codec_dai
->pop_wait
) {
429 /* we are waiting for the delayed work to start */
430 if (substream
->stream
== SNDRV_PCM_STREAM_CAPTURE
)
431 snd_soc_dapm_stream_event(socdev
->codec
,
432 codec_dai
->capture
.stream_name
,
433 SND_SOC_DAPM_STREAM_START
);
435 codec_dai
->pop_wait
= 0;
436 cancel_delayed_work(&socdev
->delayed_work
);
437 snd_soc_dai_digital_mute(codec_dai
, 0);
440 /* no delayed work - do we need to power up codec */
441 if (codec
->bias_level
!= SND_SOC_BIAS_ON
) {
443 snd_soc_dapm_set_bias_level(socdev
,
444 SND_SOC_BIAS_PREPARE
);
446 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
447 snd_soc_dapm_stream_event(codec
,
448 codec_dai
->playback
.stream_name
,
449 SND_SOC_DAPM_STREAM_START
);
451 snd_soc_dapm_stream_event(codec
,
452 codec_dai
->capture
.stream_name
,
453 SND_SOC_DAPM_STREAM_START
);
455 snd_soc_dapm_set_bias_level(socdev
, SND_SOC_BIAS_ON
);
456 snd_soc_dai_digital_mute(codec_dai
, 0);
459 /* codec already powered - power on widgets */
460 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
461 snd_soc_dapm_stream_event(codec
,
462 codec_dai
->playback
.stream_name
,
463 SND_SOC_DAPM_STREAM_START
);
465 snd_soc_dapm_stream_event(codec
,
466 codec_dai
->capture
.stream_name
,
467 SND_SOC_DAPM_STREAM_START
);
469 snd_soc_dai_digital_mute(codec_dai
, 0);
474 mutex_unlock(&pcm_mutex
);
479 * Called by ALSA when the hardware params are set by application. This
480 * function can also be called multiple times and can allocate buffers
481 * (using snd_pcm_lib_* ). It's non-atomic.
483 static int soc_pcm_hw_params(struct snd_pcm_substream
*substream
,
484 struct snd_pcm_hw_params
*params
)
486 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
487 struct snd_soc_device
*socdev
= rtd
->socdev
;
488 struct snd_soc_dai_link
*machine
= rtd
->dai
;
489 struct snd_soc_platform
*platform
= socdev
->platform
;
490 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
491 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
494 mutex_lock(&pcm_mutex
);
496 if (machine
->ops
&& machine
->ops
->hw_params
) {
497 ret
= machine
->ops
->hw_params(substream
, params
);
499 printk(KERN_ERR
"asoc: machine hw_params failed\n");
504 if (codec_dai
->ops
.hw_params
) {
505 ret
= codec_dai
->ops
.hw_params(substream
, params
);
507 printk(KERN_ERR
"asoc: can't set codec %s hw params\n",
513 if (cpu_dai
->ops
.hw_params
) {
514 ret
= cpu_dai
->ops
.hw_params(substream
, params
);
516 printk(KERN_ERR
"asoc: interface %s hw params failed\n",
522 if (platform
->pcm_ops
->hw_params
) {
523 ret
= platform
->pcm_ops
->hw_params(substream
, params
);
525 printk(KERN_ERR
"asoc: platform %s hw params failed\n",
532 mutex_unlock(&pcm_mutex
);
536 if (cpu_dai
->ops
.hw_free
)
537 cpu_dai
->ops
.hw_free(substream
);
540 if (codec_dai
->ops
.hw_free
)
541 codec_dai
->ops
.hw_free(substream
);
544 if (machine
->ops
&& machine
->ops
->hw_free
)
545 machine
->ops
->hw_free(substream
);
547 mutex_unlock(&pcm_mutex
);
552 * Free's resources allocated by hw_params, can be called multiple times
554 static int soc_pcm_hw_free(struct snd_pcm_substream
*substream
)
556 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
557 struct snd_soc_device
*socdev
= rtd
->socdev
;
558 struct snd_soc_dai_link
*machine
= rtd
->dai
;
559 struct snd_soc_platform
*platform
= socdev
->platform
;
560 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
561 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
562 struct snd_soc_codec
*codec
= socdev
->codec
;
564 mutex_lock(&pcm_mutex
);
566 /* apply codec digital mute */
568 snd_soc_dai_digital_mute(codec_dai
, 1);
570 /* free any machine hw params */
571 if (machine
->ops
&& machine
->ops
->hw_free
)
572 machine
->ops
->hw_free(substream
);
574 /* free any DMA resources */
575 if (platform
->pcm_ops
->hw_free
)
576 platform
->pcm_ops
->hw_free(substream
);
578 /* now free hw params for the DAI's */
579 if (codec_dai
->ops
.hw_free
)
580 codec_dai
->ops
.hw_free(substream
);
582 if (cpu_dai
->ops
.hw_free
)
583 cpu_dai
->ops
.hw_free(substream
);
585 mutex_unlock(&pcm_mutex
);
589 static int soc_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
591 struct snd_soc_pcm_runtime
*rtd
= substream
->private_data
;
592 struct snd_soc_device
*socdev
= rtd
->socdev
;
593 struct snd_soc_dai_link
*machine
= rtd
->dai
;
594 struct snd_soc_platform
*platform
= socdev
->platform
;
595 struct snd_soc_dai
*cpu_dai
= machine
->cpu_dai
;
596 struct snd_soc_dai
*codec_dai
= machine
->codec_dai
;
599 if (codec_dai
->ops
.trigger
) {
600 ret
= codec_dai
->ops
.trigger(substream
, cmd
);
605 if (platform
->pcm_ops
->trigger
) {
606 ret
= platform
->pcm_ops
->trigger(substream
, cmd
);
611 if (cpu_dai
->ops
.trigger
) {
612 ret
= cpu_dai
->ops
.trigger(substream
, cmd
);
619 /* ASoC PCM operations */
620 static struct snd_pcm_ops soc_pcm_ops
= {
621 .open
= soc_pcm_open
,
622 .close
= soc_codec_close
,
623 .hw_params
= soc_pcm_hw_params
,
624 .hw_free
= soc_pcm_hw_free
,
625 .prepare
= soc_pcm_prepare
,
626 .trigger
= soc_pcm_trigger
,
630 /* powers down audio subsystem for suspend */
631 static int soc_suspend(struct platform_device
*pdev
, pm_message_t state
)
633 struct snd_soc_device
*socdev
= platform_get_drvdata(pdev
);
634 struct snd_soc_machine
*machine
= socdev
->machine
;
635 struct snd_soc_platform
*platform
= socdev
->platform
;
636 struct snd_soc_codec_device
*codec_dev
= socdev
->codec_dev
;
637 struct snd_soc_codec
*codec
= socdev
->codec
;
640 /* Due to the resume being scheduled into a workqueue we could
641 * suspend before that's finished - wait for it to complete.
643 snd_power_lock(codec
->card
);
644 snd_power_wait(codec
->card
, SNDRV_CTL_POWER_D0
);
645 snd_power_unlock(codec
->card
);
647 /* we're going to block userspace touching us until resume completes */
648 snd_power_change_state(codec
->card
, SNDRV_CTL_POWER_D3hot
);
650 /* mute any active DAC's */
651 for (i
= 0; i
< machine
->num_links
; i
++) {
652 struct snd_soc_dai
*dai
= machine
->dai_link
[i
].codec_dai
;
653 if (dai
->dai_ops
.digital_mute
&& dai
->playback
.active
)
654 dai
->dai_ops
.digital_mute(dai
, 1);
657 /* suspend all pcms */
658 for (i
= 0; i
< machine
->num_links
; i
++)
659 snd_pcm_suspend_all(machine
->dai_link
[i
].pcm
);
661 if (machine
->suspend_pre
)
662 machine
->suspend_pre(pdev
, state
);
664 for (i
= 0; i
< machine
->num_links
; i
++) {
665 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
666 if (cpu_dai
->suspend
&& cpu_dai
->type
!= SND_SOC_DAI_AC97
)
667 cpu_dai
->suspend(pdev
, cpu_dai
);
668 if (platform
->suspend
)
669 platform
->suspend(pdev
, cpu_dai
);
672 /* close any waiting streams and save state */
673 run_delayed_work(&socdev
->delayed_work
);
674 codec
->suspend_bias_level
= codec
->bias_level
;
676 for (i
= 0; i
< codec
->num_dai
; i
++) {
677 char *stream
= codec
->dai
[i
].playback
.stream_name
;
679 snd_soc_dapm_stream_event(codec
, stream
,
680 SND_SOC_DAPM_STREAM_SUSPEND
);
681 stream
= codec
->dai
[i
].capture
.stream_name
;
683 snd_soc_dapm_stream_event(codec
, stream
,
684 SND_SOC_DAPM_STREAM_SUSPEND
);
687 if (codec_dev
->suspend
)
688 codec_dev
->suspend(pdev
, state
);
690 for (i
= 0; i
< machine
->num_links
; i
++) {
691 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
692 if (cpu_dai
->suspend
&& cpu_dai
->type
== SND_SOC_DAI_AC97
)
693 cpu_dai
->suspend(pdev
, cpu_dai
);
696 if (machine
->suspend_post
)
697 machine
->suspend_post(pdev
, state
);
702 /* deferred resume work, so resume can complete before we finished
703 * setting our codec back up, which can be very slow on I2C
705 static void soc_resume_deferred(struct work_struct
*work
)
707 struct snd_soc_device
*socdev
= container_of(work
,
708 struct snd_soc_device
,
709 deferred_resume_work
);
710 struct snd_soc_machine
*machine
= socdev
->machine
;
711 struct snd_soc_platform
*platform
= socdev
->platform
;
712 struct snd_soc_codec_device
*codec_dev
= socdev
->codec_dev
;
713 struct snd_soc_codec
*codec
= socdev
->codec
;
714 struct platform_device
*pdev
= to_platform_device(socdev
->dev
);
717 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
718 * so userspace apps are blocked from touching us
721 dev_info(socdev
->dev
, "starting resume work\n");
723 if (machine
->resume_pre
)
724 machine
->resume_pre(pdev
);
726 for (i
= 0; i
< machine
->num_links
; i
++) {
727 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
728 if (cpu_dai
->resume
&& cpu_dai
->type
== SND_SOC_DAI_AC97
)
729 cpu_dai
->resume(pdev
, cpu_dai
);
732 if (codec_dev
->resume
)
733 codec_dev
->resume(pdev
);
735 for (i
= 0; i
< codec
->num_dai
; i
++) {
736 char *stream
= codec
->dai
[i
].playback
.stream_name
;
738 snd_soc_dapm_stream_event(codec
, stream
,
739 SND_SOC_DAPM_STREAM_RESUME
);
740 stream
= codec
->dai
[i
].capture
.stream_name
;
742 snd_soc_dapm_stream_event(codec
, stream
,
743 SND_SOC_DAPM_STREAM_RESUME
);
746 /* unmute any active DACs */
747 for (i
= 0; i
< machine
->num_links
; i
++) {
748 struct snd_soc_dai
*dai
= machine
->dai_link
[i
].codec_dai
;
749 if (dai
->dai_ops
.digital_mute
&& dai
->playback
.active
)
750 dai
->dai_ops
.digital_mute(dai
, 0);
753 for (i
= 0; i
< machine
->num_links
; i
++) {
754 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
755 if (cpu_dai
->resume
&& cpu_dai
->type
!= SND_SOC_DAI_AC97
)
756 cpu_dai
->resume(pdev
, cpu_dai
);
757 if (platform
->resume
)
758 platform
->resume(pdev
, cpu_dai
);
761 if (machine
->resume_post
)
762 machine
->resume_post(pdev
);
764 dev_info(socdev
->dev
, "resume work completed\n");
766 /* userspace can access us now we are back as we were before */
767 snd_power_change_state(codec
->card
, SNDRV_CTL_POWER_D0
);
770 /* powers up audio subsystem after a suspend */
771 static int soc_resume(struct platform_device
*pdev
)
773 struct snd_soc_device
*socdev
= platform_get_drvdata(pdev
);
775 dev_info(socdev
->dev
, "scheduling resume work\n");
777 if (!schedule_work(&socdev
->deferred_resume_work
))
778 dev_err(socdev
->dev
, "work item may be lost\n");
784 #define soc_suspend NULL
785 #define soc_resume NULL
788 /* probes a new socdev */
789 static int soc_probe(struct platform_device
*pdev
)
792 struct snd_soc_device
*socdev
= platform_get_drvdata(pdev
);
793 struct snd_soc_machine
*machine
= socdev
->machine
;
794 struct snd_soc_platform
*platform
= socdev
->platform
;
795 struct snd_soc_codec_device
*codec_dev
= socdev
->codec_dev
;
797 if (machine
->probe
) {
798 ret
= machine
->probe(pdev
);
803 for (i
= 0; i
< machine
->num_links
; i
++) {
804 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
805 if (cpu_dai
->probe
) {
806 ret
= cpu_dai
->probe(pdev
, cpu_dai
);
812 if (codec_dev
->probe
) {
813 ret
= codec_dev
->probe(pdev
);
818 if (platform
->probe
) {
819 ret
= platform
->probe(pdev
);
824 /* DAPM stream work */
825 INIT_DELAYED_WORK(&socdev
->delayed_work
, close_delayed_work
);
827 /* deferred resume work */
828 INIT_WORK(&socdev
->deferred_resume_work
, soc_resume_deferred
);
834 if (codec_dev
->remove
)
835 codec_dev
->remove(pdev
);
838 for (i
--; i
>= 0; i
--) {
839 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
841 cpu_dai
->remove(pdev
, cpu_dai
);
845 machine
->remove(pdev
);
850 /* removes a socdev */
851 static int soc_remove(struct platform_device
*pdev
)
854 struct snd_soc_device
*socdev
= platform_get_drvdata(pdev
);
855 struct snd_soc_machine
*machine
= socdev
->machine
;
856 struct snd_soc_platform
*platform
= socdev
->platform
;
857 struct snd_soc_codec_device
*codec_dev
= socdev
->codec_dev
;
859 run_delayed_work(&socdev
->delayed_work
);
861 if (platform
->remove
)
862 platform
->remove(pdev
);
864 if (codec_dev
->remove
)
865 codec_dev
->remove(pdev
);
867 for (i
= 0; i
< machine
->num_links
; i
++) {
868 struct snd_soc_dai
*cpu_dai
= machine
->dai_link
[i
].cpu_dai
;
870 cpu_dai
->remove(pdev
, cpu_dai
);
874 machine
->remove(pdev
);
879 /* ASoC platform driver */
880 static struct platform_driver soc_driver
= {
883 .owner
= THIS_MODULE
,
886 .remove
= soc_remove
,
887 .suspend
= soc_suspend
,
888 .resume
= soc_resume
,
891 /* create a new pcm */
892 static int soc_new_pcm(struct snd_soc_device
*socdev
,
893 struct snd_soc_dai_link
*dai_link
, int num
)
895 struct snd_soc_codec
*codec
= socdev
->codec
;
896 struct snd_soc_dai
*codec_dai
= dai_link
->codec_dai
;
897 struct snd_soc_dai
*cpu_dai
= dai_link
->cpu_dai
;
898 struct snd_soc_pcm_runtime
*rtd
;
901 int ret
= 0, playback
= 0, capture
= 0;
903 rtd
= kzalloc(sizeof(struct snd_soc_pcm_runtime
), GFP_KERNEL
);
908 rtd
->socdev
= socdev
;
909 codec_dai
->codec
= socdev
->codec
;
911 /* check client and interface hw capabilities */
912 sprintf(new_name
, "%s %s-%s-%d", dai_link
->stream_name
, codec_dai
->name
,
913 get_dai_name(cpu_dai
->type
), num
);
915 if (codec_dai
->playback
.channels_min
)
917 if (codec_dai
->capture
.channels_min
)
920 ret
= snd_pcm_new(codec
->card
, new_name
, codec
->pcm_devs
++, playback
,
923 printk(KERN_ERR
"asoc: can't create pcm for codec %s\n",
930 pcm
->private_data
= rtd
;
931 soc_pcm_ops
.mmap
= socdev
->platform
->pcm_ops
->mmap
;
932 soc_pcm_ops
.pointer
= socdev
->platform
->pcm_ops
->pointer
;
933 soc_pcm_ops
.ioctl
= socdev
->platform
->pcm_ops
->ioctl
;
934 soc_pcm_ops
.copy
= socdev
->platform
->pcm_ops
->copy
;
935 soc_pcm_ops
.silence
= socdev
->platform
->pcm_ops
->silence
;
936 soc_pcm_ops
.ack
= socdev
->platform
->pcm_ops
->ack
;
937 soc_pcm_ops
.page
= socdev
->platform
->pcm_ops
->page
;
940 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &soc_pcm_ops
);
943 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_CAPTURE
, &soc_pcm_ops
);
945 ret
= socdev
->platform
->pcm_new(codec
->card
, codec_dai
, pcm
);
947 printk(KERN_ERR
"asoc: platform pcm constructor failed\n");
952 pcm
->private_free
= socdev
->platform
->pcm_free
;
953 printk(KERN_INFO
"asoc: %s <-> %s mapping ok\n", codec_dai
->name
,
958 /* codec register dump */
959 static ssize_t
codec_reg_show(struct device
*dev
,
960 struct device_attribute
*attr
, char *buf
)
962 struct snd_soc_device
*devdata
= dev_get_drvdata(dev
);
963 struct snd_soc_codec
*codec
= devdata
->codec
;
964 int i
, step
= 1, count
= 0;
966 if (!codec
->reg_cache_size
)
969 if (codec
->reg_cache_step
)
970 step
= codec
->reg_cache_step
;
972 count
+= sprintf(buf
, "%s registers\n", codec
->name
);
973 for (i
= 0; i
< codec
->reg_cache_size
; i
+= step
)
974 count
+= sprintf(buf
+ count
, "%2x: %4x\n", i
,
975 codec
->read(codec
, i
));
979 static DEVICE_ATTR(codec_reg
, 0444, codec_reg_show
, NULL
);
982 * snd_soc_new_ac97_codec - initailise AC97 device
983 * @codec: audio codec
984 * @ops: AC97 bus operations
985 * @num: AC97 codec number
987 * Initialises AC97 codec resources for use by ad-hoc devices only.
989 int snd_soc_new_ac97_codec(struct snd_soc_codec
*codec
,
990 struct snd_ac97_bus_ops
*ops
, int num
)
992 mutex_lock(&codec
->mutex
);
994 codec
->ac97
= kzalloc(sizeof(struct snd_ac97
), GFP_KERNEL
);
995 if (codec
->ac97
== NULL
) {
996 mutex_unlock(&codec
->mutex
);
1000 codec
->ac97
->bus
= kzalloc(sizeof(struct snd_ac97_bus
), GFP_KERNEL
);
1001 if (codec
->ac97
->bus
== NULL
) {
1004 mutex_unlock(&codec
->mutex
);
1008 codec
->ac97
->bus
->ops
= ops
;
1009 codec
->ac97
->num
= num
;
1010 mutex_unlock(&codec
->mutex
);
1013 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec
);
1016 * snd_soc_free_ac97_codec - free AC97 codec device
1017 * @codec: audio codec
1019 * Frees AC97 codec device resources.
1021 void snd_soc_free_ac97_codec(struct snd_soc_codec
*codec
)
1023 mutex_lock(&codec
->mutex
);
1024 kfree(codec
->ac97
->bus
);
1027 mutex_unlock(&codec
->mutex
);
1029 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec
);
1032 * snd_soc_update_bits - update codec register bits
1033 * @codec: audio codec
1034 * @reg: codec register
1035 * @mask: register mask
1038 * Writes new register value.
1040 * Returns 1 for change else 0.
1042 int snd_soc_update_bits(struct snd_soc_codec
*codec
, unsigned short reg
,
1043 unsigned short mask
, unsigned short value
)
1046 unsigned short old
, new;
1048 mutex_lock(&io_mutex
);
1049 old
= snd_soc_read(codec
, reg
);
1050 new = (old
& ~mask
) | value
;
1051 change
= old
!= new;
1053 snd_soc_write(codec
, reg
, new);
1055 mutex_unlock(&io_mutex
);
1058 EXPORT_SYMBOL_GPL(snd_soc_update_bits
);
1061 * snd_soc_test_bits - test register for change
1062 * @codec: audio codec
1063 * @reg: codec register
1064 * @mask: register mask
1067 * Tests a register with a new value and checks if the new value is
1068 * different from the old value.
1070 * Returns 1 for change else 0.
1072 int snd_soc_test_bits(struct snd_soc_codec
*codec
, unsigned short reg
,
1073 unsigned short mask
, unsigned short value
)
1076 unsigned short old
, new;
1078 mutex_lock(&io_mutex
);
1079 old
= snd_soc_read(codec
, reg
);
1080 new = (old
& ~mask
) | value
;
1081 change
= old
!= new;
1082 mutex_unlock(&io_mutex
);
1086 EXPORT_SYMBOL_GPL(snd_soc_test_bits
);
1089 * snd_soc_new_pcms - create new sound card and pcms
1090 * @socdev: the SoC audio device
1092 * Create a new sound card based upon the codec and interface pcms.
1094 * Returns 0 for success, else error.
1096 int snd_soc_new_pcms(struct snd_soc_device
*socdev
, int idx
, const char *xid
)
1098 struct snd_soc_codec
*codec
= socdev
->codec
;
1099 struct snd_soc_machine
*machine
= socdev
->machine
;
1102 mutex_lock(&codec
->mutex
);
1104 /* register a sound card */
1105 codec
->card
= snd_card_new(idx
, xid
, codec
->owner
, 0);
1107 printk(KERN_ERR
"asoc: can't create sound card for codec %s\n",
1109 mutex_unlock(&codec
->mutex
);
1113 codec
->card
->dev
= socdev
->dev
;
1114 codec
->card
->private_data
= codec
;
1115 strncpy(codec
->card
->driver
, codec
->name
, sizeof(codec
->card
->driver
));
1117 /* create the pcms */
1118 for (i
= 0; i
< machine
->num_links
; i
++) {
1119 ret
= soc_new_pcm(socdev
, &machine
->dai_link
[i
], i
);
1121 printk(KERN_ERR
"asoc: can't create pcm %s\n",
1122 machine
->dai_link
[i
].stream_name
);
1123 mutex_unlock(&codec
->mutex
);
1128 mutex_unlock(&codec
->mutex
);
1131 EXPORT_SYMBOL_GPL(snd_soc_new_pcms
);
1134 * snd_soc_register_card - register sound card
1135 * @socdev: the SoC audio device
1137 * Register a SoC sound card. Also registers an AC97 device if the
1138 * codec is AC97 for ad hoc devices.
1140 * Returns 0 for success, else error.
1142 int snd_soc_register_card(struct snd_soc_device
*socdev
)
1144 struct snd_soc_codec
*codec
= socdev
->codec
;
1145 struct snd_soc_machine
*machine
= socdev
->machine
;
1146 int ret
= 0, i
, ac97
= 0, err
= 0;
1148 for (i
= 0; i
< machine
->num_links
; i
++) {
1149 if (socdev
->machine
->dai_link
[i
].init
) {
1150 err
= socdev
->machine
->dai_link
[i
].init(codec
);
1152 printk(KERN_ERR
"asoc: failed to init %s\n",
1153 socdev
->machine
->dai_link
[i
].stream_name
);
1157 if (socdev
->machine
->dai_link
[i
].codec_dai
->type
==
1158 SND_SOC_DAI_AC97_BUS
)
1161 snprintf(codec
->card
->shortname
, sizeof(codec
->card
->shortname
),
1162 "%s", machine
->name
);
1163 snprintf(codec
->card
->longname
, sizeof(codec
->card
->longname
),
1164 "%s (%s)", machine
->name
, codec
->name
);
1166 ret
= snd_card_register(codec
->card
);
1168 printk(KERN_ERR
"asoc: failed to register soundcard for %s\n",
1173 mutex_lock(&codec
->mutex
);
1174 #ifdef CONFIG_SND_SOC_AC97_BUS
1176 ret
= soc_ac97_dev_register(codec
);
1178 printk(KERN_ERR
"asoc: AC97 device register failed\n");
1179 snd_card_free(codec
->card
);
1180 mutex_unlock(&codec
->mutex
);
1186 err
= snd_soc_dapm_sys_add(socdev
->dev
);
1188 printk(KERN_WARNING
"asoc: failed to add dapm sysfs entries\n");
1190 err
= device_create_file(socdev
->dev
, &dev_attr_codec_reg
);
1192 printk(KERN_WARNING
"asoc: failed to add codec sysfs files\n");
1194 mutex_unlock(&codec
->mutex
);
1199 EXPORT_SYMBOL_GPL(snd_soc_register_card
);
1202 * snd_soc_free_pcms - free sound card and pcms
1203 * @socdev: the SoC audio device
1205 * Frees sound card and pcms associated with the socdev.
1206 * Also unregister the codec if it is an AC97 device.
1208 void snd_soc_free_pcms(struct snd_soc_device
*socdev
)
1210 struct snd_soc_codec
*codec
= socdev
->codec
;
1211 #ifdef CONFIG_SND_SOC_AC97_BUS
1212 struct snd_soc_dai
*codec_dai
;
1216 mutex_lock(&codec
->mutex
);
1217 #ifdef CONFIG_SND_SOC_AC97_BUS
1218 for (i
= 0; i
< codec
->num_dai
; i
++) {
1219 codec_dai
= &codec
->dai
[i
];
1220 if (codec_dai
->type
== SND_SOC_DAI_AC97_BUS
&& codec
->ac97
) {
1221 soc_ac97_dev_unregister(codec
);
1229 snd_card_free(codec
->card
);
1230 device_remove_file(socdev
->dev
, &dev_attr_codec_reg
);
1231 mutex_unlock(&codec
->mutex
);
1233 EXPORT_SYMBOL_GPL(snd_soc_free_pcms
);
1236 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1237 * @substream: the pcm substream
1238 * @hw: the hardware parameters
1240 * Sets the substream runtime hardware parameters.
1242 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream
*substream
,
1243 const struct snd_pcm_hardware
*hw
)
1245 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1246 runtime
->hw
.info
= hw
->info
;
1247 runtime
->hw
.formats
= hw
->formats
;
1248 runtime
->hw
.period_bytes_min
= hw
->period_bytes_min
;
1249 runtime
->hw
.period_bytes_max
= hw
->period_bytes_max
;
1250 runtime
->hw
.periods_min
= hw
->periods_min
;
1251 runtime
->hw
.periods_max
= hw
->periods_max
;
1252 runtime
->hw
.buffer_bytes_max
= hw
->buffer_bytes_max
;
1253 runtime
->hw
.fifo_size
= hw
->fifo_size
;
1256 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams
);
1259 * snd_soc_cnew - create new control
1260 * @_template: control template
1261 * @data: control private data
1262 * @lnng_name: control long name
1264 * Create a new mixer control from a template control.
1266 * Returns 0 for success, else error.
1268 struct snd_kcontrol
*snd_soc_cnew(const struct snd_kcontrol_new
*_template
,
1269 void *data
, char *long_name
)
1271 struct snd_kcontrol_new
template;
1273 memcpy(&template, _template
, sizeof(template));
1275 template.name
= long_name
;
1278 return snd_ctl_new1(&template, data
);
1280 EXPORT_SYMBOL_GPL(snd_soc_cnew
);
1283 * snd_soc_info_enum_double - enumerated double mixer info callback
1284 * @kcontrol: mixer control
1285 * @uinfo: control element information
1287 * Callback to provide information about a double enumerated
1290 * Returns 0 for success.
1292 int snd_soc_info_enum_double(struct snd_kcontrol
*kcontrol
,
1293 struct snd_ctl_elem_info
*uinfo
)
1295 struct soc_enum
*e
= (struct soc_enum
*)kcontrol
->private_value
;
1297 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_ENUMERATED
;
1298 uinfo
->count
= e
->shift_l
== e
->shift_r
? 1 : 2;
1299 uinfo
->value
.enumerated
.items
= e
->mask
;
1301 if (uinfo
->value
.enumerated
.item
> e
->mask
- 1)
1302 uinfo
->value
.enumerated
.item
= e
->mask
- 1;
1303 strcpy(uinfo
->value
.enumerated
.name
,
1304 e
->texts
[uinfo
->value
.enumerated
.item
]);
1307 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double
);
1310 * snd_soc_get_enum_double - enumerated double mixer get callback
1311 * @kcontrol: mixer control
1312 * @uinfo: control element information
1314 * Callback to get the value of a double enumerated mixer.
1316 * Returns 0 for success.
1318 int snd_soc_get_enum_double(struct snd_kcontrol
*kcontrol
,
1319 struct snd_ctl_elem_value
*ucontrol
)
1321 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1322 struct soc_enum
*e
= (struct soc_enum
*)kcontrol
->private_value
;
1323 unsigned short val
, bitmask
;
1325 for (bitmask
= 1; bitmask
< e
->mask
; bitmask
<<= 1)
1327 val
= snd_soc_read(codec
, e
->reg
);
1328 ucontrol
->value
.enumerated
.item
[0]
1329 = (val
>> e
->shift_l
) & (bitmask
- 1);
1330 if (e
->shift_l
!= e
->shift_r
)
1331 ucontrol
->value
.enumerated
.item
[1] =
1332 (val
>> e
->shift_r
) & (bitmask
- 1);
1336 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double
);
1339 * snd_soc_put_enum_double - enumerated double mixer put callback
1340 * @kcontrol: mixer control
1341 * @uinfo: control element information
1343 * Callback to set the value of a double enumerated mixer.
1345 * Returns 0 for success.
1347 int snd_soc_put_enum_double(struct snd_kcontrol
*kcontrol
,
1348 struct snd_ctl_elem_value
*ucontrol
)
1350 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1351 struct soc_enum
*e
= (struct soc_enum
*)kcontrol
->private_value
;
1353 unsigned short mask
, bitmask
;
1355 for (bitmask
= 1; bitmask
< e
->mask
; bitmask
<<= 1)
1357 if (ucontrol
->value
.enumerated
.item
[0] > e
->mask
- 1)
1359 val
= ucontrol
->value
.enumerated
.item
[0] << e
->shift_l
;
1360 mask
= (bitmask
- 1) << e
->shift_l
;
1361 if (e
->shift_l
!= e
->shift_r
) {
1362 if (ucontrol
->value
.enumerated
.item
[1] > e
->mask
- 1)
1364 val
|= ucontrol
->value
.enumerated
.item
[1] << e
->shift_r
;
1365 mask
|= (bitmask
- 1) << e
->shift_r
;
1368 return snd_soc_update_bits(codec
, e
->reg
, mask
, val
);
1370 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double
);
1373 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1374 * @kcontrol: mixer control
1375 * @uinfo: control element information
1377 * Callback to provide information about an external enumerated
1380 * Returns 0 for success.
1382 int snd_soc_info_enum_ext(struct snd_kcontrol
*kcontrol
,
1383 struct snd_ctl_elem_info
*uinfo
)
1385 struct soc_enum
*e
= (struct soc_enum
*)kcontrol
->private_value
;
1387 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_ENUMERATED
;
1389 uinfo
->value
.enumerated
.items
= e
->mask
;
1391 if (uinfo
->value
.enumerated
.item
> e
->mask
- 1)
1392 uinfo
->value
.enumerated
.item
= e
->mask
- 1;
1393 strcpy(uinfo
->value
.enumerated
.name
,
1394 e
->texts
[uinfo
->value
.enumerated
.item
]);
1397 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext
);
1400 * snd_soc_info_volsw_ext - external single mixer info callback
1401 * @kcontrol: mixer control
1402 * @uinfo: control element information
1404 * Callback to provide information about a single external mixer control.
1406 * Returns 0 for success.
1408 int snd_soc_info_volsw_ext(struct snd_kcontrol
*kcontrol
,
1409 struct snd_ctl_elem_info
*uinfo
)
1411 int max
= kcontrol
->private_value
;
1414 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BOOLEAN
;
1416 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
1419 uinfo
->value
.integer
.min
= 0;
1420 uinfo
->value
.integer
.max
= max
;
1423 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext
);
1426 * snd_soc_info_volsw - single mixer info callback
1427 * @kcontrol: mixer control
1428 * @uinfo: control element information
1430 * Callback to provide information about a single mixer control.
1432 * Returns 0 for success.
1434 int snd_soc_info_volsw(struct snd_kcontrol
*kcontrol
,
1435 struct snd_ctl_elem_info
*uinfo
)
1437 int max
= (kcontrol
->private_value
>> 16) & 0xff;
1438 int shift
= (kcontrol
->private_value
>> 8) & 0x0f;
1439 int rshift
= (kcontrol
->private_value
>> 12) & 0x0f;
1442 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BOOLEAN
;
1444 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
1446 uinfo
->count
= shift
== rshift
? 1 : 2;
1447 uinfo
->value
.integer
.min
= 0;
1448 uinfo
->value
.integer
.max
= max
;
1451 EXPORT_SYMBOL_GPL(snd_soc_info_volsw
);
1454 * snd_soc_get_volsw - single mixer get callback
1455 * @kcontrol: mixer control
1456 * @uinfo: control element information
1458 * Callback to get the value of a single mixer control.
1460 * Returns 0 for success.
1462 int snd_soc_get_volsw(struct snd_kcontrol
*kcontrol
,
1463 struct snd_ctl_elem_value
*ucontrol
)
1465 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1466 int reg
= kcontrol
->private_value
& 0xff;
1467 int shift
= (kcontrol
->private_value
>> 8) & 0x0f;
1468 int rshift
= (kcontrol
->private_value
>> 12) & 0x0f;
1469 int max
= (kcontrol
->private_value
>> 16) & 0xff;
1470 int mask
= (1 << fls(max
)) - 1;
1471 int invert
= (kcontrol
->private_value
>> 24) & 0x01;
1473 ucontrol
->value
.integer
.value
[0] =
1474 (snd_soc_read(codec
, reg
) >> shift
) & mask
;
1475 if (shift
!= rshift
)
1476 ucontrol
->value
.integer
.value
[1] =
1477 (snd_soc_read(codec
, reg
) >> rshift
) & mask
;
1479 ucontrol
->value
.integer
.value
[0] =
1480 max
- ucontrol
->value
.integer
.value
[0];
1481 if (shift
!= rshift
)
1482 ucontrol
->value
.integer
.value
[1] =
1483 max
- ucontrol
->value
.integer
.value
[1];
1488 EXPORT_SYMBOL_GPL(snd_soc_get_volsw
);
1491 * snd_soc_put_volsw - single mixer put callback
1492 * @kcontrol: mixer control
1493 * @uinfo: control element information
1495 * Callback to set the value of a single mixer control.
1497 * Returns 0 for success.
1499 int snd_soc_put_volsw(struct snd_kcontrol
*kcontrol
,
1500 struct snd_ctl_elem_value
*ucontrol
)
1502 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1503 int reg
= kcontrol
->private_value
& 0xff;
1504 int shift
= (kcontrol
->private_value
>> 8) & 0x0f;
1505 int rshift
= (kcontrol
->private_value
>> 12) & 0x0f;
1506 int max
= (kcontrol
->private_value
>> 16) & 0xff;
1507 int mask
= (1 << fls(max
)) - 1;
1508 int invert
= (kcontrol
->private_value
>> 24) & 0x01;
1509 unsigned short val
, val2
, val_mask
;
1511 val
= (ucontrol
->value
.integer
.value
[0] & mask
);
1514 val_mask
= mask
<< shift
;
1516 if (shift
!= rshift
) {
1517 val2
= (ucontrol
->value
.integer
.value
[1] & mask
);
1520 val_mask
|= mask
<< rshift
;
1521 val
|= val2
<< rshift
;
1523 return snd_soc_update_bits(codec
, reg
, val_mask
, val
);
1525 EXPORT_SYMBOL_GPL(snd_soc_put_volsw
);
1528 * snd_soc_info_volsw_2r - double mixer info callback
1529 * @kcontrol: mixer control
1530 * @uinfo: control element information
1532 * Callback to provide information about a double mixer control that
1533 * spans 2 codec registers.
1535 * Returns 0 for success.
1537 int snd_soc_info_volsw_2r(struct snd_kcontrol
*kcontrol
,
1538 struct snd_ctl_elem_info
*uinfo
)
1540 int max
= (kcontrol
->private_value
>> 12) & 0xff;
1543 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_BOOLEAN
;
1545 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
1548 uinfo
->value
.integer
.min
= 0;
1549 uinfo
->value
.integer
.max
= max
;
1552 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r
);
1555 * snd_soc_get_volsw_2r - double mixer get callback
1556 * @kcontrol: mixer control
1557 * @uinfo: control element information
1559 * Callback to get the value of a double mixer control that spans 2 registers.
1561 * Returns 0 for success.
1563 int snd_soc_get_volsw_2r(struct snd_kcontrol
*kcontrol
,
1564 struct snd_ctl_elem_value
*ucontrol
)
1566 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1567 int reg
= kcontrol
->private_value
& 0xff;
1568 int reg2
= (kcontrol
->private_value
>> 24) & 0xff;
1569 int shift
= (kcontrol
->private_value
>> 8) & 0x0f;
1570 int max
= (kcontrol
->private_value
>> 12) & 0xff;
1571 int mask
= (1<<fls(max
))-1;
1572 int invert
= (kcontrol
->private_value
>> 20) & 0x01;
1574 ucontrol
->value
.integer
.value
[0] =
1575 (snd_soc_read(codec
, reg
) >> shift
) & mask
;
1576 ucontrol
->value
.integer
.value
[1] =
1577 (snd_soc_read(codec
, reg2
) >> shift
) & mask
;
1579 ucontrol
->value
.integer
.value
[0] =
1580 max
- ucontrol
->value
.integer
.value
[0];
1581 ucontrol
->value
.integer
.value
[1] =
1582 max
- ucontrol
->value
.integer
.value
[1];
1587 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r
);
1590 * snd_soc_put_volsw_2r - double mixer set callback
1591 * @kcontrol: mixer control
1592 * @uinfo: control element information
1594 * Callback to set the value of a double mixer control that spans 2 registers.
1596 * Returns 0 for success.
1598 int snd_soc_put_volsw_2r(struct snd_kcontrol
*kcontrol
,
1599 struct snd_ctl_elem_value
*ucontrol
)
1601 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1602 int reg
= kcontrol
->private_value
& 0xff;
1603 int reg2
= (kcontrol
->private_value
>> 24) & 0xff;
1604 int shift
= (kcontrol
->private_value
>> 8) & 0x0f;
1605 int max
= (kcontrol
->private_value
>> 12) & 0xff;
1606 int mask
= (1 << fls(max
)) - 1;
1607 int invert
= (kcontrol
->private_value
>> 20) & 0x01;
1609 unsigned short val
, val2
, val_mask
;
1611 val_mask
= mask
<< shift
;
1612 val
= (ucontrol
->value
.integer
.value
[0] & mask
);
1613 val2
= (ucontrol
->value
.integer
.value
[1] & mask
);
1621 val2
= val2
<< shift
;
1623 err
= snd_soc_update_bits(codec
, reg
, val_mask
, val
);
1627 err
= snd_soc_update_bits(codec
, reg2
, val_mask
, val2
);
1630 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r
);
1633 * snd_soc_info_volsw_s8 - signed mixer info callback
1634 * @kcontrol: mixer control
1635 * @uinfo: control element information
1637 * Callback to provide information about a signed mixer control.
1639 * Returns 0 for success.
1641 int snd_soc_info_volsw_s8(struct snd_kcontrol
*kcontrol
,
1642 struct snd_ctl_elem_info
*uinfo
)
1644 int max
= (signed char)((kcontrol
->private_value
>> 16) & 0xff);
1645 int min
= (signed char)((kcontrol
->private_value
>> 24) & 0xff);
1647 uinfo
->type
= SNDRV_CTL_ELEM_TYPE_INTEGER
;
1649 uinfo
->value
.integer
.min
= 0;
1650 uinfo
->value
.integer
.max
= max
-min
;
1653 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8
);
1656 * snd_soc_get_volsw_s8 - signed mixer get callback
1657 * @kcontrol: mixer control
1658 * @uinfo: control element information
1660 * Callback to get the value of a signed mixer control.
1662 * Returns 0 for success.
1664 int snd_soc_get_volsw_s8(struct snd_kcontrol
*kcontrol
,
1665 struct snd_ctl_elem_value
*ucontrol
)
1667 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1668 int reg
= kcontrol
->private_value
& 0xff;
1669 int min
= (signed char)((kcontrol
->private_value
>> 24) & 0xff);
1670 int val
= snd_soc_read(codec
, reg
);
1672 ucontrol
->value
.integer
.value
[0] =
1673 ((signed char)(val
& 0xff))-min
;
1674 ucontrol
->value
.integer
.value
[1] =
1675 ((signed char)((val
>> 8) & 0xff))-min
;
1678 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8
);
1681 * snd_soc_put_volsw_sgn - signed mixer put callback
1682 * @kcontrol: mixer control
1683 * @uinfo: control element information
1685 * Callback to set the value of a signed mixer control.
1687 * Returns 0 for success.
1689 int snd_soc_put_volsw_s8(struct snd_kcontrol
*kcontrol
,
1690 struct snd_ctl_elem_value
*ucontrol
)
1692 struct snd_soc_codec
*codec
= snd_kcontrol_chip(kcontrol
);
1693 int reg
= kcontrol
->private_value
& 0xff;
1694 int min
= (signed char)((kcontrol
->private_value
>> 24) & 0xff);
1697 val
= (ucontrol
->value
.integer
.value
[0]+min
) & 0xff;
1698 val
|= ((ucontrol
->value
.integer
.value
[1]+min
) & 0xff) << 8;
1700 return snd_soc_update_bits(codec
, reg
, 0xffff, val
);
1702 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8
);
1705 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
1707 * @clk_id: DAI specific clock ID
1708 * @freq: new clock frequency in Hz
1709 * @dir: new clock direction - input/output.
1711 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
1713 int snd_soc_dai_set_sysclk(struct snd_soc_dai
*dai
, int clk_id
,
1714 unsigned int freq
, int dir
)
1716 if (dai
->dai_ops
.set_sysclk
)
1717 return dai
->dai_ops
.set_sysclk(dai
, clk_id
, freq
, dir
);
1721 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk
);
1724 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
1726 * @clk_id: DAI specific clock divider ID
1727 * @div: new clock divisor.
1729 * Configures the clock dividers. This is used to derive the best DAI bit and
1730 * frame clocks from the system or master clock. It's best to set the DAI bit
1731 * and frame clocks as low as possible to save system power.
1733 int snd_soc_dai_set_clkdiv(struct snd_soc_dai
*dai
,
1734 int div_id
, int div
)
1736 if (dai
->dai_ops
.set_clkdiv
)
1737 return dai
->dai_ops
.set_clkdiv(dai
, div_id
, div
);
1741 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv
);
1744 * snd_soc_dai_set_pll - configure DAI PLL.
1746 * @pll_id: DAI specific PLL ID
1747 * @freq_in: PLL input clock frequency in Hz
1748 * @freq_out: requested PLL output clock frequency in Hz
1750 * Configures and enables PLL to generate output clock based on input clock.
1752 int snd_soc_dai_set_pll(struct snd_soc_dai
*dai
,
1753 int pll_id
, unsigned int freq_in
, unsigned int freq_out
)
1755 if (dai
->dai_ops
.set_pll
)
1756 return dai
->dai_ops
.set_pll(dai
, pll_id
, freq_in
, freq_out
);
1760 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll
);
1763 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
1765 * @clk_id: DAI specific clock ID
1766 * @fmt: SND_SOC_DAIFMT_ format value.
1768 * Configures the DAI hardware format and clocking.
1770 int snd_soc_dai_set_fmt(struct snd_soc_dai
*dai
, unsigned int fmt
)
1772 if (dai
->dai_ops
.set_fmt
)
1773 return dai
->dai_ops
.set_fmt(dai
, fmt
);
1777 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt
);
1780 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
1782 * @mask: DAI specific mask representing used slots.
1783 * @slots: Number of slots in use.
1785 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
1788 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai
*dai
,
1789 unsigned int mask
, int slots
)
1791 if (dai
->dai_ops
.set_sysclk
)
1792 return dai
->dai_ops
.set_tdm_slot(dai
, mask
, slots
);
1796 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot
);
1799 * snd_soc_dai_set_tristate - configure DAI system or master clock.
1801 * @tristate: tristate enable
1803 * Tristates the DAI so that others can use it.
1805 int snd_soc_dai_set_tristate(struct snd_soc_dai
*dai
, int tristate
)
1807 if (dai
->dai_ops
.set_sysclk
)
1808 return dai
->dai_ops
.set_tristate(dai
, tristate
);
1812 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate
);
1815 * snd_soc_dai_digital_mute - configure DAI system or master clock.
1817 * @mute: mute enable
1819 * Mutes the DAI DAC.
1821 int snd_soc_dai_digital_mute(struct snd_soc_dai
*dai
, int mute
)
1823 if (dai
->dai_ops
.digital_mute
)
1824 return dai
->dai_ops
.digital_mute(dai
, mute
);
1828 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute
);
1830 static int __devinit
snd_soc_init(void)
1832 printk(KERN_INFO
"ASoC version %s\n", SND_SOC_VERSION
);
1833 return platform_driver_register(&soc_driver
);
1836 static void snd_soc_exit(void)
1838 platform_driver_unregister(&soc_driver
);
1841 module_init(snd_soc_init
);
1842 module_exit(snd_soc_exit
);
1844 /* Module information */
1845 MODULE_AUTHOR("Liam Girdwood, liam.girdwood@wolfsonmicro.com, www.wolfsonmicro.com");
1846 MODULE_DESCRIPTION("ALSA SoC Core");
1847 MODULE_LICENSE("GPL");
1848 MODULE_ALIAS("platform:soc-audio");