2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_types.h"
25 #include "xfs_trans.h"
26 #include "xfs_trans_priv.h"
30 #include "xfs_dmapi.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir2_sf.h"
36 #include "xfs_attr_sf.h"
37 #include "xfs_dinode.h"
38 #include "xfs_inode.h"
39 #include "xfs_buf_item.h"
40 #include "xfs_inode_item.h"
41 #include "xfs_btree.h"
42 #include "xfs_alloc.h"
43 #include "xfs_ialloc.h"
46 #include "xfs_error.h"
47 #include "xfs_utils.h"
48 #include "xfs_dir2_trace.h"
49 #include "xfs_quota.h"
51 #include "xfs_filestream.h"
52 #include "xfs_vnodeops.h"
54 kmem_zone_t
*xfs_ifork_zone
;
55 kmem_zone_t
*xfs_inode_zone
;
56 kmem_zone_t
*xfs_icluster_zone
;
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
62 #define XFS_ITRUNC_MAX_EXTENTS 2
64 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
65 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
66 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
67 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
71 * Make sure that the extents in the given memory buffer
81 xfs_bmbt_rec_host_t rec
;
84 for (i
= 0; i
< nrecs
; i
++) {
85 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
86 rec
.l0
= get_unaligned(&ep
->l0
);
87 rec
.l1
= get_unaligned(&ep
->l1
);
88 xfs_bmbt_get_all(&rec
, &irec
);
89 if (fmt
== XFS_EXTFMT_NOSTATE
)
90 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
94 #define xfs_validate_extents(ifp, nrecs, fmt)
98 * Check that none of the inode's in the buffer have a next
99 * unlinked field of 0.
111 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
113 for (i
= 0; i
< j
; i
++) {
114 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
115 i
* mp
->m_sb
.sb_inodesize
);
116 if (!dip
->di_next_unlinked
) {
117 xfs_fs_cmn_err(CE_ALERT
, mp
,
118 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 ASSERT(dip
->di_next_unlinked
);
127 * This routine is called to map an inode number within a file
128 * system to the buffer containing the on-disk version of the
129 * inode. It returns a pointer to the buffer containing the
130 * on-disk inode in the bpp parameter, and in the dip parameter
131 * it returns a pointer to the on-disk inode within that buffer.
133 * If a non-zero error is returned, then the contents of bpp and
134 * dipp are undefined.
136 * Use xfs_imap() to determine the size and location of the
137 * buffer to read from disk.
155 * Call the space management code to find the location of the
159 error
= xfs_imap(mp
, tp
, ino
, &imap
, XFS_IMAP_LOOKUP
);
162 "xfs_inotobp: xfs_imap() returned an "
163 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
168 * If the inode number maps to a block outside the bounds of the
169 * file system then return NULL rather than calling read_buf
170 * and panicing when we get an error from the driver.
172 if ((imap
.im_blkno
+ imap
.im_len
) >
173 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
175 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
176 "of the file system %s. Returning EINVAL.",
177 (unsigned long long)imap
.im_blkno
,
178 imap
.im_len
, mp
->m_fsname
);
179 return XFS_ERROR(EINVAL
);
183 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
184 * default to just a read_buf() call.
186 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
187 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
191 "xfs_inotobp: xfs_trans_read_buf() returned an "
192 "error %d on %s. Returning error.", error
, mp
->m_fsname
);
195 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, 0);
197 be16_to_cpu(dip
->di_core
.di_magic
) == XFS_DINODE_MAGIC
&&
198 XFS_DINODE_GOOD_VERSION(dip
->di_core
.di_version
);
199 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
, XFS_ERRTAG_ITOBP_INOTOBP
,
200 XFS_RANDOM_ITOBP_INOTOBP
))) {
201 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW
, mp
, dip
);
202 xfs_trans_brelse(tp
, bp
);
204 "xfs_inotobp: XFS_TEST_ERROR() returned an "
205 "error on %s. Returning EFSCORRUPTED.", mp
->m_fsname
);
206 return XFS_ERROR(EFSCORRUPTED
);
209 xfs_inobp_check(mp
, bp
);
212 * Set *dipp to point to the on-disk inode in the buffer.
214 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
216 *offset
= imap
.im_boffset
;
222 * This routine is called to map an inode to the buffer containing
223 * the on-disk version of the inode. It returns a pointer to the
224 * buffer containing the on-disk inode in the bpp parameter, and in
225 * the dip parameter it returns a pointer to the on-disk inode within
228 * If a non-zero error is returned, then the contents of bpp and
229 * dipp are undefined.
231 * If the inode is new and has not yet been initialized, use xfs_imap()
232 * to determine the size and location of the buffer to read from disk.
233 * If the inode has already been mapped to its buffer and read in once,
234 * then use the mapping information stored in the inode rather than
235 * calling xfs_imap(). This allows us to avoid the overhead of looking
236 * at the inode btree for small block file systems (see xfs_dilocate()).
237 * We can tell whether the inode has been mapped in before by comparing
238 * its disk block address to 0. Only uninitialized inodes will have
239 * 0 for the disk block address.
257 if (ip
->i_blkno
== (xfs_daddr_t
)0) {
259 * Call the space management code to find the location of the
263 if ((error
= xfs_imap(mp
, tp
, ip
->i_ino
, &imap
,
264 XFS_IMAP_LOOKUP
| imap_flags
)))
268 * If the inode number maps to a block outside the bounds
269 * of the file system then return NULL rather than calling
270 * read_buf and panicing when we get an error from the
273 if ((imap
.im_blkno
+ imap
.im_len
) >
274 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
)) {
276 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
277 "(imap.im_blkno (0x%llx) "
278 "+ imap.im_len (0x%llx)) > "
279 " XFS_FSB_TO_BB(mp, "
280 "mp->m_sb.sb_dblocks) (0x%llx)",
281 (unsigned long long) imap
.im_blkno
,
282 (unsigned long long) imap
.im_len
,
283 XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
));
285 return XFS_ERROR(EINVAL
);
289 * Fill in the fields in the inode that will be used to
290 * map the inode to its buffer from now on.
292 ip
->i_blkno
= imap
.im_blkno
;
293 ip
->i_len
= imap
.im_len
;
294 ip
->i_boffset
= imap
.im_boffset
;
297 * We've already mapped the inode once, so just use the
298 * mapping that we saved the first time.
300 imap
.im_blkno
= ip
->i_blkno
;
301 imap
.im_len
= ip
->i_len
;
302 imap
.im_boffset
= ip
->i_boffset
;
304 ASSERT(bno
== 0 || bno
== imap
.im_blkno
);
307 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
308 * default to just a read_buf() call.
310 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
.im_blkno
,
311 (int)imap
.im_len
, XFS_BUF_LOCK
, &bp
);
314 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_itobp: "
315 "xfs_trans_read_buf() returned error %d, "
316 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
317 error
, (unsigned long long) imap
.im_blkno
,
318 (unsigned long long) imap
.im_len
);
324 * Validate the magic number and version of every inode in the buffer
325 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
326 * No validation is done here in userspace (xfs_repair).
328 #if !defined(__KERNEL__)
331 ni
= BBTOB(imap
.im_len
) >> mp
->m_sb
.sb_inodelog
;
332 #else /* usual case */
336 for (i
= 0; i
< ni
; i
++) {
340 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
341 (i
<< mp
->m_sb
.sb_inodelog
));
342 di_ok
= be16_to_cpu(dip
->di_core
.di_magic
) == XFS_DINODE_MAGIC
&&
343 XFS_DINODE_GOOD_VERSION(dip
->di_core
.di_version
);
344 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
345 XFS_ERRTAG_ITOBP_INOTOBP
,
346 XFS_RANDOM_ITOBP_INOTOBP
))) {
347 if (imap_flags
& XFS_IMAP_BULKSTAT
) {
348 xfs_trans_brelse(tp
, bp
);
349 return XFS_ERROR(EINVAL
);
353 "Device %s - bad inode magic/vsn "
354 "daddr %lld #%d (magic=%x)",
355 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
356 (unsigned long long)imap
.im_blkno
, i
,
357 be16_to_cpu(dip
->di_core
.di_magic
));
359 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH
,
361 xfs_trans_brelse(tp
, bp
);
362 return XFS_ERROR(EFSCORRUPTED
);
366 xfs_inobp_check(mp
, bp
);
369 * Mark the buffer as an inode buffer now that it looks good
371 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
374 * Set *dipp to point to the on-disk inode in the buffer.
376 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
382 * Move inode type and inode format specific information from the
383 * on-disk inode to the in-core inode. For fifos, devs, and sockets
384 * this means set if_rdev to the proper value. For files, directories,
385 * and symlinks this means to bring in the in-line data or extent
386 * pointers. For a file in B-tree format, only the root is immediately
387 * brought in-core. The rest will be in-lined in if_extents when it
388 * is first referenced (see xfs_iread_extents()).
395 xfs_attr_shortform_t
*atp
;
399 ip
->i_df
.if_ext_max
=
400 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
403 if (unlikely(be32_to_cpu(dip
->di_core
.di_nextents
) +
404 be16_to_cpu(dip
->di_core
.di_anextents
) >
405 be64_to_cpu(dip
->di_core
.di_nblocks
))) {
406 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
407 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
408 (unsigned long long)ip
->i_ino
,
409 (int)(be32_to_cpu(dip
->di_core
.di_nextents
) +
410 be16_to_cpu(dip
->di_core
.di_anextents
)),
412 be64_to_cpu(dip
->di_core
.di_nblocks
));
413 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
415 return XFS_ERROR(EFSCORRUPTED
);
418 if (unlikely(dip
->di_core
.di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
419 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
420 "corrupt dinode %Lu, forkoff = 0x%x.",
421 (unsigned long long)ip
->i_ino
,
422 dip
->di_core
.di_forkoff
);
423 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
425 return XFS_ERROR(EFSCORRUPTED
);
428 switch (ip
->i_d
.di_mode
& S_IFMT
) {
433 if (unlikely(dip
->di_core
.di_format
!= XFS_DINODE_FMT_DEV
)) {
434 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
436 return XFS_ERROR(EFSCORRUPTED
);
440 ip
->i_df
.if_u2
.if_rdev
= be32_to_cpu(dip
->di_u
.di_dev
);
446 switch (dip
->di_core
.di_format
) {
447 case XFS_DINODE_FMT_LOCAL
:
449 * no local regular files yet
451 if (unlikely((be16_to_cpu(dip
->di_core
.di_mode
) & S_IFMT
) == S_IFREG
)) {
452 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
454 "(local format for regular file).",
455 (unsigned long long) ip
->i_ino
);
456 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
459 return XFS_ERROR(EFSCORRUPTED
);
462 di_size
= be64_to_cpu(dip
->di_core
.di_size
);
463 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
464 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
466 "(bad size %Ld for local inode).",
467 (unsigned long long) ip
->i_ino
,
468 (long long) di_size
);
469 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
472 return XFS_ERROR(EFSCORRUPTED
);
476 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
478 case XFS_DINODE_FMT_EXTENTS
:
479 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
481 case XFS_DINODE_FMT_BTREE
:
482 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
485 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
487 return XFS_ERROR(EFSCORRUPTED
);
492 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
493 return XFS_ERROR(EFSCORRUPTED
);
498 if (!XFS_DFORK_Q(dip
))
500 ASSERT(ip
->i_afp
== NULL
);
501 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
502 ip
->i_afp
->if_ext_max
=
503 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
504 switch (dip
->di_core
.di_aformat
) {
505 case XFS_DINODE_FMT_LOCAL
:
506 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
507 size
= be16_to_cpu(atp
->hdr
.totsize
);
508 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
510 case XFS_DINODE_FMT_EXTENTS
:
511 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
513 case XFS_DINODE_FMT_BTREE
:
514 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
517 error
= XFS_ERROR(EFSCORRUPTED
);
521 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
523 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
529 * The file is in-lined in the on-disk inode.
530 * If it fits into if_inline_data, then copy
531 * it there, otherwise allocate a buffer for it
532 * and copy the data there. Either way, set
533 * if_data to point at the data.
534 * If we allocate a buffer for the data, make
535 * sure that its size is a multiple of 4 and
536 * record the real size in i_real_bytes.
549 * If the size is unreasonable, then something
550 * is wrong and we just bail out rather than crash in
551 * kmem_alloc() or memcpy() below.
553 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
554 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
556 "(bad size %d for local fork, size = %d).",
557 (unsigned long long) ip
->i_ino
, size
,
558 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
559 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
561 return XFS_ERROR(EFSCORRUPTED
);
563 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
566 ifp
->if_u1
.if_data
= NULL
;
567 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
568 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
570 real_size
= roundup(size
, 4);
571 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
573 ifp
->if_bytes
= size
;
574 ifp
->if_real_bytes
= real_size
;
576 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
577 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
578 ifp
->if_flags
|= XFS_IFINLINE
;
583 * The file consists of a set of extents all
584 * of which fit into the on-disk inode.
585 * If there are few enough extents to fit into
586 * the if_inline_ext, then copy them there.
587 * Otherwise allocate a buffer for them and copy
588 * them into it. Either way, set if_extents
589 * to point at the extents.
603 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
604 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
605 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
608 * If the number of extents is unreasonable, then something
609 * is wrong and we just bail out rather than crash in
610 * kmem_alloc() or memcpy() below.
612 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
613 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
614 "corrupt inode %Lu ((a)extents = %d).",
615 (unsigned long long) ip
->i_ino
, nex
);
616 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
618 return XFS_ERROR(EFSCORRUPTED
);
621 ifp
->if_real_bytes
= 0;
623 ifp
->if_u1
.if_extents
= NULL
;
624 else if (nex
<= XFS_INLINE_EXTS
)
625 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
627 xfs_iext_add(ifp
, 0, nex
);
629 ifp
->if_bytes
= size
;
631 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
632 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
633 for (i
= 0; i
< nex
; i
++, dp
++) {
634 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
635 ep
->l0
= be64_to_cpu(get_unaligned(&dp
->l0
));
636 ep
->l1
= be64_to_cpu(get_unaligned(&dp
->l1
));
638 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
639 if (whichfork
!= XFS_DATA_FORK
||
640 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
641 if (unlikely(xfs_check_nostate_extents(
643 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
646 return XFS_ERROR(EFSCORRUPTED
);
649 ifp
->if_flags
|= XFS_IFEXTENTS
;
654 * The file has too many extents to fit into
655 * the inode, so they are in B-tree format.
656 * Allocate a buffer for the root of the B-tree
657 * and copy the root into it. The i_extents
658 * field will remain NULL until all of the
659 * extents are read in (when they are needed).
667 xfs_bmdr_block_t
*dfp
;
673 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
674 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
675 size
= XFS_BMAP_BROOT_SPACE(dfp
);
676 nrecs
= XFS_BMAP_BROOT_NUMRECS(dfp
);
679 * blow out if -- fork has less extents than can fit in
680 * fork (fork shouldn't be a btree format), root btree
681 * block has more records than can fit into the fork,
682 * or the number of extents is greater than the number of
685 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
686 || XFS_BMDR_SPACE_CALC(nrecs
) >
687 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
688 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
689 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
690 "corrupt inode %Lu (btree).",
691 (unsigned long long) ip
->i_ino
);
692 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
694 return XFS_ERROR(EFSCORRUPTED
);
697 ifp
->if_broot_bytes
= size
;
698 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
699 ASSERT(ifp
->if_broot
!= NULL
);
701 * Copy and convert from the on-disk structure
702 * to the in-memory structure.
704 xfs_bmdr_to_bmbt(dfp
, XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
705 ifp
->if_broot
, size
);
706 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
707 ifp
->if_flags
|= XFS_IFBROOT
;
713 xfs_dinode_from_disk(
715 xfs_dinode_core_t
*from
)
717 to
->di_magic
= be16_to_cpu(from
->di_magic
);
718 to
->di_mode
= be16_to_cpu(from
->di_mode
);
719 to
->di_version
= from
->di_version
;
720 to
->di_format
= from
->di_format
;
721 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
722 to
->di_uid
= be32_to_cpu(from
->di_uid
);
723 to
->di_gid
= be32_to_cpu(from
->di_gid
);
724 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
725 to
->di_projid
= be16_to_cpu(from
->di_projid
);
726 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
727 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
728 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
729 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
730 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
731 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
732 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
733 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
734 to
->di_size
= be64_to_cpu(from
->di_size
);
735 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
736 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
737 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
738 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
739 to
->di_forkoff
= from
->di_forkoff
;
740 to
->di_aformat
= from
->di_aformat
;
741 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
742 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
743 to
->di_flags
= be16_to_cpu(from
->di_flags
);
744 to
->di_gen
= be32_to_cpu(from
->di_gen
);
749 xfs_dinode_core_t
*to
,
750 xfs_icdinode_t
*from
)
752 to
->di_magic
= cpu_to_be16(from
->di_magic
);
753 to
->di_mode
= cpu_to_be16(from
->di_mode
);
754 to
->di_version
= from
->di_version
;
755 to
->di_format
= from
->di_format
;
756 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
757 to
->di_uid
= cpu_to_be32(from
->di_uid
);
758 to
->di_gid
= cpu_to_be32(from
->di_gid
);
759 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
760 to
->di_projid
= cpu_to_be16(from
->di_projid
);
761 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
762 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
763 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
764 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
765 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
766 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
767 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
768 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
769 to
->di_size
= cpu_to_be64(from
->di_size
);
770 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
771 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
772 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
773 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
774 to
->di_forkoff
= from
->di_forkoff
;
775 to
->di_aformat
= from
->di_aformat
;
776 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
777 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
778 to
->di_flags
= cpu_to_be16(from
->di_flags
);
779 to
->di_gen
= cpu_to_be32(from
->di_gen
);
788 if (di_flags
& XFS_DIFLAG_ANY
) {
789 if (di_flags
& XFS_DIFLAG_REALTIME
)
790 flags
|= XFS_XFLAG_REALTIME
;
791 if (di_flags
& XFS_DIFLAG_PREALLOC
)
792 flags
|= XFS_XFLAG_PREALLOC
;
793 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
794 flags
|= XFS_XFLAG_IMMUTABLE
;
795 if (di_flags
& XFS_DIFLAG_APPEND
)
796 flags
|= XFS_XFLAG_APPEND
;
797 if (di_flags
& XFS_DIFLAG_SYNC
)
798 flags
|= XFS_XFLAG_SYNC
;
799 if (di_flags
& XFS_DIFLAG_NOATIME
)
800 flags
|= XFS_XFLAG_NOATIME
;
801 if (di_flags
& XFS_DIFLAG_NODUMP
)
802 flags
|= XFS_XFLAG_NODUMP
;
803 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
804 flags
|= XFS_XFLAG_RTINHERIT
;
805 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
806 flags
|= XFS_XFLAG_PROJINHERIT
;
807 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
808 flags
|= XFS_XFLAG_NOSYMLINKS
;
809 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
810 flags
|= XFS_XFLAG_EXTSIZE
;
811 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
812 flags
|= XFS_XFLAG_EXTSZINHERIT
;
813 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
814 flags
|= XFS_XFLAG_NODEFRAG
;
815 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
816 flags
|= XFS_XFLAG_FILESTREAM
;
826 xfs_icdinode_t
*dic
= &ip
->i_d
;
828 return _xfs_dic2xflags(dic
->di_flags
) |
829 (XFS_CFORK_Q(dic
) ? XFS_XFLAG_HASATTR
: 0);
834 xfs_dinode_core_t
*dic
)
836 return _xfs_dic2xflags(be16_to_cpu(dic
->di_flags
)) |
837 (XFS_CFORK_Q_DISK(dic
) ? XFS_XFLAG_HASATTR
: 0);
841 * Given a mount structure and an inode number, return a pointer
842 * to a newly allocated in-core inode corresponding to the given
845 * Initialize the inode's attributes and extent pointers if it
846 * already has them (it will not if the inode has no links).
862 ASSERT(xfs_inode_zone
!= NULL
);
864 ip
= kmem_zone_zalloc(xfs_inode_zone
, KM_SLEEP
);
867 atomic_set(&ip
->i_iocount
, 0);
868 spin_lock_init(&ip
->i_flags_lock
);
871 * Get pointer's to the on-disk inode and the buffer containing it.
872 * If the inode number refers to a block outside the file system
873 * then xfs_itobp() will return NULL. In this case we should
874 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
875 * know that this is a new incore inode.
877 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &bp
, bno
, imap_flags
);
879 kmem_zone_free(xfs_inode_zone
, ip
);
884 * Initialize inode's trace buffers.
885 * Do this before xfs_iformat in case it adds entries.
887 #ifdef XFS_VNODE_TRACE
888 ip
->i_trace
= ktrace_alloc(VNODE_TRACE_SIZE
, KM_SLEEP
);
890 #ifdef XFS_BMAP_TRACE
891 ip
->i_xtrace
= ktrace_alloc(XFS_BMAP_KTRACE_SIZE
, KM_SLEEP
);
893 #ifdef XFS_BMBT_TRACE
894 ip
->i_btrace
= ktrace_alloc(XFS_BMBT_KTRACE_SIZE
, KM_SLEEP
);
897 ip
->i_rwtrace
= ktrace_alloc(XFS_RW_KTRACE_SIZE
, KM_SLEEP
);
899 #ifdef XFS_ILOCK_TRACE
900 ip
->i_lock_trace
= ktrace_alloc(XFS_ILOCK_KTRACE_SIZE
, KM_SLEEP
);
902 #ifdef XFS_DIR2_TRACE
903 ip
->i_dir_trace
= ktrace_alloc(XFS_DIR2_KTRACE_SIZE
, KM_SLEEP
);
907 * If we got something that isn't an inode it means someone
908 * (nfs or dmi) has a stale handle.
910 if (be16_to_cpu(dip
->di_core
.di_magic
) != XFS_DINODE_MAGIC
) {
911 kmem_zone_free(xfs_inode_zone
, ip
);
912 xfs_trans_brelse(tp
, bp
);
914 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
915 "dip->di_core.di_magic (0x%x) != "
916 "XFS_DINODE_MAGIC (0x%x)",
917 be16_to_cpu(dip
->di_core
.di_magic
),
920 return XFS_ERROR(EINVAL
);
924 * If the on-disk inode is already linked to a directory
925 * entry, copy all of the inode into the in-core inode.
926 * xfs_iformat() handles copying in the inode format
927 * specific information.
928 * Otherwise, just get the truly permanent information.
930 if (dip
->di_core
.di_mode
) {
931 xfs_dinode_from_disk(&ip
->i_d
, &dip
->di_core
);
932 error
= xfs_iformat(ip
, dip
);
934 kmem_zone_free(xfs_inode_zone
, ip
);
935 xfs_trans_brelse(tp
, bp
);
937 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
938 "xfs_iformat() returned error %d",
944 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_core
.di_magic
);
945 ip
->i_d
.di_version
= dip
->di_core
.di_version
;
946 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_core
.di_gen
);
947 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_core
.di_flushiter
);
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
960 ip
->i_df
.if_ext_max
=
961 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
964 INIT_LIST_HEAD(&ip
->i_reclaim
);
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
977 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
978 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
979 ip
->i_d
.di_onlink
= 0;
980 ip
->i_d
.di_projid
= 0;
983 ip
->i_delayed_blks
= 0;
984 ip
->i_size
= ip
->i_d
.di_size
;
987 * Mark the buffer containing the inode as something to keep
988 * around for a while. This helps to keep recently accessed
989 * meta-data in-core longer.
991 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
994 * Use xfs_trans_brelse() to release the buffer containing the
995 * on-disk inode, because it was acquired with xfs_trans_read_buf()
996 * in xfs_itobp() above. If tp is NULL, this is just a normal
997 * brelse(). If we're within a transaction, then xfs_trans_brelse()
998 * will only release the buffer if it is not dirty within the
999 * transaction. It will be OK to release the buffer in this case,
1000 * because inodes on disk are never destroyed and we will be
1001 * locking the new in-core inode before putting it in the hash
1002 * table where other processes can find it. Thus we don't have
1003 * to worry about the inode being changed just because we released
1006 xfs_trans_brelse(tp
, bp
);
1012 * Read in extents from a btree-format inode.
1013 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1023 xfs_extnum_t nextents
;
1026 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
1027 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
1029 return XFS_ERROR(EFSCORRUPTED
);
1031 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
1032 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
1033 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
1036 * We know that the size is valid (it's checked in iformat_btree)
1038 ifp
->if_lastex
= NULLEXTNUM
;
1039 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
1040 ifp
->if_flags
|= XFS_IFEXTENTS
;
1041 xfs_iext_add(ifp
, 0, nextents
);
1042 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
1044 xfs_iext_destroy(ifp
);
1045 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
1048 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
1053 * Allocate an inode on disk and return a copy of its in-core version.
1054 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1055 * appropriately within the inode. The uid and gid for the inode are
1056 * set according to the contents of the given cred structure.
1058 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1059 * has a free inode available, call xfs_iget()
1060 * to obtain the in-core version of the allocated inode. Finally,
1061 * fill in the inode and log its initial contents. In this case,
1062 * ialloc_context would be set to NULL and call_again set to false.
1064 * If xfs_dialloc() does not have an available inode,
1065 * it will replenish its supply by doing an allocation. Since we can
1066 * only do one allocation within a transaction without deadlocks, we
1067 * must commit the current transaction before returning the inode itself.
1068 * In this case, therefore, we will set call_again to true and return.
1069 * The caller should then commit the current transaction, start a new
1070 * transaction, and call xfs_ialloc() again to actually get the inode.
1072 * To ensure that some other process does not grab the inode that
1073 * was allocated during the first call to xfs_ialloc(), this routine
1074 * also returns the [locked] bp pointing to the head of the freelist
1075 * as ialloc_context. The caller should hold this buffer across
1076 * the commit and pass it back into this routine on the second call.
1078 * If we are allocating quota inodes, we do not have a parent inode
1079 * to attach to or associate with (i.e. pip == NULL) because they
1080 * are not linked into the directory structure - they are attached
1081 * directly to the superblock - and so have no parent.
1093 xfs_buf_t
**ialloc_context
,
1094 boolean_t
*call_again
,
1104 * Call the space management code to pick
1105 * the on-disk inode to be allocated.
1107 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
1108 ialloc_context
, call_again
, &ino
);
1112 if (*call_again
|| ino
== NULLFSINO
) {
1116 ASSERT(*ialloc_context
== NULL
);
1119 * Get the in-core inode with the lock held exclusively.
1120 * This is because we're setting fields here we need
1121 * to prevent others from looking at until we're done.
1123 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1124 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1131 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1132 ip
->i_d
.di_onlink
= 0;
1133 ip
->i_d
.di_nlink
= nlink
;
1134 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1135 ip
->i_d
.di_uid
= current_fsuid(cr
);
1136 ip
->i_d
.di_gid
= current_fsgid(cr
);
1137 ip
->i_d
.di_projid
= prid
;
1138 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1141 * If the superblock version is up to where we support new format
1142 * inodes and this is currently an old format inode, then change
1143 * the inode version number now. This way we only do the conversion
1144 * here rather than here and in the flush/logging code.
1146 if (XFS_SB_VERSION_HASNLINK(&tp
->t_mountp
->m_sb
) &&
1147 ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
1148 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
1150 * We've already zeroed the old link count, the projid field,
1151 * and the pad field.
1156 * Project ids won't be stored on disk if we are using a version 1 inode.
1158 if ((prid
!= 0) && (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
))
1159 xfs_bump_ino_vers2(tp
, ip
);
1161 if (pip
&& XFS_INHERIT_GID(pip
)) {
1162 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1163 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1164 ip
->i_d
.di_mode
|= S_ISGID
;
1169 * If the group ID of the new file does not match the effective group
1170 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1171 * (and only if the irix_sgid_inherit compatibility variable is set).
1173 if ((irix_sgid_inherit
) &&
1174 (ip
->i_d
.di_mode
& S_ISGID
) &&
1175 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1176 ip
->i_d
.di_mode
&= ~S_ISGID
;
1179 ip
->i_d
.di_size
= 0;
1181 ip
->i_d
.di_nextents
= 0;
1182 ASSERT(ip
->i_d
.di_nblocks
== 0);
1183 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
|XFS_ICHGTIME_ACC
|XFS_ICHGTIME_MOD
);
1185 * di_gen will have been taken care of in xfs_iread.
1187 ip
->i_d
.di_extsize
= 0;
1188 ip
->i_d
.di_dmevmask
= 0;
1189 ip
->i_d
.di_dmstate
= 0;
1190 ip
->i_d
.di_flags
= 0;
1191 flags
= XFS_ILOG_CORE
;
1192 switch (mode
& S_IFMT
) {
1197 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1198 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1199 ip
->i_df
.if_flags
= 0;
1200 flags
|= XFS_ILOG_DEV
;
1203 if (pip
&& xfs_inode_is_filestream(pip
)) {
1204 error
= xfs_filestream_associate(pip
, ip
);
1208 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1212 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1215 if ((mode
& S_IFMT
) == S_IFDIR
) {
1216 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1217 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1218 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1219 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1220 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1222 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1223 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
) {
1224 di_flags
|= XFS_DIFLAG_REALTIME
;
1225 ip
->i_iocore
.io_flags
|= XFS_IOCORE_RT
;
1227 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1228 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1229 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1232 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1233 xfs_inherit_noatime
)
1234 di_flags
|= XFS_DIFLAG_NOATIME
;
1235 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1237 di_flags
|= XFS_DIFLAG_NODUMP
;
1238 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1240 di_flags
|= XFS_DIFLAG_SYNC
;
1241 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1242 xfs_inherit_nosymlinks
)
1243 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1244 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1245 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1246 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1247 xfs_inherit_nodefrag
)
1248 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1249 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1250 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1251 ip
->i_d
.di_flags
|= di_flags
;
1255 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1256 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1257 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1258 ip
->i_df
.if_u1
.if_extents
= NULL
;
1264 * Attribute fork settings for new inode.
1266 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1267 ip
->i_d
.di_anextents
= 0;
1270 * Log the new values stuffed into the inode.
1272 xfs_trans_log_inode(tp
, ip
, flags
);
1274 /* now that we have an i_mode we can setup inode ops and unlock */
1275 xfs_initialize_vnode(tp
->t_mountp
, vp
, ip
);
1282 * Check to make sure that there are no blocks allocated to the
1283 * file beyond the size of the file. We don't check this for
1284 * files with fixed size extents or real time extents, but we
1285 * at least do it for regular files.
1294 xfs_fileoff_t map_first
;
1296 xfs_bmbt_irec_t imaps
[2];
1298 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1301 if (ip
->i_d
.di_flags
& (XFS_DIFLAG_REALTIME
| XFS_DIFLAG_EXTSIZE
))
1305 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1307 * The filesystem could be shutting down, so bmapi may return
1310 if (xfs_bmapi(NULL
, ip
, map_first
,
1312 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1314 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1317 ASSERT(nimaps
== 1);
1318 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1323 * Calculate the last possible buffered byte in a file. This must
1324 * include data that was buffered beyond the EOF by the write code.
1325 * This also needs to deal with overflowing the xfs_fsize_t type
1326 * which can happen for sizes near the limit.
1328 * We also need to take into account any blocks beyond the EOF. It
1329 * may be the case that they were buffered by a write which failed.
1330 * In that case the pages will still be in memory, but the inode size
1331 * will never have been updated.
1338 xfs_fsize_t last_byte
;
1339 xfs_fileoff_t last_block
;
1340 xfs_fileoff_t size_last_block
;
1343 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
| MR_ACCESS
));
1347 * Only check for blocks beyond the EOF if the extents have
1348 * been read in. This eliminates the need for the inode lock,
1349 * and it also saves us from looking when it really isn't
1352 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1353 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1361 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1362 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1364 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1365 if (last_byte
< 0) {
1366 return XFS_MAXIOFFSET(mp
);
1368 last_byte
+= (1 << mp
->m_writeio_log
);
1369 if (last_byte
< 0) {
1370 return XFS_MAXIOFFSET(mp
);
1375 #if defined(XFS_RW_TRACE)
1381 xfs_fsize_t new_size
,
1382 xfs_off_t toss_start
,
1383 xfs_off_t toss_finish
)
1385 if (ip
->i_rwtrace
== NULL
) {
1389 ktrace_enter(ip
->i_rwtrace
,
1392 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1393 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1394 (void*)((long)flag
),
1395 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1396 (void*)(unsigned long)(new_size
& 0xffffffff),
1397 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1398 (void*)(unsigned long)(toss_start
& 0xffffffff),
1399 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1400 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1401 (void*)(unsigned long)current_cpu(),
1402 (void*)(unsigned long)current_pid(),
1408 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1412 * Start the truncation of the file to new_size. The new size
1413 * must be smaller than the current size. This routine will
1414 * clear the buffer and page caches of file data in the removed
1415 * range, and xfs_itruncate_finish() will remove the underlying
1418 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1419 * must NOT have the inode lock held at all. This is because we're
1420 * calling into the buffer/page cache code and we can't hold the
1421 * inode lock when we do so.
1423 * We need to wait for any direct I/Os in flight to complete before we
1424 * proceed with the truncate. This is needed to prevent the extents
1425 * being read or written by the direct I/Os from being removed while the
1426 * I/O is in flight as there is no other method of synchronising
1427 * direct I/O with the truncate operation. Also, because we hold
1428 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1429 * started until the truncate completes and drops the lock. Essentially,
1430 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1431 * between direct I/Os and the truncate operation.
1433 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1434 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1435 * in the case that the caller is locking things out of order and
1436 * may not be able to call xfs_itruncate_finish() with the inode lock
1437 * held without dropping the I/O lock. If the caller must drop the
1438 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1439 * must be called again with all the same restrictions as the initial
1443 xfs_itruncate_start(
1446 xfs_fsize_t new_size
)
1448 xfs_fsize_t last_byte
;
1449 xfs_off_t toss_start
;
1454 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1455 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1456 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1457 (flags
== XFS_ITRUNC_MAYBE
));
1462 vn_iowait(ip
); /* wait for the completion of any pending DIOs */
1465 * Call toss_pages or flushinval_pages to get rid of pages
1466 * overlapping the region being removed. We have to use
1467 * the less efficient flushinval_pages in the case that the
1468 * caller may not be able to finish the truncate without
1469 * dropping the inode's I/O lock. Make sure
1470 * to catch any pages brought in by buffers overlapping
1471 * the EOF by searching out beyond the isize by our
1472 * block size. We round new_size up to a block boundary
1473 * so that we don't toss things on the same block as
1474 * new_size but before it.
1476 * Before calling toss_page or flushinval_pages, make sure to
1477 * call remapf() over the same region if the file is mapped.
1478 * This frees up mapped file references to the pages in the
1479 * given range and for the flushinval_pages case it ensures
1480 * that we get the latest mapped changes flushed out.
1482 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1483 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1484 if (toss_start
< 0) {
1486 * The place to start tossing is beyond our maximum
1487 * file size, so there is no way that the data extended
1492 last_byte
= xfs_file_last_byte(ip
);
1493 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1495 if (last_byte
> toss_start
) {
1496 if (flags
& XFS_ITRUNC_DEFINITE
) {
1497 xfs_tosspages(ip
, toss_start
,
1498 -1, FI_REMAPF_LOCKED
);
1500 error
= xfs_flushinval_pages(ip
, toss_start
,
1501 -1, FI_REMAPF_LOCKED
);
1506 if (new_size
== 0) {
1507 ASSERT(VN_CACHED(vp
) == 0);
1514 * Shrink the file to the given new_size. The new
1515 * size must be smaller than the current size.
1516 * This will free up the underlying blocks
1517 * in the removed range after a call to xfs_itruncate_start()
1518 * or xfs_atruncate_start().
1520 * The transaction passed to this routine must have made
1521 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1522 * This routine may commit the given transaction and
1523 * start new ones, so make sure everything involved in
1524 * the transaction is tidy before calling here.
1525 * Some transaction will be returned to the caller to be
1526 * committed. The incoming transaction must already include
1527 * the inode, and both inode locks must be held exclusively.
1528 * The inode must also be "held" within the transaction. On
1529 * return the inode will be "held" within the returned transaction.
1530 * This routine does NOT require any disk space to be reserved
1531 * for it within the transaction.
1533 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1534 * and it indicates the fork which is to be truncated. For the
1535 * attribute fork we only support truncation to size 0.
1537 * We use the sync parameter to indicate whether or not the first
1538 * transaction we perform might have to be synchronous. For the attr fork,
1539 * it needs to be so if the unlink of the inode is not yet known to be
1540 * permanent in the log. This keeps us from freeing and reusing the
1541 * blocks of the attribute fork before the unlink of the inode becomes
1544 * For the data fork, we normally have to run synchronously if we're
1545 * being called out of the inactive path or we're being called
1546 * out of the create path where we're truncating an existing file.
1547 * Either way, the truncate needs to be sync so blocks don't reappear
1548 * in the file with altered data in case of a crash. wsync filesystems
1549 * can run the first case async because anything that shrinks the inode
1550 * has to run sync so by the time we're called here from inactive, the
1551 * inode size is permanently set to 0.
1553 * Calls from the truncate path always need to be sync unless we're
1554 * in a wsync filesystem and the file has already been unlinked.
1556 * The caller is responsible for correctly setting the sync parameter.
1557 * It gets too hard for us to guess here which path we're being called
1558 * out of just based on inode state.
1561 xfs_itruncate_finish(
1564 xfs_fsize_t new_size
,
1568 xfs_fsblock_t first_block
;
1569 xfs_fileoff_t first_unmap_block
;
1570 xfs_fileoff_t last_block
;
1571 xfs_filblks_t unmap_len
=0;
1576 xfs_bmap_free_t free_list
;
1579 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
) != 0);
1580 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
) != 0);
1581 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1582 ASSERT(*tp
!= NULL
);
1583 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1584 ASSERT(ip
->i_transp
== *tp
);
1585 ASSERT(ip
->i_itemp
!= NULL
);
1586 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1590 mp
= (ntp
)->t_mountp
;
1591 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1594 * We only support truncating the entire attribute fork.
1596 if (fork
== XFS_ATTR_FORK
) {
1599 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1600 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1602 * The first thing we do is set the size to new_size permanently
1603 * on disk. This way we don't have to worry about anyone ever
1604 * being able to look at the data being freed even in the face
1605 * of a crash. What we're getting around here is the case where
1606 * we free a block, it is allocated to another file, it is written
1607 * to, and then we crash. If the new data gets written to the
1608 * file but the log buffers containing the free and reallocation
1609 * don't, then we'd end up with garbage in the blocks being freed.
1610 * As long as we make the new_size permanent before actually
1611 * freeing any blocks it doesn't matter if they get writtten to.
1613 * The callers must signal into us whether or not the size
1614 * setting here must be synchronous. There are a few cases
1615 * where it doesn't have to be synchronous. Those cases
1616 * occur if the file is unlinked and we know the unlink is
1617 * permanent or if the blocks being truncated are guaranteed
1618 * to be beyond the inode eof (regardless of the link count)
1619 * and the eof value is permanent. Both of these cases occur
1620 * only on wsync-mounted filesystems. In those cases, we're
1621 * guaranteed that no user will ever see the data in the blocks
1622 * that are being truncated so the truncate can run async.
1623 * In the free beyond eof case, the file may wind up with
1624 * more blocks allocated to it than it needs if we crash
1625 * and that won't get fixed until the next time the file
1626 * is re-opened and closed but that's ok as that shouldn't
1627 * be too many blocks.
1629 * However, we can't just make all wsync xactions run async
1630 * because there's one call out of the create path that needs
1631 * to run sync where it's truncating an existing file to size
1632 * 0 whose size is > 0.
1634 * It's probably possible to come up with a test in this
1635 * routine that would correctly distinguish all the above
1636 * cases from the values of the function parameters and the
1637 * inode state but for sanity's sake, I've decided to let the
1638 * layers above just tell us. It's simpler to correctly figure
1639 * out in the layer above exactly under what conditions we
1640 * can run async and I think it's easier for others read and
1641 * follow the logic in case something has to be changed.
1642 * cscope is your friend -- rcc.
1644 * The attribute fork is much simpler.
1646 * For the attribute fork we allow the caller to tell us whether
1647 * the unlink of the inode that led to this call is yet permanent
1648 * in the on disk log. If it is not and we will be freeing extents
1649 * in this inode then we make the first transaction synchronous
1650 * to make sure that the unlink is permanent by the time we free
1653 if (fork
== XFS_DATA_FORK
) {
1654 if (ip
->i_d
.di_nextents
> 0) {
1656 * If we are not changing the file size then do
1657 * not update the on-disk file size - we may be
1658 * called from xfs_inactive_free_eofblocks(). If we
1659 * update the on-disk file size and then the system
1660 * crashes before the contents of the file are
1661 * flushed to disk then the files may be full of
1662 * holes (ie NULL files bug).
1664 if (ip
->i_size
!= new_size
) {
1665 ip
->i_d
.di_size
= new_size
;
1666 ip
->i_size
= new_size
;
1667 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1671 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1672 if (ip
->i_d
.di_anextents
> 0)
1673 xfs_trans_set_sync(ntp
);
1675 ASSERT(fork
== XFS_DATA_FORK
||
1676 (fork
== XFS_ATTR_FORK
&&
1677 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1678 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1681 * Since it is possible for space to become allocated beyond
1682 * the end of the file (in a crash where the space is allocated
1683 * but the inode size is not yet updated), simply remove any
1684 * blocks which show up between the new EOF and the maximum
1685 * possible file size. If the first block to be removed is
1686 * beyond the maximum file size (ie it is the same as last_block),
1687 * then there is nothing to do.
1689 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1690 ASSERT(first_unmap_block
<= last_block
);
1692 if (last_block
== first_unmap_block
) {
1695 unmap_len
= last_block
- first_unmap_block
+ 1;
1699 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1700 * will tell us whether it freed the entire range or
1701 * not. If this is a synchronous mount (wsync),
1702 * then we can tell bunmapi to keep all the
1703 * transactions asynchronous since the unlink
1704 * transaction that made this inode inactive has
1705 * already hit the disk. There's no danger of
1706 * the freed blocks being reused, there being a
1707 * crash, and the reused blocks suddenly reappearing
1708 * in this file with garbage in them once recovery
1711 XFS_BMAP_INIT(&free_list
, &first_block
);
1712 error
= XFS_BUNMAPI(mp
, ntp
, &ip
->i_iocore
,
1713 first_unmap_block
, unmap_len
,
1714 XFS_BMAPI_AFLAG(fork
) |
1715 (sync
? 0 : XFS_BMAPI_ASYNC
),
1716 XFS_ITRUNC_MAX_EXTENTS
,
1717 &first_block
, &free_list
,
1721 * If the bunmapi call encounters an error,
1722 * return to the caller where the transaction
1723 * can be properly aborted. We just need to
1724 * make sure we're not holding any resources
1725 * that we were not when we came in.
1727 xfs_bmap_cancel(&free_list
);
1732 * Duplicate the transaction that has the permanent
1733 * reservation and commit the old transaction.
1735 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1739 * If the bmap finish call encounters an error,
1740 * return to the caller where the transaction
1741 * can be properly aborted. We just need to
1742 * make sure we're not holding any resources
1743 * that we were not when we came in.
1745 * Aborting from this point might lose some
1746 * blocks in the file system, but oh well.
1748 xfs_bmap_cancel(&free_list
);
1751 * If the passed in transaction committed
1752 * in xfs_bmap_finish(), then we want to
1753 * add the inode to this one before returning.
1754 * This keeps things simple for the higher
1755 * level code, because it always knows that
1756 * the inode is locked and held in the
1757 * transaction that returns to it whether
1758 * errors occur or not. We don't mark the
1759 * inode dirty so that this transaction can
1760 * be easily aborted if possible.
1762 xfs_trans_ijoin(ntp
, ip
,
1763 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1764 xfs_trans_ihold(ntp
, ip
);
1771 * The first xact was committed,
1772 * so add the inode to the new one.
1773 * Mark it dirty so it will be logged
1774 * and moved forward in the log as
1775 * part of every commit.
1777 xfs_trans_ijoin(ntp
, ip
,
1778 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1779 xfs_trans_ihold(ntp
, ip
);
1780 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1782 ntp
= xfs_trans_dup(ntp
);
1783 (void) xfs_trans_commit(*tp
, 0);
1785 error
= xfs_trans_reserve(ntp
, 0, XFS_ITRUNCATE_LOG_RES(mp
), 0,
1786 XFS_TRANS_PERM_LOG_RES
,
1787 XFS_ITRUNCATE_LOG_COUNT
);
1789 * Add the inode being truncated to the next chained
1792 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1793 xfs_trans_ihold(ntp
, ip
);
1798 * Only update the size in the case of the data fork, but
1799 * always re-log the inode so that our permanent transaction
1800 * can keep on rolling it forward in the log.
1802 if (fork
== XFS_DATA_FORK
) {
1803 xfs_isize_check(mp
, ip
, new_size
);
1805 * If we are not changing the file size then do
1806 * not update the on-disk file size - we may be
1807 * called from xfs_inactive_free_eofblocks(). If we
1808 * update the on-disk file size and then the system
1809 * crashes before the contents of the file are
1810 * flushed to disk then the files may be full of
1811 * holes (ie NULL files bug).
1813 if (ip
->i_size
!= new_size
) {
1814 ip
->i_d
.di_size
= new_size
;
1815 ip
->i_size
= new_size
;
1818 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1819 ASSERT((new_size
!= 0) ||
1820 (fork
== XFS_ATTR_FORK
) ||
1821 (ip
->i_delayed_blks
== 0));
1822 ASSERT((new_size
!= 0) ||
1823 (fork
== XFS_ATTR_FORK
) ||
1824 (ip
->i_d
.di_nextents
== 0));
1825 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1833 * Do the first part of growing a file: zero any data in the last
1834 * block that is beyond the old EOF. We need to do this before
1835 * the inode is joined to the transaction to modify the i_size.
1836 * That way we can drop the inode lock and call into the buffer
1837 * cache to get the buffer mapping the EOF.
1842 xfs_fsize_t new_size
,
1847 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1848 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1849 ASSERT(new_size
> ip
->i_size
);
1852 * Zero any pages that may have been created by
1853 * xfs_write_file() beyond the end of the file
1854 * and any blocks between the old and new file sizes.
1856 error
= xfs_zero_eof(XFS_ITOV(ip
), &ip
->i_iocore
, new_size
,
1864 * This routine is called to extend the size of a file.
1865 * The inode must have both the iolock and the ilock locked
1866 * for update and it must be a part of the current transaction.
1867 * The xfs_igrow_start() function must have been called previously.
1868 * If the change_flag is not zero, the inode change timestamp will
1875 xfs_fsize_t new_size
,
1878 ASSERT(ismrlocked(&(ip
->i_lock
), MR_UPDATE
) != 0);
1879 ASSERT(ismrlocked(&(ip
->i_iolock
), MR_UPDATE
) != 0);
1880 ASSERT(ip
->i_transp
== tp
);
1881 ASSERT(new_size
> ip
->i_size
);
1884 * Update the file size. Update the inode change timestamp
1885 * if change_flag set.
1887 ip
->i_d
.di_size
= new_size
;
1888 ip
->i_size
= new_size
;
1890 xfs_ichgtime(ip
, XFS_ICHGTIME_CHG
);
1891 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1897 * This is called when the inode's link count goes to 0.
1898 * We place the on-disk inode on a list in the AGI. It
1899 * will be pulled from this list when the inode is freed.
1911 xfs_agnumber_t agno
;
1912 xfs_daddr_t agdaddr
;
1919 ASSERT(ip
->i_d
.di_nlink
== 0);
1920 ASSERT(ip
->i_d
.di_mode
!= 0);
1921 ASSERT(ip
->i_transp
== tp
);
1925 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1926 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
1929 * Get the agi buffer first. It ensures lock ordering
1932 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
1933 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
1938 * Validate the magic number of the agi block.
1940 agi
= XFS_BUF_TO_AGI(agibp
);
1942 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
1943 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
1944 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK
,
1945 XFS_RANDOM_IUNLINK
))) {
1946 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW
, mp
, agi
);
1947 xfs_trans_brelse(tp
, agibp
);
1948 return XFS_ERROR(EFSCORRUPTED
);
1951 * Get the index into the agi hash table for the
1952 * list this inode will go on.
1954 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1956 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1957 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1958 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1960 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
1965 * Clear the on-disk di_nlink. This is to prevent xfs_bulkstat
1966 * from picking up this inode when it is reclaimed (its incore state
1967 * initialzed but not flushed to disk yet). The in-core di_nlink is
1968 * already cleared in xfs_droplink() and a corresponding transaction
1969 * logged. The hack here just synchronizes the in-core to on-disk
1970 * di_nlink value in advance before the actual inode sync to disk.
1971 * This is OK because the inode is already unlinked and would never
1972 * change its di_nlink again for this inode generation.
1973 * This is a temporary hack that would require a proper fix
1976 dip
->di_core
.di_nlink
= 0;
1978 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1980 * There is already another inode in the bucket we need
1981 * to add ourselves to. Add us at the front of the list.
1982 * Here we put the head pointer into our next pointer,
1983 * and then we fall through to point the head at us.
1985 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1986 /* both on-disk, don't endian flip twice */
1987 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1988 offset
= ip
->i_boffset
+
1989 offsetof(xfs_dinode_t
, di_next_unlinked
);
1990 xfs_trans_inode_buf(tp
, ibp
);
1991 xfs_trans_log_buf(tp
, ibp
, offset
,
1992 (offset
+ sizeof(xfs_agino_t
) - 1));
1993 xfs_inobp_check(mp
, ibp
);
1997 * Point the bucket head pointer at the inode being inserted.
2000 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
2001 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2002 (sizeof(xfs_agino_t
) * bucket_index
);
2003 xfs_trans_log_buf(tp
, agibp
, offset
,
2004 (offset
+ sizeof(xfs_agino_t
) - 1));
2009 * Pull the on-disk inode from the AGI unlinked list.
2022 xfs_agnumber_t agno
;
2023 xfs_daddr_t agdaddr
;
2025 xfs_agino_t next_agino
;
2026 xfs_buf_t
*last_ibp
;
2027 xfs_dinode_t
*last_dip
= NULL
;
2029 int offset
, last_offset
= 0;
2034 * First pull the on-disk inode from the AGI unlinked list.
2038 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2039 agdaddr
= XFS_AG_DADDR(mp
, agno
, XFS_AGI_DADDR(mp
));
2042 * Get the agi buffer first. It ensures lock ordering
2045 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, agdaddr
,
2046 XFS_FSS_TO_BB(mp
, 1), 0, &agibp
);
2049 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
2050 error
, mp
->m_fsname
);
2054 * Validate the magic number of the agi block.
2056 agi
= XFS_BUF_TO_AGI(agibp
);
2058 be32_to_cpu(agi
->agi_magicnum
) == XFS_AGI_MAGIC
&&
2059 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi
->agi_versionnum
));
2060 if (unlikely(XFS_TEST_ERROR(!agi_ok
, mp
, XFS_ERRTAG_IUNLINK_REMOVE
,
2061 XFS_RANDOM_IUNLINK_REMOVE
))) {
2062 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW
,
2064 xfs_trans_brelse(tp
, agibp
);
2066 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2068 return XFS_ERROR(EFSCORRUPTED
);
2071 * Get the index into the agi hash table for the
2072 * list this inode will go on.
2074 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2076 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2077 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
2078 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2080 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2082 * We're at the head of the list. Get the inode's
2083 * on-disk buffer to see if there is anyone after us
2084 * on the list. Only modify our next pointer if it
2085 * is not already NULLAGINO. This saves us the overhead
2086 * of dealing with the buffer when there is no need to
2089 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2092 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2093 error
, mp
->m_fsname
);
2096 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2097 ASSERT(next_agino
!= 0);
2098 if (next_agino
!= NULLAGINO
) {
2099 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2100 offset
= ip
->i_boffset
+
2101 offsetof(xfs_dinode_t
, di_next_unlinked
);
2102 xfs_trans_inode_buf(tp
, ibp
);
2103 xfs_trans_log_buf(tp
, ibp
, offset
,
2104 (offset
+ sizeof(xfs_agino_t
) - 1));
2105 xfs_inobp_check(mp
, ibp
);
2107 xfs_trans_brelse(tp
, ibp
);
2110 * Point the bucket head pointer at the next inode.
2112 ASSERT(next_agino
!= 0);
2113 ASSERT(next_agino
!= agino
);
2114 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2115 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2116 (sizeof(xfs_agino_t
) * bucket_index
);
2117 xfs_trans_log_buf(tp
, agibp
, offset
,
2118 (offset
+ sizeof(xfs_agino_t
) - 1));
2121 * We need to search the list for the inode being freed.
2123 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2125 while (next_agino
!= agino
) {
2127 * If the last inode wasn't the one pointing to
2128 * us, then release its buffer since we're not
2129 * going to do anything with it.
2131 if (last_ibp
!= NULL
) {
2132 xfs_trans_brelse(tp
, last_ibp
);
2134 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2135 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
2136 &last_ibp
, &last_offset
);
2139 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2140 error
, mp
->m_fsname
);
2143 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2144 ASSERT(next_agino
!= NULLAGINO
);
2145 ASSERT(next_agino
!= 0);
2148 * Now last_ibp points to the buffer previous to us on
2149 * the unlinked list. Pull us from the list.
2151 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, 0, 0);
2154 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2155 error
, mp
->m_fsname
);
2158 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2159 ASSERT(next_agino
!= 0);
2160 ASSERT(next_agino
!= agino
);
2161 if (next_agino
!= NULLAGINO
) {
2162 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2163 offset
= ip
->i_boffset
+
2164 offsetof(xfs_dinode_t
, di_next_unlinked
);
2165 xfs_trans_inode_buf(tp
, ibp
);
2166 xfs_trans_log_buf(tp
, ibp
, offset
,
2167 (offset
+ sizeof(xfs_agino_t
) - 1));
2168 xfs_inobp_check(mp
, ibp
);
2170 xfs_trans_brelse(tp
, ibp
);
2173 * Point the previous inode on the list to the next inode.
2175 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2176 ASSERT(next_agino
!= 0);
2177 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2178 xfs_trans_inode_buf(tp
, last_ibp
);
2179 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2180 (offset
+ sizeof(xfs_agino_t
) - 1));
2181 xfs_inobp_check(mp
, last_ibp
);
2186 STATIC_INLINE
int xfs_inode_clean(xfs_inode_t
*ip
)
2188 return (((ip
->i_itemp
== NULL
) ||
2189 !(ip
->i_itemp
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
2190 (ip
->i_update_core
== 0));
2195 xfs_inode_t
*free_ip
,
2199 xfs_mount_t
*mp
= free_ip
->i_mount
;
2200 int blks_per_cluster
;
2203 int i
, j
, found
, pre_flushed
;
2206 xfs_inode_t
*ip
, **ip_found
;
2207 xfs_inode_log_item_t
*iip
;
2208 xfs_log_item_t
*lip
;
2209 xfs_perag_t
*pag
= xfs_get_perag(mp
, inum
);
2212 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
2213 blks_per_cluster
= 1;
2214 ninodes
= mp
->m_sb
.sb_inopblock
;
2215 nbufs
= XFS_IALLOC_BLOCKS(mp
);
2217 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
2218 mp
->m_sb
.sb_blocksize
;
2219 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
2220 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
2223 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
2225 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
2226 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2227 XFS_INO_TO_AGBNO(mp
, inum
));
2231 * Look for each inode in memory and attempt to lock it,
2232 * we can be racing with flush and tail pushing here.
2233 * any inode we get the locks on, add to an array of
2234 * inode items to process later.
2236 * The get the buffer lock, we could beat a flush
2237 * or tail pushing thread to the lock here, in which
2238 * case they will go looking for the inode buffer
2239 * and fail, we need some other form of interlock
2243 for (i
= 0; i
< ninodes
; i
++) {
2244 read_lock(&pag
->pag_ici_lock
);
2245 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2246 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2248 /* Inode not in memory or we found it already,
2251 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
2252 read_unlock(&pag
->pag_ici_lock
);
2256 if (xfs_inode_clean(ip
)) {
2257 read_unlock(&pag
->pag_ici_lock
);
2261 /* If we can get the locks then add it to the
2262 * list, otherwise by the time we get the bp lock
2263 * below it will already be attached to the
2267 /* This inode will already be locked - by us, lets
2271 if (ip
== free_ip
) {
2272 if (xfs_iflock_nowait(ip
)) {
2273 xfs_iflags_set(ip
, XFS_ISTALE
);
2274 if (xfs_inode_clean(ip
)) {
2277 ip_found
[found
++] = ip
;
2280 read_unlock(&pag
->pag_ici_lock
);
2284 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2285 if (xfs_iflock_nowait(ip
)) {
2286 xfs_iflags_set(ip
, XFS_ISTALE
);
2288 if (xfs_inode_clean(ip
)) {
2290 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2292 ip_found
[found
++] = ip
;
2295 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2298 read_unlock(&pag
->pag_ici_lock
);
2301 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2302 mp
->m_bsize
* blks_per_cluster
,
2306 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2308 if (lip
->li_type
== XFS_LI_INODE
) {
2309 iip
= (xfs_inode_log_item_t
*)lip
;
2310 ASSERT(iip
->ili_logged
== 1);
2311 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2313 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2315 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2318 lip
= lip
->li_bio_list
;
2321 for (i
= 0; i
< found
; i
++) {
2326 ip
->i_update_core
= 0;
2328 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2332 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2333 iip
->ili_format
.ilf_fields
= 0;
2334 iip
->ili_logged
= 1;
2336 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
2339 xfs_buf_attach_iodone(bp
,
2340 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2341 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2342 if (ip
!= free_ip
) {
2343 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2347 if (found
|| pre_flushed
)
2348 xfs_trans_stale_inode_buf(tp
, bp
);
2349 xfs_trans_binval(tp
, bp
);
2352 kmem_free(ip_found
, ninodes
* sizeof(xfs_inode_t
*));
2353 xfs_put_perag(mp
, pag
);
2357 * This is called to return an inode to the inode free list.
2358 * The inode should already be truncated to 0 length and have
2359 * no pages associated with it. This routine also assumes that
2360 * the inode is already a part of the transaction.
2362 * The on-disk copy of the inode will have been added to the list
2363 * of unlinked inodes in the AGI. We need to remove the inode from
2364 * that list atomically with respect to freeing it here.
2370 xfs_bmap_free_t
*flist
)
2374 xfs_ino_t first_ino
;
2376 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2377 ASSERT(ip
->i_transp
== tp
);
2378 ASSERT(ip
->i_d
.di_nlink
== 0);
2379 ASSERT(ip
->i_d
.di_nextents
== 0);
2380 ASSERT(ip
->i_d
.di_anextents
== 0);
2381 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2382 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2383 ASSERT(ip
->i_d
.di_nblocks
== 0);
2386 * Pull the on-disk inode from the AGI unlinked list.
2388 error
= xfs_iunlink_remove(tp
, ip
);
2393 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2397 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2398 ip
->i_d
.di_flags
= 0;
2399 ip
->i_d
.di_dmevmask
= 0;
2400 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2401 ip
->i_df
.if_ext_max
=
2402 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2403 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2404 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2406 * Bump the generation count so no one will be confused
2407 * by reincarnations of this inode.
2410 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2413 xfs_ifree_cluster(ip
, tp
, first_ino
);
2420 * Reallocate the space for if_broot based on the number of records
2421 * being added or deleted as indicated in rec_diff. Move the records
2422 * and pointers in if_broot to fit the new size. When shrinking this
2423 * will eliminate holes between the records and pointers created by
2424 * the caller. When growing this will create holes to be filled in
2427 * The caller must not request to add more records than would fit in
2428 * the on-disk inode root. If the if_broot is currently NULL, then
2429 * if we adding records one will be allocated. The caller must also
2430 * not request that the number of records go below zero, although
2431 * it can go to zero.
2433 * ip -- the inode whose if_broot area is changing
2434 * ext_diff -- the change in the number of records, positive or negative,
2435 * requested for the if_broot array.
2445 xfs_bmbt_block_t
*new_broot
;
2452 * Handle the degenerate case quietly.
2454 if (rec_diff
== 0) {
2458 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2461 * If there wasn't any memory allocated before, just
2462 * allocate it now and get out.
2464 if (ifp
->if_broot_bytes
== 0) {
2465 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2466 ifp
->if_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
,
2468 ifp
->if_broot_bytes
= (int)new_size
;
2473 * If there is already an existing if_broot, then we need
2474 * to realloc() it and shift the pointers to their new
2475 * location. The records don't change location because
2476 * they are kept butted up against the btree block header.
2478 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2479 new_max
= cur_max
+ rec_diff
;
2480 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2481 ifp
->if_broot
= (xfs_bmbt_block_t
*)
2482 kmem_realloc(ifp
->if_broot
,
2484 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2486 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2487 ifp
->if_broot_bytes
);
2488 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2490 ifp
->if_broot_bytes
= (int)new_size
;
2491 ASSERT(ifp
->if_broot_bytes
<=
2492 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2493 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2498 * rec_diff is less than 0. In this case, we are shrinking the
2499 * if_broot buffer. It must already exist. If we go to zero
2500 * records, just get rid of the root and clear the status bit.
2502 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2503 cur_max
= XFS_BMAP_BROOT_MAXRECS(ifp
->if_broot_bytes
);
2504 new_max
= cur_max
+ rec_diff
;
2505 ASSERT(new_max
>= 0);
2507 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2511 new_broot
= (xfs_bmbt_block_t
*)kmem_alloc(new_size
, KM_SLEEP
);
2513 * First copy over the btree block header.
2515 memcpy(new_broot
, ifp
->if_broot
, sizeof(xfs_bmbt_block_t
));
2518 ifp
->if_flags
&= ~XFS_IFBROOT
;
2522 * Only copy the records and pointers if there are any.
2526 * First copy the records.
2528 op
= (char *)XFS_BMAP_BROOT_REC_ADDR(ifp
->if_broot
, 1,
2529 ifp
->if_broot_bytes
);
2530 np
= (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot
, 1,
2532 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2535 * Then copy the pointers.
2537 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp
->if_broot
, 1,
2538 ifp
->if_broot_bytes
);
2539 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot
, 1,
2541 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2543 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2544 ifp
->if_broot
= new_broot
;
2545 ifp
->if_broot_bytes
= (int)new_size
;
2546 ASSERT(ifp
->if_broot_bytes
<=
2547 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2553 * This is called when the amount of space needed for if_data
2554 * is increased or decreased. The change in size is indicated by
2555 * the number of bytes that need to be added or deleted in the
2556 * byte_diff parameter.
2558 * If the amount of space needed has decreased below the size of the
2559 * inline buffer, then switch to using the inline buffer. Otherwise,
2560 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2561 * to what is needed.
2563 * ip -- the inode whose if_data area is changing
2564 * byte_diff -- the change in the number of bytes, positive or negative,
2565 * requested for the if_data array.
2577 if (byte_diff
== 0) {
2581 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2582 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2583 ASSERT(new_size
>= 0);
2585 if (new_size
== 0) {
2586 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2587 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2589 ifp
->if_u1
.if_data
= NULL
;
2591 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2593 * If the valid extents/data can fit in if_inline_ext/data,
2594 * copy them from the malloc'd vector and free it.
2596 if (ifp
->if_u1
.if_data
== NULL
) {
2597 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2598 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2599 ASSERT(ifp
->if_real_bytes
!= 0);
2600 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2602 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2603 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2608 * Stuck with malloc/realloc.
2609 * For inline data, the underlying buffer must be
2610 * a multiple of 4 bytes in size so that it can be
2611 * logged and stay on word boundaries. We enforce
2614 real_size
= roundup(new_size
, 4);
2615 if (ifp
->if_u1
.if_data
== NULL
) {
2616 ASSERT(ifp
->if_real_bytes
== 0);
2617 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2618 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2620 * Only do the realloc if the underlying size
2621 * is really changing.
2623 if (ifp
->if_real_bytes
!= real_size
) {
2624 ifp
->if_u1
.if_data
=
2625 kmem_realloc(ifp
->if_u1
.if_data
,
2631 ASSERT(ifp
->if_real_bytes
== 0);
2632 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2633 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2637 ifp
->if_real_bytes
= real_size
;
2638 ifp
->if_bytes
= new_size
;
2639 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2646 * Map inode to disk block and offset.
2648 * mp -- the mount point structure for the current file system
2649 * tp -- the current transaction
2650 * ino -- the inode number of the inode to be located
2651 * imap -- this structure is filled in with the information necessary
2652 * to retrieve the given inode from disk
2653 * flags -- flags to pass to xfs_dilocate indicating whether or not
2654 * lookups in the inode btree were OK or not
2664 xfs_fsblock_t fsbno
;
2669 fsbno
= imap
->im_blkno
?
2670 XFS_DADDR_TO_FSB(mp
, imap
->im_blkno
) : NULLFSBLOCK
;
2671 error
= xfs_dilocate(mp
, tp
, ino
, &fsbno
, &len
, &off
, flags
);
2675 imap
->im_blkno
= XFS_FSB_TO_DADDR(mp
, fsbno
);
2676 imap
->im_len
= XFS_FSB_TO_BB(mp
, len
);
2677 imap
->im_agblkno
= XFS_FSB_TO_AGBNO(mp
, fsbno
);
2678 imap
->im_ioffset
= (ushort
)off
;
2679 imap
->im_boffset
= (ushort
)(off
<< mp
->m_sb
.sb_inodelog
);
2690 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2691 if (ifp
->if_broot
!= NULL
) {
2692 kmem_free(ifp
->if_broot
, ifp
->if_broot_bytes
);
2693 ifp
->if_broot
= NULL
;
2697 * If the format is local, then we can't have an extents
2698 * array so just look for an inline data array. If we're
2699 * not local then we may or may not have an extents list,
2700 * so check and free it up if we do.
2702 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2703 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2704 (ifp
->if_u1
.if_data
!= NULL
)) {
2705 ASSERT(ifp
->if_real_bytes
!= 0);
2706 kmem_free(ifp
->if_u1
.if_data
, ifp
->if_real_bytes
);
2707 ifp
->if_u1
.if_data
= NULL
;
2708 ifp
->if_real_bytes
= 0;
2710 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2711 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2712 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2713 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2714 ASSERT(ifp
->if_real_bytes
!= 0);
2715 xfs_iext_destroy(ifp
);
2717 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2718 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2719 ASSERT(ifp
->if_real_bytes
== 0);
2720 if (whichfork
== XFS_ATTR_FORK
) {
2721 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2727 * This is called free all the memory associated with an inode.
2728 * It must free the inode itself and any buffers allocated for
2729 * if_extents/if_data and if_broot. It must also free the lock
2730 * associated with the inode.
2737 switch (ip
->i_d
.di_mode
& S_IFMT
) {
2741 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
2745 xfs_idestroy_fork(ip
, XFS_ATTR_FORK
);
2746 mrfree(&ip
->i_lock
);
2747 mrfree(&ip
->i_iolock
);
2748 freesema(&ip
->i_flock
);
2750 #ifdef XFS_VNODE_TRACE
2751 ktrace_free(ip
->i_trace
);
2753 #ifdef XFS_BMAP_TRACE
2754 ktrace_free(ip
->i_xtrace
);
2756 #ifdef XFS_BMBT_TRACE
2757 ktrace_free(ip
->i_btrace
);
2760 ktrace_free(ip
->i_rwtrace
);
2762 #ifdef XFS_ILOCK_TRACE
2763 ktrace_free(ip
->i_lock_trace
);
2765 #ifdef XFS_DIR2_TRACE
2766 ktrace_free(ip
->i_dir_trace
);
2770 * Only if we are shutting down the fs will we see an
2771 * inode still in the AIL. If it is there, we should remove
2772 * it to prevent a use-after-free from occurring.
2774 xfs_mount_t
*mp
= ip
->i_mount
;
2775 xfs_log_item_t
*lip
= &ip
->i_itemp
->ili_item
;
2778 ASSERT(((lip
->li_flags
& XFS_LI_IN_AIL
) == 0) ||
2779 XFS_FORCED_SHUTDOWN(ip
->i_mount
));
2780 if (lip
->li_flags
& XFS_LI_IN_AIL
) {
2782 if (lip
->li_flags
& XFS_LI_IN_AIL
)
2783 xfs_trans_delete_ail(mp
, lip
, s
);
2787 xfs_inode_item_destroy(ip
);
2789 kmem_zone_free(xfs_inode_zone
, ip
);
2794 * Increment the pin count of the given buffer.
2795 * This value is protected by ipinlock spinlock in the mount structure.
2801 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
2803 atomic_inc(&ip
->i_pincount
);
2807 * Decrement the pin count of the given inode, and wake up
2808 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2809 * inode must have been previously pinned with a call to xfs_ipin().
2815 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2817 if (atomic_dec_and_lock(&ip
->i_pincount
, &ip
->i_flags_lock
)) {
2820 * If the inode is currently being reclaimed, the link between
2821 * the bhv_vnode and the xfs_inode will be broken after the
2822 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2823 * set, then we can move forward and mark the linux inode dirty
2824 * knowing that it is still valid as it won't freed until after
2825 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2826 * i_flags_lock is used to synchronise the setting of the
2827 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2828 * can execute atomically w.r.t to reclaim by holding this lock
2831 * However, we still need to issue the unpin wakeup call as the
2832 * inode reclaim may be blocked waiting for the inode to become
2836 if (!__xfs_iflags_test(ip
, XFS_IRECLAIM
|XFS_IRECLAIMABLE
)) {
2837 bhv_vnode_t
*vp
= XFS_ITOV_NULL(ip
);
2838 struct inode
*inode
= NULL
;
2841 inode
= vn_to_inode(vp
);
2842 BUG_ON(inode
->i_state
& I_CLEAR
);
2844 /* make sync come back and flush this inode */
2845 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
2846 mark_inode_dirty_sync(inode
);
2848 spin_unlock(&ip
->i_flags_lock
);
2849 wake_up(&ip
->i_ipin_wait
);
2854 * This is called to wait for the given inode to be unpinned.
2855 * It will sleep until this happens. The caller must have the
2856 * inode locked in at least shared mode so that the buffer cannot
2857 * be subsequently pinned once someone is waiting for it to be
2864 xfs_inode_log_item_t
*iip
;
2867 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
| MR_ACCESS
));
2869 if (atomic_read(&ip
->i_pincount
) == 0) {
2874 if (iip
&& iip
->ili_last_lsn
) {
2875 lsn
= iip
->ili_last_lsn
;
2881 * Give the log a push so we don't wait here too long.
2883 xfs_log_force(ip
->i_mount
, lsn
, XFS_LOG_FORCE
);
2885 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2890 * xfs_iextents_copy()
2892 * This is called to copy the REAL extents (as opposed to the delayed
2893 * allocation extents) from the inode into the given buffer. It
2894 * returns the number of bytes copied into the buffer.
2896 * If there are no delayed allocation extents, then we can just
2897 * memcpy() the extents into the buffer. Otherwise, we need to
2898 * examine each extent in turn and skip those which are delayed.
2910 xfs_fsblock_t start_block
;
2912 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2913 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
2914 ASSERT(ifp
->if_bytes
> 0);
2916 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2917 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2921 * There are some delayed allocation extents in the
2922 * inode, so copy the extents one at a time and skip
2923 * the delayed ones. There must be at least one
2924 * non-delayed extent.
2927 for (i
= 0; i
< nrecs
; i
++) {
2928 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2929 start_block
= xfs_bmbt_get_startblock(ep
);
2930 if (ISNULLSTARTBLOCK(start_block
)) {
2932 * It's a delayed allocation extent, so skip it.
2937 /* Translate to on disk format */
2938 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2939 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2943 ASSERT(copied
!= 0);
2944 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2946 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2950 * Each of the following cases stores data into the same region
2951 * of the on-disk inode, so only one of them can be valid at
2952 * any given time. While it is possible to have conflicting formats
2953 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2954 * in EXTENTS format, this can only happen when the fork has
2955 * changed formats after being modified but before being flushed.
2956 * In these cases, the format always takes precedence, because the
2957 * format indicates the current state of the fork.
2964 xfs_inode_log_item_t
*iip
,
2971 #ifdef XFS_TRANS_DEBUG
2974 static const short brootflag
[2] =
2975 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2976 static const short dataflag
[2] =
2977 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2978 static const short extflag
[2] =
2979 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2983 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2985 * This can happen if we gave up in iformat in an error path,
2986 * for the attribute fork.
2989 ASSERT(whichfork
== XFS_ATTR_FORK
);
2992 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2994 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2995 case XFS_DINODE_FMT_LOCAL
:
2996 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2997 (ifp
->if_bytes
> 0)) {
2998 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2999 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
3000 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
3004 case XFS_DINODE_FMT_EXTENTS
:
3005 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
3006 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
3007 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
3008 (ifp
->if_bytes
== 0));
3009 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
3010 (ifp
->if_bytes
> 0));
3011 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
3012 (ifp
->if_bytes
> 0)) {
3013 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
3014 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
3019 case XFS_DINODE_FMT_BTREE
:
3020 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
3021 (ifp
->if_broot_bytes
> 0)) {
3022 ASSERT(ifp
->if_broot
!= NULL
);
3023 ASSERT(ifp
->if_broot_bytes
<=
3024 (XFS_IFORK_SIZE(ip
, whichfork
) +
3025 XFS_BROOT_SIZE_ADJ
));
3026 xfs_bmbt_to_bmdr(ifp
->if_broot
, ifp
->if_broot_bytes
,
3027 (xfs_bmdr_block_t
*)cp
,
3028 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
3032 case XFS_DINODE_FMT_DEV
:
3033 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
3034 ASSERT(whichfork
== XFS_DATA_FORK
);
3035 dip
->di_u
.di_dev
= cpu_to_be32(ip
->i_df
.if_u2
.if_rdev
);
3039 case XFS_DINODE_FMT_UUID
:
3040 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
3041 ASSERT(whichfork
== XFS_DATA_FORK
);
3042 memcpy(&dip
->di_u
.di_muuid
, &ip
->i_df
.if_u2
.if_uuid
,
3056 * xfs_iflush() will write a modified inode's changes out to the
3057 * inode's on disk home. The caller must have the inode lock held
3058 * in at least shared mode and the inode flush semaphore must be
3059 * held as well. The inode lock will still be held upon return from
3060 * the call and the caller is free to unlock it.
3061 * The inode flush lock will be unlocked when the inode reaches the disk.
3062 * The flags indicate how the inode's buffer should be written out.
3069 xfs_inode_log_item_t
*iip
;
3076 int clcount
; /* count of inodes clustered */
3078 struct hlist_node
*entry
;
3079 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
3081 XFS_STATS_INC(xs_iflush_count
);
3083 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3084 ASSERT(issemalocked(&(ip
->i_flock
)));
3085 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3086 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3092 * If the inode isn't dirty, then just release the inode
3093 * flush lock and do nothing.
3095 if ((ip
->i_update_core
== 0) &&
3096 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3097 ASSERT((iip
!= NULL
) ?
3098 !(iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) : 1);
3104 * We can't flush the inode until it is unpinned, so
3105 * wait for it. We know noone new can pin it, because
3106 * we are holding the inode lock shared and you need
3107 * to hold it exclusively to pin the inode.
3109 xfs_iunpin_wait(ip
);
3112 * This may have been unpinned because the filesystem is shutting
3113 * down forcibly. If that's the case we must not write this inode
3114 * to disk, because the log record didn't make it to disk!
3116 if (XFS_FORCED_SHUTDOWN(mp
)) {
3117 ip
->i_update_core
= 0;
3119 iip
->ili_format
.ilf_fields
= 0;
3121 return XFS_ERROR(EIO
);
3125 * Get the buffer containing the on-disk inode.
3127 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
, 0, 0);
3134 * Decide how buffer will be flushed out. This is done before
3135 * the call to xfs_iflush_int because this field is zeroed by it.
3137 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3139 * Flush out the inode buffer according to the directions
3140 * of the caller. In the cases where the caller has given
3141 * us a choice choose the non-delwri case. This is because
3142 * the inode is in the AIL and we need to get it out soon.
3145 case XFS_IFLUSH_SYNC
:
3146 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3149 case XFS_IFLUSH_ASYNC
:
3150 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3153 case XFS_IFLUSH_DELWRI
:
3163 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
3164 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
3165 case XFS_IFLUSH_DELWRI
:
3168 case XFS_IFLUSH_ASYNC
:
3171 case XFS_IFLUSH_SYNC
:
3182 * First flush out the inode that xfs_iflush was called with.
3184 error
= xfs_iflush_int(ip
, bp
);
3191 * see if other inodes can be gathered into this write
3193 spin_lock(&ip
->i_cluster
->icl_lock
);
3194 ip
->i_cluster
->icl_buf
= bp
;
3197 hlist_for_each_entry(iq
, entry
, &ip
->i_cluster
->icl_inodes
, i_cnode
) {
3202 * Do an un-protected check to see if the inode is dirty and
3203 * is a candidate for flushing. These checks will be repeated
3204 * later after the appropriate locks are acquired.
3207 if ((iq
->i_update_core
== 0) &&
3209 !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
)) &&
3210 xfs_ipincount(iq
) == 0) {
3215 * Try to get locks. If any are unavailable,
3216 * then this inode cannot be flushed and is skipped.
3219 /* get inode locks (just i_lock) */
3220 if (xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
)) {
3221 /* get inode flush lock */
3222 if (xfs_iflock_nowait(iq
)) {
3223 /* check if pinned */
3224 if (xfs_ipincount(iq
) == 0) {
3225 /* arriving here means that
3226 * this inode can be flushed.
3227 * first re-check that it's
3231 if ((iq
->i_update_core
!= 0)||
3233 (iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3235 error
= xfs_iflush_int(iq
, bp
);
3239 goto cluster_corrupt_out
;
3248 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
3251 spin_unlock(&ip
->i_cluster
->icl_lock
);
3254 XFS_STATS_INC(xs_icluster_flushcnt
);
3255 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
3259 * If the buffer is pinned then push on the log so we won't
3260 * get stuck waiting in the write for too long.
3262 if (XFS_BUF_ISPINNED(bp
)){
3263 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
3266 if (flags
& INT_DELWRI
) {
3267 xfs_bdwrite(mp
, bp
);
3268 } else if (flags
& INT_ASYNC
) {
3269 xfs_bawrite(mp
, bp
);
3271 error
= xfs_bwrite(mp
, bp
);
3277 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3278 xfs_iflush_abort(ip
);
3280 * Unlocks the flush lock
3282 return XFS_ERROR(EFSCORRUPTED
);
3284 cluster_corrupt_out
:
3285 /* Corruption detected in the clustering loop. Invalidate the
3286 * inode buffer and shut down the filesystem.
3288 spin_unlock(&ip
->i_cluster
->icl_lock
);
3291 * Clean up the buffer. If it was B_DELWRI, just release it --
3292 * brelse can handle it with no problems. If not, shut down the
3293 * filesystem before releasing the buffer.
3295 if ((bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
))) {
3299 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3303 * Just like incore_relse: if we have b_iodone functions,
3304 * mark the buffer as an error and call them. Otherwise
3305 * mark it as stale and brelse.
3307 if (XFS_BUF_IODONE_FUNC(bp
)) {
3308 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
3312 XFS_BUF_ERROR(bp
,EIO
);
3320 xfs_iflush_abort(iq
);
3322 * Unlocks the flush lock
3324 return XFS_ERROR(EFSCORRUPTED
);
3333 xfs_inode_log_item_t
*iip
;
3336 #ifdef XFS_TRANS_DEBUG
3341 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
|MR_ACCESS
));
3342 ASSERT(issemalocked(&(ip
->i_flock
)));
3343 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3344 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3351 * If the inode isn't dirty, then just release the inode
3352 * flush lock and do nothing.
3354 if ((ip
->i_update_core
== 0) &&
3355 ((iip
== NULL
) || !(iip
->ili_format
.ilf_fields
& XFS_ILOG_ALL
))) {
3360 /* set *dip = inode's place in the buffer */
3361 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_boffset
);
3364 * Clear i_update_core before copying out the data.
3365 * This is for coordination with our timestamp updates
3366 * that don't hold the inode lock. They will always
3367 * update the timestamps BEFORE setting i_update_core,
3368 * so if we clear i_update_core after they set it we
3369 * are guaranteed to see their updates to the timestamps.
3370 * I believe that this depends on strongly ordered memory
3371 * semantics, but we have that. We use the SYNCHRONIZE
3372 * macro to make sure that the compiler does not reorder
3373 * the i_update_core access below the data copy below.
3375 ip
->i_update_core
= 0;
3379 * Make sure to get the latest atime from the Linux inode.
3381 xfs_synchronize_atime(ip
);
3383 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_core
.di_magic
) != XFS_DINODE_MAGIC
,
3384 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3385 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3386 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3387 ip
->i_ino
, be16_to_cpu(dip
->di_core
.di_magic
), dip
);
3390 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3391 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3392 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3393 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3394 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3397 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3399 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3400 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3401 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3402 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3403 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3407 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3409 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3410 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3411 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3412 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3413 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3414 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3419 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3420 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3421 XFS_RANDOM_IFLUSH_5
)) {
3422 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3423 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3425 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3430 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3431 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3432 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3433 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3434 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3438 * bump the flush iteration count, used to detect flushes which
3439 * postdate a log record during recovery.
3442 ip
->i_d
.di_flushiter
++;
3445 * Copy the dirty parts of the inode into the on-disk
3446 * inode. We always copy out the core of the inode,
3447 * because if the inode is dirty at all the core must
3450 xfs_dinode_to_disk(&dip
->di_core
, &ip
->i_d
);
3452 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3453 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3454 ip
->i_d
.di_flushiter
= 0;
3457 * If this is really an old format inode and the superblock version
3458 * has not been updated to support only new format inodes, then
3459 * convert back to the old inode format. If the superblock version
3460 * has been updated, then make the conversion permanent.
3462 ASSERT(ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
||
3463 XFS_SB_VERSION_HASNLINK(&mp
->m_sb
));
3464 if (ip
->i_d
.di_version
== XFS_DINODE_VERSION_1
) {
3465 if (!XFS_SB_VERSION_HASNLINK(&mp
->m_sb
)) {
3469 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3470 dip
->di_core
.di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3473 * The superblock version has already been bumped,
3474 * so just make the conversion to the new inode
3477 ip
->i_d
.di_version
= XFS_DINODE_VERSION_2
;
3478 dip
->di_core
.di_version
= XFS_DINODE_VERSION_2
;
3479 ip
->i_d
.di_onlink
= 0;
3480 dip
->di_core
.di_onlink
= 0;
3481 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3482 memset(&(dip
->di_core
.di_pad
[0]), 0,
3483 sizeof(dip
->di_core
.di_pad
));
3484 ASSERT(ip
->i_d
.di_projid
== 0);
3488 if (xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
) == EFSCORRUPTED
) {
3492 if (XFS_IFORK_Q(ip
)) {
3494 * The only error from xfs_iflush_fork is on the data fork.
3496 (void) xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3498 xfs_inobp_check(mp
, bp
);
3501 * We've recorded everything logged in the inode, so we'd
3502 * like to clear the ilf_fields bits so we don't log and
3503 * flush things unnecessarily. However, we can't stop
3504 * logging all this information until the data we've copied
3505 * into the disk buffer is written to disk. If we did we might
3506 * overwrite the copy of the inode in the log with all the
3507 * data after re-logging only part of it, and in the face of
3508 * a crash we wouldn't have all the data we need to recover.
3510 * What we do is move the bits to the ili_last_fields field.
3511 * When logging the inode, these bits are moved back to the
3512 * ilf_fields field. In the xfs_iflush_done() routine we
3513 * clear ili_last_fields, since we know that the information
3514 * those bits represent is permanently on disk. As long as
3515 * the flush completes before the inode is logged again, then
3516 * both ilf_fields and ili_last_fields will be cleared.
3518 * We can play with the ilf_fields bits here, because the inode
3519 * lock must be held exclusively in order to set bits there
3520 * and the flush lock protects the ili_last_fields bits.
3521 * Set ili_logged so the flush done
3522 * routine can tell whether or not to look in the AIL.
3523 * Also, store the current LSN of the inode so that we can tell
3524 * whether the item has moved in the AIL from xfs_iflush_done().
3525 * In order to read the lsn we need the AIL lock, because
3526 * it is a 64 bit value that cannot be read atomically.
3528 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3529 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3530 iip
->ili_format
.ilf_fields
= 0;
3531 iip
->ili_logged
= 1;
3533 ASSERT(sizeof(xfs_lsn_t
) == 8); /* don't lock if it shrinks */
3535 iip
->ili_flush_lsn
= iip
->ili_item
.li_lsn
;
3539 * Attach the function xfs_iflush_done to the inode's
3540 * buffer. This will remove the inode from the AIL
3541 * and unlock the inode's flush lock when the inode is
3542 * completely written to disk.
3544 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3545 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3547 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3548 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3551 * We're flushing an inode which is not in the AIL and has
3552 * not been logged but has i_update_core set. For this
3553 * case we can use a B_DELWRI flush and immediately drop
3554 * the inode flush lock because we can avoid the whole
3555 * AIL state thing. It's OK to drop the flush lock now,
3556 * because we've already locked the buffer and to do anything
3557 * you really need both.
3560 ASSERT(iip
->ili_logged
== 0);
3561 ASSERT(iip
->ili_last_fields
== 0);
3562 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3570 return XFS_ERROR(EFSCORRUPTED
);
3575 * Flush all inactive inodes in mp.
3585 XFS_MOUNT_ILOCK(mp
);
3591 /* Make sure we skip markers inserted by sync */
3592 if (ip
->i_mount
== NULL
) {
3597 vp
= XFS_ITOV_NULL(ip
);
3599 XFS_MOUNT_IUNLOCK(mp
);
3600 xfs_finish_reclaim(ip
, 0, XFS_IFLUSH_ASYNC
);
3604 ASSERT(vn_count(vp
) == 0);
3607 } while (ip
!= mp
->m_inodes
);
3609 XFS_MOUNT_IUNLOCK(mp
);
3613 * xfs_iaccess: check accessibility of inode for mode.
3622 mode_t orgmode
= mode
;
3623 struct inode
*inode
= vn_to_inode(XFS_ITOV(ip
));
3625 if (mode
& S_IWUSR
) {
3626 umode_t imode
= inode
->i_mode
;
3628 if (IS_RDONLY(inode
) &&
3629 (S_ISREG(imode
) || S_ISDIR(imode
) || S_ISLNK(imode
)))
3630 return XFS_ERROR(EROFS
);
3632 if (IS_IMMUTABLE(inode
))
3633 return XFS_ERROR(EACCES
);
3637 * If there's an Access Control List it's used instead of
3640 if ((error
= _ACL_XFS_IACCESS(ip
, mode
, cr
)) != -1)
3641 return error
? XFS_ERROR(error
) : 0;
3643 if (current_fsuid(cr
) != ip
->i_d
.di_uid
) {
3645 if (!in_group_p((gid_t
)ip
->i_d
.di_gid
))
3650 * If the DACs are ok we don't need any capability check.
3652 if ((ip
->i_d
.di_mode
& mode
) == mode
)
3655 * Read/write DACs are always overridable.
3656 * Executable DACs are overridable if at least one exec bit is set.
3658 if (!(orgmode
& S_IXUSR
) ||
3659 (inode
->i_mode
& S_IXUGO
) || S_ISDIR(inode
->i_mode
))
3660 if (capable_cred(cr
, CAP_DAC_OVERRIDE
))
3663 if ((orgmode
== S_IRUSR
) ||
3664 (S_ISDIR(inode
->i_mode
) && (!(orgmode
& S_IWUSR
)))) {
3665 if (capable_cred(cr
, CAP_DAC_READ_SEARCH
))
3668 cmn_err(CE_NOTE
, "Ick: mode=%o, orgmode=%o", mode
, orgmode
);
3670 return XFS_ERROR(EACCES
);
3672 return XFS_ERROR(EACCES
);
3676 * xfs_iroundup: round up argument to next power of two
3685 if ((v
& (v
- 1)) == 0)
3687 ASSERT((v
& 0x80000000) == 0);
3688 if ((v
& (v
+ 1)) == 0)
3690 for (i
= 0, m
= 1; i
< 31; i
++, m
<<= 1) {
3694 if ((v
& (v
+ 1)) == 0)
3701 #ifdef XFS_ILOCK_TRACE
3702 ktrace_t
*xfs_ilock_trace_buf
;
3705 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3707 ktrace_enter(ip
->i_lock_trace
,
3709 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3710 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3711 (void *)ra
, /* caller of ilock */
3712 (void *)(unsigned long)current_cpu(),
3713 (void *)(unsigned long)current_pid(),
3714 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3719 * Return a pointer to the extent record at file index idx.
3721 xfs_bmbt_rec_host_t
*
3723 xfs_ifork_t
*ifp
, /* inode fork pointer */
3724 xfs_extnum_t idx
) /* index of target extent */
3727 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3728 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3729 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3730 xfs_ext_irec_t
*erp
; /* irec pointer */
3731 int erp_idx
= 0; /* irec index */
3732 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3734 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3735 return &erp
->er_extbuf
[page_idx
];
3736 } else if (ifp
->if_bytes
) {
3737 return &ifp
->if_u1
.if_extents
[idx
];
3744 * Insert new item(s) into the extent records for incore inode
3745 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3749 xfs_ifork_t
*ifp
, /* inode fork pointer */
3750 xfs_extnum_t idx
, /* starting index of new items */
3751 xfs_extnum_t count
, /* number of inserted items */
3752 xfs_bmbt_irec_t
*new) /* items to insert */
3754 xfs_extnum_t i
; /* extent record index */
3756 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3757 xfs_iext_add(ifp
, idx
, count
);
3758 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3759 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3763 * This is called when the amount of space required for incore file
3764 * extents needs to be increased. The ext_diff parameter stores the
3765 * number of new extents being added and the idx parameter contains
3766 * the extent index where the new extents will be added. If the new
3767 * extents are being appended, then we just need to (re)allocate and
3768 * initialize the space. Otherwise, if the new extents are being
3769 * inserted into the middle of the existing entries, a bit more work
3770 * is required to make room for the new extents to be inserted. The
3771 * caller is responsible for filling in the new extent entries upon
3776 xfs_ifork_t
*ifp
, /* inode fork pointer */
3777 xfs_extnum_t idx
, /* index to begin adding exts */
3778 int ext_diff
) /* number of extents to add */
3780 int byte_diff
; /* new bytes being added */
3781 int new_size
; /* size of extents after adding */
3782 xfs_extnum_t nextents
; /* number of extents in file */
3784 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3785 ASSERT((idx
>= 0) && (idx
<= nextents
));
3786 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3787 new_size
= ifp
->if_bytes
+ byte_diff
;
3789 * If the new number of extents (nextents + ext_diff)
3790 * fits inside the inode, then continue to use the inline
3793 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3794 if (idx
< nextents
) {
3795 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3796 &ifp
->if_u2
.if_inline_ext
[idx
],
3797 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3798 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3800 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3801 ifp
->if_real_bytes
= 0;
3802 ifp
->if_lastex
= nextents
+ ext_diff
;
3805 * Otherwise use a linear (direct) extent list.
3806 * If the extents are currently inside the inode,
3807 * xfs_iext_realloc_direct will switch us from
3808 * inline to direct extent allocation mode.
3810 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3811 xfs_iext_realloc_direct(ifp
, new_size
);
3812 if (idx
< nextents
) {
3813 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3814 &ifp
->if_u1
.if_extents
[idx
],
3815 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3816 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3819 /* Indirection array */
3821 xfs_ext_irec_t
*erp
;
3825 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3826 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3827 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3829 xfs_iext_irec_init(ifp
);
3830 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3831 erp
= ifp
->if_u1
.if_ext_irec
;
3833 /* Extents fit in target extent page */
3834 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3835 if (page_idx
< erp
->er_extcount
) {
3836 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3837 &erp
->er_extbuf
[page_idx
],
3838 (erp
->er_extcount
- page_idx
) *
3839 sizeof(xfs_bmbt_rec_t
));
3840 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3842 erp
->er_extcount
+= ext_diff
;
3843 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3845 /* Insert a new extent page */
3847 xfs_iext_add_indirect_multi(ifp
,
3848 erp_idx
, page_idx
, ext_diff
);
3851 * If extent(s) are being appended to the last page in
3852 * the indirection array and the new extent(s) don't fit
3853 * in the page, then erp is NULL and erp_idx is set to
3854 * the next index needed in the indirection array.
3857 int count
= ext_diff
;
3860 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3861 erp
->er_extcount
= count
;
3862 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3869 ifp
->if_bytes
= new_size
;
3873 * This is called when incore extents are being added to the indirection
3874 * array and the new extents do not fit in the target extent list. The
3875 * erp_idx parameter contains the irec index for the target extent list
3876 * in the indirection array, and the idx parameter contains the extent
3877 * index within the list. The number of extents being added is stored
3878 * in the count parameter.
3880 * |-------| |-------|
3881 * | | | | idx - number of extents before idx
3883 * | | | | count - number of extents being inserted at idx
3884 * |-------| |-------|
3885 * | count | | nex2 | nex2 - number of extents after idx + count
3886 * |-------| |-------|
3889 xfs_iext_add_indirect_multi(
3890 xfs_ifork_t
*ifp
, /* inode fork pointer */
3891 int erp_idx
, /* target extent irec index */
3892 xfs_extnum_t idx
, /* index within target list */
3893 int count
) /* new extents being added */
3895 int byte_diff
; /* new bytes being added */
3896 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3897 xfs_extnum_t ext_diff
; /* number of extents to add */
3898 xfs_extnum_t ext_cnt
; /* new extents still needed */
3899 xfs_extnum_t nex2
; /* extents after idx + count */
3900 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3901 int nlists
; /* number of irec's (lists) */
3903 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3904 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3905 nex2
= erp
->er_extcount
- idx
;
3906 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3909 * Save second part of target extent list
3910 * (all extents past */
3912 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3913 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_SLEEP
);
3914 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3915 erp
->er_extcount
-= nex2
;
3916 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3917 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3921 * Add the new extents to the end of the target
3922 * list, then allocate new irec record(s) and
3923 * extent buffer(s) as needed to store the rest
3924 * of the new extents.
3927 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3929 erp
->er_extcount
+= ext_diff
;
3930 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3931 ext_cnt
-= ext_diff
;
3935 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3936 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3937 erp
->er_extcount
= ext_diff
;
3938 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3939 ext_cnt
-= ext_diff
;
3942 /* Add nex2 extents back to indirection array */
3944 xfs_extnum_t ext_avail
;
3947 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3948 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3951 * If nex2 extents fit in the current page, append
3952 * nex2_ep after the new extents.
3954 if (nex2
<= ext_avail
) {
3955 i
= erp
->er_extcount
;
3958 * Otherwise, check if space is available in the
3961 else if ((erp_idx
< nlists
- 1) &&
3962 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3963 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3966 /* Create a hole for nex2 extents */
3967 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3968 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3971 * Final choice, create a new extent page for
3976 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3978 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3979 kmem_free(nex2_ep
, byte_diff
);
3980 erp
->er_extcount
+= nex2
;
3981 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3986 * This is called when the amount of space required for incore file
3987 * extents needs to be decreased. The ext_diff parameter stores the
3988 * number of extents to be removed and the idx parameter contains
3989 * the extent index where the extents will be removed from.
3991 * If the amount of space needed has decreased below the linear
3992 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3993 * extent array. Otherwise, use kmem_realloc() to adjust the
3994 * size to what is needed.
3998 xfs_ifork_t
*ifp
, /* inode fork pointer */
3999 xfs_extnum_t idx
, /* index to begin removing exts */
4000 int ext_diff
) /* number of extents to remove */
4002 xfs_extnum_t nextents
; /* number of extents in file */
4003 int new_size
; /* size of extents after removal */
4005 ASSERT(ext_diff
> 0);
4006 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4007 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
4009 if (new_size
== 0) {
4010 xfs_iext_destroy(ifp
);
4011 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4012 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
4013 } else if (ifp
->if_real_bytes
) {
4014 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
4016 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
4018 ifp
->if_bytes
= new_size
;
4022 * This removes ext_diff extents from the inline buffer, beginning
4023 * at extent index idx.
4026 xfs_iext_remove_inline(
4027 xfs_ifork_t
*ifp
, /* inode fork pointer */
4028 xfs_extnum_t idx
, /* index to begin removing exts */
4029 int ext_diff
) /* number of extents to remove */
4031 int nextents
; /* number of extents in file */
4033 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4034 ASSERT(idx
< XFS_INLINE_EXTS
);
4035 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4036 ASSERT(((nextents
- ext_diff
) > 0) &&
4037 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
4039 if (idx
+ ext_diff
< nextents
) {
4040 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
4041 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
4042 (nextents
- (idx
+ ext_diff
)) *
4043 sizeof(xfs_bmbt_rec_t
));
4044 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
4045 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4047 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
4048 ext_diff
* sizeof(xfs_bmbt_rec_t
));
4053 * This removes ext_diff extents from a linear (direct) extent list,
4054 * beginning at extent index idx. If the extents are being removed
4055 * from the end of the list (ie. truncate) then we just need to re-
4056 * allocate the list to remove the extra space. Otherwise, if the
4057 * extents are being removed from the middle of the existing extent
4058 * entries, then we first need to move the extent records beginning
4059 * at idx + ext_diff up in the list to overwrite the records being
4060 * removed, then remove the extra space via kmem_realloc.
4063 xfs_iext_remove_direct(
4064 xfs_ifork_t
*ifp
, /* inode fork pointer */
4065 xfs_extnum_t idx
, /* index to begin removing exts */
4066 int ext_diff
) /* number of extents to remove */
4068 xfs_extnum_t nextents
; /* number of extents in file */
4069 int new_size
; /* size of extents after removal */
4071 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4072 new_size
= ifp
->if_bytes
-
4073 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
4074 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4076 if (new_size
== 0) {
4077 xfs_iext_destroy(ifp
);
4080 /* Move extents up in the list (if needed) */
4081 if (idx
+ ext_diff
< nextents
) {
4082 memmove(&ifp
->if_u1
.if_extents
[idx
],
4083 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
4084 (nextents
- (idx
+ ext_diff
)) *
4085 sizeof(xfs_bmbt_rec_t
));
4087 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
4088 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4090 * Reallocate the direct extent list. If the extents
4091 * will fit inside the inode then xfs_iext_realloc_direct
4092 * will switch from direct to inline extent allocation
4095 xfs_iext_realloc_direct(ifp
, new_size
);
4096 ifp
->if_bytes
= new_size
;
4100 * This is called when incore extents are being removed from the
4101 * indirection array and the extents being removed span multiple extent
4102 * buffers. The idx parameter contains the file extent index where we
4103 * want to begin removing extents, and the count parameter contains
4104 * how many extents need to be removed.
4106 * |-------| |-------|
4107 * | nex1 | | | nex1 - number of extents before idx
4108 * |-------| | count |
4109 * | | | | count - number of extents being removed at idx
4110 * | count | |-------|
4111 * | | | nex2 | nex2 - number of extents after idx + count
4112 * |-------| |-------|
4115 xfs_iext_remove_indirect(
4116 xfs_ifork_t
*ifp
, /* inode fork pointer */
4117 xfs_extnum_t idx
, /* index to begin removing extents */
4118 int count
) /* number of extents to remove */
4120 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4121 int erp_idx
= 0; /* indirection array index */
4122 xfs_extnum_t ext_cnt
; /* extents left to remove */
4123 xfs_extnum_t ext_diff
; /* extents to remove in current list */
4124 xfs_extnum_t nex1
; /* number of extents before idx */
4125 xfs_extnum_t nex2
; /* extents after idx + count */
4126 int nlists
; /* entries in indirection array */
4127 int page_idx
= idx
; /* index in target extent list */
4129 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4130 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
4131 ASSERT(erp
!= NULL
);
4132 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4136 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
4137 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
4139 * Check for deletion of entire list;
4140 * xfs_iext_irec_remove() updates extent offsets.
4142 if (ext_diff
== erp
->er_extcount
) {
4143 xfs_iext_irec_remove(ifp
, erp_idx
);
4144 ext_cnt
-= ext_diff
;
4147 ASSERT(erp_idx
< ifp
->if_real_bytes
/
4149 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4156 /* Move extents up (if needed) */
4158 memmove(&erp
->er_extbuf
[nex1
],
4159 &erp
->er_extbuf
[nex1
+ ext_diff
],
4160 nex2
* sizeof(xfs_bmbt_rec_t
));
4162 /* Zero out rest of page */
4163 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
4164 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
4165 /* Update remaining counters */
4166 erp
->er_extcount
-= ext_diff
;
4167 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
4168 ext_cnt
-= ext_diff
;
4173 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
4174 xfs_iext_irec_compact(ifp
);
4178 * Create, destroy, or resize a linear (direct) block of extents.
4181 xfs_iext_realloc_direct(
4182 xfs_ifork_t
*ifp
, /* inode fork pointer */
4183 int new_size
) /* new size of extents */
4185 int rnew_size
; /* real new size of extents */
4187 rnew_size
= new_size
;
4189 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
4190 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
4191 (new_size
!= ifp
->if_real_bytes
)));
4193 /* Free extent records */
4194 if (new_size
== 0) {
4195 xfs_iext_destroy(ifp
);
4197 /* Resize direct extent list and zero any new bytes */
4198 else if (ifp
->if_real_bytes
) {
4199 /* Check if extents will fit inside the inode */
4200 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
4201 xfs_iext_direct_to_inline(ifp
, new_size
/
4202 (uint
)sizeof(xfs_bmbt_rec_t
));
4203 ifp
->if_bytes
= new_size
;
4206 if (!is_power_of_2(new_size
)){
4207 rnew_size
= xfs_iroundup(new_size
);
4209 if (rnew_size
!= ifp
->if_real_bytes
) {
4210 ifp
->if_u1
.if_extents
=
4211 kmem_realloc(ifp
->if_u1
.if_extents
,
4216 if (rnew_size
> ifp
->if_real_bytes
) {
4217 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
4218 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
4219 rnew_size
- ifp
->if_real_bytes
);
4223 * Switch from the inline extent buffer to a direct
4224 * extent list. Be sure to include the inline extent
4225 * bytes in new_size.
4228 new_size
+= ifp
->if_bytes
;
4229 if (!is_power_of_2(new_size
)) {
4230 rnew_size
= xfs_iroundup(new_size
);
4232 xfs_iext_inline_to_direct(ifp
, rnew_size
);
4234 ifp
->if_real_bytes
= rnew_size
;
4235 ifp
->if_bytes
= new_size
;
4239 * Switch from linear (direct) extent records to inline buffer.
4242 xfs_iext_direct_to_inline(
4243 xfs_ifork_t
*ifp
, /* inode fork pointer */
4244 xfs_extnum_t nextents
) /* number of extents in file */
4246 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
4247 ASSERT(nextents
<= XFS_INLINE_EXTS
);
4249 * The inline buffer was zeroed when we switched
4250 * from inline to direct extent allocation mode,
4251 * so we don't need to clear it here.
4253 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
4254 nextents
* sizeof(xfs_bmbt_rec_t
));
4255 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4256 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
4257 ifp
->if_real_bytes
= 0;
4261 * Switch from inline buffer to linear (direct) extent records.
4262 * new_size should already be rounded up to the next power of 2
4263 * by the caller (when appropriate), so use new_size as it is.
4264 * However, since new_size may be rounded up, we can't update
4265 * if_bytes here. It is the caller's responsibility to update
4266 * if_bytes upon return.
4269 xfs_iext_inline_to_direct(
4270 xfs_ifork_t
*ifp
, /* inode fork pointer */
4271 int new_size
) /* number of extents in file */
4273 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_SLEEP
);
4274 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
4275 if (ifp
->if_bytes
) {
4276 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
4278 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4279 sizeof(xfs_bmbt_rec_t
));
4281 ifp
->if_real_bytes
= new_size
;
4285 * Resize an extent indirection array to new_size bytes.
4288 xfs_iext_realloc_indirect(
4289 xfs_ifork_t
*ifp
, /* inode fork pointer */
4290 int new_size
) /* new indirection array size */
4292 int nlists
; /* number of irec's (ex lists) */
4293 int size
; /* current indirection array size */
4295 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4296 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4297 size
= nlists
* sizeof(xfs_ext_irec_t
);
4298 ASSERT(ifp
->if_real_bytes
);
4299 ASSERT((new_size
>= 0) && (new_size
!= size
));
4300 if (new_size
== 0) {
4301 xfs_iext_destroy(ifp
);
4303 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
4304 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
4305 new_size
, size
, KM_SLEEP
);
4310 * Switch from indirection array to linear (direct) extent allocations.
4313 xfs_iext_indirect_to_direct(
4314 xfs_ifork_t
*ifp
) /* inode fork pointer */
4316 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
4317 xfs_extnum_t nextents
; /* number of extents in file */
4318 int size
; /* size of file extents */
4320 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4321 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4322 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4323 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
4325 xfs_iext_irec_compact_full(ifp
);
4326 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
4328 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
4329 kmem_free(ifp
->if_u1
.if_ext_irec
, sizeof(xfs_ext_irec_t
));
4330 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4331 ifp
->if_u1
.if_extents
= ep
;
4332 ifp
->if_bytes
= size
;
4333 if (nextents
< XFS_LINEAR_EXTS
) {
4334 xfs_iext_realloc_direct(ifp
, size
);
4339 * Free incore file extents.
4343 xfs_ifork_t
*ifp
) /* inode fork pointer */
4345 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4349 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4350 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
4351 xfs_iext_irec_remove(ifp
, erp_idx
);
4353 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
4354 } else if (ifp
->if_real_bytes
) {
4355 kmem_free(ifp
->if_u1
.if_extents
, ifp
->if_real_bytes
);
4356 } else if (ifp
->if_bytes
) {
4357 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
4358 sizeof(xfs_bmbt_rec_t
));
4360 ifp
->if_u1
.if_extents
= NULL
;
4361 ifp
->if_real_bytes
= 0;
4366 * Return a pointer to the extent record for file system block bno.
4368 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
4369 xfs_iext_bno_to_ext(
4370 xfs_ifork_t
*ifp
, /* inode fork pointer */
4371 xfs_fileoff_t bno
, /* block number to search for */
4372 xfs_extnum_t
*idxp
) /* index of target extent */
4374 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
4375 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
4376 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
4377 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4378 int high
; /* upper boundary in search */
4379 xfs_extnum_t idx
= 0; /* index of target extent */
4380 int low
; /* lower boundary in search */
4381 xfs_extnum_t nextents
; /* number of file extents */
4382 xfs_fileoff_t startoff
= 0; /* start offset of extent */
4384 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4385 if (nextents
== 0) {
4390 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4391 /* Find target extent list */
4393 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
4394 base
= erp
->er_extbuf
;
4395 high
= erp
->er_extcount
- 1;
4397 base
= ifp
->if_u1
.if_extents
;
4398 high
= nextents
- 1;
4400 /* Binary search extent records */
4401 while (low
<= high
) {
4402 idx
= (low
+ high
) >> 1;
4404 startoff
= xfs_bmbt_get_startoff(ep
);
4405 blockcount
= xfs_bmbt_get_blockcount(ep
);
4406 if (bno
< startoff
) {
4408 } else if (bno
>= startoff
+ blockcount
) {
4411 /* Convert back to file-based extent index */
4412 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4413 idx
+= erp
->er_extoff
;
4419 /* Convert back to file-based extent index */
4420 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
4421 idx
+= erp
->er_extoff
;
4423 if (bno
>= startoff
+ blockcount
) {
4424 if (++idx
== nextents
) {
4427 ep
= xfs_iext_get_ext(ifp
, idx
);
4435 * Return a pointer to the indirection array entry containing the
4436 * extent record for filesystem block bno. Store the index of the
4437 * target irec in *erp_idxp.
4439 xfs_ext_irec_t
* /* pointer to found extent record */
4440 xfs_iext_bno_to_irec(
4441 xfs_ifork_t
*ifp
, /* inode fork pointer */
4442 xfs_fileoff_t bno
, /* block number to search for */
4443 int *erp_idxp
) /* irec index of target ext list */
4445 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
4446 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
4447 int erp_idx
; /* indirection array index */
4448 int nlists
; /* number of extent irec's (lists) */
4449 int high
; /* binary search upper limit */
4450 int low
; /* binary search lower limit */
4452 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4453 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4457 while (low
<= high
) {
4458 erp_idx
= (low
+ high
) >> 1;
4459 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4460 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
4461 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
4463 } else if (erp_next
&& bno
>=
4464 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
4470 *erp_idxp
= erp_idx
;
4475 * Return a pointer to the indirection array entry containing the
4476 * extent record at file extent index *idxp. Store the index of the
4477 * target irec in *erp_idxp and store the page index of the target
4478 * extent record in *idxp.
4481 xfs_iext_idx_to_irec(
4482 xfs_ifork_t
*ifp
, /* inode fork pointer */
4483 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4484 int *erp_idxp
, /* pointer to target irec */
4485 int realloc
) /* new bytes were just added */
4487 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4488 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4489 int erp_idx
; /* indirection array index */
4490 int nlists
; /* number of irec's (ex lists) */
4491 int high
; /* binary search upper limit */
4492 int low
; /* binary search lower limit */
4493 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4495 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4496 ASSERT(page_idx
>= 0 && page_idx
<=
4497 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4498 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4503 /* Binary search extent irec's */
4504 while (low
<= high
) {
4505 erp_idx
= (low
+ high
) >> 1;
4506 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4507 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4508 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4509 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4511 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4512 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4515 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4516 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4520 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4523 page_idx
-= erp
->er_extoff
;
4528 *erp_idxp
= erp_idx
;
4533 * Allocate and initialize an indirection array once the space needed
4534 * for incore extents increases above XFS_IEXT_BUFSZ.
4538 xfs_ifork_t
*ifp
) /* inode fork pointer */
4540 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4541 xfs_extnum_t nextents
; /* number of extents in file */
4543 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4544 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4545 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4547 erp
= (xfs_ext_irec_t
*)
4548 kmem_alloc(sizeof(xfs_ext_irec_t
), KM_SLEEP
);
4550 if (nextents
== 0) {
4551 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4552 } else if (!ifp
->if_real_bytes
) {
4553 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4554 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4555 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4557 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4558 erp
->er_extcount
= nextents
;
4561 ifp
->if_flags
|= XFS_IFEXTIREC
;
4562 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4563 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4564 ifp
->if_u1
.if_ext_irec
= erp
;
4570 * Allocate and initialize a new entry in the indirection array.
4574 xfs_ifork_t
*ifp
, /* inode fork pointer */
4575 int erp_idx
) /* index for new irec */
4577 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4578 int i
; /* loop counter */
4579 int nlists
; /* number of irec's (ex lists) */
4581 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4582 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4584 /* Resize indirection array */
4585 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4586 sizeof(xfs_ext_irec_t
));
4588 * Move records down in the array so the
4589 * new page can use erp_idx.
4591 erp
= ifp
->if_u1
.if_ext_irec
;
4592 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4593 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4595 ASSERT(i
== erp_idx
);
4597 /* Initialize new extent record */
4598 erp
= ifp
->if_u1
.if_ext_irec
;
4599 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_SLEEP
);
4600 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4601 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4602 erp
[erp_idx
].er_extcount
= 0;
4603 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4604 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4605 return (&erp
[erp_idx
]);
4609 * Remove a record from the indirection array.
4612 xfs_iext_irec_remove(
4613 xfs_ifork_t
*ifp
, /* inode fork pointer */
4614 int erp_idx
) /* irec index to remove */
4616 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4617 int i
; /* loop counter */
4618 int nlists
; /* number of irec's (ex lists) */
4620 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4621 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4622 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4623 if (erp
->er_extbuf
) {
4624 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4626 kmem_free(erp
->er_extbuf
, XFS_IEXT_BUFSZ
);
4628 /* Compact extent records */
4629 erp
= ifp
->if_u1
.if_ext_irec
;
4630 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4631 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4634 * Manually free the last extent record from the indirection
4635 * array. A call to xfs_iext_realloc_indirect() with a size
4636 * of zero would result in a call to xfs_iext_destroy() which
4637 * would in turn call this function again, creating a nasty
4641 xfs_iext_realloc_indirect(ifp
,
4642 nlists
* sizeof(xfs_ext_irec_t
));
4644 kmem_free(ifp
->if_u1
.if_ext_irec
,
4645 sizeof(xfs_ext_irec_t
));
4647 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4651 * This is called to clean up large amounts of unused memory allocated
4652 * by the indirection array. Before compacting anything though, verify
4653 * that the indirection array is still needed and switch back to the
4654 * linear extent list (or even the inline buffer) if possible. The
4655 * compaction policy is as follows:
4657 * Full Compaction: Extents fit into a single page (or inline buffer)
4658 * Full Compaction: Extents occupy less than 10% of allocated space
4659 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4660 * No Compaction: Extents occupy at least 50% of allocated space
4663 xfs_iext_irec_compact(
4664 xfs_ifork_t
*ifp
) /* inode fork pointer */
4666 xfs_extnum_t nextents
; /* number of extents in file */
4667 int nlists
; /* number of irec's (ex lists) */
4669 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4670 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4671 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4673 if (nextents
== 0) {
4674 xfs_iext_destroy(ifp
);
4675 } else if (nextents
<= XFS_INLINE_EXTS
) {
4676 xfs_iext_indirect_to_direct(ifp
);
4677 xfs_iext_direct_to_inline(ifp
, nextents
);
4678 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4679 xfs_iext_indirect_to_direct(ifp
);
4680 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 3) {
4681 xfs_iext_irec_compact_full(ifp
);
4682 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4683 xfs_iext_irec_compact_pages(ifp
);
4688 * Combine extents from neighboring extent pages.
4691 xfs_iext_irec_compact_pages(
4692 xfs_ifork_t
*ifp
) /* inode fork pointer */
4694 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4695 int erp_idx
= 0; /* indirection array index */
4696 int nlists
; /* number of irec's (ex lists) */
4698 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4699 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4700 while (erp_idx
< nlists
- 1) {
4701 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4703 if (erp_next
->er_extcount
<=
4704 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4705 memmove(&erp
->er_extbuf
[erp
->er_extcount
],
4706 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4707 sizeof(xfs_bmbt_rec_t
));
4708 erp
->er_extcount
+= erp_next
->er_extcount
;
4710 * Free page before removing extent record
4711 * so er_extoffs don't get modified in
4712 * xfs_iext_irec_remove.
4714 kmem_free(erp_next
->er_extbuf
, XFS_IEXT_BUFSZ
);
4715 erp_next
->er_extbuf
= NULL
;
4716 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4717 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4725 * Fully compact the extent records managed by the indirection array.
4728 xfs_iext_irec_compact_full(
4729 xfs_ifork_t
*ifp
) /* inode fork pointer */
4731 xfs_bmbt_rec_host_t
*ep
, *ep_next
; /* extent record pointers */
4732 xfs_ext_irec_t
*erp
, *erp_next
; /* extent irec pointers */
4733 int erp_idx
= 0; /* extent irec index */
4734 int ext_avail
; /* empty entries in ex list */
4735 int ext_diff
; /* number of exts to add */
4736 int nlists
; /* number of irec's (ex lists) */
4738 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4739 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4740 erp
= ifp
->if_u1
.if_ext_irec
;
4741 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4743 ep_next
= erp_next
->er_extbuf
;
4744 while (erp_idx
< nlists
- 1) {
4745 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
4746 ext_diff
= MIN(ext_avail
, erp_next
->er_extcount
);
4747 memcpy(ep
, ep_next
, ext_diff
* sizeof(xfs_bmbt_rec_t
));
4748 erp
->er_extcount
+= ext_diff
;
4749 erp_next
->er_extcount
-= ext_diff
;
4750 /* Remove next page */
4751 if (erp_next
->er_extcount
== 0) {
4753 * Free page before removing extent record
4754 * so er_extoffs don't get modified in
4755 * xfs_iext_irec_remove.
4757 kmem_free(erp_next
->er_extbuf
,
4758 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4759 erp_next
->er_extbuf
= NULL
;
4760 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4761 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4762 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4763 /* Update next page */
4765 /* Move rest of page up to become next new page */
4766 memmove(erp_next
->er_extbuf
, ep_next
,
4767 erp_next
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
4768 ep_next
= erp_next
->er_extbuf
;
4769 memset(&ep_next
[erp_next
->er_extcount
], 0,
4770 (XFS_LINEAR_EXTS
- erp_next
->er_extcount
) *
4771 sizeof(xfs_bmbt_rec_t
));
4773 if (erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4775 if (erp_idx
< nlists
)
4776 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4780 ep
= &erp
->er_extbuf
[erp
->er_extcount
];
4782 ep_next
= erp_next
->er_extbuf
;
4787 * This is called to update the er_extoff field in the indirection
4788 * array when extents have been added or removed from one of the
4789 * extent lists. erp_idx contains the irec index to begin updating
4790 * at and ext_diff contains the number of extents that were added
4794 xfs_iext_irec_update_extoffs(
4795 xfs_ifork_t
*ifp
, /* inode fork pointer */
4796 int erp_idx
, /* irec index to update */
4797 int ext_diff
) /* number of new extents */
4799 int i
; /* loop counter */
4800 int nlists
; /* number of irec's (ex lists */
4802 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4803 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4804 for (i
= erp_idx
; i
< nlists
; i
++) {
4805 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;