ext4: tone down ext4_da_writepages warnings
[linux-2.6/mini2440.git] / fs / ext4 / inode.c
blobac97348f85b5730c8157ea19913485236c9b764a
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
45 #define MPAGE_DA_EXTENT_TAIL 0x01
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
50 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
51 new_size);
54 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57 * Test whether an inode is a fast symlink.
59 static int ext4_inode_is_fast_symlink(struct inode *inode)
61 int ea_blocks = EXT4_I(inode)->i_file_acl ?
62 (inode->i_sb->s_blocksize >> 9) : 0;
64 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
68 * The ext4 forget function must perform a revoke if we are freeing data
69 * which has been journaled. Metadata (eg. indirect blocks) must be
70 * revoked in all cases.
72 * "bh" may be NULL: a metadata block may have been freed from memory
73 * but there may still be a record of it in the journal, and that record
74 * still needs to be revoked.
76 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
77 struct buffer_head *bh, ext4_fsblk_t blocknr)
79 int err;
81 might_sleep();
83 BUFFER_TRACE(bh, "enter");
85 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
86 "data mode %lx\n",
87 bh, is_metadata, inode->i_mode,
88 test_opt(inode->i_sb, DATA_FLAGS));
90 /* Never use the revoke function if we are doing full data
91 * journaling: there is no need to, and a V1 superblock won't
92 * support it. Otherwise, only skip the revoke on un-journaled
93 * data blocks. */
95 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
96 (!is_metadata && !ext4_should_journal_data(inode))) {
97 if (bh) {
98 BUFFER_TRACE(bh, "call jbd2_journal_forget");
99 return ext4_journal_forget(handle, bh);
101 return 0;
105 * data!=journal && (is_metadata || should_journal_data(inode))
107 BUFFER_TRACE(bh, "call ext4_journal_revoke");
108 err = ext4_journal_revoke(handle, blocknr, bh);
109 if (err)
110 ext4_abort(inode->i_sb, __func__,
111 "error %d when attempting revoke", err);
112 BUFFER_TRACE(bh, "exit");
113 return err;
117 * Work out how many blocks we need to proceed with the next chunk of a
118 * truncate transaction.
120 static unsigned long blocks_for_truncate(struct inode *inode)
122 ext4_lblk_t needed;
124 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
126 /* Give ourselves just enough room to cope with inodes in which
127 * i_blocks is corrupt: we've seen disk corruptions in the past
128 * which resulted in random data in an inode which looked enough
129 * like a regular file for ext4 to try to delete it. Things
130 * will go a bit crazy if that happens, but at least we should
131 * try not to panic the whole kernel. */
132 if (needed < 2)
133 needed = 2;
135 /* But we need to bound the transaction so we don't overflow the
136 * journal. */
137 if (needed > EXT4_MAX_TRANS_DATA)
138 needed = EXT4_MAX_TRANS_DATA;
140 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
144 * Truncate transactions can be complex and absolutely huge. So we need to
145 * be able to restart the transaction at a conventient checkpoint to make
146 * sure we don't overflow the journal.
148 * start_transaction gets us a new handle for a truncate transaction,
149 * and extend_transaction tries to extend the existing one a bit. If
150 * extend fails, we need to propagate the failure up and restart the
151 * transaction in the top-level truncate loop. --sct
153 static handle_t *start_transaction(struct inode *inode)
155 handle_t *result;
157 result = ext4_journal_start(inode, blocks_for_truncate(inode));
158 if (!IS_ERR(result))
159 return result;
161 ext4_std_error(inode->i_sb, PTR_ERR(result));
162 return result;
166 * Try to extend this transaction for the purposes of truncation.
168 * Returns 0 if we managed to create more room. If we can't create more
169 * room, and the transaction must be restarted we return 1.
171 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
173 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
174 return 0;
175 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
176 return 0;
177 return 1;
181 * Restart the transaction associated with *handle. This does a commit,
182 * so before we call here everything must be consistently dirtied against
183 * this transaction.
185 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
187 jbd_debug(2, "restarting handle %p\n", handle);
188 return ext4_journal_restart(handle, blocks_for_truncate(inode));
192 * Called at the last iput() if i_nlink is zero.
194 void ext4_delete_inode(struct inode *inode)
196 handle_t *handle;
197 int err;
199 if (ext4_should_order_data(inode))
200 ext4_begin_ordered_truncate(inode, 0);
201 truncate_inode_pages(&inode->i_data, 0);
203 if (is_bad_inode(inode))
204 goto no_delete;
206 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
207 if (IS_ERR(handle)) {
208 ext4_std_error(inode->i_sb, PTR_ERR(handle));
210 * If we're going to skip the normal cleanup, we still need to
211 * make sure that the in-core orphan linked list is properly
212 * cleaned up.
214 ext4_orphan_del(NULL, inode);
215 goto no_delete;
218 if (IS_SYNC(inode))
219 handle->h_sync = 1;
220 inode->i_size = 0;
221 err = ext4_mark_inode_dirty(handle, inode);
222 if (err) {
223 ext4_warning(inode->i_sb, __func__,
224 "couldn't mark inode dirty (err %d)", err);
225 goto stop_handle;
227 if (inode->i_blocks)
228 ext4_truncate(inode);
231 * ext4_ext_truncate() doesn't reserve any slop when it
232 * restarts journal transactions; therefore there may not be
233 * enough credits left in the handle to remove the inode from
234 * the orphan list and set the dtime field.
236 if (handle->h_buffer_credits < 3) {
237 err = ext4_journal_extend(handle, 3);
238 if (err > 0)
239 err = ext4_journal_restart(handle, 3);
240 if (err != 0) {
241 ext4_warning(inode->i_sb, __func__,
242 "couldn't extend journal (err %d)", err);
243 stop_handle:
244 ext4_journal_stop(handle);
245 goto no_delete;
250 * Kill off the orphan record which ext4_truncate created.
251 * AKPM: I think this can be inside the above `if'.
252 * Note that ext4_orphan_del() has to be able to cope with the
253 * deletion of a non-existent orphan - this is because we don't
254 * know if ext4_truncate() actually created an orphan record.
255 * (Well, we could do this if we need to, but heck - it works)
257 ext4_orphan_del(handle, inode);
258 EXT4_I(inode)->i_dtime = get_seconds();
261 * One subtle ordering requirement: if anything has gone wrong
262 * (transaction abort, IO errors, whatever), then we can still
263 * do these next steps (the fs will already have been marked as
264 * having errors), but we can't free the inode if the mark_dirty
265 * fails.
267 if (ext4_mark_inode_dirty(handle, inode))
268 /* If that failed, just do the required in-core inode clear. */
269 clear_inode(inode);
270 else
271 ext4_free_inode(handle, inode);
272 ext4_journal_stop(handle);
273 return;
274 no_delete:
275 clear_inode(inode); /* We must guarantee clearing of inode... */
278 typedef struct {
279 __le32 *p;
280 __le32 key;
281 struct buffer_head *bh;
282 } Indirect;
284 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
286 p->key = *(p->p = v);
287 p->bh = bh;
291 * ext4_block_to_path - parse the block number into array of offsets
292 * @inode: inode in question (we are only interested in its superblock)
293 * @i_block: block number to be parsed
294 * @offsets: array to store the offsets in
295 * @boundary: set this non-zero if the referred-to block is likely to be
296 * followed (on disk) by an indirect block.
298 * To store the locations of file's data ext4 uses a data structure common
299 * for UNIX filesystems - tree of pointers anchored in the inode, with
300 * data blocks at leaves and indirect blocks in intermediate nodes.
301 * This function translates the block number into path in that tree -
302 * return value is the path length and @offsets[n] is the offset of
303 * pointer to (n+1)th node in the nth one. If @block is out of range
304 * (negative or too large) warning is printed and zero returned.
306 * Note: function doesn't find node addresses, so no IO is needed. All
307 * we need to know is the capacity of indirect blocks (taken from the
308 * inode->i_sb).
312 * Portability note: the last comparison (check that we fit into triple
313 * indirect block) is spelled differently, because otherwise on an
314 * architecture with 32-bit longs and 8Kb pages we might get into trouble
315 * if our filesystem had 8Kb blocks. We might use long long, but that would
316 * kill us on x86. Oh, well, at least the sign propagation does not matter -
317 * i_block would have to be negative in the very beginning, so we would not
318 * get there at all.
321 static int ext4_block_to_path(struct inode *inode,
322 ext4_lblk_t i_block,
323 ext4_lblk_t offsets[4], int *boundary)
325 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
326 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
327 const long direct_blocks = EXT4_NDIR_BLOCKS,
328 indirect_blocks = ptrs,
329 double_blocks = (1 << (ptrs_bits * 2));
330 int n = 0;
331 int final = 0;
333 if (i_block < 0) {
334 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
335 } else if (i_block < direct_blocks) {
336 offsets[n++] = i_block;
337 final = direct_blocks;
338 } else if ((i_block -= direct_blocks) < indirect_blocks) {
339 offsets[n++] = EXT4_IND_BLOCK;
340 offsets[n++] = i_block;
341 final = ptrs;
342 } else if ((i_block -= indirect_blocks) < double_blocks) {
343 offsets[n++] = EXT4_DIND_BLOCK;
344 offsets[n++] = i_block >> ptrs_bits;
345 offsets[n++] = i_block & (ptrs - 1);
346 final = ptrs;
347 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
348 offsets[n++] = EXT4_TIND_BLOCK;
349 offsets[n++] = i_block >> (ptrs_bits * 2);
350 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
351 offsets[n++] = i_block & (ptrs - 1);
352 final = ptrs;
353 } else {
354 ext4_warning(inode->i_sb, "ext4_block_to_path",
355 "block %lu > max",
356 i_block + direct_blocks +
357 indirect_blocks + double_blocks);
359 if (boundary)
360 *boundary = final - 1 - (i_block & (ptrs - 1));
361 return n;
365 * ext4_get_branch - read the chain of indirect blocks leading to data
366 * @inode: inode in question
367 * @depth: depth of the chain (1 - direct pointer, etc.)
368 * @offsets: offsets of pointers in inode/indirect blocks
369 * @chain: place to store the result
370 * @err: here we store the error value
372 * Function fills the array of triples <key, p, bh> and returns %NULL
373 * if everything went OK or the pointer to the last filled triple
374 * (incomplete one) otherwise. Upon the return chain[i].key contains
375 * the number of (i+1)-th block in the chain (as it is stored in memory,
376 * i.e. little-endian 32-bit), chain[i].p contains the address of that
377 * number (it points into struct inode for i==0 and into the bh->b_data
378 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
379 * block for i>0 and NULL for i==0. In other words, it holds the block
380 * numbers of the chain, addresses they were taken from (and where we can
381 * verify that chain did not change) and buffer_heads hosting these
382 * numbers.
384 * Function stops when it stumbles upon zero pointer (absent block)
385 * (pointer to last triple returned, *@err == 0)
386 * or when it gets an IO error reading an indirect block
387 * (ditto, *@err == -EIO)
388 * or when it reads all @depth-1 indirect blocks successfully and finds
389 * the whole chain, all way to the data (returns %NULL, *err == 0).
391 * Need to be called with
392 * down_read(&EXT4_I(inode)->i_data_sem)
394 static Indirect *ext4_get_branch(struct inode *inode, int depth,
395 ext4_lblk_t *offsets,
396 Indirect chain[4], int *err)
398 struct super_block *sb = inode->i_sb;
399 Indirect *p = chain;
400 struct buffer_head *bh;
402 *err = 0;
403 /* i_data is not going away, no lock needed */
404 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
405 if (!p->key)
406 goto no_block;
407 while (--depth) {
408 bh = sb_bread(sb, le32_to_cpu(p->key));
409 if (!bh)
410 goto failure;
411 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
412 /* Reader: end */
413 if (!p->key)
414 goto no_block;
416 return NULL;
418 failure:
419 *err = -EIO;
420 no_block:
421 return p;
425 * ext4_find_near - find a place for allocation with sufficient locality
426 * @inode: owner
427 * @ind: descriptor of indirect block.
429 * This function returns the preferred place for block allocation.
430 * It is used when heuristic for sequential allocation fails.
431 * Rules are:
432 * + if there is a block to the left of our position - allocate near it.
433 * + if pointer will live in indirect block - allocate near that block.
434 * + if pointer will live in inode - allocate in the same
435 * cylinder group.
437 * In the latter case we colour the starting block by the callers PID to
438 * prevent it from clashing with concurrent allocations for a different inode
439 * in the same block group. The PID is used here so that functionally related
440 * files will be close-by on-disk.
442 * Caller must make sure that @ind is valid and will stay that way.
444 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
446 struct ext4_inode_info *ei = EXT4_I(inode);
447 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
448 __le32 *p;
449 ext4_fsblk_t bg_start;
450 ext4_fsblk_t last_block;
451 ext4_grpblk_t colour;
453 /* Try to find previous block */
454 for (p = ind->p - 1; p >= start; p--) {
455 if (*p)
456 return le32_to_cpu(*p);
459 /* No such thing, so let's try location of indirect block */
460 if (ind->bh)
461 return ind->bh->b_blocknr;
464 * It is going to be referred to from the inode itself? OK, just put it
465 * into the same cylinder group then.
467 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
468 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
470 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
471 colour = (current->pid % 16) *
472 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
473 else
474 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
475 return bg_start + colour;
479 * ext4_find_goal - find a preferred place for allocation.
480 * @inode: owner
481 * @block: block we want
482 * @partial: pointer to the last triple within a chain
484 * Normally this function find the preferred place for block allocation,
485 * returns it.
487 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
488 Indirect *partial)
491 * XXX need to get goal block from mballoc's data structures
494 return ext4_find_near(inode, partial);
498 * ext4_blks_to_allocate: Look up the block map and count the number
499 * of direct blocks need to be allocated for the given branch.
501 * @branch: chain of indirect blocks
502 * @k: number of blocks need for indirect blocks
503 * @blks: number of data blocks to be mapped.
504 * @blocks_to_boundary: the offset in the indirect block
506 * return the total number of blocks to be allocate, including the
507 * direct and indirect blocks.
509 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
510 int blocks_to_boundary)
512 unsigned long count = 0;
515 * Simple case, [t,d]Indirect block(s) has not allocated yet
516 * then it's clear blocks on that path have not allocated
518 if (k > 0) {
519 /* right now we don't handle cross boundary allocation */
520 if (blks < blocks_to_boundary + 1)
521 count += blks;
522 else
523 count += blocks_to_boundary + 1;
524 return count;
527 count++;
528 while (count < blks && count <= blocks_to_boundary &&
529 le32_to_cpu(*(branch[0].p + count)) == 0) {
530 count++;
532 return count;
536 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
537 * @indirect_blks: the number of blocks need to allocate for indirect
538 * blocks
540 * @new_blocks: on return it will store the new block numbers for
541 * the indirect blocks(if needed) and the first direct block,
542 * @blks: on return it will store the total number of allocated
543 * direct blocks
545 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
546 ext4_lblk_t iblock, ext4_fsblk_t goal,
547 int indirect_blks, int blks,
548 ext4_fsblk_t new_blocks[4], int *err)
550 struct ext4_allocation_request ar;
551 int target, i;
552 unsigned long count = 0, blk_allocated = 0;
553 int index = 0;
554 ext4_fsblk_t current_block = 0;
555 int ret = 0;
558 * Here we try to allocate the requested multiple blocks at once,
559 * on a best-effort basis.
560 * To build a branch, we should allocate blocks for
561 * the indirect blocks(if not allocated yet), and at least
562 * the first direct block of this branch. That's the
563 * minimum number of blocks need to allocate(required)
565 /* first we try to allocate the indirect blocks */
566 target = indirect_blks;
567 while (target > 0) {
568 count = target;
569 /* allocating blocks for indirect blocks and direct blocks */
570 current_block = ext4_new_meta_blocks(handle, inode,
571 goal, &count, err);
572 if (*err)
573 goto failed_out;
575 target -= count;
576 /* allocate blocks for indirect blocks */
577 while (index < indirect_blks && count) {
578 new_blocks[index++] = current_block++;
579 count--;
581 if (count > 0) {
583 * save the new block number
584 * for the first direct block
586 new_blocks[index] = current_block;
587 printk(KERN_INFO "%s returned more blocks than "
588 "requested\n", __func__);
589 WARN_ON(1);
590 break;
594 target = blks - count ;
595 blk_allocated = count;
596 if (!target)
597 goto allocated;
598 /* Now allocate data blocks */
599 memset(&ar, 0, sizeof(ar));
600 ar.inode = inode;
601 ar.goal = goal;
602 ar.len = target;
603 ar.logical = iblock;
604 if (S_ISREG(inode->i_mode))
605 /* enable in-core preallocation only for regular files */
606 ar.flags = EXT4_MB_HINT_DATA;
608 current_block = ext4_mb_new_blocks(handle, &ar, err);
610 if (*err && (target == blks)) {
612 * if the allocation failed and we didn't allocate
613 * any blocks before
615 goto failed_out;
617 if (!*err) {
618 if (target == blks) {
620 * save the new block number
621 * for the first direct block
623 new_blocks[index] = current_block;
625 blk_allocated += ar.len;
627 allocated:
628 /* total number of blocks allocated for direct blocks */
629 ret = blk_allocated;
630 *err = 0;
631 return ret;
632 failed_out:
633 for (i = 0; i < index; i++)
634 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
635 return ret;
639 * ext4_alloc_branch - allocate and set up a chain of blocks.
640 * @inode: owner
641 * @indirect_blks: number of allocated indirect blocks
642 * @blks: number of allocated direct blocks
643 * @offsets: offsets (in the blocks) to store the pointers to next.
644 * @branch: place to store the chain in.
646 * This function allocates blocks, zeroes out all but the last one,
647 * links them into chain and (if we are synchronous) writes them to disk.
648 * In other words, it prepares a branch that can be spliced onto the
649 * inode. It stores the information about that chain in the branch[], in
650 * the same format as ext4_get_branch() would do. We are calling it after
651 * we had read the existing part of chain and partial points to the last
652 * triple of that (one with zero ->key). Upon the exit we have the same
653 * picture as after the successful ext4_get_block(), except that in one
654 * place chain is disconnected - *branch->p is still zero (we did not
655 * set the last link), but branch->key contains the number that should
656 * be placed into *branch->p to fill that gap.
658 * If allocation fails we free all blocks we've allocated (and forget
659 * their buffer_heads) and return the error value the from failed
660 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
661 * as described above and return 0.
663 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
664 ext4_lblk_t iblock, int indirect_blks,
665 int *blks, ext4_fsblk_t goal,
666 ext4_lblk_t *offsets, Indirect *branch)
668 int blocksize = inode->i_sb->s_blocksize;
669 int i, n = 0;
670 int err = 0;
671 struct buffer_head *bh;
672 int num;
673 ext4_fsblk_t new_blocks[4];
674 ext4_fsblk_t current_block;
676 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
677 *blks, new_blocks, &err);
678 if (err)
679 return err;
681 branch[0].key = cpu_to_le32(new_blocks[0]);
683 * metadata blocks and data blocks are allocated.
685 for (n = 1; n <= indirect_blks; n++) {
687 * Get buffer_head for parent block, zero it out
688 * and set the pointer to new one, then send
689 * parent to disk.
691 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
692 branch[n].bh = bh;
693 lock_buffer(bh);
694 BUFFER_TRACE(bh, "call get_create_access");
695 err = ext4_journal_get_create_access(handle, bh);
696 if (err) {
697 unlock_buffer(bh);
698 brelse(bh);
699 goto failed;
702 memset(bh->b_data, 0, blocksize);
703 branch[n].p = (__le32 *) bh->b_data + offsets[n];
704 branch[n].key = cpu_to_le32(new_blocks[n]);
705 *branch[n].p = branch[n].key;
706 if (n == indirect_blks) {
707 current_block = new_blocks[n];
709 * End of chain, update the last new metablock of
710 * the chain to point to the new allocated
711 * data blocks numbers
713 for (i=1; i < num; i++)
714 *(branch[n].p + i) = cpu_to_le32(++current_block);
716 BUFFER_TRACE(bh, "marking uptodate");
717 set_buffer_uptodate(bh);
718 unlock_buffer(bh);
720 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
721 err = ext4_journal_dirty_metadata(handle, bh);
722 if (err)
723 goto failed;
725 *blks = num;
726 return err;
727 failed:
728 /* Allocation failed, free what we already allocated */
729 for (i = 1; i <= n ; i++) {
730 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
731 ext4_journal_forget(handle, branch[i].bh);
733 for (i = 0; i < indirect_blks; i++)
734 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
736 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
738 return err;
742 * ext4_splice_branch - splice the allocated branch onto inode.
743 * @inode: owner
744 * @block: (logical) number of block we are adding
745 * @chain: chain of indirect blocks (with a missing link - see
746 * ext4_alloc_branch)
747 * @where: location of missing link
748 * @num: number of indirect blocks we are adding
749 * @blks: number of direct blocks we are adding
751 * This function fills the missing link and does all housekeeping needed in
752 * inode (->i_blocks, etc.). In case of success we end up with the full
753 * chain to new block and return 0.
755 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
756 ext4_lblk_t block, Indirect *where, int num, int blks)
758 int i;
759 int err = 0;
760 ext4_fsblk_t current_block;
763 * If we're splicing into a [td]indirect block (as opposed to the
764 * inode) then we need to get write access to the [td]indirect block
765 * before the splice.
767 if (where->bh) {
768 BUFFER_TRACE(where->bh, "get_write_access");
769 err = ext4_journal_get_write_access(handle, where->bh);
770 if (err)
771 goto err_out;
773 /* That's it */
775 *where->p = where->key;
778 * Update the host buffer_head or inode to point to more just allocated
779 * direct blocks blocks
781 if (num == 0 && blks > 1) {
782 current_block = le32_to_cpu(where->key) + 1;
783 for (i = 1; i < blks; i++)
784 *(where->p + i) = cpu_to_le32(current_block++);
787 /* We are done with atomic stuff, now do the rest of housekeeping */
789 inode->i_ctime = ext4_current_time(inode);
790 ext4_mark_inode_dirty(handle, inode);
792 /* had we spliced it onto indirect block? */
793 if (where->bh) {
795 * If we spliced it onto an indirect block, we haven't
796 * altered the inode. Note however that if it is being spliced
797 * onto an indirect block at the very end of the file (the
798 * file is growing) then we *will* alter the inode to reflect
799 * the new i_size. But that is not done here - it is done in
800 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
802 jbd_debug(5, "splicing indirect only\n");
803 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
804 err = ext4_journal_dirty_metadata(handle, where->bh);
805 if (err)
806 goto err_out;
807 } else {
809 * OK, we spliced it into the inode itself on a direct block.
810 * Inode was dirtied above.
812 jbd_debug(5, "splicing direct\n");
814 return err;
816 err_out:
817 for (i = 1; i <= num; i++) {
818 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
819 ext4_journal_forget(handle, where[i].bh);
820 ext4_free_blocks(handle, inode,
821 le32_to_cpu(where[i-1].key), 1, 0);
823 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
825 return err;
829 * Allocation strategy is simple: if we have to allocate something, we will
830 * have to go the whole way to leaf. So let's do it before attaching anything
831 * to tree, set linkage between the newborn blocks, write them if sync is
832 * required, recheck the path, free and repeat if check fails, otherwise
833 * set the last missing link (that will protect us from any truncate-generated
834 * removals - all blocks on the path are immune now) and possibly force the
835 * write on the parent block.
836 * That has a nice additional property: no special recovery from the failed
837 * allocations is needed - we simply release blocks and do not touch anything
838 * reachable from inode.
840 * `handle' can be NULL if create == 0.
842 * return > 0, # of blocks mapped or allocated.
843 * return = 0, if plain lookup failed.
844 * return < 0, error case.
847 * Need to be called with
848 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
849 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
851 int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
852 ext4_lblk_t iblock, unsigned long maxblocks,
853 struct buffer_head *bh_result,
854 int create, int extend_disksize)
856 int err = -EIO;
857 ext4_lblk_t offsets[4];
858 Indirect chain[4];
859 Indirect *partial;
860 ext4_fsblk_t goal;
861 int indirect_blks;
862 int blocks_to_boundary = 0;
863 int depth;
864 struct ext4_inode_info *ei = EXT4_I(inode);
865 int count = 0;
866 ext4_fsblk_t first_block = 0;
867 loff_t disksize;
870 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
871 J_ASSERT(handle != NULL || create == 0);
872 depth = ext4_block_to_path(inode, iblock, offsets,
873 &blocks_to_boundary);
875 if (depth == 0)
876 goto out;
878 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
880 /* Simplest case - block found, no allocation needed */
881 if (!partial) {
882 first_block = le32_to_cpu(chain[depth - 1].key);
883 clear_buffer_new(bh_result);
884 count++;
885 /*map more blocks*/
886 while (count < maxblocks && count <= blocks_to_boundary) {
887 ext4_fsblk_t blk;
889 blk = le32_to_cpu(*(chain[depth-1].p + count));
891 if (blk == first_block + count)
892 count++;
893 else
894 break;
896 goto got_it;
899 /* Next simple case - plain lookup or failed read of indirect block */
900 if (!create || err == -EIO)
901 goto cleanup;
904 * Okay, we need to do block allocation.
906 goal = ext4_find_goal(inode, iblock, partial);
908 /* the number of blocks need to allocate for [d,t]indirect blocks */
909 indirect_blks = (chain + depth) - partial - 1;
912 * Next look up the indirect map to count the totoal number of
913 * direct blocks to allocate for this branch.
915 count = ext4_blks_to_allocate(partial, indirect_blks,
916 maxblocks, blocks_to_boundary);
918 * Block out ext4_truncate while we alter the tree
920 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
921 &count, goal,
922 offsets + (partial - chain), partial);
925 * The ext4_splice_branch call will free and forget any buffers
926 * on the new chain if there is a failure, but that risks using
927 * up transaction credits, especially for bitmaps where the
928 * credits cannot be returned. Can we handle this somehow? We
929 * may need to return -EAGAIN upwards in the worst case. --sct
931 if (!err)
932 err = ext4_splice_branch(handle, inode, iblock,
933 partial, indirect_blks, count);
935 * i_disksize growing is protected by i_data_sem. Don't forget to
936 * protect it if you're about to implement concurrent
937 * ext4_get_block() -bzzz
939 if (!err && extend_disksize) {
940 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
941 if (disksize > i_size_read(inode))
942 disksize = i_size_read(inode);
943 if (disksize > ei->i_disksize)
944 ei->i_disksize = disksize;
946 if (err)
947 goto cleanup;
949 set_buffer_new(bh_result);
950 got_it:
951 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
952 if (count > blocks_to_boundary)
953 set_buffer_boundary(bh_result);
954 err = count;
955 /* Clean up and exit */
956 partial = chain + depth - 1; /* the whole chain */
957 cleanup:
958 while (partial > chain) {
959 BUFFER_TRACE(partial->bh, "call brelse");
960 brelse(partial->bh);
961 partial--;
963 BUFFER_TRACE(bh_result, "returned");
964 out:
965 return err;
969 * Calculate the number of metadata blocks need to reserve
970 * to allocate @blocks for non extent file based file
972 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
974 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
975 int ind_blks, dind_blks, tind_blks;
977 /* number of new indirect blocks needed */
978 ind_blks = (blocks + icap - 1) / icap;
980 dind_blks = (ind_blks + icap - 1) / icap;
982 tind_blks = 1;
984 return ind_blks + dind_blks + tind_blks;
988 * Calculate the number of metadata blocks need to reserve
989 * to allocate given number of blocks
991 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
993 if (!blocks)
994 return 0;
996 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
997 return ext4_ext_calc_metadata_amount(inode, blocks);
999 return ext4_indirect_calc_metadata_amount(inode, blocks);
1002 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1004 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1005 int total, mdb, mdb_free;
1007 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1008 /* recalculate the number of metablocks still need to be reserved */
1009 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1010 mdb = ext4_calc_metadata_amount(inode, total);
1012 /* figure out how many metablocks to release */
1013 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1014 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1016 if (mdb_free) {
1017 /* Account for allocated meta_blocks */
1018 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1020 /* update fs dirty blocks counter */
1021 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1022 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1023 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1026 /* update per-inode reservations */
1027 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1028 EXT4_I(inode)->i_reserved_data_blocks -= used;
1030 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1034 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1035 * and returns if the blocks are already mapped.
1037 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1038 * and store the allocated blocks in the result buffer head and mark it
1039 * mapped.
1041 * If file type is extents based, it will call ext4_ext_get_blocks(),
1042 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1043 * based files
1045 * On success, it returns the number of blocks being mapped or allocate.
1046 * if create==0 and the blocks are pre-allocated and uninitialized block,
1047 * the result buffer head is unmapped. If the create ==1, it will make sure
1048 * the buffer head is mapped.
1050 * It returns 0 if plain look up failed (blocks have not been allocated), in
1051 * that casem, buffer head is unmapped
1053 * It returns the error in case of allocation failure.
1055 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1056 unsigned long max_blocks, struct buffer_head *bh,
1057 int create, int extend_disksize, int flag)
1059 int retval;
1061 clear_buffer_mapped(bh);
1064 * Try to see if we can get the block without requesting
1065 * for new file system block.
1067 down_read((&EXT4_I(inode)->i_data_sem));
1068 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1069 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1070 bh, 0, 0);
1071 } else {
1072 retval = ext4_get_blocks_handle(handle,
1073 inode, block, max_blocks, bh, 0, 0);
1075 up_read((&EXT4_I(inode)->i_data_sem));
1077 /* If it is only a block(s) look up */
1078 if (!create)
1079 return retval;
1082 * Returns if the blocks have already allocated
1084 * Note that if blocks have been preallocated
1085 * ext4_ext_get_block() returns th create = 0
1086 * with buffer head unmapped.
1088 if (retval > 0 && buffer_mapped(bh))
1089 return retval;
1092 * New blocks allocate and/or writing to uninitialized extent
1093 * will possibly result in updating i_data, so we take
1094 * the write lock of i_data_sem, and call get_blocks()
1095 * with create == 1 flag.
1097 down_write((&EXT4_I(inode)->i_data_sem));
1100 * if the caller is from delayed allocation writeout path
1101 * we have already reserved fs blocks for allocation
1102 * let the underlying get_block() function know to
1103 * avoid double accounting
1105 if (flag)
1106 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1108 * We need to check for EXT4 here because migrate
1109 * could have changed the inode type in between
1111 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1112 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1113 bh, create, extend_disksize);
1114 } else {
1115 retval = ext4_get_blocks_handle(handle, inode, block,
1116 max_blocks, bh, create, extend_disksize);
1118 if (retval > 0 && buffer_new(bh)) {
1120 * We allocated new blocks which will result in
1121 * i_data's format changing. Force the migrate
1122 * to fail by clearing migrate flags
1124 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1125 ~EXT4_EXT_MIGRATE;
1129 if (flag) {
1130 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1132 * Update reserved blocks/metadata blocks
1133 * after successful block allocation
1134 * which were deferred till now
1136 if ((retval > 0) && buffer_delay(bh))
1137 ext4_da_update_reserve_space(inode, retval);
1140 up_write((&EXT4_I(inode)->i_data_sem));
1141 return retval;
1144 /* Maximum number of blocks we map for direct IO at once. */
1145 #define DIO_MAX_BLOCKS 4096
1147 int ext4_get_block(struct inode *inode, sector_t iblock,
1148 struct buffer_head *bh_result, int create)
1150 handle_t *handle = ext4_journal_current_handle();
1151 int ret = 0, started = 0;
1152 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1153 int dio_credits;
1155 if (create && !handle) {
1156 /* Direct IO write... */
1157 if (max_blocks > DIO_MAX_BLOCKS)
1158 max_blocks = DIO_MAX_BLOCKS;
1159 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1160 handle = ext4_journal_start(inode, dio_credits);
1161 if (IS_ERR(handle)) {
1162 ret = PTR_ERR(handle);
1163 goto out;
1165 started = 1;
1168 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1169 max_blocks, bh_result, create, 0, 0);
1170 if (ret > 0) {
1171 bh_result->b_size = (ret << inode->i_blkbits);
1172 ret = 0;
1174 if (started)
1175 ext4_journal_stop(handle);
1176 out:
1177 return ret;
1181 * `handle' can be NULL if create is zero
1183 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1184 ext4_lblk_t block, int create, int *errp)
1186 struct buffer_head dummy;
1187 int fatal = 0, err;
1189 J_ASSERT(handle != NULL || create == 0);
1191 dummy.b_state = 0;
1192 dummy.b_blocknr = -1000;
1193 buffer_trace_init(&dummy.b_history);
1194 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1195 &dummy, create, 1, 0);
1197 * ext4_get_blocks_handle() returns number of blocks
1198 * mapped. 0 in case of a HOLE.
1200 if (err > 0) {
1201 if (err > 1)
1202 WARN_ON(1);
1203 err = 0;
1205 *errp = err;
1206 if (!err && buffer_mapped(&dummy)) {
1207 struct buffer_head *bh;
1208 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1209 if (!bh) {
1210 *errp = -EIO;
1211 goto err;
1213 if (buffer_new(&dummy)) {
1214 J_ASSERT(create != 0);
1215 J_ASSERT(handle != NULL);
1218 * Now that we do not always journal data, we should
1219 * keep in mind whether this should always journal the
1220 * new buffer as metadata. For now, regular file
1221 * writes use ext4_get_block instead, so it's not a
1222 * problem.
1224 lock_buffer(bh);
1225 BUFFER_TRACE(bh, "call get_create_access");
1226 fatal = ext4_journal_get_create_access(handle, bh);
1227 if (!fatal && !buffer_uptodate(bh)) {
1228 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1229 set_buffer_uptodate(bh);
1231 unlock_buffer(bh);
1232 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1233 err = ext4_journal_dirty_metadata(handle, bh);
1234 if (!fatal)
1235 fatal = err;
1236 } else {
1237 BUFFER_TRACE(bh, "not a new buffer");
1239 if (fatal) {
1240 *errp = fatal;
1241 brelse(bh);
1242 bh = NULL;
1244 return bh;
1246 err:
1247 return NULL;
1250 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1251 ext4_lblk_t block, int create, int *err)
1253 struct buffer_head *bh;
1255 bh = ext4_getblk(handle, inode, block, create, err);
1256 if (!bh)
1257 return bh;
1258 if (buffer_uptodate(bh))
1259 return bh;
1260 ll_rw_block(READ_META, 1, &bh);
1261 wait_on_buffer(bh);
1262 if (buffer_uptodate(bh))
1263 return bh;
1264 put_bh(bh);
1265 *err = -EIO;
1266 return NULL;
1269 static int walk_page_buffers(handle_t *handle,
1270 struct buffer_head *head,
1271 unsigned from,
1272 unsigned to,
1273 int *partial,
1274 int (*fn)(handle_t *handle,
1275 struct buffer_head *bh))
1277 struct buffer_head *bh;
1278 unsigned block_start, block_end;
1279 unsigned blocksize = head->b_size;
1280 int err, ret = 0;
1281 struct buffer_head *next;
1283 for (bh = head, block_start = 0;
1284 ret == 0 && (bh != head || !block_start);
1285 block_start = block_end, bh = next)
1287 next = bh->b_this_page;
1288 block_end = block_start + blocksize;
1289 if (block_end <= from || block_start >= to) {
1290 if (partial && !buffer_uptodate(bh))
1291 *partial = 1;
1292 continue;
1294 err = (*fn)(handle, bh);
1295 if (!ret)
1296 ret = err;
1298 return ret;
1302 * To preserve ordering, it is essential that the hole instantiation and
1303 * the data write be encapsulated in a single transaction. We cannot
1304 * close off a transaction and start a new one between the ext4_get_block()
1305 * and the commit_write(). So doing the jbd2_journal_start at the start of
1306 * prepare_write() is the right place.
1308 * Also, this function can nest inside ext4_writepage() ->
1309 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1310 * has generated enough buffer credits to do the whole page. So we won't
1311 * block on the journal in that case, which is good, because the caller may
1312 * be PF_MEMALLOC.
1314 * By accident, ext4 can be reentered when a transaction is open via
1315 * quota file writes. If we were to commit the transaction while thus
1316 * reentered, there can be a deadlock - we would be holding a quota
1317 * lock, and the commit would never complete if another thread had a
1318 * transaction open and was blocking on the quota lock - a ranking
1319 * violation.
1321 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1322 * will _not_ run commit under these circumstances because handle->h_ref
1323 * is elevated. We'll still have enough credits for the tiny quotafile
1324 * write.
1326 static int do_journal_get_write_access(handle_t *handle,
1327 struct buffer_head *bh)
1329 if (!buffer_mapped(bh) || buffer_freed(bh))
1330 return 0;
1331 return ext4_journal_get_write_access(handle, bh);
1334 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1335 loff_t pos, unsigned len, unsigned flags,
1336 struct page **pagep, void **fsdata)
1338 struct inode *inode = mapping->host;
1339 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1340 handle_t *handle;
1341 int retries = 0;
1342 struct page *page;
1343 pgoff_t index;
1344 unsigned from, to;
1346 index = pos >> PAGE_CACHE_SHIFT;
1347 from = pos & (PAGE_CACHE_SIZE - 1);
1348 to = from + len;
1350 retry:
1351 handle = ext4_journal_start(inode, needed_blocks);
1352 if (IS_ERR(handle)) {
1353 ret = PTR_ERR(handle);
1354 goto out;
1357 page = grab_cache_page_write_begin(mapping, index, flags);
1358 if (!page) {
1359 ext4_journal_stop(handle);
1360 ret = -ENOMEM;
1361 goto out;
1363 *pagep = page;
1365 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1366 ext4_get_block);
1368 if (!ret && ext4_should_journal_data(inode)) {
1369 ret = walk_page_buffers(handle, page_buffers(page),
1370 from, to, NULL, do_journal_get_write_access);
1373 if (ret) {
1374 unlock_page(page);
1375 ext4_journal_stop(handle);
1376 page_cache_release(page);
1378 * block_write_begin may have instantiated a few blocks
1379 * outside i_size. Trim these off again. Don't need
1380 * i_size_read because we hold i_mutex.
1382 if (pos + len > inode->i_size)
1383 vmtruncate(inode, inode->i_size);
1386 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1387 goto retry;
1388 out:
1389 return ret;
1392 /* For write_end() in data=journal mode */
1393 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1395 if (!buffer_mapped(bh) || buffer_freed(bh))
1396 return 0;
1397 set_buffer_uptodate(bh);
1398 return ext4_journal_dirty_metadata(handle, bh);
1402 * We need to pick up the new inode size which generic_commit_write gave us
1403 * `file' can be NULL - eg, when called from page_symlink().
1405 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1406 * buffers are managed internally.
1408 static int ext4_ordered_write_end(struct file *file,
1409 struct address_space *mapping,
1410 loff_t pos, unsigned len, unsigned copied,
1411 struct page *page, void *fsdata)
1413 handle_t *handle = ext4_journal_current_handle();
1414 struct inode *inode = mapping->host;
1415 int ret = 0, ret2;
1417 ret = ext4_jbd2_file_inode(handle, inode);
1419 if (ret == 0) {
1420 loff_t new_i_size;
1422 new_i_size = pos + copied;
1423 if (new_i_size > EXT4_I(inode)->i_disksize) {
1424 ext4_update_i_disksize(inode, new_i_size);
1425 /* We need to mark inode dirty even if
1426 * new_i_size is less that inode->i_size
1427 * bu greater than i_disksize.(hint delalloc)
1429 ext4_mark_inode_dirty(handle, inode);
1432 ret2 = generic_write_end(file, mapping, pos, len, copied,
1433 page, fsdata);
1434 copied = ret2;
1435 if (ret2 < 0)
1436 ret = ret2;
1438 ret2 = ext4_journal_stop(handle);
1439 if (!ret)
1440 ret = ret2;
1442 return ret ? ret : copied;
1445 static int ext4_writeback_write_end(struct file *file,
1446 struct address_space *mapping,
1447 loff_t pos, unsigned len, unsigned copied,
1448 struct page *page, void *fsdata)
1450 handle_t *handle = ext4_journal_current_handle();
1451 struct inode *inode = mapping->host;
1452 int ret = 0, ret2;
1453 loff_t new_i_size;
1455 new_i_size = pos + copied;
1456 if (new_i_size > EXT4_I(inode)->i_disksize) {
1457 ext4_update_i_disksize(inode, new_i_size);
1458 /* We need to mark inode dirty even if
1459 * new_i_size is less that inode->i_size
1460 * bu greater than i_disksize.(hint delalloc)
1462 ext4_mark_inode_dirty(handle, inode);
1465 ret2 = generic_write_end(file, mapping, pos, len, copied,
1466 page, fsdata);
1467 copied = ret2;
1468 if (ret2 < 0)
1469 ret = ret2;
1471 ret2 = ext4_journal_stop(handle);
1472 if (!ret)
1473 ret = ret2;
1475 return ret ? ret : copied;
1478 static int ext4_journalled_write_end(struct file *file,
1479 struct address_space *mapping,
1480 loff_t pos, unsigned len, unsigned copied,
1481 struct page *page, void *fsdata)
1483 handle_t *handle = ext4_journal_current_handle();
1484 struct inode *inode = mapping->host;
1485 int ret = 0, ret2;
1486 int partial = 0;
1487 unsigned from, to;
1488 loff_t new_i_size;
1490 from = pos & (PAGE_CACHE_SIZE - 1);
1491 to = from + len;
1493 if (copied < len) {
1494 if (!PageUptodate(page))
1495 copied = 0;
1496 page_zero_new_buffers(page, from+copied, to);
1499 ret = walk_page_buffers(handle, page_buffers(page), from,
1500 to, &partial, write_end_fn);
1501 if (!partial)
1502 SetPageUptodate(page);
1503 new_i_size = pos + copied;
1504 if (new_i_size > inode->i_size)
1505 i_size_write(inode, pos+copied);
1506 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1507 if (new_i_size > EXT4_I(inode)->i_disksize) {
1508 ext4_update_i_disksize(inode, new_i_size);
1509 ret2 = ext4_mark_inode_dirty(handle, inode);
1510 if (!ret)
1511 ret = ret2;
1514 unlock_page(page);
1515 ret2 = ext4_journal_stop(handle);
1516 if (!ret)
1517 ret = ret2;
1518 page_cache_release(page);
1520 return ret ? ret : copied;
1523 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1525 int retries = 0;
1526 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1527 unsigned long md_needed, mdblocks, total = 0;
1530 * recalculate the amount of metadata blocks to reserve
1531 * in order to allocate nrblocks
1532 * worse case is one extent per block
1534 repeat:
1535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537 mdblocks = ext4_calc_metadata_amount(inode, total);
1538 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1540 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541 total = md_needed + nrblocks;
1543 if (ext4_claim_free_blocks(sbi, total)) {
1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1546 yield();
1547 goto repeat;
1549 return -ENOSPC;
1551 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1552 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1554 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1555 return 0; /* success */
1558 static void ext4_da_release_space(struct inode *inode, int to_free)
1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1561 int total, mdb, mdb_free, release;
1563 if (!to_free)
1564 return; /* Nothing to release, exit */
1566 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1568 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1570 * if there is no reserved blocks, but we try to free some
1571 * then the counter is messed up somewhere.
1572 * but since this function is called from invalidate
1573 * page, it's harmless to return without any action
1575 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1576 "blocks for inode %lu, but there is no reserved "
1577 "data blocks\n", to_free, inode->i_ino);
1578 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1579 return;
1582 /* recalculate the number of metablocks still need to be reserved */
1583 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1584 mdb = ext4_calc_metadata_amount(inode, total);
1586 /* figure out how many metablocks to release */
1587 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1588 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1590 release = to_free + mdb_free;
1592 /* update fs dirty blocks counter for truncate case */
1593 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1595 /* update per-inode reservations */
1596 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1597 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1599 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1600 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1601 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1604 static void ext4_da_page_release_reservation(struct page *page,
1605 unsigned long offset)
1607 int to_release = 0;
1608 struct buffer_head *head, *bh;
1609 unsigned int curr_off = 0;
1611 head = page_buffers(page);
1612 bh = head;
1613 do {
1614 unsigned int next_off = curr_off + bh->b_size;
1616 if ((offset <= curr_off) && (buffer_delay(bh))) {
1617 to_release++;
1618 clear_buffer_delay(bh);
1620 curr_off = next_off;
1621 } while ((bh = bh->b_this_page) != head);
1622 ext4_da_release_space(page->mapping->host, to_release);
1626 * Delayed allocation stuff
1629 struct mpage_da_data {
1630 struct inode *inode;
1631 struct buffer_head lbh; /* extent of blocks */
1632 unsigned long first_page, next_page; /* extent of pages */
1633 get_block_t *get_block;
1634 struct writeback_control *wbc;
1635 int io_done;
1636 long pages_written;
1637 int retval;
1641 * mpage_da_submit_io - walks through extent of pages and try to write
1642 * them with writepage() call back
1644 * @mpd->inode: inode
1645 * @mpd->first_page: first page of the extent
1646 * @mpd->next_page: page after the last page of the extent
1647 * @mpd->get_block: the filesystem's block mapper function
1649 * By the time mpage_da_submit_io() is called we expect all blocks
1650 * to be allocated. this may be wrong if allocation failed.
1652 * As pages are already locked by write_cache_pages(), we can't use it
1654 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1656 struct address_space *mapping = mpd->inode->i_mapping;
1657 int ret = 0, err, nr_pages, i;
1658 unsigned long index, end;
1659 struct pagevec pvec;
1660 long pages_skipped;
1662 BUG_ON(mpd->next_page <= mpd->first_page);
1663 pagevec_init(&pvec, 0);
1664 index = mpd->first_page;
1665 end = mpd->next_page - 1;
1667 while (index <= end) {
1669 * We can use PAGECACHE_TAG_DIRTY lookup here because
1670 * even though we have cleared the dirty flag on the page
1671 * We still keep the page in the radix tree with tag
1672 * PAGECACHE_TAG_DIRTY. See clear_page_dirty_for_io.
1673 * The PAGECACHE_TAG_DIRTY is cleared in set_page_writeback
1674 * which is called via the below writepage callback.
1676 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1677 PAGECACHE_TAG_DIRTY,
1678 min(end - index,
1679 (pgoff_t)PAGEVEC_SIZE-1) + 1);
1680 if (nr_pages == 0)
1681 break;
1682 for (i = 0; i < nr_pages; i++) {
1683 struct page *page = pvec.pages[i];
1685 pages_skipped = mpd->wbc->pages_skipped;
1686 err = mapping->a_ops->writepage(page, mpd->wbc);
1687 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1689 * have successfully written the page
1690 * without skipping the same
1692 mpd->pages_written++;
1694 * In error case, we have to continue because
1695 * remaining pages are still locked
1696 * XXX: unlock and re-dirty them?
1698 if (ret == 0)
1699 ret = err;
1701 pagevec_release(&pvec);
1703 return ret;
1707 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1709 * @mpd->inode - inode to walk through
1710 * @exbh->b_blocknr - first block on a disk
1711 * @exbh->b_size - amount of space in bytes
1712 * @logical - first logical block to start assignment with
1714 * the function goes through all passed space and put actual disk
1715 * block numbers into buffer heads, dropping BH_Delay
1717 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1718 struct buffer_head *exbh)
1720 struct inode *inode = mpd->inode;
1721 struct address_space *mapping = inode->i_mapping;
1722 int blocks = exbh->b_size >> inode->i_blkbits;
1723 sector_t pblock = exbh->b_blocknr, cur_logical;
1724 struct buffer_head *head, *bh;
1725 pgoff_t index, end;
1726 struct pagevec pvec;
1727 int nr_pages, i;
1729 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1730 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1731 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1733 pagevec_init(&pvec, 0);
1735 while (index <= end) {
1736 /* XXX: optimize tail */
1737 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1738 if (nr_pages == 0)
1739 break;
1740 for (i = 0; i < nr_pages; i++) {
1741 struct page *page = pvec.pages[i];
1743 index = page->index;
1744 if (index > end)
1745 break;
1746 index++;
1748 BUG_ON(!PageLocked(page));
1749 BUG_ON(PageWriteback(page));
1750 BUG_ON(!page_has_buffers(page));
1752 bh = page_buffers(page);
1753 head = bh;
1755 /* skip blocks out of the range */
1756 do {
1757 if (cur_logical >= logical)
1758 break;
1759 cur_logical++;
1760 } while ((bh = bh->b_this_page) != head);
1762 do {
1763 if (cur_logical >= logical + blocks)
1764 break;
1765 if (buffer_delay(bh)) {
1766 bh->b_blocknr = pblock;
1767 clear_buffer_delay(bh);
1768 bh->b_bdev = inode->i_sb->s_bdev;
1769 } else if (buffer_unwritten(bh)) {
1770 bh->b_blocknr = pblock;
1771 clear_buffer_unwritten(bh);
1772 set_buffer_mapped(bh);
1773 set_buffer_new(bh);
1774 bh->b_bdev = inode->i_sb->s_bdev;
1775 } else if (buffer_mapped(bh))
1776 BUG_ON(bh->b_blocknr != pblock);
1778 cur_logical++;
1779 pblock++;
1780 } while ((bh = bh->b_this_page) != head);
1782 pagevec_release(&pvec);
1788 * __unmap_underlying_blocks - just a helper function to unmap
1789 * set of blocks described by @bh
1791 static inline void __unmap_underlying_blocks(struct inode *inode,
1792 struct buffer_head *bh)
1794 struct block_device *bdev = inode->i_sb->s_bdev;
1795 int blocks, i;
1797 blocks = bh->b_size >> inode->i_blkbits;
1798 for (i = 0; i < blocks; i++)
1799 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1802 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1803 sector_t logical, long blk_cnt)
1805 int nr_pages, i;
1806 pgoff_t index, end;
1807 struct pagevec pvec;
1808 struct inode *inode = mpd->inode;
1809 struct address_space *mapping = inode->i_mapping;
1811 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1812 end = (logical + blk_cnt - 1) >>
1813 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1814 while (index <= end) {
1815 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1816 if (nr_pages == 0)
1817 break;
1818 for (i = 0; i < nr_pages; i++) {
1819 struct page *page = pvec.pages[i];
1820 index = page->index;
1821 if (index > end)
1822 break;
1823 index++;
1825 BUG_ON(!PageLocked(page));
1826 BUG_ON(PageWriteback(page));
1827 block_invalidatepage(page, 0);
1828 ClearPageUptodate(page);
1829 unlock_page(page);
1832 return;
1835 static void ext4_print_free_blocks(struct inode *inode)
1837 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1838 printk(KERN_EMERG "Total free blocks count %lld\n",
1839 ext4_count_free_blocks(inode->i_sb));
1840 printk(KERN_EMERG "Free/Dirty block details\n");
1841 printk(KERN_EMERG "free_blocks=%lld\n",
1842 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1843 printk(KERN_EMERG "dirty_blocks=%lld\n",
1844 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1845 printk(KERN_EMERG "Block reservation details\n");
1846 printk(KERN_EMERG "i_reserved_data_blocks=%lu\n",
1847 EXT4_I(inode)->i_reserved_data_blocks);
1848 printk(KERN_EMERG "i_reserved_meta_blocks=%lu\n",
1849 EXT4_I(inode)->i_reserved_meta_blocks);
1850 return;
1854 * mpage_da_map_blocks - go through given space
1856 * @mpd->lbh - bh describing space
1857 * @mpd->get_block - the filesystem's block mapper function
1859 * The function skips space we know is already mapped to disk blocks.
1862 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
1864 int err = 0;
1865 struct buffer_head new;
1866 struct buffer_head *lbh = &mpd->lbh;
1867 sector_t next;
1870 * We consider only non-mapped and non-allocated blocks
1872 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1873 return 0;
1874 new.b_state = lbh->b_state;
1875 new.b_blocknr = 0;
1876 new.b_size = lbh->b_size;
1877 next = lbh->b_blocknr;
1879 * If we didn't accumulate anything
1880 * to write simply return
1882 if (!new.b_size)
1883 return 0;
1884 err = mpd->get_block(mpd->inode, next, &new, 1);
1885 if (err) {
1887 /* If get block returns with error
1888 * we simply return. Later writepage
1889 * will redirty the page and writepages
1890 * will find the dirty page again
1892 if (err == -EAGAIN)
1893 return 0;
1895 if (err == -ENOSPC &&
1896 ext4_count_free_blocks(mpd->inode->i_sb)) {
1897 mpd->retval = err;
1898 return 0;
1902 * get block failure will cause us
1903 * to loop in writepages. Because
1904 * a_ops->writepage won't be able to
1905 * make progress. The page will be redirtied
1906 * by writepage and writepages will again
1907 * try to write the same.
1909 printk(KERN_EMERG "%s block allocation failed for inode %lu "
1910 "at logical offset %llu with max blocks "
1911 "%zd with error %d\n",
1912 __func__, mpd->inode->i_ino,
1913 (unsigned long long)next,
1914 lbh->b_size >> mpd->inode->i_blkbits, err);
1915 printk(KERN_EMERG "This should not happen.!! "
1916 "Data will be lost\n");
1917 if (err == -ENOSPC) {
1918 ext4_print_free_blocks(mpd->inode);
1920 /* invlaidate all the pages */
1921 ext4_da_block_invalidatepages(mpd, next,
1922 lbh->b_size >> mpd->inode->i_blkbits);
1923 return err;
1925 BUG_ON(new.b_size == 0);
1927 if (buffer_new(&new))
1928 __unmap_underlying_blocks(mpd->inode, &new);
1931 * If blocks are delayed marked, we need to
1932 * put actual blocknr and drop delayed bit
1934 if (buffer_delay(lbh) || buffer_unwritten(lbh))
1935 mpage_put_bnr_to_bhs(mpd, next, &new);
1937 return 0;
1940 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1941 (1 << BH_Delay) | (1 << BH_Unwritten))
1944 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1946 * @mpd->lbh - extent of blocks
1947 * @logical - logical number of the block in the file
1948 * @bh - bh of the block (used to access block's state)
1950 * the function is used to collect contig. blocks in same state
1952 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1953 sector_t logical, struct buffer_head *bh)
1955 sector_t next;
1956 size_t b_size = bh->b_size;
1957 struct buffer_head *lbh = &mpd->lbh;
1958 int nrblocks = lbh->b_size >> mpd->inode->i_blkbits;
1960 /* check if thereserved journal credits might overflow */
1961 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
1962 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1964 * With non-extent format we are limited by the journal
1965 * credit available. Total credit needed to insert
1966 * nrblocks contiguous blocks is dependent on the
1967 * nrblocks. So limit nrblocks.
1969 goto flush_it;
1970 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1971 EXT4_MAX_TRANS_DATA) {
1973 * Adding the new buffer_head would make it cross the
1974 * allowed limit for which we have journal credit
1975 * reserved. So limit the new bh->b_size
1977 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1978 mpd->inode->i_blkbits;
1979 /* we will do mpage_da_submit_io in the next loop */
1983 * First block in the extent
1985 if (lbh->b_size == 0) {
1986 lbh->b_blocknr = logical;
1987 lbh->b_size = b_size;
1988 lbh->b_state = bh->b_state & BH_FLAGS;
1989 return;
1992 next = lbh->b_blocknr + nrblocks;
1994 * Can we merge the block to our big extent?
1996 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1997 lbh->b_size += b_size;
1998 return;
2001 flush_it:
2003 * We couldn't merge the block to our extent, so we
2004 * need to flush current extent and start new one
2006 if (mpage_da_map_blocks(mpd) == 0)
2007 mpage_da_submit_io(mpd);
2008 mpd->io_done = 1;
2009 return;
2013 * __mpage_da_writepage - finds extent of pages and blocks
2015 * @page: page to consider
2016 * @wbc: not used, we just follow rules
2017 * @data: context
2019 * The function finds extents of pages and scan them for all blocks.
2021 static int __mpage_da_writepage(struct page *page,
2022 struct writeback_control *wbc, void *data)
2024 struct mpage_da_data *mpd = data;
2025 struct inode *inode = mpd->inode;
2026 struct buffer_head *bh, *head, fake;
2027 sector_t logical;
2029 if (mpd->io_done) {
2031 * Rest of the page in the page_vec
2032 * redirty then and skip then. We will
2033 * try to to write them again after
2034 * starting a new transaction
2036 redirty_page_for_writepage(wbc, page);
2037 unlock_page(page);
2038 return MPAGE_DA_EXTENT_TAIL;
2041 * Can we merge this page to current extent?
2043 if (mpd->next_page != page->index) {
2045 * Nope, we can't. So, we map non-allocated blocks
2046 * and start IO on them using writepage()
2048 if (mpd->next_page != mpd->first_page) {
2049 if (mpage_da_map_blocks(mpd) == 0)
2050 mpage_da_submit_io(mpd);
2052 * skip rest of the page in the page_vec
2054 mpd->io_done = 1;
2055 redirty_page_for_writepage(wbc, page);
2056 unlock_page(page);
2057 return MPAGE_DA_EXTENT_TAIL;
2061 * Start next extent of pages ...
2063 mpd->first_page = page->index;
2066 * ... and blocks
2068 mpd->lbh.b_size = 0;
2069 mpd->lbh.b_state = 0;
2070 mpd->lbh.b_blocknr = 0;
2073 mpd->next_page = page->index + 1;
2074 logical = (sector_t) page->index <<
2075 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2077 if (!page_has_buffers(page)) {
2079 * There is no attached buffer heads yet (mmap?)
2080 * we treat the page asfull of dirty blocks
2082 bh = &fake;
2083 bh->b_size = PAGE_CACHE_SIZE;
2084 bh->b_state = 0;
2085 set_buffer_dirty(bh);
2086 set_buffer_uptodate(bh);
2087 mpage_add_bh_to_extent(mpd, logical, bh);
2088 if (mpd->io_done)
2089 return MPAGE_DA_EXTENT_TAIL;
2090 } else {
2092 * Page with regular buffer heads, just add all dirty ones
2094 head = page_buffers(page);
2095 bh = head;
2096 do {
2097 BUG_ON(buffer_locked(bh));
2098 if (buffer_dirty(bh) &&
2099 (!buffer_mapped(bh) || buffer_delay(bh))) {
2100 mpage_add_bh_to_extent(mpd, logical, bh);
2101 if (mpd->io_done)
2102 return MPAGE_DA_EXTENT_TAIL;
2104 logical++;
2105 } while ((bh = bh->b_this_page) != head);
2108 return 0;
2112 * mpage_da_writepages - walk the list of dirty pages of the given
2113 * address space, allocates non-allocated blocks, maps newly-allocated
2114 * blocks to existing bhs and issue IO them
2116 * @mapping: address space structure to write
2117 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2118 * @get_block: the filesystem's block mapper function.
2120 * This is a library function, which implements the writepages()
2121 * address_space_operation.
2123 static int mpage_da_writepages(struct address_space *mapping,
2124 struct writeback_control *wbc,
2125 struct mpage_da_data *mpd)
2127 int ret;
2129 if (!mpd->get_block)
2130 return generic_writepages(mapping, wbc);
2132 mpd->lbh.b_size = 0;
2133 mpd->lbh.b_state = 0;
2134 mpd->lbh.b_blocknr = 0;
2135 mpd->first_page = 0;
2136 mpd->next_page = 0;
2137 mpd->io_done = 0;
2138 mpd->pages_written = 0;
2139 mpd->retval = 0;
2141 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, mpd);
2143 * Handle last extent of pages
2145 if (!mpd->io_done && mpd->next_page != mpd->first_page) {
2146 if (mpage_da_map_blocks(mpd) == 0)
2147 mpage_da_submit_io(mpd);
2149 mpd->io_done = 1;
2150 ret = MPAGE_DA_EXTENT_TAIL;
2152 wbc->nr_to_write -= mpd->pages_written;
2153 return ret;
2157 * this is a special callback for ->write_begin() only
2158 * it's intention is to return mapped block or reserve space
2160 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2161 struct buffer_head *bh_result, int create)
2163 int ret = 0;
2165 BUG_ON(create == 0);
2166 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2169 * first, we need to know whether the block is allocated already
2170 * preallocated blocks are unmapped but should treated
2171 * the same as allocated blocks.
2173 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2174 if ((ret == 0) && !buffer_delay(bh_result)) {
2175 /* the block isn't (pre)allocated yet, let's reserve space */
2177 * XXX: __block_prepare_write() unmaps passed block,
2178 * is it OK?
2180 ret = ext4_da_reserve_space(inode, 1);
2181 if (ret)
2182 /* not enough space to reserve */
2183 return ret;
2185 map_bh(bh_result, inode->i_sb, 0);
2186 set_buffer_new(bh_result);
2187 set_buffer_delay(bh_result);
2188 } else if (ret > 0) {
2189 bh_result->b_size = (ret << inode->i_blkbits);
2190 ret = 0;
2193 return ret;
2195 #define EXT4_DELALLOC_RSVED 1
2196 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2197 struct buffer_head *bh_result, int create)
2199 int ret;
2200 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2201 loff_t disksize = EXT4_I(inode)->i_disksize;
2202 handle_t *handle = NULL;
2204 handle = ext4_journal_current_handle();
2205 BUG_ON(!handle);
2206 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2207 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2208 if (ret > 0) {
2210 bh_result->b_size = (ret << inode->i_blkbits);
2212 if (ext4_should_order_data(inode)) {
2213 int retval;
2214 retval = ext4_jbd2_file_inode(handle, inode);
2215 if (retval)
2217 * Failed to add inode for ordered
2218 * mode. Don't update file size
2220 return retval;
2224 * Update on-disk size along with block allocation
2225 * we don't use 'extend_disksize' as size may change
2226 * within already allocated block -bzzz
2228 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2229 if (disksize > i_size_read(inode))
2230 disksize = i_size_read(inode);
2231 if (disksize > EXT4_I(inode)->i_disksize) {
2232 ext4_update_i_disksize(inode, disksize);
2233 ret = ext4_mark_inode_dirty(handle, inode);
2234 return ret;
2236 ret = 0;
2238 return ret;
2241 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2244 * unmapped buffer is possible for holes.
2245 * delay buffer is possible with delayed allocation
2247 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2250 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2251 struct buffer_head *bh_result, int create)
2253 int ret = 0;
2254 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2257 * we don't want to do block allocation in writepage
2258 * so call get_block_wrap with create = 0
2260 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2261 bh_result, 0, 0, 0);
2262 if (ret > 0) {
2263 bh_result->b_size = (ret << inode->i_blkbits);
2264 ret = 0;
2266 return ret;
2270 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2271 * get called via journal_submit_inode_data_buffers (no journal handle)
2272 * get called via shrink_page_list via pdflush (no journal handle)
2273 * or grab_page_cache when doing write_begin (have journal handle)
2275 static int ext4_da_writepage(struct page *page,
2276 struct writeback_control *wbc)
2278 int ret = 0;
2279 loff_t size;
2280 unsigned long len;
2281 struct buffer_head *page_bufs;
2282 struct inode *inode = page->mapping->host;
2284 size = i_size_read(inode);
2285 if (page->index == size >> PAGE_CACHE_SHIFT)
2286 len = size & ~PAGE_CACHE_MASK;
2287 else
2288 len = PAGE_CACHE_SIZE;
2290 if (page_has_buffers(page)) {
2291 page_bufs = page_buffers(page);
2292 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2293 ext4_bh_unmapped_or_delay)) {
2295 * We don't want to do block allocation
2296 * So redirty the page and return
2297 * We may reach here when we do a journal commit
2298 * via journal_submit_inode_data_buffers.
2299 * If we don't have mapping block we just ignore
2300 * them. We can also reach here via shrink_page_list
2302 redirty_page_for_writepage(wbc, page);
2303 unlock_page(page);
2304 return 0;
2306 } else {
2308 * The test for page_has_buffers() is subtle:
2309 * We know the page is dirty but it lost buffers. That means
2310 * that at some moment in time after write_begin()/write_end()
2311 * has been called all buffers have been clean and thus they
2312 * must have been written at least once. So they are all
2313 * mapped and we can happily proceed with mapping them
2314 * and writing the page.
2316 * Try to initialize the buffer_heads and check whether
2317 * all are mapped and non delay. We don't want to
2318 * do block allocation here.
2320 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2321 ext4_normal_get_block_write);
2322 if (!ret) {
2323 page_bufs = page_buffers(page);
2324 /* check whether all are mapped and non delay */
2325 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2326 ext4_bh_unmapped_or_delay)) {
2327 redirty_page_for_writepage(wbc, page);
2328 unlock_page(page);
2329 return 0;
2331 } else {
2333 * We can't do block allocation here
2334 * so just redity the page and unlock
2335 * and return
2337 redirty_page_for_writepage(wbc, page);
2338 unlock_page(page);
2339 return 0;
2341 /* now mark the buffer_heads as dirty and uptodate */
2342 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2345 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2346 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2347 else
2348 ret = block_write_full_page(page,
2349 ext4_normal_get_block_write,
2350 wbc);
2352 return ret;
2356 * This is called via ext4_da_writepages() to
2357 * calulate the total number of credits to reserve to fit
2358 * a single extent allocation into a single transaction,
2359 * ext4_da_writpeages() will loop calling this before
2360 * the block allocation.
2363 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2365 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2368 * With non-extent format the journal credit needed to
2369 * insert nrblocks contiguous block is dependent on
2370 * number of contiguous block. So we will limit
2371 * number of contiguous block to a sane value
2373 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2374 (max_blocks > EXT4_MAX_TRANS_DATA))
2375 max_blocks = EXT4_MAX_TRANS_DATA;
2377 return ext4_chunk_trans_blocks(inode, max_blocks);
2380 static int ext4_da_writepages(struct address_space *mapping,
2381 struct writeback_control *wbc)
2383 pgoff_t index;
2384 int range_whole = 0;
2385 handle_t *handle = NULL;
2386 struct mpage_da_data mpd;
2387 struct inode *inode = mapping->host;
2388 int no_nrwrite_index_update;
2389 long pages_written = 0, pages_skipped;
2390 int needed_blocks, ret = 0, nr_to_writebump = 0;
2391 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2394 * No pages to write? This is mainly a kludge to avoid starting
2395 * a transaction for special inodes like journal inode on last iput()
2396 * because that could violate lock ordering on umount
2398 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2399 return 0;
2402 * If the filesystem has aborted, it is read-only, so return
2403 * right away instead of dumping stack traces later on that
2404 * will obscure the real source of the problem. We test
2405 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2406 * the latter could be true if the filesystem is mounted
2407 * read-only, and in that case, ext4_da_writepages should
2408 * *never* be called, so if that ever happens, we would want
2409 * the stack trace.
2411 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2412 return -EROFS;
2415 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2416 * This make sure small files blocks are allocated in
2417 * single attempt. This ensure that small files
2418 * get less fragmented.
2420 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2421 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2422 wbc->nr_to_write = sbi->s_mb_stream_request;
2424 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2425 range_whole = 1;
2427 if (wbc->range_cyclic)
2428 index = mapping->writeback_index;
2429 else
2430 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2432 mpd.wbc = wbc;
2433 mpd.inode = mapping->host;
2436 * we don't want write_cache_pages to update
2437 * nr_to_write and writeback_index
2439 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2440 wbc->no_nrwrite_index_update = 1;
2441 pages_skipped = wbc->pages_skipped;
2443 while (!ret && wbc->nr_to_write > 0) {
2446 * we insert one extent at a time. So we need
2447 * credit needed for single extent allocation.
2448 * journalled mode is currently not supported
2449 * by delalloc
2451 BUG_ON(ext4_should_journal_data(inode));
2452 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2454 /* start a new transaction*/
2455 handle = ext4_journal_start(inode, needed_blocks);
2456 if (IS_ERR(handle)) {
2457 ret = PTR_ERR(handle);
2458 printk(KERN_CRIT "%s: jbd2_start: "
2459 "%ld pages, ino %lu; err %d\n", __func__,
2460 wbc->nr_to_write, inode->i_ino, ret);
2461 dump_stack();
2462 goto out_writepages;
2464 mpd.get_block = ext4_da_get_block_write;
2465 ret = mpage_da_writepages(mapping, wbc, &mpd);
2467 ext4_journal_stop(handle);
2469 if (mpd.retval == -ENOSPC) {
2470 /* commit the transaction which would
2471 * free blocks released in the transaction
2472 * and try again
2474 jbd2_journal_force_commit_nested(sbi->s_journal);
2475 wbc->pages_skipped = pages_skipped;
2476 ret = 0;
2477 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2479 * got one extent now try with
2480 * rest of the pages
2482 pages_written += mpd.pages_written;
2483 wbc->pages_skipped = pages_skipped;
2484 ret = 0;
2485 } else if (wbc->nr_to_write)
2487 * There is no more writeout needed
2488 * or we requested for a noblocking writeout
2489 * and we found the device congested
2491 break;
2493 if (pages_skipped != wbc->pages_skipped)
2494 printk(KERN_EMERG "This should not happen leaving %s "
2495 "with nr_to_write = %ld ret = %d\n",
2496 __func__, wbc->nr_to_write, ret);
2498 /* Update index */
2499 index += pages_written;
2500 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2502 * set the writeback_index so that range_cyclic
2503 * mode will write it back later
2505 mapping->writeback_index = index;
2507 out_writepages:
2508 if (!no_nrwrite_index_update)
2509 wbc->no_nrwrite_index_update = 0;
2510 wbc->nr_to_write -= nr_to_writebump;
2511 return ret;
2514 #define FALL_BACK_TO_NONDELALLOC 1
2515 static int ext4_nonda_switch(struct super_block *sb)
2517 s64 free_blocks, dirty_blocks;
2518 struct ext4_sb_info *sbi = EXT4_SB(sb);
2521 * switch to non delalloc mode if we are running low
2522 * on free block. The free block accounting via percpu
2523 * counters can get slightly wrong with FBC_BATCH getting
2524 * accumulated on each CPU without updating global counters
2525 * Delalloc need an accurate free block accounting. So switch
2526 * to non delalloc when we are near to error range.
2528 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2529 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2530 if (2 * free_blocks < 3 * dirty_blocks ||
2531 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2533 * free block count is less that 150% of dirty blocks
2534 * or free blocks is less that watermark
2536 return 1;
2538 return 0;
2541 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2542 loff_t pos, unsigned len, unsigned flags,
2543 struct page **pagep, void **fsdata)
2545 int ret, retries = 0;
2546 struct page *page;
2547 pgoff_t index;
2548 unsigned from, to;
2549 struct inode *inode = mapping->host;
2550 handle_t *handle;
2552 index = pos >> PAGE_CACHE_SHIFT;
2553 from = pos & (PAGE_CACHE_SIZE - 1);
2554 to = from + len;
2556 if (ext4_nonda_switch(inode->i_sb)) {
2557 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2558 return ext4_write_begin(file, mapping, pos,
2559 len, flags, pagep, fsdata);
2561 *fsdata = (void *)0;
2562 retry:
2564 * With delayed allocation, we don't log the i_disksize update
2565 * if there is delayed block allocation. But we still need
2566 * to journalling the i_disksize update if writes to the end
2567 * of file which has an already mapped buffer.
2569 handle = ext4_journal_start(inode, 1);
2570 if (IS_ERR(handle)) {
2571 ret = PTR_ERR(handle);
2572 goto out;
2575 page = grab_cache_page_write_begin(mapping, index, flags);
2576 if (!page) {
2577 ext4_journal_stop(handle);
2578 ret = -ENOMEM;
2579 goto out;
2581 *pagep = page;
2583 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2584 ext4_da_get_block_prep);
2585 if (ret < 0) {
2586 unlock_page(page);
2587 ext4_journal_stop(handle);
2588 page_cache_release(page);
2590 * block_write_begin may have instantiated a few blocks
2591 * outside i_size. Trim these off again. Don't need
2592 * i_size_read because we hold i_mutex.
2594 if (pos + len > inode->i_size)
2595 vmtruncate(inode, inode->i_size);
2598 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2599 goto retry;
2600 out:
2601 return ret;
2605 * Check if we should update i_disksize
2606 * when write to the end of file but not require block allocation
2608 static int ext4_da_should_update_i_disksize(struct page *page,
2609 unsigned long offset)
2611 struct buffer_head *bh;
2612 struct inode *inode = page->mapping->host;
2613 unsigned int idx;
2614 int i;
2616 bh = page_buffers(page);
2617 idx = offset >> inode->i_blkbits;
2619 for (i = 0; i < idx; i++)
2620 bh = bh->b_this_page;
2622 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2623 return 0;
2624 return 1;
2627 static int ext4_da_write_end(struct file *file,
2628 struct address_space *mapping,
2629 loff_t pos, unsigned len, unsigned copied,
2630 struct page *page, void *fsdata)
2632 struct inode *inode = mapping->host;
2633 int ret = 0, ret2;
2634 handle_t *handle = ext4_journal_current_handle();
2635 loff_t new_i_size;
2636 unsigned long start, end;
2637 int write_mode = (int)(unsigned long)fsdata;
2639 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2640 if (ext4_should_order_data(inode)) {
2641 return ext4_ordered_write_end(file, mapping, pos,
2642 len, copied, page, fsdata);
2643 } else if (ext4_should_writeback_data(inode)) {
2644 return ext4_writeback_write_end(file, mapping, pos,
2645 len, copied, page, fsdata);
2646 } else {
2647 BUG();
2651 start = pos & (PAGE_CACHE_SIZE - 1);
2652 end = start + copied - 1;
2655 * generic_write_end() will run mark_inode_dirty() if i_size
2656 * changes. So let's piggyback the i_disksize mark_inode_dirty
2657 * into that.
2660 new_i_size = pos + copied;
2661 if (new_i_size > EXT4_I(inode)->i_disksize) {
2662 if (ext4_da_should_update_i_disksize(page, end)) {
2663 down_write(&EXT4_I(inode)->i_data_sem);
2664 if (new_i_size > EXT4_I(inode)->i_disksize) {
2666 * Updating i_disksize when extending file
2667 * without needing block allocation
2669 if (ext4_should_order_data(inode))
2670 ret = ext4_jbd2_file_inode(handle,
2671 inode);
2673 EXT4_I(inode)->i_disksize = new_i_size;
2675 up_write(&EXT4_I(inode)->i_data_sem);
2676 /* We need to mark inode dirty even if
2677 * new_i_size is less that inode->i_size
2678 * bu greater than i_disksize.(hint delalloc)
2680 ext4_mark_inode_dirty(handle, inode);
2683 ret2 = generic_write_end(file, mapping, pos, len, copied,
2684 page, fsdata);
2685 copied = ret2;
2686 if (ret2 < 0)
2687 ret = ret2;
2688 ret2 = ext4_journal_stop(handle);
2689 if (!ret)
2690 ret = ret2;
2692 return ret ? ret : copied;
2695 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2698 * Drop reserved blocks
2700 BUG_ON(!PageLocked(page));
2701 if (!page_has_buffers(page))
2702 goto out;
2704 ext4_da_page_release_reservation(page, offset);
2706 out:
2707 ext4_invalidatepage(page, offset);
2709 return;
2714 * bmap() is special. It gets used by applications such as lilo and by
2715 * the swapper to find the on-disk block of a specific piece of data.
2717 * Naturally, this is dangerous if the block concerned is still in the
2718 * journal. If somebody makes a swapfile on an ext4 data-journaling
2719 * filesystem and enables swap, then they may get a nasty shock when the
2720 * data getting swapped to that swapfile suddenly gets overwritten by
2721 * the original zero's written out previously to the journal and
2722 * awaiting writeback in the kernel's buffer cache.
2724 * So, if we see any bmap calls here on a modified, data-journaled file,
2725 * take extra steps to flush any blocks which might be in the cache.
2727 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2729 struct inode *inode = mapping->host;
2730 journal_t *journal;
2731 int err;
2733 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2734 test_opt(inode->i_sb, DELALLOC)) {
2736 * With delalloc we want to sync the file
2737 * so that we can make sure we allocate
2738 * blocks for file
2740 filemap_write_and_wait(mapping);
2743 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2745 * This is a REALLY heavyweight approach, but the use of
2746 * bmap on dirty files is expected to be extremely rare:
2747 * only if we run lilo or swapon on a freshly made file
2748 * do we expect this to happen.
2750 * (bmap requires CAP_SYS_RAWIO so this does not
2751 * represent an unprivileged user DOS attack --- we'd be
2752 * in trouble if mortal users could trigger this path at
2753 * will.)
2755 * NB. EXT4_STATE_JDATA is not set on files other than
2756 * regular files. If somebody wants to bmap a directory
2757 * or symlink and gets confused because the buffer
2758 * hasn't yet been flushed to disk, they deserve
2759 * everything they get.
2762 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2763 journal = EXT4_JOURNAL(inode);
2764 jbd2_journal_lock_updates(journal);
2765 err = jbd2_journal_flush(journal);
2766 jbd2_journal_unlock_updates(journal);
2768 if (err)
2769 return 0;
2772 return generic_block_bmap(mapping, block, ext4_get_block);
2775 static int bget_one(handle_t *handle, struct buffer_head *bh)
2777 get_bh(bh);
2778 return 0;
2781 static int bput_one(handle_t *handle, struct buffer_head *bh)
2783 put_bh(bh);
2784 return 0;
2788 * Note that we don't need to start a transaction unless we're journaling data
2789 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2790 * need to file the inode to the transaction's list in ordered mode because if
2791 * we are writing back data added by write(), the inode is already there and if
2792 * we are writing back data modified via mmap(), noone guarantees in which
2793 * transaction the data will hit the disk. In case we are journaling data, we
2794 * cannot start transaction directly because transaction start ranks above page
2795 * lock so we have to do some magic.
2797 * In all journaling modes block_write_full_page() will start the I/O.
2799 * Problem:
2801 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2802 * ext4_writepage()
2804 * Similar for:
2806 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
2808 * Same applies to ext4_get_block(). We will deadlock on various things like
2809 * lock_journal and i_data_sem
2811 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2812 * allocations fail.
2814 * 16May01: If we're reentered then journal_current_handle() will be
2815 * non-zero. We simply *return*.
2817 * 1 July 2001: @@@ FIXME:
2818 * In journalled data mode, a data buffer may be metadata against the
2819 * current transaction. But the same file is part of a shared mapping
2820 * and someone does a writepage() on it.
2822 * We will move the buffer onto the async_data list, but *after* it has
2823 * been dirtied. So there's a small window where we have dirty data on
2824 * BJ_Metadata.
2826 * Note that this only applies to the last partial page in the file. The
2827 * bit which block_write_full_page() uses prepare/commit for. (That's
2828 * broken code anyway: it's wrong for msync()).
2830 * It's a rare case: affects the final partial page, for journalled data
2831 * where the file is subject to bith write() and writepage() in the same
2832 * transction. To fix it we'll need a custom block_write_full_page().
2833 * We'll probably need that anyway for journalling writepage() output.
2835 * We don't honour synchronous mounts for writepage(). That would be
2836 * disastrous. Any write() or metadata operation will sync the fs for
2837 * us.
2840 static int __ext4_normal_writepage(struct page *page,
2841 struct writeback_control *wbc)
2843 struct inode *inode = page->mapping->host;
2845 if (test_opt(inode->i_sb, NOBH))
2846 return nobh_writepage(page,
2847 ext4_normal_get_block_write, wbc);
2848 else
2849 return block_write_full_page(page,
2850 ext4_normal_get_block_write,
2851 wbc);
2854 static int ext4_normal_writepage(struct page *page,
2855 struct writeback_control *wbc)
2857 struct inode *inode = page->mapping->host;
2858 loff_t size = i_size_read(inode);
2859 loff_t len;
2861 J_ASSERT(PageLocked(page));
2862 if (page->index == size >> PAGE_CACHE_SHIFT)
2863 len = size & ~PAGE_CACHE_MASK;
2864 else
2865 len = PAGE_CACHE_SIZE;
2867 if (page_has_buffers(page)) {
2868 /* if page has buffers it should all be mapped
2869 * and allocated. If there are not buffers attached
2870 * to the page we know the page is dirty but it lost
2871 * buffers. That means that at some moment in time
2872 * after write_begin() / write_end() has been called
2873 * all buffers have been clean and thus they must have been
2874 * written at least once. So they are all mapped and we can
2875 * happily proceed with mapping them and writing the page.
2877 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2878 ext4_bh_unmapped_or_delay));
2881 if (!ext4_journal_current_handle())
2882 return __ext4_normal_writepage(page, wbc);
2884 redirty_page_for_writepage(wbc, page);
2885 unlock_page(page);
2886 return 0;
2889 static int __ext4_journalled_writepage(struct page *page,
2890 struct writeback_control *wbc)
2892 struct address_space *mapping = page->mapping;
2893 struct inode *inode = mapping->host;
2894 struct buffer_head *page_bufs;
2895 handle_t *handle = NULL;
2896 int ret = 0;
2897 int err;
2899 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2900 ext4_normal_get_block_write);
2901 if (ret != 0)
2902 goto out_unlock;
2904 page_bufs = page_buffers(page);
2905 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2906 bget_one);
2907 /* As soon as we unlock the page, it can go away, but we have
2908 * references to buffers so we are safe */
2909 unlock_page(page);
2911 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2912 if (IS_ERR(handle)) {
2913 ret = PTR_ERR(handle);
2914 goto out;
2917 ret = walk_page_buffers(handle, page_bufs, 0,
2918 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
2920 err = walk_page_buffers(handle, page_bufs, 0,
2921 PAGE_CACHE_SIZE, NULL, write_end_fn);
2922 if (ret == 0)
2923 ret = err;
2924 err = ext4_journal_stop(handle);
2925 if (!ret)
2926 ret = err;
2928 walk_page_buffers(handle, page_bufs, 0,
2929 PAGE_CACHE_SIZE, NULL, bput_one);
2930 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2931 goto out;
2933 out_unlock:
2934 unlock_page(page);
2935 out:
2936 return ret;
2939 static int ext4_journalled_writepage(struct page *page,
2940 struct writeback_control *wbc)
2942 struct inode *inode = page->mapping->host;
2943 loff_t size = i_size_read(inode);
2944 loff_t len;
2946 J_ASSERT(PageLocked(page));
2947 if (page->index == size >> PAGE_CACHE_SHIFT)
2948 len = size & ~PAGE_CACHE_MASK;
2949 else
2950 len = PAGE_CACHE_SIZE;
2952 if (page_has_buffers(page)) {
2953 /* if page has buffers it should all be mapped
2954 * and allocated. If there are not buffers attached
2955 * to the page we know the page is dirty but it lost
2956 * buffers. That means that at some moment in time
2957 * after write_begin() / write_end() has been called
2958 * all buffers have been clean and thus they must have been
2959 * written at least once. So they are all mapped and we can
2960 * happily proceed with mapping them and writing the page.
2962 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2963 ext4_bh_unmapped_or_delay));
2966 if (ext4_journal_current_handle())
2967 goto no_write;
2969 if (PageChecked(page)) {
2971 * It's mmapped pagecache. Add buffers and journal it. There
2972 * doesn't seem much point in redirtying the page here.
2974 ClearPageChecked(page);
2975 return __ext4_journalled_writepage(page, wbc);
2976 } else {
2978 * It may be a page full of checkpoint-mode buffers. We don't
2979 * really know unless we go poke around in the buffer_heads.
2980 * But block_write_full_page will do the right thing.
2982 return block_write_full_page(page,
2983 ext4_normal_get_block_write,
2984 wbc);
2986 no_write:
2987 redirty_page_for_writepage(wbc, page);
2988 unlock_page(page);
2989 return 0;
2992 static int ext4_readpage(struct file *file, struct page *page)
2994 return mpage_readpage(page, ext4_get_block);
2997 static int
2998 ext4_readpages(struct file *file, struct address_space *mapping,
2999 struct list_head *pages, unsigned nr_pages)
3001 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3004 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3006 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3009 * If it's a full truncate we just forget about the pending dirtying
3011 if (offset == 0)
3012 ClearPageChecked(page);
3014 jbd2_journal_invalidatepage(journal, page, offset);
3017 static int ext4_releasepage(struct page *page, gfp_t wait)
3019 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3021 WARN_ON(PageChecked(page));
3022 if (!page_has_buffers(page))
3023 return 0;
3024 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3028 * If the O_DIRECT write will extend the file then add this inode to the
3029 * orphan list. So recovery will truncate it back to the original size
3030 * if the machine crashes during the write.
3032 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3033 * crashes then stale disk data _may_ be exposed inside the file. But current
3034 * VFS code falls back into buffered path in that case so we are safe.
3036 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3037 const struct iovec *iov, loff_t offset,
3038 unsigned long nr_segs)
3040 struct file *file = iocb->ki_filp;
3041 struct inode *inode = file->f_mapping->host;
3042 struct ext4_inode_info *ei = EXT4_I(inode);
3043 handle_t *handle;
3044 ssize_t ret;
3045 int orphan = 0;
3046 size_t count = iov_length(iov, nr_segs);
3048 if (rw == WRITE) {
3049 loff_t final_size = offset + count;
3051 if (final_size > inode->i_size) {
3052 /* Credits for sb + inode write */
3053 handle = ext4_journal_start(inode, 2);
3054 if (IS_ERR(handle)) {
3055 ret = PTR_ERR(handle);
3056 goto out;
3058 ret = ext4_orphan_add(handle, inode);
3059 if (ret) {
3060 ext4_journal_stop(handle);
3061 goto out;
3063 orphan = 1;
3064 ei->i_disksize = inode->i_size;
3065 ext4_journal_stop(handle);
3069 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3070 offset, nr_segs,
3071 ext4_get_block, NULL);
3073 if (orphan) {
3074 int err;
3076 /* Credits for sb + inode write */
3077 handle = ext4_journal_start(inode, 2);
3078 if (IS_ERR(handle)) {
3079 /* This is really bad luck. We've written the data
3080 * but cannot extend i_size. Bail out and pretend
3081 * the write failed... */
3082 ret = PTR_ERR(handle);
3083 goto out;
3085 if (inode->i_nlink)
3086 ext4_orphan_del(handle, inode);
3087 if (ret > 0) {
3088 loff_t end = offset + ret;
3089 if (end > inode->i_size) {
3090 ei->i_disksize = end;
3091 i_size_write(inode, end);
3093 * We're going to return a positive `ret'
3094 * here due to non-zero-length I/O, so there's
3095 * no way of reporting error returns from
3096 * ext4_mark_inode_dirty() to userspace. So
3097 * ignore it.
3099 ext4_mark_inode_dirty(handle, inode);
3102 err = ext4_journal_stop(handle);
3103 if (ret == 0)
3104 ret = err;
3106 out:
3107 return ret;
3111 * Pages can be marked dirty completely asynchronously from ext4's journalling
3112 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3113 * much here because ->set_page_dirty is called under VFS locks. The page is
3114 * not necessarily locked.
3116 * We cannot just dirty the page and leave attached buffers clean, because the
3117 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3118 * or jbddirty because all the journalling code will explode.
3120 * So what we do is to mark the page "pending dirty" and next time writepage
3121 * is called, propagate that into the buffers appropriately.
3123 static int ext4_journalled_set_page_dirty(struct page *page)
3125 SetPageChecked(page);
3126 return __set_page_dirty_nobuffers(page);
3129 static const struct address_space_operations ext4_ordered_aops = {
3130 .readpage = ext4_readpage,
3131 .readpages = ext4_readpages,
3132 .writepage = ext4_normal_writepage,
3133 .sync_page = block_sync_page,
3134 .write_begin = ext4_write_begin,
3135 .write_end = ext4_ordered_write_end,
3136 .bmap = ext4_bmap,
3137 .invalidatepage = ext4_invalidatepage,
3138 .releasepage = ext4_releasepage,
3139 .direct_IO = ext4_direct_IO,
3140 .migratepage = buffer_migrate_page,
3141 .is_partially_uptodate = block_is_partially_uptodate,
3144 static const struct address_space_operations ext4_writeback_aops = {
3145 .readpage = ext4_readpage,
3146 .readpages = ext4_readpages,
3147 .writepage = ext4_normal_writepage,
3148 .sync_page = block_sync_page,
3149 .write_begin = ext4_write_begin,
3150 .write_end = ext4_writeback_write_end,
3151 .bmap = ext4_bmap,
3152 .invalidatepage = ext4_invalidatepage,
3153 .releasepage = ext4_releasepage,
3154 .direct_IO = ext4_direct_IO,
3155 .migratepage = buffer_migrate_page,
3156 .is_partially_uptodate = block_is_partially_uptodate,
3159 static const struct address_space_operations ext4_journalled_aops = {
3160 .readpage = ext4_readpage,
3161 .readpages = ext4_readpages,
3162 .writepage = ext4_journalled_writepage,
3163 .sync_page = block_sync_page,
3164 .write_begin = ext4_write_begin,
3165 .write_end = ext4_journalled_write_end,
3166 .set_page_dirty = ext4_journalled_set_page_dirty,
3167 .bmap = ext4_bmap,
3168 .invalidatepage = ext4_invalidatepage,
3169 .releasepage = ext4_releasepage,
3170 .is_partially_uptodate = block_is_partially_uptodate,
3173 static const struct address_space_operations ext4_da_aops = {
3174 .readpage = ext4_readpage,
3175 .readpages = ext4_readpages,
3176 .writepage = ext4_da_writepage,
3177 .writepages = ext4_da_writepages,
3178 .sync_page = block_sync_page,
3179 .write_begin = ext4_da_write_begin,
3180 .write_end = ext4_da_write_end,
3181 .bmap = ext4_bmap,
3182 .invalidatepage = ext4_da_invalidatepage,
3183 .releasepage = ext4_releasepage,
3184 .direct_IO = ext4_direct_IO,
3185 .migratepage = buffer_migrate_page,
3186 .is_partially_uptodate = block_is_partially_uptodate,
3189 void ext4_set_aops(struct inode *inode)
3191 if (ext4_should_order_data(inode) &&
3192 test_opt(inode->i_sb, DELALLOC))
3193 inode->i_mapping->a_ops = &ext4_da_aops;
3194 else if (ext4_should_order_data(inode))
3195 inode->i_mapping->a_ops = &ext4_ordered_aops;
3196 else if (ext4_should_writeback_data(inode) &&
3197 test_opt(inode->i_sb, DELALLOC))
3198 inode->i_mapping->a_ops = &ext4_da_aops;
3199 else if (ext4_should_writeback_data(inode))
3200 inode->i_mapping->a_ops = &ext4_writeback_aops;
3201 else
3202 inode->i_mapping->a_ops = &ext4_journalled_aops;
3206 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3207 * up to the end of the block which corresponds to `from'.
3208 * This required during truncate. We need to physically zero the tail end
3209 * of that block so it doesn't yield old data if the file is later grown.
3211 int ext4_block_truncate_page(handle_t *handle,
3212 struct address_space *mapping, loff_t from)
3214 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3215 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3216 unsigned blocksize, length, pos;
3217 ext4_lblk_t iblock;
3218 struct inode *inode = mapping->host;
3219 struct buffer_head *bh;
3220 struct page *page;
3221 int err = 0;
3223 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3224 if (!page)
3225 return -EINVAL;
3227 blocksize = inode->i_sb->s_blocksize;
3228 length = blocksize - (offset & (blocksize - 1));
3229 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3232 * For "nobh" option, we can only work if we don't need to
3233 * read-in the page - otherwise we create buffers to do the IO.
3235 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3236 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3237 zero_user(page, offset, length);
3238 set_page_dirty(page);
3239 goto unlock;
3242 if (!page_has_buffers(page))
3243 create_empty_buffers(page, blocksize, 0);
3245 /* Find the buffer that contains "offset" */
3246 bh = page_buffers(page);
3247 pos = blocksize;
3248 while (offset >= pos) {
3249 bh = bh->b_this_page;
3250 iblock++;
3251 pos += blocksize;
3254 err = 0;
3255 if (buffer_freed(bh)) {
3256 BUFFER_TRACE(bh, "freed: skip");
3257 goto unlock;
3260 if (!buffer_mapped(bh)) {
3261 BUFFER_TRACE(bh, "unmapped");
3262 ext4_get_block(inode, iblock, bh, 0);
3263 /* unmapped? It's a hole - nothing to do */
3264 if (!buffer_mapped(bh)) {
3265 BUFFER_TRACE(bh, "still unmapped");
3266 goto unlock;
3270 /* Ok, it's mapped. Make sure it's up-to-date */
3271 if (PageUptodate(page))
3272 set_buffer_uptodate(bh);
3274 if (!buffer_uptodate(bh)) {
3275 err = -EIO;
3276 ll_rw_block(READ, 1, &bh);
3277 wait_on_buffer(bh);
3278 /* Uhhuh. Read error. Complain and punt. */
3279 if (!buffer_uptodate(bh))
3280 goto unlock;
3283 if (ext4_should_journal_data(inode)) {
3284 BUFFER_TRACE(bh, "get write access");
3285 err = ext4_journal_get_write_access(handle, bh);
3286 if (err)
3287 goto unlock;
3290 zero_user(page, offset, length);
3292 BUFFER_TRACE(bh, "zeroed end of block");
3294 err = 0;
3295 if (ext4_should_journal_data(inode)) {
3296 err = ext4_journal_dirty_metadata(handle, bh);
3297 } else {
3298 if (ext4_should_order_data(inode))
3299 err = ext4_jbd2_file_inode(handle, inode);
3300 mark_buffer_dirty(bh);
3303 unlock:
3304 unlock_page(page);
3305 page_cache_release(page);
3306 return err;
3310 * Probably it should be a library function... search for first non-zero word
3311 * or memcmp with zero_page, whatever is better for particular architecture.
3312 * Linus?
3314 static inline int all_zeroes(__le32 *p, __le32 *q)
3316 while (p < q)
3317 if (*p++)
3318 return 0;
3319 return 1;
3323 * ext4_find_shared - find the indirect blocks for partial truncation.
3324 * @inode: inode in question
3325 * @depth: depth of the affected branch
3326 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3327 * @chain: place to store the pointers to partial indirect blocks
3328 * @top: place to the (detached) top of branch
3330 * This is a helper function used by ext4_truncate().
3332 * When we do truncate() we may have to clean the ends of several
3333 * indirect blocks but leave the blocks themselves alive. Block is
3334 * partially truncated if some data below the new i_size is refered
3335 * from it (and it is on the path to the first completely truncated
3336 * data block, indeed). We have to free the top of that path along
3337 * with everything to the right of the path. Since no allocation
3338 * past the truncation point is possible until ext4_truncate()
3339 * finishes, we may safely do the latter, but top of branch may
3340 * require special attention - pageout below the truncation point
3341 * might try to populate it.
3343 * We atomically detach the top of branch from the tree, store the
3344 * block number of its root in *@top, pointers to buffer_heads of
3345 * partially truncated blocks - in @chain[].bh and pointers to
3346 * their last elements that should not be removed - in
3347 * @chain[].p. Return value is the pointer to last filled element
3348 * of @chain.
3350 * The work left to caller to do the actual freeing of subtrees:
3351 * a) free the subtree starting from *@top
3352 * b) free the subtrees whose roots are stored in
3353 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3354 * c) free the subtrees growing from the inode past the @chain[0].
3355 * (no partially truncated stuff there). */
3357 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3358 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3360 Indirect *partial, *p;
3361 int k, err;
3363 *top = 0;
3364 /* Make k index the deepest non-null offest + 1 */
3365 for (k = depth; k > 1 && !offsets[k-1]; k--)
3367 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3368 /* Writer: pointers */
3369 if (!partial)
3370 partial = chain + k-1;
3372 * If the branch acquired continuation since we've looked at it -
3373 * fine, it should all survive and (new) top doesn't belong to us.
3375 if (!partial->key && *partial->p)
3376 /* Writer: end */
3377 goto no_top;
3378 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3381 * OK, we've found the last block that must survive. The rest of our
3382 * branch should be detached before unlocking. However, if that rest
3383 * of branch is all ours and does not grow immediately from the inode
3384 * it's easier to cheat and just decrement partial->p.
3386 if (p == chain + k - 1 && p > chain) {
3387 p->p--;
3388 } else {
3389 *top = *p->p;
3390 /* Nope, don't do this in ext4. Must leave the tree intact */
3391 #if 0
3392 *p->p = 0;
3393 #endif
3395 /* Writer: end */
3397 while (partial > p) {
3398 brelse(partial->bh);
3399 partial--;
3401 no_top:
3402 return partial;
3406 * Zero a number of block pointers in either an inode or an indirect block.
3407 * If we restart the transaction we must again get write access to the
3408 * indirect block for further modification.
3410 * We release `count' blocks on disk, but (last - first) may be greater
3411 * than `count' because there can be holes in there.
3413 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3414 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3415 unsigned long count, __le32 *first, __le32 *last)
3417 __le32 *p;
3418 if (try_to_extend_transaction(handle, inode)) {
3419 if (bh) {
3420 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3421 ext4_journal_dirty_metadata(handle, bh);
3423 ext4_mark_inode_dirty(handle, inode);
3424 ext4_journal_test_restart(handle, inode);
3425 if (bh) {
3426 BUFFER_TRACE(bh, "retaking write access");
3427 ext4_journal_get_write_access(handle, bh);
3432 * Any buffers which are on the journal will be in memory. We find
3433 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3434 * on them. We've already detached each block from the file, so
3435 * bforget() in jbd2_journal_forget() should be safe.
3437 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3439 for (p = first; p < last; p++) {
3440 u32 nr = le32_to_cpu(*p);
3441 if (nr) {
3442 struct buffer_head *tbh;
3444 *p = 0;
3445 tbh = sb_find_get_block(inode->i_sb, nr);
3446 ext4_forget(handle, 0, inode, tbh, nr);
3450 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3454 * ext4_free_data - free a list of data blocks
3455 * @handle: handle for this transaction
3456 * @inode: inode we are dealing with
3457 * @this_bh: indirect buffer_head which contains *@first and *@last
3458 * @first: array of block numbers
3459 * @last: points immediately past the end of array
3461 * We are freeing all blocks refered from that array (numbers are stored as
3462 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3464 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3465 * blocks are contiguous then releasing them at one time will only affect one
3466 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3467 * actually use a lot of journal space.
3469 * @this_bh will be %NULL if @first and @last point into the inode's direct
3470 * block pointers.
3472 static void ext4_free_data(handle_t *handle, struct inode *inode,
3473 struct buffer_head *this_bh,
3474 __le32 *first, __le32 *last)
3476 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3477 unsigned long count = 0; /* Number of blocks in the run */
3478 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3479 corresponding to
3480 block_to_free */
3481 ext4_fsblk_t nr; /* Current block # */
3482 __le32 *p; /* Pointer into inode/ind
3483 for current block */
3484 int err;
3486 if (this_bh) { /* For indirect block */
3487 BUFFER_TRACE(this_bh, "get_write_access");
3488 err = ext4_journal_get_write_access(handle, this_bh);
3489 /* Important: if we can't update the indirect pointers
3490 * to the blocks, we can't free them. */
3491 if (err)
3492 return;
3495 for (p = first; p < last; p++) {
3496 nr = le32_to_cpu(*p);
3497 if (nr) {
3498 /* accumulate blocks to free if they're contiguous */
3499 if (count == 0) {
3500 block_to_free = nr;
3501 block_to_free_p = p;
3502 count = 1;
3503 } else if (nr == block_to_free + count) {
3504 count++;
3505 } else {
3506 ext4_clear_blocks(handle, inode, this_bh,
3507 block_to_free,
3508 count, block_to_free_p, p);
3509 block_to_free = nr;
3510 block_to_free_p = p;
3511 count = 1;
3516 if (count > 0)
3517 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3518 count, block_to_free_p, p);
3520 if (this_bh) {
3521 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
3524 * The buffer head should have an attached journal head at this
3525 * point. However, if the data is corrupted and an indirect
3526 * block pointed to itself, it would have been detached when
3527 * the block was cleared. Check for this instead of OOPSing.
3529 if (bh2jh(this_bh))
3530 ext4_journal_dirty_metadata(handle, this_bh);
3531 else
3532 ext4_error(inode->i_sb, __func__,
3533 "circular indirect block detected, "
3534 "inode=%lu, block=%llu",
3535 inode->i_ino,
3536 (unsigned long long) this_bh->b_blocknr);
3541 * ext4_free_branches - free an array of branches
3542 * @handle: JBD handle for this transaction
3543 * @inode: inode we are dealing with
3544 * @parent_bh: the buffer_head which contains *@first and *@last
3545 * @first: array of block numbers
3546 * @last: pointer immediately past the end of array
3547 * @depth: depth of the branches to free
3549 * We are freeing all blocks refered from these branches (numbers are
3550 * stored as little-endian 32-bit) and updating @inode->i_blocks
3551 * appropriately.
3553 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3554 struct buffer_head *parent_bh,
3555 __le32 *first, __le32 *last, int depth)
3557 ext4_fsblk_t nr;
3558 __le32 *p;
3560 if (is_handle_aborted(handle))
3561 return;
3563 if (depth--) {
3564 struct buffer_head *bh;
3565 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3566 p = last;
3567 while (--p >= first) {
3568 nr = le32_to_cpu(*p);
3569 if (!nr)
3570 continue; /* A hole */
3572 /* Go read the buffer for the next level down */
3573 bh = sb_bread(inode->i_sb, nr);
3576 * A read failure? Report error and clear slot
3577 * (should be rare).
3579 if (!bh) {
3580 ext4_error(inode->i_sb, "ext4_free_branches",
3581 "Read failure, inode=%lu, block=%llu",
3582 inode->i_ino, nr);
3583 continue;
3586 /* This zaps the entire block. Bottom up. */
3587 BUFFER_TRACE(bh, "free child branches");
3588 ext4_free_branches(handle, inode, bh,
3589 (__le32 *) bh->b_data,
3590 (__le32 *) bh->b_data + addr_per_block,
3591 depth);
3594 * We've probably journalled the indirect block several
3595 * times during the truncate. But it's no longer
3596 * needed and we now drop it from the transaction via
3597 * jbd2_journal_revoke().
3599 * That's easy if it's exclusively part of this
3600 * transaction. But if it's part of the committing
3601 * transaction then jbd2_journal_forget() will simply
3602 * brelse() it. That means that if the underlying
3603 * block is reallocated in ext4_get_block(),
3604 * unmap_underlying_metadata() will find this block
3605 * and will try to get rid of it. damn, damn.
3607 * If this block has already been committed to the
3608 * journal, a revoke record will be written. And
3609 * revoke records must be emitted *before* clearing
3610 * this block's bit in the bitmaps.
3612 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3615 * Everything below this this pointer has been
3616 * released. Now let this top-of-subtree go.
3618 * We want the freeing of this indirect block to be
3619 * atomic in the journal with the updating of the
3620 * bitmap block which owns it. So make some room in
3621 * the journal.
3623 * We zero the parent pointer *after* freeing its
3624 * pointee in the bitmaps, so if extend_transaction()
3625 * for some reason fails to put the bitmap changes and
3626 * the release into the same transaction, recovery
3627 * will merely complain about releasing a free block,
3628 * rather than leaking blocks.
3630 if (is_handle_aborted(handle))
3631 return;
3632 if (try_to_extend_transaction(handle, inode)) {
3633 ext4_mark_inode_dirty(handle, inode);
3634 ext4_journal_test_restart(handle, inode);
3637 ext4_free_blocks(handle, inode, nr, 1, 1);
3639 if (parent_bh) {
3641 * The block which we have just freed is
3642 * pointed to by an indirect block: journal it
3644 BUFFER_TRACE(parent_bh, "get_write_access");
3645 if (!ext4_journal_get_write_access(handle,
3646 parent_bh)){
3647 *p = 0;
3648 BUFFER_TRACE(parent_bh,
3649 "call ext4_journal_dirty_metadata");
3650 ext4_journal_dirty_metadata(handle,
3651 parent_bh);
3655 } else {
3656 /* We have reached the bottom of the tree. */
3657 BUFFER_TRACE(parent_bh, "free data blocks");
3658 ext4_free_data(handle, inode, parent_bh, first, last);
3662 int ext4_can_truncate(struct inode *inode)
3664 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3665 return 0;
3666 if (S_ISREG(inode->i_mode))
3667 return 1;
3668 if (S_ISDIR(inode->i_mode))
3669 return 1;
3670 if (S_ISLNK(inode->i_mode))
3671 return !ext4_inode_is_fast_symlink(inode);
3672 return 0;
3676 * ext4_truncate()
3678 * We block out ext4_get_block() block instantiations across the entire
3679 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3680 * simultaneously on behalf of the same inode.
3682 * As we work through the truncate and commmit bits of it to the journal there
3683 * is one core, guiding principle: the file's tree must always be consistent on
3684 * disk. We must be able to restart the truncate after a crash.
3686 * The file's tree may be transiently inconsistent in memory (although it
3687 * probably isn't), but whenever we close off and commit a journal transaction,
3688 * the contents of (the filesystem + the journal) must be consistent and
3689 * restartable. It's pretty simple, really: bottom up, right to left (although
3690 * left-to-right works OK too).
3692 * Note that at recovery time, journal replay occurs *before* the restart of
3693 * truncate against the orphan inode list.
3695 * The committed inode has the new, desired i_size (which is the same as
3696 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3697 * that this inode's truncate did not complete and it will again call
3698 * ext4_truncate() to have another go. So there will be instantiated blocks
3699 * to the right of the truncation point in a crashed ext4 filesystem. But
3700 * that's fine - as long as they are linked from the inode, the post-crash
3701 * ext4_truncate() run will find them and release them.
3703 void ext4_truncate(struct inode *inode)
3705 handle_t *handle;
3706 struct ext4_inode_info *ei = EXT4_I(inode);
3707 __le32 *i_data = ei->i_data;
3708 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3709 struct address_space *mapping = inode->i_mapping;
3710 ext4_lblk_t offsets[4];
3711 Indirect chain[4];
3712 Indirect *partial;
3713 __le32 nr = 0;
3714 int n;
3715 ext4_lblk_t last_block;
3716 unsigned blocksize = inode->i_sb->s_blocksize;
3718 if (!ext4_can_truncate(inode))
3719 return;
3721 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3722 ext4_ext_truncate(inode);
3723 return;
3726 handle = start_transaction(inode);
3727 if (IS_ERR(handle))
3728 return; /* AKPM: return what? */
3730 last_block = (inode->i_size + blocksize-1)
3731 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3733 if (inode->i_size & (blocksize - 1))
3734 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3735 goto out_stop;
3737 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3738 if (n == 0)
3739 goto out_stop; /* error */
3742 * OK. This truncate is going to happen. We add the inode to the
3743 * orphan list, so that if this truncate spans multiple transactions,
3744 * and we crash, we will resume the truncate when the filesystem
3745 * recovers. It also marks the inode dirty, to catch the new size.
3747 * Implication: the file must always be in a sane, consistent
3748 * truncatable state while each transaction commits.
3750 if (ext4_orphan_add(handle, inode))
3751 goto out_stop;
3754 * From here we block out all ext4_get_block() callers who want to
3755 * modify the block allocation tree.
3757 down_write(&ei->i_data_sem);
3759 ext4_discard_preallocations(inode);
3762 * The orphan list entry will now protect us from any crash which
3763 * occurs before the truncate completes, so it is now safe to propagate
3764 * the new, shorter inode size (held for now in i_size) into the
3765 * on-disk inode. We do this via i_disksize, which is the value which
3766 * ext4 *really* writes onto the disk inode.
3768 ei->i_disksize = inode->i_size;
3770 if (n == 1) { /* direct blocks */
3771 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3772 i_data + EXT4_NDIR_BLOCKS);
3773 goto do_indirects;
3776 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
3777 /* Kill the top of shared branch (not detached) */
3778 if (nr) {
3779 if (partial == chain) {
3780 /* Shared branch grows from the inode */
3781 ext4_free_branches(handle, inode, NULL,
3782 &nr, &nr+1, (chain+n-1) - partial);
3783 *partial->p = 0;
3785 * We mark the inode dirty prior to restart,
3786 * and prior to stop. No need for it here.
3788 } else {
3789 /* Shared branch grows from an indirect block */
3790 BUFFER_TRACE(partial->bh, "get_write_access");
3791 ext4_free_branches(handle, inode, partial->bh,
3792 partial->p,
3793 partial->p+1, (chain+n-1) - partial);
3796 /* Clear the ends of indirect blocks on the shared branch */
3797 while (partial > chain) {
3798 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
3799 (__le32*)partial->bh->b_data+addr_per_block,
3800 (chain+n-1) - partial);
3801 BUFFER_TRACE(partial->bh, "call brelse");
3802 brelse (partial->bh);
3803 partial--;
3805 do_indirects:
3806 /* Kill the remaining (whole) subtrees */
3807 switch (offsets[0]) {
3808 default:
3809 nr = i_data[EXT4_IND_BLOCK];
3810 if (nr) {
3811 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3812 i_data[EXT4_IND_BLOCK] = 0;
3814 case EXT4_IND_BLOCK:
3815 nr = i_data[EXT4_DIND_BLOCK];
3816 if (nr) {
3817 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3818 i_data[EXT4_DIND_BLOCK] = 0;
3820 case EXT4_DIND_BLOCK:
3821 nr = i_data[EXT4_TIND_BLOCK];
3822 if (nr) {
3823 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3824 i_data[EXT4_TIND_BLOCK] = 0;
3826 case EXT4_TIND_BLOCK:
3830 up_write(&ei->i_data_sem);
3831 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3832 ext4_mark_inode_dirty(handle, inode);
3835 * In a multi-transaction truncate, we only make the final transaction
3836 * synchronous
3838 if (IS_SYNC(inode))
3839 handle->h_sync = 1;
3840 out_stop:
3842 * If this was a simple ftruncate(), and the file will remain alive
3843 * then we need to clear up the orphan record which we created above.
3844 * However, if this was a real unlink then we were called by
3845 * ext4_delete_inode(), and we allow that function to clean up the
3846 * orphan info for us.
3848 if (inode->i_nlink)
3849 ext4_orphan_del(handle, inode);
3851 ext4_journal_stop(handle);
3855 * ext4_get_inode_loc returns with an extra refcount against the inode's
3856 * underlying buffer_head on success. If 'in_mem' is true, we have all
3857 * data in memory that is needed to recreate the on-disk version of this
3858 * inode.
3860 static int __ext4_get_inode_loc(struct inode *inode,
3861 struct ext4_iloc *iloc, int in_mem)
3863 struct ext4_group_desc *gdp;
3864 struct buffer_head *bh;
3865 struct super_block *sb = inode->i_sb;
3866 ext4_fsblk_t block;
3867 int inodes_per_block, inode_offset;
3869 iloc->bh = 0;
3870 if (!ext4_valid_inum(sb, inode->i_ino))
3871 return -EIO;
3873 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3874 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3875 if (!gdp)
3876 return -EIO;
3879 * Figure out the offset within the block group inode table
3881 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
3882 inode_offset = ((inode->i_ino - 1) %
3883 EXT4_INODES_PER_GROUP(sb));
3884 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3885 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3887 bh = sb_getblk(sb, block);
3888 if (!bh) {
3889 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
3890 "inode block - inode=%lu, block=%llu",
3891 inode->i_ino, block);
3892 return -EIO;
3894 if (!buffer_uptodate(bh)) {
3895 lock_buffer(bh);
3898 * If the buffer has the write error flag, we have failed
3899 * to write out another inode in the same block. In this
3900 * case, we don't have to read the block because we may
3901 * read the old inode data successfully.
3903 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3904 set_buffer_uptodate(bh);
3906 if (buffer_uptodate(bh)) {
3907 /* someone brought it uptodate while we waited */
3908 unlock_buffer(bh);
3909 goto has_buffer;
3913 * If we have all information of the inode in memory and this
3914 * is the only valid inode in the block, we need not read the
3915 * block.
3917 if (in_mem) {
3918 struct buffer_head *bitmap_bh;
3919 int i, start;
3921 start = inode_offset & ~(inodes_per_block - 1);
3923 /* Is the inode bitmap in cache? */
3924 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3925 if (!bitmap_bh)
3926 goto make_io;
3929 * If the inode bitmap isn't in cache then the
3930 * optimisation may end up performing two reads instead
3931 * of one, so skip it.
3933 if (!buffer_uptodate(bitmap_bh)) {
3934 brelse(bitmap_bh);
3935 goto make_io;
3937 for (i = start; i < start + inodes_per_block; i++) {
3938 if (i == inode_offset)
3939 continue;
3940 if (ext4_test_bit(i, bitmap_bh->b_data))
3941 break;
3943 brelse(bitmap_bh);
3944 if (i == start + inodes_per_block) {
3945 /* all other inodes are free, so skip I/O */
3946 memset(bh->b_data, 0, bh->b_size);
3947 set_buffer_uptodate(bh);
3948 unlock_buffer(bh);
3949 goto has_buffer;
3953 make_io:
3955 * If we need to do any I/O, try to pre-readahead extra
3956 * blocks from the inode table.
3958 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3959 ext4_fsblk_t b, end, table;
3960 unsigned num;
3962 table = ext4_inode_table(sb, gdp);
3963 /* Make sure s_inode_readahead_blks is a power of 2 */
3964 while (EXT4_SB(sb)->s_inode_readahead_blks &
3965 (EXT4_SB(sb)->s_inode_readahead_blks-1))
3966 EXT4_SB(sb)->s_inode_readahead_blks =
3967 (EXT4_SB(sb)->s_inode_readahead_blks &
3968 (EXT4_SB(sb)->s_inode_readahead_blks-1));
3969 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3970 if (table > b)
3971 b = table;
3972 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3973 num = EXT4_INODES_PER_GROUP(sb);
3974 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3975 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3976 num -= le16_to_cpu(gdp->bg_itable_unused);
3977 table += num / inodes_per_block;
3978 if (end > table)
3979 end = table;
3980 while (b <= end)
3981 sb_breadahead(sb, b++);
3985 * There are other valid inodes in the buffer, this inode
3986 * has in-inode xattrs, or we don't have this inode in memory.
3987 * Read the block from disk.
3989 get_bh(bh);
3990 bh->b_end_io = end_buffer_read_sync;
3991 submit_bh(READ_META, bh);
3992 wait_on_buffer(bh);
3993 if (!buffer_uptodate(bh)) {
3994 ext4_error(sb, __func__,
3995 "unable to read inode block - inode=%lu, "
3996 "block=%llu", inode->i_ino, block);
3997 brelse(bh);
3998 return -EIO;
4001 has_buffer:
4002 iloc->bh = bh;
4003 return 0;
4006 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4008 /* We have all inode data except xattrs in memory here. */
4009 return __ext4_get_inode_loc(inode, iloc,
4010 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4013 void ext4_set_inode_flags(struct inode *inode)
4015 unsigned int flags = EXT4_I(inode)->i_flags;
4017 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4018 if (flags & EXT4_SYNC_FL)
4019 inode->i_flags |= S_SYNC;
4020 if (flags & EXT4_APPEND_FL)
4021 inode->i_flags |= S_APPEND;
4022 if (flags & EXT4_IMMUTABLE_FL)
4023 inode->i_flags |= S_IMMUTABLE;
4024 if (flags & EXT4_NOATIME_FL)
4025 inode->i_flags |= S_NOATIME;
4026 if (flags & EXT4_DIRSYNC_FL)
4027 inode->i_flags |= S_DIRSYNC;
4030 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4031 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4033 unsigned int flags = ei->vfs_inode.i_flags;
4035 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4036 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4037 if (flags & S_SYNC)
4038 ei->i_flags |= EXT4_SYNC_FL;
4039 if (flags & S_APPEND)
4040 ei->i_flags |= EXT4_APPEND_FL;
4041 if (flags & S_IMMUTABLE)
4042 ei->i_flags |= EXT4_IMMUTABLE_FL;
4043 if (flags & S_NOATIME)
4044 ei->i_flags |= EXT4_NOATIME_FL;
4045 if (flags & S_DIRSYNC)
4046 ei->i_flags |= EXT4_DIRSYNC_FL;
4048 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4049 struct ext4_inode_info *ei)
4051 blkcnt_t i_blocks ;
4052 struct inode *inode = &(ei->vfs_inode);
4053 struct super_block *sb = inode->i_sb;
4055 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4056 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4057 /* we are using combined 48 bit field */
4058 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4059 le32_to_cpu(raw_inode->i_blocks_lo);
4060 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4061 /* i_blocks represent file system block size */
4062 return i_blocks << (inode->i_blkbits - 9);
4063 } else {
4064 return i_blocks;
4066 } else {
4067 return le32_to_cpu(raw_inode->i_blocks_lo);
4071 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4073 struct ext4_iloc iloc;
4074 struct ext4_inode *raw_inode;
4075 struct ext4_inode_info *ei;
4076 struct buffer_head *bh;
4077 struct inode *inode;
4078 long ret;
4079 int block;
4081 inode = iget_locked(sb, ino);
4082 if (!inode)
4083 return ERR_PTR(-ENOMEM);
4084 if (!(inode->i_state & I_NEW))
4085 return inode;
4087 ei = EXT4_I(inode);
4088 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4089 ei->i_acl = EXT4_ACL_NOT_CACHED;
4090 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4091 #endif
4093 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4094 if (ret < 0)
4095 goto bad_inode;
4096 bh = iloc.bh;
4097 raw_inode = ext4_raw_inode(&iloc);
4098 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4099 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4100 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4101 if (!(test_opt(inode->i_sb, NO_UID32))) {
4102 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4103 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4105 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4107 ei->i_state = 0;
4108 ei->i_dir_start_lookup = 0;
4109 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4110 /* We now have enough fields to check if the inode was active or not.
4111 * This is needed because nfsd might try to access dead inodes
4112 * the test is that same one that e2fsck uses
4113 * NeilBrown 1999oct15
4115 if (inode->i_nlink == 0) {
4116 if (inode->i_mode == 0 ||
4117 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4118 /* this inode is deleted */
4119 brelse(bh);
4120 ret = -ESTALE;
4121 goto bad_inode;
4123 /* The only unlinked inodes we let through here have
4124 * valid i_mode and are being read by the orphan
4125 * recovery code: that's fine, we're about to complete
4126 * the process of deleting those. */
4128 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4129 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4130 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4131 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4132 cpu_to_le32(EXT4_OS_HURD)) {
4133 ei->i_file_acl |=
4134 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4136 inode->i_size = ext4_isize(raw_inode);
4137 ei->i_disksize = inode->i_size;
4138 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4139 ei->i_block_group = iloc.block_group;
4141 * NOTE! The in-memory inode i_data array is in little-endian order
4142 * even on big-endian machines: we do NOT byteswap the block numbers!
4144 for (block = 0; block < EXT4_N_BLOCKS; block++)
4145 ei->i_data[block] = raw_inode->i_block[block];
4146 INIT_LIST_HEAD(&ei->i_orphan);
4148 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4149 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4150 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4151 EXT4_INODE_SIZE(inode->i_sb)) {
4152 brelse(bh);
4153 ret = -EIO;
4154 goto bad_inode;
4156 if (ei->i_extra_isize == 0) {
4157 /* The extra space is currently unused. Use it. */
4158 ei->i_extra_isize = sizeof(struct ext4_inode) -
4159 EXT4_GOOD_OLD_INODE_SIZE;
4160 } else {
4161 __le32 *magic = (void *)raw_inode +
4162 EXT4_GOOD_OLD_INODE_SIZE +
4163 ei->i_extra_isize;
4164 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4165 ei->i_state |= EXT4_STATE_XATTR;
4167 } else
4168 ei->i_extra_isize = 0;
4170 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4171 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4172 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4173 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4175 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4176 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4177 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4178 inode->i_version |=
4179 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4182 if (S_ISREG(inode->i_mode)) {
4183 inode->i_op = &ext4_file_inode_operations;
4184 inode->i_fop = &ext4_file_operations;
4185 ext4_set_aops(inode);
4186 } else if (S_ISDIR(inode->i_mode)) {
4187 inode->i_op = &ext4_dir_inode_operations;
4188 inode->i_fop = &ext4_dir_operations;
4189 } else if (S_ISLNK(inode->i_mode)) {
4190 if (ext4_inode_is_fast_symlink(inode)) {
4191 inode->i_op = &ext4_fast_symlink_inode_operations;
4192 nd_terminate_link(ei->i_data, inode->i_size,
4193 sizeof(ei->i_data) - 1);
4194 } else {
4195 inode->i_op = &ext4_symlink_inode_operations;
4196 ext4_set_aops(inode);
4198 } else {
4199 inode->i_op = &ext4_special_inode_operations;
4200 if (raw_inode->i_block[0])
4201 init_special_inode(inode, inode->i_mode,
4202 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4203 else
4204 init_special_inode(inode, inode->i_mode,
4205 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4207 brelse(iloc.bh);
4208 ext4_set_inode_flags(inode);
4209 unlock_new_inode(inode);
4210 return inode;
4212 bad_inode:
4213 iget_failed(inode);
4214 return ERR_PTR(ret);
4217 static int ext4_inode_blocks_set(handle_t *handle,
4218 struct ext4_inode *raw_inode,
4219 struct ext4_inode_info *ei)
4221 struct inode *inode = &(ei->vfs_inode);
4222 u64 i_blocks = inode->i_blocks;
4223 struct super_block *sb = inode->i_sb;
4225 if (i_blocks <= ~0U) {
4227 * i_blocks can be represnted in a 32 bit variable
4228 * as multiple of 512 bytes
4230 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4231 raw_inode->i_blocks_high = 0;
4232 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4233 return 0;
4235 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4236 return -EFBIG;
4238 if (i_blocks <= 0xffffffffffffULL) {
4240 * i_blocks can be represented in a 48 bit variable
4241 * as multiple of 512 bytes
4243 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4244 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4245 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4246 } else {
4247 ei->i_flags |= EXT4_HUGE_FILE_FL;
4248 /* i_block is stored in file system block size */
4249 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4250 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4251 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4253 return 0;
4257 * Post the struct inode info into an on-disk inode location in the
4258 * buffer-cache. This gobbles the caller's reference to the
4259 * buffer_head in the inode location struct.
4261 * The caller must have write access to iloc->bh.
4263 static int ext4_do_update_inode(handle_t *handle,
4264 struct inode *inode,
4265 struct ext4_iloc *iloc)
4267 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4268 struct ext4_inode_info *ei = EXT4_I(inode);
4269 struct buffer_head *bh = iloc->bh;
4270 int err = 0, rc, block;
4272 /* For fields not not tracking in the in-memory inode,
4273 * initialise them to zero for new inodes. */
4274 if (ei->i_state & EXT4_STATE_NEW)
4275 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4277 ext4_get_inode_flags(ei);
4278 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4279 if (!(test_opt(inode->i_sb, NO_UID32))) {
4280 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4281 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4283 * Fix up interoperability with old kernels. Otherwise, old inodes get
4284 * re-used with the upper 16 bits of the uid/gid intact
4286 if (!ei->i_dtime) {
4287 raw_inode->i_uid_high =
4288 cpu_to_le16(high_16_bits(inode->i_uid));
4289 raw_inode->i_gid_high =
4290 cpu_to_le16(high_16_bits(inode->i_gid));
4291 } else {
4292 raw_inode->i_uid_high = 0;
4293 raw_inode->i_gid_high = 0;
4295 } else {
4296 raw_inode->i_uid_low =
4297 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4298 raw_inode->i_gid_low =
4299 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4300 raw_inode->i_uid_high = 0;
4301 raw_inode->i_gid_high = 0;
4303 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4305 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4306 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4307 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4308 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4310 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4311 goto out_brelse;
4312 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4313 /* clear the migrate flag in the raw_inode */
4314 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4315 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4316 cpu_to_le32(EXT4_OS_HURD))
4317 raw_inode->i_file_acl_high =
4318 cpu_to_le16(ei->i_file_acl >> 32);
4319 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4320 ext4_isize_set(raw_inode, ei->i_disksize);
4321 if (ei->i_disksize > 0x7fffffffULL) {
4322 struct super_block *sb = inode->i_sb;
4323 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4324 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4325 EXT4_SB(sb)->s_es->s_rev_level ==
4326 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4327 /* If this is the first large file
4328 * created, add a flag to the superblock.
4330 err = ext4_journal_get_write_access(handle,
4331 EXT4_SB(sb)->s_sbh);
4332 if (err)
4333 goto out_brelse;
4334 ext4_update_dynamic_rev(sb);
4335 EXT4_SET_RO_COMPAT_FEATURE(sb,
4336 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4337 sb->s_dirt = 1;
4338 handle->h_sync = 1;
4339 err = ext4_journal_dirty_metadata(handle,
4340 EXT4_SB(sb)->s_sbh);
4343 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4344 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4345 if (old_valid_dev(inode->i_rdev)) {
4346 raw_inode->i_block[0] =
4347 cpu_to_le32(old_encode_dev(inode->i_rdev));
4348 raw_inode->i_block[1] = 0;
4349 } else {
4350 raw_inode->i_block[0] = 0;
4351 raw_inode->i_block[1] =
4352 cpu_to_le32(new_encode_dev(inode->i_rdev));
4353 raw_inode->i_block[2] = 0;
4355 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4356 raw_inode->i_block[block] = ei->i_data[block];
4358 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4359 if (ei->i_extra_isize) {
4360 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4361 raw_inode->i_version_hi =
4362 cpu_to_le32(inode->i_version >> 32);
4363 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4367 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4368 rc = ext4_journal_dirty_metadata(handle, bh);
4369 if (!err)
4370 err = rc;
4371 ei->i_state &= ~EXT4_STATE_NEW;
4373 out_brelse:
4374 brelse(bh);
4375 ext4_std_error(inode->i_sb, err);
4376 return err;
4380 * ext4_write_inode()
4382 * We are called from a few places:
4384 * - Within generic_file_write() for O_SYNC files.
4385 * Here, there will be no transaction running. We wait for any running
4386 * trasnaction to commit.
4388 * - Within sys_sync(), kupdate and such.
4389 * We wait on commit, if tol to.
4391 * - Within prune_icache() (PF_MEMALLOC == true)
4392 * Here we simply return. We can't afford to block kswapd on the
4393 * journal commit.
4395 * In all cases it is actually safe for us to return without doing anything,
4396 * because the inode has been copied into a raw inode buffer in
4397 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4398 * knfsd.
4400 * Note that we are absolutely dependent upon all inode dirtiers doing the
4401 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4402 * which we are interested.
4404 * It would be a bug for them to not do this. The code:
4406 * mark_inode_dirty(inode)
4407 * stuff();
4408 * inode->i_size = expr;
4410 * is in error because a kswapd-driven write_inode() could occur while
4411 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4412 * will no longer be on the superblock's dirty inode list.
4414 int ext4_write_inode(struct inode *inode, int wait)
4416 if (current->flags & PF_MEMALLOC)
4417 return 0;
4419 if (ext4_journal_current_handle()) {
4420 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4421 dump_stack();
4422 return -EIO;
4425 if (!wait)
4426 return 0;
4428 return ext4_force_commit(inode->i_sb);
4432 * ext4_setattr()
4434 * Called from notify_change.
4436 * We want to trap VFS attempts to truncate the file as soon as
4437 * possible. In particular, we want to make sure that when the VFS
4438 * shrinks i_size, we put the inode on the orphan list and modify
4439 * i_disksize immediately, so that during the subsequent flushing of
4440 * dirty pages and freeing of disk blocks, we can guarantee that any
4441 * commit will leave the blocks being flushed in an unused state on
4442 * disk. (On recovery, the inode will get truncated and the blocks will
4443 * be freed, so we have a strong guarantee that no future commit will
4444 * leave these blocks visible to the user.)
4446 * Another thing we have to assure is that if we are in ordered mode
4447 * and inode is still attached to the committing transaction, we must
4448 * we start writeout of all the dirty pages which are being truncated.
4449 * This way we are sure that all the data written in the previous
4450 * transaction are already on disk (truncate waits for pages under
4451 * writeback).
4453 * Called with inode->i_mutex down.
4455 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4457 struct inode *inode = dentry->d_inode;
4458 int error, rc = 0;
4459 const unsigned int ia_valid = attr->ia_valid;
4461 error = inode_change_ok(inode, attr);
4462 if (error)
4463 return error;
4465 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4466 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4467 handle_t *handle;
4469 /* (user+group)*(old+new) structure, inode write (sb,
4470 * inode block, ? - but truncate inode update has it) */
4471 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4472 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4473 if (IS_ERR(handle)) {
4474 error = PTR_ERR(handle);
4475 goto err_out;
4477 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4478 if (error) {
4479 ext4_journal_stop(handle);
4480 return error;
4482 /* Update corresponding info in inode so that everything is in
4483 * one transaction */
4484 if (attr->ia_valid & ATTR_UID)
4485 inode->i_uid = attr->ia_uid;
4486 if (attr->ia_valid & ATTR_GID)
4487 inode->i_gid = attr->ia_gid;
4488 error = ext4_mark_inode_dirty(handle, inode);
4489 ext4_journal_stop(handle);
4492 if (attr->ia_valid & ATTR_SIZE) {
4493 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4494 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4496 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4497 error = -EFBIG;
4498 goto err_out;
4503 if (S_ISREG(inode->i_mode) &&
4504 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4505 handle_t *handle;
4507 handle = ext4_journal_start(inode, 3);
4508 if (IS_ERR(handle)) {
4509 error = PTR_ERR(handle);
4510 goto err_out;
4513 error = ext4_orphan_add(handle, inode);
4514 EXT4_I(inode)->i_disksize = attr->ia_size;
4515 rc = ext4_mark_inode_dirty(handle, inode);
4516 if (!error)
4517 error = rc;
4518 ext4_journal_stop(handle);
4520 if (ext4_should_order_data(inode)) {
4521 error = ext4_begin_ordered_truncate(inode,
4522 attr->ia_size);
4523 if (error) {
4524 /* Do as much error cleanup as possible */
4525 handle = ext4_journal_start(inode, 3);
4526 if (IS_ERR(handle)) {
4527 ext4_orphan_del(NULL, inode);
4528 goto err_out;
4530 ext4_orphan_del(handle, inode);
4531 ext4_journal_stop(handle);
4532 goto err_out;
4537 rc = inode_setattr(inode, attr);
4539 /* If inode_setattr's call to ext4_truncate failed to get a
4540 * transaction handle at all, we need to clean up the in-core
4541 * orphan list manually. */
4542 if (inode->i_nlink)
4543 ext4_orphan_del(NULL, inode);
4545 if (!rc && (ia_valid & ATTR_MODE))
4546 rc = ext4_acl_chmod(inode);
4548 err_out:
4549 ext4_std_error(inode->i_sb, error);
4550 if (!error)
4551 error = rc;
4552 return error;
4555 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4556 struct kstat *stat)
4558 struct inode *inode;
4559 unsigned long delalloc_blocks;
4561 inode = dentry->d_inode;
4562 generic_fillattr(inode, stat);
4565 * We can't update i_blocks if the block allocation is delayed
4566 * otherwise in the case of system crash before the real block
4567 * allocation is done, we will have i_blocks inconsistent with
4568 * on-disk file blocks.
4569 * We always keep i_blocks updated together with real
4570 * allocation. But to not confuse with user, stat
4571 * will return the blocks that include the delayed allocation
4572 * blocks for this file.
4574 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4575 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4576 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4578 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4579 return 0;
4582 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4583 int chunk)
4585 int indirects;
4587 /* if nrblocks are contiguous */
4588 if (chunk) {
4590 * With N contiguous data blocks, it need at most
4591 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4592 * 2 dindirect blocks
4593 * 1 tindirect block
4595 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4596 return indirects + 3;
4599 * if nrblocks are not contiguous, worse case, each block touch
4600 * a indirect block, and each indirect block touch a double indirect
4601 * block, plus a triple indirect block
4603 indirects = nrblocks * 2 + 1;
4604 return indirects;
4607 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4609 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4610 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4611 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4615 * Account for index blocks, block groups bitmaps and block group
4616 * descriptor blocks if modify datablocks and index blocks
4617 * worse case, the indexs blocks spread over different block groups
4619 * If datablocks are discontiguous, they are possible to spread over
4620 * different block groups too. If they are contiugous, with flexbg,
4621 * they could still across block group boundary.
4623 * Also account for superblock, inode, quota and xattr blocks
4625 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4627 int groups, gdpblocks;
4628 int idxblocks;
4629 int ret = 0;
4632 * How many index blocks need to touch to modify nrblocks?
4633 * The "Chunk" flag indicating whether the nrblocks is
4634 * physically contiguous on disk
4636 * For Direct IO and fallocate, they calls get_block to allocate
4637 * one single extent at a time, so they could set the "Chunk" flag
4639 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4641 ret = idxblocks;
4644 * Now let's see how many group bitmaps and group descriptors need
4645 * to account
4647 groups = idxblocks;
4648 if (chunk)
4649 groups += 1;
4650 else
4651 groups += nrblocks;
4653 gdpblocks = groups;
4654 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4655 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4656 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4657 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4659 /* bitmaps and block group descriptor blocks */
4660 ret += groups + gdpblocks;
4662 /* Blocks for super block, inode, quota and xattr blocks */
4663 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4665 return ret;
4669 * Calulate the total number of credits to reserve to fit
4670 * the modification of a single pages into a single transaction,
4671 * which may include multiple chunks of block allocations.
4673 * This could be called via ext4_write_begin()
4675 * We need to consider the worse case, when
4676 * one new block per extent.
4678 int ext4_writepage_trans_blocks(struct inode *inode)
4680 int bpp = ext4_journal_blocks_per_page(inode);
4681 int ret;
4683 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4685 /* Account for data blocks for journalled mode */
4686 if (ext4_should_journal_data(inode))
4687 ret += bpp;
4688 return ret;
4692 * Calculate the journal credits for a chunk of data modification.
4694 * This is called from DIO, fallocate or whoever calling
4695 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4697 * journal buffers for data blocks are not included here, as DIO
4698 * and fallocate do no need to journal data buffers.
4700 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4702 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4706 * The caller must have previously called ext4_reserve_inode_write().
4707 * Give this, we know that the caller already has write access to iloc->bh.
4709 int ext4_mark_iloc_dirty(handle_t *handle,
4710 struct inode *inode, struct ext4_iloc *iloc)
4712 int err = 0;
4714 if (test_opt(inode->i_sb, I_VERSION))
4715 inode_inc_iversion(inode);
4717 /* the do_update_inode consumes one bh->b_count */
4718 get_bh(iloc->bh);
4720 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4721 err = ext4_do_update_inode(handle, inode, iloc);
4722 put_bh(iloc->bh);
4723 return err;
4727 * On success, We end up with an outstanding reference count against
4728 * iloc->bh. This _must_ be cleaned up later.
4732 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4733 struct ext4_iloc *iloc)
4735 int err = 0;
4736 if (handle) {
4737 err = ext4_get_inode_loc(inode, iloc);
4738 if (!err) {
4739 BUFFER_TRACE(iloc->bh, "get_write_access");
4740 err = ext4_journal_get_write_access(handle, iloc->bh);
4741 if (err) {
4742 brelse(iloc->bh);
4743 iloc->bh = NULL;
4747 ext4_std_error(inode->i_sb, err);
4748 return err;
4752 * Expand an inode by new_extra_isize bytes.
4753 * Returns 0 on success or negative error number on failure.
4755 static int ext4_expand_extra_isize(struct inode *inode,
4756 unsigned int new_extra_isize,
4757 struct ext4_iloc iloc,
4758 handle_t *handle)
4760 struct ext4_inode *raw_inode;
4761 struct ext4_xattr_ibody_header *header;
4762 struct ext4_xattr_entry *entry;
4764 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4765 return 0;
4767 raw_inode = ext4_raw_inode(&iloc);
4769 header = IHDR(inode, raw_inode);
4770 entry = IFIRST(header);
4772 /* No extended attributes present */
4773 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4774 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4775 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4776 new_extra_isize);
4777 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4778 return 0;
4781 /* try to expand with EAs present */
4782 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4783 raw_inode, handle);
4787 * What we do here is to mark the in-core inode as clean with respect to inode
4788 * dirtiness (it may still be data-dirty).
4789 * This means that the in-core inode may be reaped by prune_icache
4790 * without having to perform any I/O. This is a very good thing,
4791 * because *any* task may call prune_icache - even ones which
4792 * have a transaction open against a different journal.
4794 * Is this cheating? Not really. Sure, we haven't written the
4795 * inode out, but prune_icache isn't a user-visible syncing function.
4796 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4797 * we start and wait on commits.
4799 * Is this efficient/effective? Well, we're being nice to the system
4800 * by cleaning up our inodes proactively so they can be reaped
4801 * without I/O. But we are potentially leaving up to five seconds'
4802 * worth of inodes floating about which prune_icache wants us to
4803 * write out. One way to fix that would be to get prune_icache()
4804 * to do a write_super() to free up some memory. It has the desired
4805 * effect.
4807 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4809 struct ext4_iloc iloc;
4810 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4811 static unsigned int mnt_count;
4812 int err, ret;
4814 might_sleep();
4815 err = ext4_reserve_inode_write(handle, inode, &iloc);
4816 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4817 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4819 * We need extra buffer credits since we may write into EA block
4820 * with this same handle. If journal_extend fails, then it will
4821 * only result in a minor loss of functionality for that inode.
4822 * If this is felt to be critical, then e2fsck should be run to
4823 * force a large enough s_min_extra_isize.
4825 if ((jbd2_journal_extend(handle,
4826 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4827 ret = ext4_expand_extra_isize(inode,
4828 sbi->s_want_extra_isize,
4829 iloc, handle);
4830 if (ret) {
4831 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
4832 if (mnt_count !=
4833 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4834 ext4_warning(inode->i_sb, __func__,
4835 "Unable to expand inode %lu. Delete"
4836 " some EAs or run e2fsck.",
4837 inode->i_ino);
4838 mnt_count =
4839 le16_to_cpu(sbi->s_es->s_mnt_count);
4844 if (!err)
4845 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4846 return err;
4850 * ext4_dirty_inode() is called from __mark_inode_dirty()
4852 * We're really interested in the case where a file is being extended.
4853 * i_size has been changed by generic_commit_write() and we thus need
4854 * to include the updated inode in the current transaction.
4856 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4857 * are allocated to the file.
4859 * If the inode is marked synchronous, we don't honour that here - doing
4860 * so would cause a commit on atime updates, which we don't bother doing.
4861 * We handle synchronous inodes at the highest possible level.
4863 void ext4_dirty_inode(struct inode *inode)
4865 handle_t *current_handle = ext4_journal_current_handle();
4866 handle_t *handle;
4868 handle = ext4_journal_start(inode, 2);
4869 if (IS_ERR(handle))
4870 goto out;
4871 if (current_handle &&
4872 current_handle->h_transaction != handle->h_transaction) {
4873 /* This task has a transaction open against a different fs */
4874 printk(KERN_EMERG "%s: transactions do not match!\n",
4875 __func__);
4876 } else {
4877 jbd_debug(5, "marking dirty. outer handle=%p\n",
4878 current_handle);
4879 ext4_mark_inode_dirty(handle, inode);
4881 ext4_journal_stop(handle);
4882 out:
4883 return;
4886 #if 0
4888 * Bind an inode's backing buffer_head into this transaction, to prevent
4889 * it from being flushed to disk early. Unlike
4890 * ext4_reserve_inode_write, this leaves behind no bh reference and
4891 * returns no iloc structure, so the caller needs to repeat the iloc
4892 * lookup to mark the inode dirty later.
4894 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4896 struct ext4_iloc iloc;
4898 int err = 0;
4899 if (handle) {
4900 err = ext4_get_inode_loc(inode, &iloc);
4901 if (!err) {
4902 BUFFER_TRACE(iloc.bh, "get_write_access");
4903 err = jbd2_journal_get_write_access(handle, iloc.bh);
4904 if (!err)
4905 err = ext4_journal_dirty_metadata(handle,
4906 iloc.bh);
4907 brelse(iloc.bh);
4910 ext4_std_error(inode->i_sb, err);
4911 return err;
4913 #endif
4915 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4917 journal_t *journal;
4918 handle_t *handle;
4919 int err;
4922 * We have to be very careful here: changing a data block's
4923 * journaling status dynamically is dangerous. If we write a
4924 * data block to the journal, change the status and then delete
4925 * that block, we risk forgetting to revoke the old log record
4926 * from the journal and so a subsequent replay can corrupt data.
4927 * So, first we make sure that the journal is empty and that
4928 * nobody is changing anything.
4931 journal = EXT4_JOURNAL(inode);
4932 if (is_journal_aborted(journal))
4933 return -EROFS;
4935 jbd2_journal_lock_updates(journal);
4936 jbd2_journal_flush(journal);
4939 * OK, there are no updates running now, and all cached data is
4940 * synced to disk. We are now in a completely consistent state
4941 * which doesn't have anything in the journal, and we know that
4942 * no filesystem updates are running, so it is safe to modify
4943 * the inode's in-core data-journaling state flag now.
4946 if (val)
4947 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
4948 else
4949 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4950 ext4_set_aops(inode);
4952 jbd2_journal_unlock_updates(journal);
4954 /* Finally we can mark the inode as dirty. */
4956 handle = ext4_journal_start(inode, 1);
4957 if (IS_ERR(handle))
4958 return PTR_ERR(handle);
4960 err = ext4_mark_inode_dirty(handle, inode);
4961 handle->h_sync = 1;
4962 ext4_journal_stop(handle);
4963 ext4_std_error(inode->i_sb, err);
4965 return err;
4968 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4970 return !buffer_mapped(bh);
4973 int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4975 loff_t size;
4976 unsigned long len;
4977 int ret = -EINVAL;
4978 void *fsdata;
4979 struct file *file = vma->vm_file;
4980 struct inode *inode = file->f_path.dentry->d_inode;
4981 struct address_space *mapping = inode->i_mapping;
4984 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4985 * get i_mutex because we are already holding mmap_sem.
4987 down_read(&inode->i_alloc_sem);
4988 size = i_size_read(inode);
4989 if (page->mapping != mapping || size <= page_offset(page)
4990 || !PageUptodate(page)) {
4991 /* page got truncated from under us? */
4992 goto out_unlock;
4994 ret = 0;
4995 if (PageMappedToDisk(page))
4996 goto out_unlock;
4998 if (page->index == size >> PAGE_CACHE_SHIFT)
4999 len = size & ~PAGE_CACHE_MASK;
5000 else
5001 len = PAGE_CACHE_SIZE;
5003 if (page_has_buffers(page)) {
5004 /* return if we have all the buffers mapped */
5005 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5006 ext4_bh_unmapped))
5007 goto out_unlock;
5010 * OK, we need to fill the hole... Do write_begin write_end
5011 * to do block allocation/reservation.We are not holding
5012 * inode.i__mutex here. That allow * parallel write_begin,
5013 * write_end call. lock_page prevent this from happening
5014 * on the same page though
5016 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5017 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5018 if (ret < 0)
5019 goto out_unlock;
5020 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5021 len, len, page, fsdata);
5022 if (ret < 0)
5023 goto out_unlock;
5024 ret = 0;
5025 out_unlock:
5026 up_read(&inode->i_alloc_sem);
5027 return ret;