2 * arch/mips/dec/int-handler.S
4 * Copyright (C) 1995, 1996, 1997 Paul M. Antoine and Harald Koerfgen
5 * Copyright (C) 2000, 2001, 2002, 2003, 2005 Maciej W. Rozycki
7 * Written by Ralf Baechle and Andreas Busse, modified for DECstation
8 * support by Paul Antoine and Harald Koerfgen.
10 * completly rewritten:
11 * Copyright (C) 1998 Harald Koerfgen
13 * Rewritten extensively for controller-driven IRQ support
14 * by Maciej W. Rozycki.
17 #include <asm/addrspace.h>
19 #include <asm/mipsregs.h>
20 #include <asm/regdef.h>
21 #include <asm/stackframe.h>
23 #include <asm/dec/interrupts.h>
24 #include <asm/dec/ioasic_addrs.h>
25 #include <asm/dec/ioasic_ints.h>
26 #include <asm/dec/kn01.h>
27 #include <asm/dec/kn02.h>
28 #include <asm/dec/kn02xa.h>
29 #include <asm/dec/kn03.h>
31 #define KN02_CSR_BASE CKSEG1ADDR(KN02_SLOT_BASE + KN02_CSR)
32 #define KN02XA_IOASIC_BASE CKSEG1ADDR(KN02XA_SLOT_BASE + IOASIC_IOCTL)
33 #define KN03_IOASIC_BASE CKSEG1ADDR(KN03_SLOT_BASE + IOASIC_IOCTL)
38 * plat_irq_dispatch: Interrupt handler for DECstations
40 * We follow the model in the Indy interrupt code by David Miller, where he
41 * says: a lot of complication here is taken away because:
43 * 1) We handle one interrupt and return, sitting in a loop
44 * and moving across all the pending IRQ bits in the cause
45 * register is _NOT_ the answer, the common case is one
46 * pending IRQ so optimize in that direction.
48 * 2) We need not check against bits in the status register
49 * IRQ mask, that would make this routine slow as hell.
51 * 3) Linux only thinks in terms of all IRQs on or all IRQs
52 * off, nothing in between like BSD spl() brain-damage.
54 * Furthermore, the IRQs on the DECstations look basically (barring
55 * software IRQs which we don't use at all) like...
57 * DS2100/3100's, aka kn01, aka Pmax:
61 * 0 Software (ignored)
62 * 1 Software (ignored)
67 * 6 Memory Controller & Video
70 * DS5000/200, aka kn02, aka 3max:
74 * 0 Software (ignored)
75 * 1 Software (ignored)
83 * DS5000/1xx's, aka kn02ba, aka 3min:
87 * 0 Software (ignored)
88 * 1 Software (ignored)
89 * 2 TurboChannel Slot 0
90 * 3 TurboChannel Slot 1
91 * 4 TurboChannel Slot 2
92 * 5 TurboChannel Slot 3 (ASIC)
96 * DS5000/2x's, aka kn02ca, aka maxine:
100 * 0 Software (ignored)
101 * 1 Software (ignored)
102 * 2 Periodic Interrupt (100usec)
104 * 4 I/O write timeout
105 * 5 TurboChannel (ASIC)
106 * 6 Halt Keycode from Access.Bus keyboard (CTRL-ALT-ENTER)
109 * DS5000/2xx's, aka kn03, aka 3maxplus:
113 * 0 Software (ignored)
114 * 1 Software (ignored)
115 * 2 System Board (ASIC)
122 * We handle the IRQ according to _our_ priority (see setup.c),
123 * then we just return. If multiple IRQs are pending then we will
124 * just take another exception, big deal.
127 NESTED(plat_irq_dispatch, PT_SIZE, ra)
131 * Get pending Interrupts
133 mfc0 t0,CP0_CAUSE # get pending interrupts
138 andi t0,ST0_IM # CAUSE.CE may be non-zero!
139 and t0,t1 # isolate allowed ones
145 bnez t2,fpu # handle FPU immediately
149 * Find irq with highest priority
151 PTR_LA t1,cpu_mask_nr_tbl
156 addu t1,2*PTRSIZE # delay slot
159 * Do the low-level stuff
163 bgez a0,handle_it # irq_nr >= 0?
164 # irq_nr < 0: it is an address
167 # a trick to save a branch:
168 lui t2,(KN03_IOASIC_BASE>>16)&0xffff
169 # upper part of IOASIC Address
172 * Handle "IRQ Controller" Interrupts
173 * Masked Interrupts are still visible and have to be masked "by hand".
175 FEXPORT(kn02_io_int) # 3max
176 lui t0,(KN02_CSR_BASE>>16)&0xffff
177 # get interrupt status and mask
180 andi t1,t0,KN02_IRQ_ALL
182 srl t0,16 # shift interrupt mask
184 FEXPORT(kn02xa_io_int) # 3min/maxine
185 lui t2,(KN02XA_IOASIC_BASE>>16)&0xffff
186 # upper part of IOASIC Address
188 FEXPORT(kn03_io_int) # 3max+ (t2 loaded earlier)
189 lw t0,IO_REG_SIR(t2) # get status: IOASIC sir
190 lw t1,IO_REG_SIMR(t2) # get mask: IOASIC simr
193 1: and t0,t1 # mask out allowed ones
198 * Find irq with highest priority
200 PTR_LA t1,asic_mask_nr_tbl
205 addu t1,2*PTRSIZE # delay slot
208 * Do the low-level stuff
210 lw a0,%lo(-PTRSIZE)(t1)
212 bgez a0,handle_it # irq_nr >= 0?
213 # irq_nr < 0: it is an address
219 * Dispatch low-priority interrupts. We reconsider all status
220 * bits again, which looks like a lose, but it makes the code
221 * simple and O(log n), so it gets compensated.
223 FEXPORT(cpu_all_int) # HALT, timers, software junk
224 li a0,DEC_CPU_IRQ_BASE
226 li t1,CAUSEF_IP>>CAUSEB_IP # mask
228 li t2,4 # nr of bits / 2
230 FEXPORT(kn02_all_int) # impossible ?
232 li t1,KN02_IRQ_ALL # mask
234 li t2,4 # nr of bits / 2
236 FEXPORT(asic_all_int) # various I/O ASIC junk
238 li t1,IO_IRQ_ALL # mask
240 li t2,8 # nr of bits / 2
243 * Dispatch DMA interrupts -- O(log n).
245 FEXPORT(asic_dma_int) # I/O ASIC DMA events
246 li a0,IO_IRQ_BASE+IO_INR_DMA
248 li t1,IO_IRQ_DMA>>IO_INR_DMA # mask
249 li t2,8 # nr of bits / 2
252 * Find irq with highest priority.
253 * Highest irq number takes precedence.
279 END(plat_irq_dispatch)
282 * Generic unimplemented interrupt routines -- cpu_mask_nr_tbl
283 * and asic_mask_nr_tbl are initialized to point all interrupts here.
284 * The tables are then filled in by machine-specific initialisation
287 FEXPORT(dec_intr_unimplemented)
288 move a1,t0 # cheats way of printing an arg!
289 PANIC("Unimplemented cpu interrupt! CP0_CAUSE: 0x%08x");
291 FEXPORT(asic_intr_unimplemented)
292 move a1,t0 # cheats way of printing an arg!
293 PANIC("Unimplemented asic interrupt! ASIC ISR: 0x%08x");