x86: jprobe bugfix
[linux-2.6/mini2440.git] / fs / ext4 / extents.c
blob85287742f2ae487562be3a8ac39e40774a5de9d3
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
24 * Extents support for EXT4
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
32 #include <linux/module.h>
33 #include <linux/fs.h>
34 #include <linux/time.h>
35 #include <linux/ext4_jbd2.h>
36 #include <linux/jbd2.h>
37 #include <linux/highuid.h>
38 #include <linux/pagemap.h>
39 #include <linux/quotaops.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <linux/falloc.h>
43 #include <linux/ext4_fs_extents.h>
44 #include <asm/uaccess.h>
48 * ext_pblock:
49 * combine low and high parts of physical block number into ext4_fsblk_t
51 static ext4_fsblk_t ext_pblock(struct ext4_extent *ex)
53 ext4_fsblk_t block;
55 block = le32_to_cpu(ex->ee_start_lo);
56 block |= ((ext4_fsblk_t) le16_to_cpu(ex->ee_start_hi) << 31) << 1;
57 return block;
61 * idx_pblock:
62 * combine low and high parts of a leaf physical block number into ext4_fsblk_t
64 static ext4_fsblk_t idx_pblock(struct ext4_extent_idx *ix)
66 ext4_fsblk_t block;
68 block = le32_to_cpu(ix->ei_leaf_lo);
69 block |= ((ext4_fsblk_t) le16_to_cpu(ix->ei_leaf_hi) << 31) << 1;
70 return block;
74 * ext4_ext_store_pblock:
75 * stores a large physical block number into an extent struct,
76 * breaking it into parts
78 static void ext4_ext_store_pblock(struct ext4_extent *ex, ext4_fsblk_t pb)
80 ex->ee_start_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
81 ex->ee_start_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
85 * ext4_idx_store_pblock:
86 * stores a large physical block number into an index struct,
87 * breaking it into parts
89 static void ext4_idx_store_pblock(struct ext4_extent_idx *ix, ext4_fsblk_t pb)
91 ix->ei_leaf_lo = cpu_to_le32((unsigned long) (pb & 0xffffffff));
92 ix->ei_leaf_hi = cpu_to_le16((unsigned long) ((pb >> 31) >> 1) & 0xffff);
95 static handle_t *ext4_ext_journal_restart(handle_t *handle, int needed)
97 int err;
99 if (handle->h_buffer_credits > needed)
100 return handle;
101 if (!ext4_journal_extend(handle, needed))
102 return handle;
103 err = ext4_journal_restart(handle, needed);
105 return handle;
109 * could return:
110 * - EROFS
111 * - ENOMEM
113 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
114 struct ext4_ext_path *path)
116 if (path->p_bh) {
117 /* path points to block */
118 return ext4_journal_get_write_access(handle, path->p_bh);
120 /* path points to leaf/index in inode body */
121 /* we use in-core data, no need to protect them */
122 return 0;
126 * could return:
127 * - EROFS
128 * - ENOMEM
129 * - EIO
131 static int ext4_ext_dirty(handle_t *handle, struct inode *inode,
132 struct ext4_ext_path *path)
134 int err;
135 if (path->p_bh) {
136 /* path points to block */
137 err = ext4_journal_dirty_metadata(handle, path->p_bh);
138 } else {
139 /* path points to leaf/index in inode body */
140 err = ext4_mark_inode_dirty(handle, inode);
142 return err;
145 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
146 struct ext4_ext_path *path,
147 ext4_fsblk_t block)
149 struct ext4_inode_info *ei = EXT4_I(inode);
150 ext4_fsblk_t bg_start;
151 ext4_grpblk_t colour;
152 int depth;
154 if (path) {
155 struct ext4_extent *ex;
156 depth = path->p_depth;
158 /* try to predict block placement */
159 ex = path[depth].p_ext;
160 if (ex)
161 return ext_pblock(ex)+(block-le32_to_cpu(ex->ee_block));
163 /* it looks like index is empty;
164 * try to find starting block from index itself */
165 if (path[depth].p_bh)
166 return path[depth].p_bh->b_blocknr;
169 /* OK. use inode's group */
170 bg_start = (ei->i_block_group * EXT4_BLOCKS_PER_GROUP(inode->i_sb)) +
171 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_first_data_block);
172 colour = (current->pid % 16) *
173 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
174 return bg_start + colour + block;
177 static ext4_fsblk_t
178 ext4_ext_new_block(handle_t *handle, struct inode *inode,
179 struct ext4_ext_path *path,
180 struct ext4_extent *ex, int *err)
182 ext4_fsblk_t goal, newblock;
184 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
185 newblock = ext4_new_block(handle, inode, goal, err);
186 return newblock;
189 static int ext4_ext_space_block(struct inode *inode)
191 int size;
193 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
194 / sizeof(struct ext4_extent);
195 #ifdef AGGRESSIVE_TEST
196 if (size > 6)
197 size = 6;
198 #endif
199 return size;
202 static int ext4_ext_space_block_idx(struct inode *inode)
204 int size;
206 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
207 / sizeof(struct ext4_extent_idx);
208 #ifdef AGGRESSIVE_TEST
209 if (size > 5)
210 size = 5;
211 #endif
212 return size;
215 static int ext4_ext_space_root(struct inode *inode)
217 int size;
219 size = sizeof(EXT4_I(inode)->i_data);
220 size -= sizeof(struct ext4_extent_header);
221 size /= sizeof(struct ext4_extent);
222 #ifdef AGGRESSIVE_TEST
223 if (size > 3)
224 size = 3;
225 #endif
226 return size;
229 static int ext4_ext_space_root_idx(struct inode *inode)
231 int size;
233 size = sizeof(EXT4_I(inode)->i_data);
234 size -= sizeof(struct ext4_extent_header);
235 size /= sizeof(struct ext4_extent_idx);
236 #ifdef AGGRESSIVE_TEST
237 if (size > 4)
238 size = 4;
239 #endif
240 return size;
243 static int
244 ext4_ext_max_entries(struct inode *inode, int depth)
246 int max;
248 if (depth == ext_depth(inode)) {
249 if (depth == 0)
250 max = ext4_ext_space_root(inode);
251 else
252 max = ext4_ext_space_root_idx(inode);
253 } else {
254 if (depth == 0)
255 max = ext4_ext_space_block(inode);
256 else
257 max = ext4_ext_space_block_idx(inode);
260 return max;
263 static int __ext4_ext_check_header(const char *function, struct inode *inode,
264 struct ext4_extent_header *eh,
265 int depth)
267 const char *error_msg;
268 int max = 0;
270 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
271 error_msg = "invalid magic";
272 goto corrupted;
274 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
275 error_msg = "unexpected eh_depth";
276 goto corrupted;
278 if (unlikely(eh->eh_max == 0)) {
279 error_msg = "invalid eh_max";
280 goto corrupted;
282 max = ext4_ext_max_entries(inode, depth);
283 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
284 error_msg = "too large eh_max";
285 goto corrupted;
287 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
288 error_msg = "invalid eh_entries";
289 goto corrupted;
291 return 0;
293 corrupted:
294 ext4_error(inode->i_sb, function,
295 "bad header in inode #%lu: %s - magic %x, "
296 "entries %u, max %u(%u), depth %u(%u)",
297 inode->i_ino, error_msg, le16_to_cpu(eh->eh_magic),
298 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
299 max, le16_to_cpu(eh->eh_depth), depth);
301 return -EIO;
304 #define ext4_ext_check_header(inode, eh, depth) \
305 __ext4_ext_check_header(__FUNCTION__, inode, eh, depth)
307 #ifdef EXT_DEBUG
308 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
310 int k, l = path->p_depth;
312 ext_debug("path:");
313 for (k = 0; k <= l; k++, path++) {
314 if (path->p_idx) {
315 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
316 idx_pblock(path->p_idx));
317 } else if (path->p_ext) {
318 ext_debug(" %d:%d:%llu ",
319 le32_to_cpu(path->p_ext->ee_block),
320 ext4_ext_get_actual_len(path->p_ext),
321 ext_pblock(path->p_ext));
322 } else
323 ext_debug(" []");
325 ext_debug("\n");
328 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
330 int depth = ext_depth(inode);
331 struct ext4_extent_header *eh;
332 struct ext4_extent *ex;
333 int i;
335 if (!path)
336 return;
338 eh = path[depth].p_hdr;
339 ex = EXT_FIRST_EXTENT(eh);
341 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
342 ext_debug("%d:%d:%llu ", le32_to_cpu(ex->ee_block),
343 ext4_ext_get_actual_len(ex), ext_pblock(ex));
345 ext_debug("\n");
347 #else
348 #define ext4_ext_show_path(inode,path)
349 #define ext4_ext_show_leaf(inode,path)
350 #endif
352 static void ext4_ext_drop_refs(struct ext4_ext_path *path)
354 int depth = path->p_depth;
355 int i;
357 for (i = 0; i <= depth; i++, path++)
358 if (path->p_bh) {
359 brelse(path->p_bh);
360 path->p_bh = NULL;
365 * ext4_ext_binsearch_idx:
366 * binary search for the closest index of the given block
367 * the header must be checked before calling this
369 static void
370 ext4_ext_binsearch_idx(struct inode *inode, struct ext4_ext_path *path, int block)
372 struct ext4_extent_header *eh = path->p_hdr;
373 struct ext4_extent_idx *r, *l, *m;
376 ext_debug("binsearch for %d(idx): ", block);
378 l = EXT_FIRST_INDEX(eh) + 1;
379 r = EXT_LAST_INDEX(eh);
380 while (l <= r) {
381 m = l + (r - l) / 2;
382 if (block < le32_to_cpu(m->ei_block))
383 r = m - 1;
384 else
385 l = m + 1;
386 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
387 m, le32_to_cpu(m->ei_block),
388 r, le32_to_cpu(r->ei_block));
391 path->p_idx = l - 1;
392 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
393 idx_pblock(path->p_idx));
395 #ifdef CHECK_BINSEARCH
397 struct ext4_extent_idx *chix, *ix;
398 int k;
400 chix = ix = EXT_FIRST_INDEX(eh);
401 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
402 if (k != 0 &&
403 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
404 printk("k=%d, ix=0x%p, first=0x%p\n", k,
405 ix, EXT_FIRST_INDEX(eh));
406 printk("%u <= %u\n",
407 le32_to_cpu(ix->ei_block),
408 le32_to_cpu(ix[-1].ei_block));
410 BUG_ON(k && le32_to_cpu(ix->ei_block)
411 <= le32_to_cpu(ix[-1].ei_block));
412 if (block < le32_to_cpu(ix->ei_block))
413 break;
414 chix = ix;
416 BUG_ON(chix != path->p_idx);
418 #endif
423 * ext4_ext_binsearch:
424 * binary search for closest extent of the given block
425 * the header must be checked before calling this
427 static void
428 ext4_ext_binsearch(struct inode *inode, struct ext4_ext_path *path, int block)
430 struct ext4_extent_header *eh = path->p_hdr;
431 struct ext4_extent *r, *l, *m;
433 if (eh->eh_entries == 0) {
435 * this leaf is empty:
436 * we get such a leaf in split/add case
438 return;
441 ext_debug("binsearch for %d: ", block);
443 l = EXT_FIRST_EXTENT(eh) + 1;
444 r = EXT_LAST_EXTENT(eh);
446 while (l <= r) {
447 m = l + (r - l) / 2;
448 if (block < le32_to_cpu(m->ee_block))
449 r = m - 1;
450 else
451 l = m + 1;
452 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
453 m, le32_to_cpu(m->ee_block),
454 r, le32_to_cpu(r->ee_block));
457 path->p_ext = l - 1;
458 ext_debug(" -> %d:%llu:%d ",
459 le32_to_cpu(path->p_ext->ee_block),
460 ext_pblock(path->p_ext),
461 ext4_ext_get_actual_len(path->p_ext));
463 #ifdef CHECK_BINSEARCH
465 struct ext4_extent *chex, *ex;
466 int k;
468 chex = ex = EXT_FIRST_EXTENT(eh);
469 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
470 BUG_ON(k && le32_to_cpu(ex->ee_block)
471 <= le32_to_cpu(ex[-1].ee_block));
472 if (block < le32_to_cpu(ex->ee_block))
473 break;
474 chex = ex;
476 BUG_ON(chex != path->p_ext);
478 #endif
482 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
484 struct ext4_extent_header *eh;
486 eh = ext_inode_hdr(inode);
487 eh->eh_depth = 0;
488 eh->eh_entries = 0;
489 eh->eh_magic = EXT4_EXT_MAGIC;
490 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode));
491 ext4_mark_inode_dirty(handle, inode);
492 ext4_ext_invalidate_cache(inode);
493 return 0;
496 struct ext4_ext_path *
497 ext4_ext_find_extent(struct inode *inode, int block, struct ext4_ext_path *path)
499 struct ext4_extent_header *eh;
500 struct buffer_head *bh;
501 short int depth, i, ppos = 0, alloc = 0;
503 eh = ext_inode_hdr(inode);
504 depth = ext_depth(inode);
505 if (ext4_ext_check_header(inode, eh, depth))
506 return ERR_PTR(-EIO);
509 /* account possible depth increase */
510 if (!path) {
511 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
512 GFP_NOFS);
513 if (!path)
514 return ERR_PTR(-ENOMEM);
515 alloc = 1;
517 path[0].p_hdr = eh;
519 i = depth;
520 /* walk through the tree */
521 while (i) {
522 ext_debug("depth %d: num %d, max %d\n",
523 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
525 ext4_ext_binsearch_idx(inode, path + ppos, block);
526 path[ppos].p_block = idx_pblock(path[ppos].p_idx);
527 path[ppos].p_depth = i;
528 path[ppos].p_ext = NULL;
530 bh = sb_bread(inode->i_sb, path[ppos].p_block);
531 if (!bh)
532 goto err;
534 eh = ext_block_hdr(bh);
535 ppos++;
536 BUG_ON(ppos > depth);
537 path[ppos].p_bh = bh;
538 path[ppos].p_hdr = eh;
539 i--;
541 if (ext4_ext_check_header(inode, eh, i))
542 goto err;
545 path[ppos].p_depth = i;
546 path[ppos].p_hdr = eh;
547 path[ppos].p_ext = NULL;
548 path[ppos].p_idx = NULL;
550 /* find extent */
551 ext4_ext_binsearch(inode, path + ppos, block);
553 ext4_ext_show_path(inode, path);
555 return path;
557 err:
558 ext4_ext_drop_refs(path);
559 if (alloc)
560 kfree(path);
561 return ERR_PTR(-EIO);
565 * ext4_ext_insert_index:
566 * insert new index [@logical;@ptr] into the block at @curp;
567 * check where to insert: before @curp or after @curp
569 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
570 struct ext4_ext_path *curp,
571 int logical, ext4_fsblk_t ptr)
573 struct ext4_extent_idx *ix;
574 int len, err;
576 err = ext4_ext_get_access(handle, inode, curp);
577 if (err)
578 return err;
580 BUG_ON(logical == le32_to_cpu(curp->p_idx->ei_block));
581 len = EXT_MAX_INDEX(curp->p_hdr) - curp->p_idx;
582 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
583 /* insert after */
584 if (curp->p_idx != EXT_LAST_INDEX(curp->p_hdr)) {
585 len = (len - 1) * sizeof(struct ext4_extent_idx);
586 len = len < 0 ? 0 : len;
587 ext_debug("insert new index %d after: %llu. "
588 "move %d from 0x%p to 0x%p\n",
589 logical, ptr, len,
590 (curp->p_idx + 1), (curp->p_idx + 2));
591 memmove(curp->p_idx + 2, curp->p_idx + 1, len);
593 ix = curp->p_idx + 1;
594 } else {
595 /* insert before */
596 len = len * sizeof(struct ext4_extent_idx);
597 len = len < 0 ? 0 : len;
598 ext_debug("insert new index %d before: %llu. "
599 "move %d from 0x%p to 0x%p\n",
600 logical, ptr, len,
601 curp->p_idx, (curp->p_idx + 1));
602 memmove(curp->p_idx + 1, curp->p_idx, len);
603 ix = curp->p_idx;
606 ix->ei_block = cpu_to_le32(logical);
607 ext4_idx_store_pblock(ix, ptr);
608 curp->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(curp->p_hdr->eh_entries)+1);
610 BUG_ON(le16_to_cpu(curp->p_hdr->eh_entries)
611 > le16_to_cpu(curp->p_hdr->eh_max));
612 BUG_ON(ix > EXT_LAST_INDEX(curp->p_hdr));
614 err = ext4_ext_dirty(handle, inode, curp);
615 ext4_std_error(inode->i_sb, err);
617 return err;
621 * ext4_ext_split:
622 * inserts new subtree into the path, using free index entry
623 * at depth @at:
624 * - allocates all needed blocks (new leaf and all intermediate index blocks)
625 * - makes decision where to split
626 * - moves remaining extents and index entries (right to the split point)
627 * into the newly allocated blocks
628 * - initializes subtree
630 static int ext4_ext_split(handle_t *handle, struct inode *inode,
631 struct ext4_ext_path *path,
632 struct ext4_extent *newext, int at)
634 struct buffer_head *bh = NULL;
635 int depth = ext_depth(inode);
636 struct ext4_extent_header *neh;
637 struct ext4_extent_idx *fidx;
638 struct ext4_extent *ex;
639 int i = at, k, m, a;
640 ext4_fsblk_t newblock, oldblock;
641 __le32 border;
642 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
643 int err = 0;
645 /* make decision: where to split? */
646 /* FIXME: now decision is simplest: at current extent */
648 /* if current leaf will be split, then we should use
649 * border from split point */
650 BUG_ON(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr));
651 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
652 border = path[depth].p_ext[1].ee_block;
653 ext_debug("leaf will be split."
654 " next leaf starts at %d\n",
655 le32_to_cpu(border));
656 } else {
657 border = newext->ee_block;
658 ext_debug("leaf will be added."
659 " next leaf starts at %d\n",
660 le32_to_cpu(border));
664 * If error occurs, then we break processing
665 * and mark filesystem read-only. index won't
666 * be inserted and tree will be in consistent
667 * state. Next mount will repair buffers too.
671 * Get array to track all allocated blocks.
672 * We need this to handle errors and free blocks
673 * upon them.
675 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
676 if (!ablocks)
677 return -ENOMEM;
679 /* allocate all needed blocks */
680 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
681 for (a = 0; a < depth - at; a++) {
682 newblock = ext4_ext_new_block(handle, inode, path, newext, &err);
683 if (newblock == 0)
684 goto cleanup;
685 ablocks[a] = newblock;
688 /* initialize new leaf */
689 newblock = ablocks[--a];
690 BUG_ON(newblock == 0);
691 bh = sb_getblk(inode->i_sb, newblock);
692 if (!bh) {
693 err = -EIO;
694 goto cleanup;
696 lock_buffer(bh);
698 err = ext4_journal_get_create_access(handle, bh);
699 if (err)
700 goto cleanup;
702 neh = ext_block_hdr(bh);
703 neh->eh_entries = 0;
704 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
705 neh->eh_magic = EXT4_EXT_MAGIC;
706 neh->eh_depth = 0;
707 ex = EXT_FIRST_EXTENT(neh);
709 /* move remainder of path[depth] to the new leaf */
710 BUG_ON(path[depth].p_hdr->eh_entries != path[depth].p_hdr->eh_max);
711 /* start copy from next extent */
712 /* TODO: we could do it by single memmove */
713 m = 0;
714 path[depth].p_ext++;
715 while (path[depth].p_ext <=
716 EXT_MAX_EXTENT(path[depth].p_hdr)) {
717 ext_debug("move %d:%llu:%d in new leaf %llu\n",
718 le32_to_cpu(path[depth].p_ext->ee_block),
719 ext_pblock(path[depth].p_ext),
720 ext4_ext_get_actual_len(path[depth].p_ext),
721 newblock);
722 /*memmove(ex++, path[depth].p_ext++,
723 sizeof(struct ext4_extent));
724 neh->eh_entries++;*/
725 path[depth].p_ext++;
726 m++;
728 if (m) {
729 memmove(ex, path[depth].p_ext-m, sizeof(struct ext4_extent)*m);
730 neh->eh_entries = cpu_to_le16(le16_to_cpu(neh->eh_entries)+m);
733 set_buffer_uptodate(bh);
734 unlock_buffer(bh);
736 err = ext4_journal_dirty_metadata(handle, bh);
737 if (err)
738 goto cleanup;
739 brelse(bh);
740 bh = NULL;
742 /* correct old leaf */
743 if (m) {
744 err = ext4_ext_get_access(handle, inode, path + depth);
745 if (err)
746 goto cleanup;
747 path[depth].p_hdr->eh_entries =
748 cpu_to_le16(le16_to_cpu(path[depth].p_hdr->eh_entries)-m);
749 err = ext4_ext_dirty(handle, inode, path + depth);
750 if (err)
751 goto cleanup;
755 /* create intermediate indexes */
756 k = depth - at - 1;
757 BUG_ON(k < 0);
758 if (k)
759 ext_debug("create %d intermediate indices\n", k);
760 /* insert new index into current index block */
761 /* current depth stored in i var */
762 i = depth - 1;
763 while (k--) {
764 oldblock = newblock;
765 newblock = ablocks[--a];
766 bh = sb_getblk(inode->i_sb, (ext4_fsblk_t)newblock);
767 if (!bh) {
768 err = -EIO;
769 goto cleanup;
771 lock_buffer(bh);
773 err = ext4_journal_get_create_access(handle, bh);
774 if (err)
775 goto cleanup;
777 neh = ext_block_hdr(bh);
778 neh->eh_entries = cpu_to_le16(1);
779 neh->eh_magic = EXT4_EXT_MAGIC;
780 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
781 neh->eh_depth = cpu_to_le16(depth - i);
782 fidx = EXT_FIRST_INDEX(neh);
783 fidx->ei_block = border;
784 ext4_idx_store_pblock(fidx, oldblock);
786 ext_debug("int.index at %d (block %llu): %lu -> %llu\n", i,
787 newblock, (unsigned long) le32_to_cpu(border),
788 oldblock);
789 /* copy indexes */
790 m = 0;
791 path[i].p_idx++;
793 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
794 EXT_MAX_INDEX(path[i].p_hdr));
795 BUG_ON(EXT_MAX_INDEX(path[i].p_hdr) !=
796 EXT_LAST_INDEX(path[i].p_hdr));
797 while (path[i].p_idx <= EXT_MAX_INDEX(path[i].p_hdr)) {
798 ext_debug("%d: move %d:%llu in new index %llu\n", i,
799 le32_to_cpu(path[i].p_idx->ei_block),
800 idx_pblock(path[i].p_idx),
801 newblock);
802 /*memmove(++fidx, path[i].p_idx++,
803 sizeof(struct ext4_extent_idx));
804 neh->eh_entries++;
805 BUG_ON(neh->eh_entries > neh->eh_max);*/
806 path[i].p_idx++;
807 m++;
809 if (m) {
810 memmove(++fidx, path[i].p_idx - m,
811 sizeof(struct ext4_extent_idx) * m);
812 neh->eh_entries =
813 cpu_to_le16(le16_to_cpu(neh->eh_entries) + m);
815 set_buffer_uptodate(bh);
816 unlock_buffer(bh);
818 err = ext4_journal_dirty_metadata(handle, bh);
819 if (err)
820 goto cleanup;
821 brelse(bh);
822 bh = NULL;
824 /* correct old index */
825 if (m) {
826 err = ext4_ext_get_access(handle, inode, path + i);
827 if (err)
828 goto cleanup;
829 path[i].p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path[i].p_hdr->eh_entries)-m);
830 err = ext4_ext_dirty(handle, inode, path + i);
831 if (err)
832 goto cleanup;
835 i--;
838 /* insert new index */
839 err = ext4_ext_insert_index(handle, inode, path + at,
840 le32_to_cpu(border), newblock);
842 cleanup:
843 if (bh) {
844 if (buffer_locked(bh))
845 unlock_buffer(bh);
846 brelse(bh);
849 if (err) {
850 /* free all allocated blocks in error case */
851 for (i = 0; i < depth; i++) {
852 if (!ablocks[i])
853 continue;
854 ext4_free_blocks(handle, inode, ablocks[i], 1);
857 kfree(ablocks);
859 return err;
863 * ext4_ext_grow_indepth:
864 * implements tree growing procedure:
865 * - allocates new block
866 * - moves top-level data (index block or leaf) into the new block
867 * - initializes new top-level, creating index that points to the
868 * just created block
870 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
871 struct ext4_ext_path *path,
872 struct ext4_extent *newext)
874 struct ext4_ext_path *curp = path;
875 struct ext4_extent_header *neh;
876 struct ext4_extent_idx *fidx;
877 struct buffer_head *bh;
878 ext4_fsblk_t newblock;
879 int err = 0;
881 newblock = ext4_ext_new_block(handle, inode, path, newext, &err);
882 if (newblock == 0)
883 return err;
885 bh = sb_getblk(inode->i_sb, newblock);
886 if (!bh) {
887 err = -EIO;
888 ext4_std_error(inode->i_sb, err);
889 return err;
891 lock_buffer(bh);
893 err = ext4_journal_get_create_access(handle, bh);
894 if (err) {
895 unlock_buffer(bh);
896 goto out;
899 /* move top-level index/leaf into new block */
900 memmove(bh->b_data, curp->p_hdr, sizeof(EXT4_I(inode)->i_data));
902 /* set size of new block */
903 neh = ext_block_hdr(bh);
904 /* old root could have indexes or leaves
905 * so calculate e_max right way */
906 if (ext_depth(inode))
907 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode));
908 else
909 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode));
910 neh->eh_magic = EXT4_EXT_MAGIC;
911 set_buffer_uptodate(bh);
912 unlock_buffer(bh);
914 err = ext4_journal_dirty_metadata(handle, bh);
915 if (err)
916 goto out;
918 /* create index in new top-level index: num,max,pointer */
919 err = ext4_ext_get_access(handle, inode, curp);
920 if (err)
921 goto out;
923 curp->p_hdr->eh_magic = EXT4_EXT_MAGIC;
924 curp->p_hdr->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode));
925 curp->p_hdr->eh_entries = cpu_to_le16(1);
926 curp->p_idx = EXT_FIRST_INDEX(curp->p_hdr);
928 if (path[0].p_hdr->eh_depth)
929 curp->p_idx->ei_block =
930 EXT_FIRST_INDEX(path[0].p_hdr)->ei_block;
931 else
932 curp->p_idx->ei_block =
933 EXT_FIRST_EXTENT(path[0].p_hdr)->ee_block;
934 ext4_idx_store_pblock(curp->p_idx, newblock);
936 neh = ext_inode_hdr(inode);
937 fidx = EXT_FIRST_INDEX(neh);
938 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
939 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
940 le32_to_cpu(fidx->ei_block), idx_pblock(fidx));
942 neh->eh_depth = cpu_to_le16(path->p_depth + 1);
943 err = ext4_ext_dirty(handle, inode, curp);
944 out:
945 brelse(bh);
947 return err;
951 * ext4_ext_create_new_leaf:
952 * finds empty index and adds new leaf.
953 * if no free index is found, then it requests in-depth growing.
955 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
956 struct ext4_ext_path *path,
957 struct ext4_extent *newext)
959 struct ext4_ext_path *curp;
960 int depth, i, err = 0;
962 repeat:
963 i = depth = ext_depth(inode);
965 /* walk up to the tree and look for free index entry */
966 curp = path + depth;
967 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
968 i--;
969 curp--;
972 /* we use already allocated block for index block,
973 * so subsequent data blocks should be contiguous */
974 if (EXT_HAS_FREE_INDEX(curp)) {
975 /* if we found index with free entry, then use that
976 * entry: create all needed subtree and add new leaf */
977 err = ext4_ext_split(handle, inode, path, newext, i);
979 /* refill path */
980 ext4_ext_drop_refs(path);
981 path = ext4_ext_find_extent(inode,
982 le32_to_cpu(newext->ee_block),
983 path);
984 if (IS_ERR(path))
985 err = PTR_ERR(path);
986 } else {
987 /* tree is full, time to grow in depth */
988 err = ext4_ext_grow_indepth(handle, inode, path, newext);
989 if (err)
990 goto out;
992 /* refill path */
993 ext4_ext_drop_refs(path);
994 path = ext4_ext_find_extent(inode,
995 le32_to_cpu(newext->ee_block),
996 path);
997 if (IS_ERR(path)) {
998 err = PTR_ERR(path);
999 goto out;
1003 * only first (depth 0 -> 1) produces free space;
1004 * in all other cases we have to split the grown tree
1006 depth = ext_depth(inode);
1007 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1008 /* now we need to split */
1009 goto repeat;
1013 out:
1014 return err;
1018 * ext4_ext_next_allocated_block:
1019 * returns allocated block in subsequent extent or EXT_MAX_BLOCK.
1020 * NOTE: it considers block number from index entry as
1021 * allocated block. Thus, index entries have to be consistent
1022 * with leaves.
1024 static unsigned long
1025 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1027 int depth;
1029 BUG_ON(path == NULL);
1030 depth = path->p_depth;
1032 if (depth == 0 && path->p_ext == NULL)
1033 return EXT_MAX_BLOCK;
1035 while (depth >= 0) {
1036 if (depth == path->p_depth) {
1037 /* leaf */
1038 if (path[depth].p_ext !=
1039 EXT_LAST_EXTENT(path[depth].p_hdr))
1040 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1041 } else {
1042 /* index */
1043 if (path[depth].p_idx !=
1044 EXT_LAST_INDEX(path[depth].p_hdr))
1045 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1047 depth--;
1050 return EXT_MAX_BLOCK;
1054 * ext4_ext_next_leaf_block:
1055 * returns first allocated block from next leaf or EXT_MAX_BLOCK
1057 static unsigned ext4_ext_next_leaf_block(struct inode *inode,
1058 struct ext4_ext_path *path)
1060 int depth;
1062 BUG_ON(path == NULL);
1063 depth = path->p_depth;
1065 /* zero-tree has no leaf blocks at all */
1066 if (depth == 0)
1067 return EXT_MAX_BLOCK;
1069 /* go to index block */
1070 depth--;
1072 while (depth >= 0) {
1073 if (path[depth].p_idx !=
1074 EXT_LAST_INDEX(path[depth].p_hdr))
1075 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1076 depth--;
1079 return EXT_MAX_BLOCK;
1083 * ext4_ext_correct_indexes:
1084 * if leaf gets modified and modified extent is first in the leaf,
1085 * then we have to correct all indexes above.
1086 * TODO: do we need to correct tree in all cases?
1088 int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1089 struct ext4_ext_path *path)
1091 struct ext4_extent_header *eh;
1092 int depth = ext_depth(inode);
1093 struct ext4_extent *ex;
1094 __le32 border;
1095 int k, err = 0;
1097 eh = path[depth].p_hdr;
1098 ex = path[depth].p_ext;
1099 BUG_ON(ex == NULL);
1100 BUG_ON(eh == NULL);
1102 if (depth == 0) {
1103 /* there is no tree at all */
1104 return 0;
1107 if (ex != EXT_FIRST_EXTENT(eh)) {
1108 /* we correct tree if first leaf got modified only */
1109 return 0;
1113 * TODO: we need correction if border is smaller than current one
1115 k = depth - 1;
1116 border = path[depth].p_ext->ee_block;
1117 err = ext4_ext_get_access(handle, inode, path + k);
1118 if (err)
1119 return err;
1120 path[k].p_idx->ei_block = border;
1121 err = ext4_ext_dirty(handle, inode, path + k);
1122 if (err)
1123 return err;
1125 while (k--) {
1126 /* change all left-side indexes */
1127 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1128 break;
1129 err = ext4_ext_get_access(handle, inode, path + k);
1130 if (err)
1131 break;
1132 path[k].p_idx->ei_block = border;
1133 err = ext4_ext_dirty(handle, inode, path + k);
1134 if (err)
1135 break;
1138 return err;
1141 static int
1142 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1143 struct ext4_extent *ex2)
1145 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1148 * Make sure that either both extents are uninitialized, or
1149 * both are _not_.
1151 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1152 return 0;
1154 if (ext4_ext_is_uninitialized(ex1))
1155 max_len = EXT_UNINIT_MAX_LEN;
1156 else
1157 max_len = EXT_INIT_MAX_LEN;
1159 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1160 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1162 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1163 le32_to_cpu(ex2->ee_block))
1164 return 0;
1167 * To allow future support for preallocated extents to be added
1168 * as an RO_COMPAT feature, refuse to merge to extents if
1169 * this can result in the top bit of ee_len being set.
1171 if (ext1_ee_len + ext2_ee_len > max_len)
1172 return 0;
1173 #ifdef AGGRESSIVE_TEST
1174 if (le16_to_cpu(ex1->ee_len) >= 4)
1175 return 0;
1176 #endif
1178 if (ext_pblock(ex1) + ext1_ee_len == ext_pblock(ex2))
1179 return 1;
1180 return 0;
1184 * This function tries to merge the "ex" extent to the next extent in the tree.
1185 * It always tries to merge towards right. If you want to merge towards
1186 * left, pass "ex - 1" as argument instead of "ex".
1187 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1188 * 1 if they got merged.
1190 int ext4_ext_try_to_merge(struct inode *inode,
1191 struct ext4_ext_path *path,
1192 struct ext4_extent *ex)
1194 struct ext4_extent_header *eh;
1195 unsigned int depth, len;
1196 int merge_done = 0;
1197 int uninitialized = 0;
1199 depth = ext_depth(inode);
1200 BUG_ON(path[depth].p_hdr == NULL);
1201 eh = path[depth].p_hdr;
1203 while (ex < EXT_LAST_EXTENT(eh)) {
1204 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1205 break;
1206 /* merge with next extent! */
1207 if (ext4_ext_is_uninitialized(ex))
1208 uninitialized = 1;
1209 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1210 + ext4_ext_get_actual_len(ex + 1));
1211 if (uninitialized)
1212 ext4_ext_mark_uninitialized(ex);
1214 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1215 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1216 * sizeof(struct ext4_extent);
1217 memmove(ex + 1, ex + 2, len);
1219 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries) - 1);
1220 merge_done = 1;
1221 WARN_ON(eh->eh_entries == 0);
1222 if (!eh->eh_entries)
1223 ext4_error(inode->i_sb, "ext4_ext_try_to_merge",
1224 "inode#%lu, eh->eh_entries = 0!", inode->i_ino);
1227 return merge_done;
1231 * check if a portion of the "newext" extent overlaps with an
1232 * existing extent.
1234 * If there is an overlap discovered, it updates the length of the newext
1235 * such that there will be no overlap, and then returns 1.
1236 * If there is no overlap found, it returns 0.
1238 unsigned int ext4_ext_check_overlap(struct inode *inode,
1239 struct ext4_extent *newext,
1240 struct ext4_ext_path *path)
1242 unsigned long b1, b2;
1243 unsigned int depth, len1;
1244 unsigned int ret = 0;
1246 b1 = le32_to_cpu(newext->ee_block);
1247 len1 = ext4_ext_get_actual_len(newext);
1248 depth = ext_depth(inode);
1249 if (!path[depth].p_ext)
1250 goto out;
1251 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1254 * get the next allocated block if the extent in the path
1255 * is before the requested block(s)
1257 if (b2 < b1) {
1258 b2 = ext4_ext_next_allocated_block(path);
1259 if (b2 == EXT_MAX_BLOCK)
1260 goto out;
1263 /* check for wrap through zero */
1264 if (b1 + len1 < b1) {
1265 len1 = EXT_MAX_BLOCK - b1;
1266 newext->ee_len = cpu_to_le16(len1);
1267 ret = 1;
1270 /* check for overlap */
1271 if (b1 + len1 > b2) {
1272 newext->ee_len = cpu_to_le16(b2 - b1);
1273 ret = 1;
1275 out:
1276 return ret;
1280 * ext4_ext_insert_extent:
1281 * tries to merge requsted extent into the existing extent or
1282 * inserts requested extent as new one into the tree,
1283 * creating new leaf in the no-space case.
1285 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1286 struct ext4_ext_path *path,
1287 struct ext4_extent *newext)
1289 struct ext4_extent_header * eh;
1290 struct ext4_extent *ex, *fex;
1291 struct ext4_extent *nearex; /* nearest extent */
1292 struct ext4_ext_path *npath = NULL;
1293 int depth, len, err, next;
1294 unsigned uninitialized = 0;
1296 BUG_ON(ext4_ext_get_actual_len(newext) == 0);
1297 depth = ext_depth(inode);
1298 ex = path[depth].p_ext;
1299 BUG_ON(path[depth].p_hdr == NULL);
1301 /* try to insert block into found extent and return */
1302 if (ex && ext4_can_extents_be_merged(inode, ex, newext)) {
1303 ext_debug("append %d block to %d:%d (from %llu)\n",
1304 ext4_ext_get_actual_len(newext),
1305 le32_to_cpu(ex->ee_block),
1306 ext4_ext_get_actual_len(ex), ext_pblock(ex));
1307 err = ext4_ext_get_access(handle, inode, path + depth);
1308 if (err)
1309 return err;
1312 * ext4_can_extents_be_merged should have checked that either
1313 * both extents are uninitialized, or both aren't. Thus we
1314 * need to check only one of them here.
1316 if (ext4_ext_is_uninitialized(ex))
1317 uninitialized = 1;
1318 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1319 + ext4_ext_get_actual_len(newext));
1320 if (uninitialized)
1321 ext4_ext_mark_uninitialized(ex);
1322 eh = path[depth].p_hdr;
1323 nearex = ex;
1324 goto merge;
1327 repeat:
1328 depth = ext_depth(inode);
1329 eh = path[depth].p_hdr;
1330 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1331 goto has_space;
1333 /* probably next leaf has space for us? */
1334 fex = EXT_LAST_EXTENT(eh);
1335 next = ext4_ext_next_leaf_block(inode, path);
1336 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block)
1337 && next != EXT_MAX_BLOCK) {
1338 ext_debug("next leaf block - %d\n", next);
1339 BUG_ON(npath != NULL);
1340 npath = ext4_ext_find_extent(inode, next, NULL);
1341 if (IS_ERR(npath))
1342 return PTR_ERR(npath);
1343 BUG_ON(npath->p_depth != path->p_depth);
1344 eh = npath[depth].p_hdr;
1345 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1346 ext_debug("next leaf isnt full(%d)\n",
1347 le16_to_cpu(eh->eh_entries));
1348 path = npath;
1349 goto repeat;
1351 ext_debug("next leaf has no free space(%d,%d)\n",
1352 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1356 * There is no free space in the found leaf.
1357 * We're gonna add a new leaf in the tree.
1359 err = ext4_ext_create_new_leaf(handle, inode, path, newext);
1360 if (err)
1361 goto cleanup;
1362 depth = ext_depth(inode);
1363 eh = path[depth].p_hdr;
1365 has_space:
1366 nearex = path[depth].p_ext;
1368 err = ext4_ext_get_access(handle, inode, path + depth);
1369 if (err)
1370 goto cleanup;
1372 if (!nearex) {
1373 /* there is no extent in this leaf, create first one */
1374 ext_debug("first extent in the leaf: %d:%llu:%d\n",
1375 le32_to_cpu(newext->ee_block),
1376 ext_pblock(newext),
1377 ext4_ext_get_actual_len(newext));
1378 path[depth].p_ext = EXT_FIRST_EXTENT(eh);
1379 } else if (le32_to_cpu(newext->ee_block)
1380 > le32_to_cpu(nearex->ee_block)) {
1381 /* BUG_ON(newext->ee_block == nearex->ee_block); */
1382 if (nearex != EXT_LAST_EXTENT(eh)) {
1383 len = EXT_MAX_EXTENT(eh) - nearex;
1384 len = (len - 1) * sizeof(struct ext4_extent);
1385 len = len < 0 ? 0 : len;
1386 ext_debug("insert %d:%llu:%d after: nearest 0x%p, "
1387 "move %d from 0x%p to 0x%p\n",
1388 le32_to_cpu(newext->ee_block),
1389 ext_pblock(newext),
1390 ext4_ext_get_actual_len(newext),
1391 nearex, len, nearex + 1, nearex + 2);
1392 memmove(nearex + 2, nearex + 1, len);
1394 path[depth].p_ext = nearex + 1;
1395 } else {
1396 BUG_ON(newext->ee_block == nearex->ee_block);
1397 len = (EXT_MAX_EXTENT(eh) - nearex) * sizeof(struct ext4_extent);
1398 len = len < 0 ? 0 : len;
1399 ext_debug("insert %d:%llu:%d before: nearest 0x%p, "
1400 "move %d from 0x%p to 0x%p\n",
1401 le32_to_cpu(newext->ee_block),
1402 ext_pblock(newext),
1403 ext4_ext_get_actual_len(newext),
1404 nearex, len, nearex + 1, nearex + 2);
1405 memmove(nearex + 1, nearex, len);
1406 path[depth].p_ext = nearex;
1409 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)+1);
1410 nearex = path[depth].p_ext;
1411 nearex->ee_block = newext->ee_block;
1412 ext4_ext_store_pblock(nearex, ext_pblock(newext));
1413 nearex->ee_len = newext->ee_len;
1415 merge:
1416 /* try to merge extents to the right */
1417 ext4_ext_try_to_merge(inode, path, nearex);
1419 /* try to merge extents to the left */
1421 /* time to correct all indexes above */
1422 err = ext4_ext_correct_indexes(handle, inode, path);
1423 if (err)
1424 goto cleanup;
1426 err = ext4_ext_dirty(handle, inode, path + depth);
1428 cleanup:
1429 if (npath) {
1430 ext4_ext_drop_refs(npath);
1431 kfree(npath);
1433 ext4_ext_tree_changed(inode);
1434 ext4_ext_invalidate_cache(inode);
1435 return err;
1438 int ext4_ext_walk_space(struct inode *inode, unsigned long block,
1439 unsigned long num, ext_prepare_callback func,
1440 void *cbdata)
1442 struct ext4_ext_path *path = NULL;
1443 struct ext4_ext_cache cbex;
1444 struct ext4_extent *ex;
1445 unsigned long next, start = 0, end = 0;
1446 unsigned long last = block + num;
1447 int depth, exists, err = 0;
1449 BUG_ON(func == NULL);
1450 BUG_ON(inode == NULL);
1452 while (block < last && block != EXT_MAX_BLOCK) {
1453 num = last - block;
1454 /* find extent for this block */
1455 path = ext4_ext_find_extent(inode, block, path);
1456 if (IS_ERR(path)) {
1457 err = PTR_ERR(path);
1458 path = NULL;
1459 break;
1462 depth = ext_depth(inode);
1463 BUG_ON(path[depth].p_hdr == NULL);
1464 ex = path[depth].p_ext;
1465 next = ext4_ext_next_allocated_block(path);
1467 exists = 0;
1468 if (!ex) {
1469 /* there is no extent yet, so try to allocate
1470 * all requested space */
1471 start = block;
1472 end = block + num;
1473 } else if (le32_to_cpu(ex->ee_block) > block) {
1474 /* need to allocate space before found extent */
1475 start = block;
1476 end = le32_to_cpu(ex->ee_block);
1477 if (block + num < end)
1478 end = block + num;
1479 } else if (block >= le32_to_cpu(ex->ee_block)
1480 + ext4_ext_get_actual_len(ex)) {
1481 /* need to allocate space after found extent */
1482 start = block;
1483 end = block + num;
1484 if (end >= next)
1485 end = next;
1486 } else if (block >= le32_to_cpu(ex->ee_block)) {
1488 * some part of requested space is covered
1489 * by found extent
1491 start = block;
1492 end = le32_to_cpu(ex->ee_block)
1493 + ext4_ext_get_actual_len(ex);
1494 if (block + num < end)
1495 end = block + num;
1496 exists = 1;
1497 } else {
1498 BUG();
1500 BUG_ON(end <= start);
1502 if (!exists) {
1503 cbex.ec_block = start;
1504 cbex.ec_len = end - start;
1505 cbex.ec_start = 0;
1506 cbex.ec_type = EXT4_EXT_CACHE_GAP;
1507 } else {
1508 cbex.ec_block = le32_to_cpu(ex->ee_block);
1509 cbex.ec_len = ext4_ext_get_actual_len(ex);
1510 cbex.ec_start = ext_pblock(ex);
1511 cbex.ec_type = EXT4_EXT_CACHE_EXTENT;
1514 BUG_ON(cbex.ec_len == 0);
1515 err = func(inode, path, &cbex, cbdata);
1516 ext4_ext_drop_refs(path);
1518 if (err < 0)
1519 break;
1520 if (err == EXT_REPEAT)
1521 continue;
1522 else if (err == EXT_BREAK) {
1523 err = 0;
1524 break;
1527 if (ext_depth(inode) != depth) {
1528 /* depth was changed. we have to realloc path */
1529 kfree(path);
1530 path = NULL;
1533 block = cbex.ec_block + cbex.ec_len;
1536 if (path) {
1537 ext4_ext_drop_refs(path);
1538 kfree(path);
1541 return err;
1544 static void
1545 ext4_ext_put_in_cache(struct inode *inode, __u32 block,
1546 __u32 len, ext4_fsblk_t start, int type)
1548 struct ext4_ext_cache *cex;
1549 BUG_ON(len == 0);
1550 cex = &EXT4_I(inode)->i_cached_extent;
1551 cex->ec_type = type;
1552 cex->ec_block = block;
1553 cex->ec_len = len;
1554 cex->ec_start = start;
1558 * ext4_ext_put_gap_in_cache:
1559 * calculate boundaries of the gap that the requested block fits into
1560 * and cache this gap
1562 static void
1563 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1564 unsigned long block)
1566 int depth = ext_depth(inode);
1567 unsigned long lblock, len;
1568 struct ext4_extent *ex;
1570 ex = path[depth].p_ext;
1571 if (ex == NULL) {
1572 /* there is no extent yet, so gap is [0;-] */
1573 lblock = 0;
1574 len = EXT_MAX_BLOCK;
1575 ext_debug("cache gap(whole file):");
1576 } else if (block < le32_to_cpu(ex->ee_block)) {
1577 lblock = block;
1578 len = le32_to_cpu(ex->ee_block) - block;
1579 ext_debug("cache gap(before): %lu [%lu:%lu]",
1580 (unsigned long) block,
1581 (unsigned long) le32_to_cpu(ex->ee_block),
1582 (unsigned long) ext4_ext_get_actual_len(ex));
1583 } else if (block >= le32_to_cpu(ex->ee_block)
1584 + ext4_ext_get_actual_len(ex)) {
1585 lblock = le32_to_cpu(ex->ee_block)
1586 + ext4_ext_get_actual_len(ex);
1587 len = ext4_ext_next_allocated_block(path);
1588 ext_debug("cache gap(after): [%lu:%lu] %lu",
1589 (unsigned long) le32_to_cpu(ex->ee_block),
1590 (unsigned long) ext4_ext_get_actual_len(ex),
1591 (unsigned long) block);
1592 BUG_ON(len == lblock);
1593 len = len - lblock;
1594 } else {
1595 lblock = len = 0;
1596 BUG();
1599 ext_debug(" -> %lu:%lu\n", (unsigned long) lblock, len);
1600 ext4_ext_put_in_cache(inode, lblock, len, 0, EXT4_EXT_CACHE_GAP);
1603 static int
1604 ext4_ext_in_cache(struct inode *inode, unsigned long block,
1605 struct ext4_extent *ex)
1607 struct ext4_ext_cache *cex;
1609 cex = &EXT4_I(inode)->i_cached_extent;
1611 /* has cache valid data? */
1612 if (cex->ec_type == EXT4_EXT_CACHE_NO)
1613 return EXT4_EXT_CACHE_NO;
1615 BUG_ON(cex->ec_type != EXT4_EXT_CACHE_GAP &&
1616 cex->ec_type != EXT4_EXT_CACHE_EXTENT);
1617 if (block >= cex->ec_block && block < cex->ec_block + cex->ec_len) {
1618 ex->ee_block = cpu_to_le32(cex->ec_block);
1619 ext4_ext_store_pblock(ex, cex->ec_start);
1620 ex->ee_len = cpu_to_le16(cex->ec_len);
1621 ext_debug("%lu cached by %lu:%lu:%llu\n",
1622 (unsigned long) block,
1623 (unsigned long) cex->ec_block,
1624 (unsigned long) cex->ec_len,
1625 cex->ec_start);
1626 return cex->ec_type;
1629 /* not in cache */
1630 return EXT4_EXT_CACHE_NO;
1634 * ext4_ext_rm_idx:
1635 * removes index from the index block.
1636 * It's used in truncate case only, thus all requests are for
1637 * last index in the block only.
1639 int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
1640 struct ext4_ext_path *path)
1642 struct buffer_head *bh;
1643 int err;
1644 ext4_fsblk_t leaf;
1646 /* free index block */
1647 path--;
1648 leaf = idx_pblock(path->p_idx);
1649 BUG_ON(path->p_hdr->eh_entries == 0);
1650 err = ext4_ext_get_access(handle, inode, path);
1651 if (err)
1652 return err;
1653 path->p_hdr->eh_entries = cpu_to_le16(le16_to_cpu(path->p_hdr->eh_entries)-1);
1654 err = ext4_ext_dirty(handle, inode, path);
1655 if (err)
1656 return err;
1657 ext_debug("index is empty, remove it, free block %llu\n", leaf);
1658 bh = sb_find_get_block(inode->i_sb, leaf);
1659 ext4_forget(handle, 1, inode, bh, leaf);
1660 ext4_free_blocks(handle, inode, leaf, 1);
1661 return err;
1665 * ext4_ext_calc_credits_for_insert:
1666 * This routine returns max. credits that the extent tree can consume.
1667 * It should be OK for low-performance paths like ->writepage()
1668 * To allow many writing processes to fit into a single transaction,
1669 * the caller should calculate credits under truncate_mutex and
1670 * pass the actual path.
1672 int ext4_ext_calc_credits_for_insert(struct inode *inode,
1673 struct ext4_ext_path *path)
1675 int depth, needed;
1677 if (path) {
1678 /* probably there is space in leaf? */
1679 depth = ext_depth(inode);
1680 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
1681 < le16_to_cpu(path[depth].p_hdr->eh_max))
1682 return 1;
1686 * given 32-bit logical block (4294967296 blocks), max. tree
1687 * can be 4 levels in depth -- 4 * 340^4 == 53453440000.
1688 * Let's also add one more level for imbalance.
1690 depth = 5;
1692 /* allocation of new data block(s) */
1693 needed = 2;
1696 * tree can be full, so it would need to grow in depth:
1697 * we need one credit to modify old root, credits for
1698 * new root will be added in split accounting
1700 needed += 1;
1703 * Index split can happen, we would need:
1704 * allocate intermediate indexes (bitmap + group)
1705 * + change two blocks at each level, but root (already included)
1707 needed += (depth * 2) + (depth * 2);
1709 /* any allocation modifies superblock */
1710 needed += 1;
1712 return needed;
1715 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
1716 struct ext4_extent *ex,
1717 unsigned long from, unsigned long to)
1719 struct buffer_head *bh;
1720 unsigned short ee_len = ext4_ext_get_actual_len(ex);
1721 int i;
1723 #ifdef EXTENTS_STATS
1725 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1726 spin_lock(&sbi->s_ext_stats_lock);
1727 sbi->s_ext_blocks += ee_len;
1728 sbi->s_ext_extents++;
1729 if (ee_len < sbi->s_ext_min)
1730 sbi->s_ext_min = ee_len;
1731 if (ee_len > sbi->s_ext_max)
1732 sbi->s_ext_max = ee_len;
1733 if (ext_depth(inode) > sbi->s_depth_max)
1734 sbi->s_depth_max = ext_depth(inode);
1735 spin_unlock(&sbi->s_ext_stats_lock);
1737 #endif
1738 if (from >= le32_to_cpu(ex->ee_block)
1739 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
1740 /* tail removal */
1741 unsigned long num;
1742 ext4_fsblk_t start;
1743 num = le32_to_cpu(ex->ee_block) + ee_len - from;
1744 start = ext_pblock(ex) + ee_len - num;
1745 ext_debug("free last %lu blocks starting %llu\n", num, start);
1746 for (i = 0; i < num; i++) {
1747 bh = sb_find_get_block(inode->i_sb, start + i);
1748 ext4_forget(handle, 0, inode, bh, start + i);
1750 ext4_free_blocks(handle, inode, start, num);
1751 } else if (from == le32_to_cpu(ex->ee_block)
1752 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
1753 printk("strange request: removal %lu-%lu from %u:%u\n",
1754 from, to, le32_to_cpu(ex->ee_block), ee_len);
1755 } else {
1756 printk("strange request: removal(2) %lu-%lu from %u:%u\n",
1757 from, to, le32_to_cpu(ex->ee_block), ee_len);
1759 return 0;
1762 static int
1763 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
1764 struct ext4_ext_path *path, unsigned long start)
1766 int err = 0, correct_index = 0;
1767 int depth = ext_depth(inode), credits;
1768 struct ext4_extent_header *eh;
1769 unsigned a, b, block, num;
1770 unsigned long ex_ee_block;
1771 unsigned short ex_ee_len;
1772 unsigned uninitialized = 0;
1773 struct ext4_extent *ex;
1775 /* the header must be checked already in ext4_ext_remove_space() */
1776 ext_debug("truncate since %lu in leaf\n", start);
1777 if (!path[depth].p_hdr)
1778 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
1779 eh = path[depth].p_hdr;
1780 BUG_ON(eh == NULL);
1782 /* find where to start removing */
1783 ex = EXT_LAST_EXTENT(eh);
1785 ex_ee_block = le32_to_cpu(ex->ee_block);
1786 if (ext4_ext_is_uninitialized(ex))
1787 uninitialized = 1;
1788 ex_ee_len = ext4_ext_get_actual_len(ex);
1790 while (ex >= EXT_FIRST_EXTENT(eh) &&
1791 ex_ee_block + ex_ee_len > start) {
1792 ext_debug("remove ext %lu:%u\n", ex_ee_block, ex_ee_len);
1793 path[depth].p_ext = ex;
1795 a = ex_ee_block > start ? ex_ee_block : start;
1796 b = ex_ee_block + ex_ee_len - 1 < EXT_MAX_BLOCK ?
1797 ex_ee_block + ex_ee_len - 1 : EXT_MAX_BLOCK;
1799 ext_debug(" border %u:%u\n", a, b);
1801 if (a != ex_ee_block && b != ex_ee_block + ex_ee_len - 1) {
1802 block = 0;
1803 num = 0;
1804 BUG();
1805 } else if (a != ex_ee_block) {
1806 /* remove tail of the extent */
1807 block = ex_ee_block;
1808 num = a - block;
1809 } else if (b != ex_ee_block + ex_ee_len - 1) {
1810 /* remove head of the extent */
1811 block = a;
1812 num = b - a;
1813 /* there is no "make a hole" API yet */
1814 BUG();
1815 } else {
1816 /* remove whole extent: excellent! */
1817 block = ex_ee_block;
1818 num = 0;
1819 BUG_ON(a != ex_ee_block);
1820 BUG_ON(b != ex_ee_block + ex_ee_len - 1);
1823 /* at present, extent can't cross block group: */
1824 /* leaf + bitmap + group desc + sb + inode */
1825 credits = 5;
1826 if (ex == EXT_FIRST_EXTENT(eh)) {
1827 correct_index = 1;
1828 credits += (ext_depth(inode)) + 1;
1830 #ifdef CONFIG_QUOTA
1831 credits += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
1832 #endif
1834 handle = ext4_ext_journal_restart(handle, credits);
1835 if (IS_ERR(handle)) {
1836 err = PTR_ERR(handle);
1837 goto out;
1840 err = ext4_ext_get_access(handle, inode, path + depth);
1841 if (err)
1842 goto out;
1844 err = ext4_remove_blocks(handle, inode, ex, a, b);
1845 if (err)
1846 goto out;
1848 if (num == 0) {
1849 /* this extent is removed; mark slot entirely unused */
1850 ext4_ext_store_pblock(ex, 0);
1851 eh->eh_entries = cpu_to_le16(le16_to_cpu(eh->eh_entries)-1);
1854 ex->ee_block = cpu_to_le32(block);
1855 ex->ee_len = cpu_to_le16(num);
1857 * Do not mark uninitialized if all the blocks in the
1858 * extent have been removed.
1860 if (uninitialized && num)
1861 ext4_ext_mark_uninitialized(ex);
1863 err = ext4_ext_dirty(handle, inode, path + depth);
1864 if (err)
1865 goto out;
1867 ext_debug("new extent: %u:%u:%llu\n", block, num,
1868 ext_pblock(ex));
1869 ex--;
1870 ex_ee_block = le32_to_cpu(ex->ee_block);
1871 ex_ee_len = ext4_ext_get_actual_len(ex);
1874 if (correct_index && eh->eh_entries)
1875 err = ext4_ext_correct_indexes(handle, inode, path);
1877 /* if this leaf is free, then we should
1878 * remove it from index block above */
1879 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
1880 err = ext4_ext_rm_idx(handle, inode, path + depth);
1882 out:
1883 return err;
1887 * ext4_ext_more_to_rm:
1888 * returns 1 if current index has to be freed (even partial)
1890 static int
1891 ext4_ext_more_to_rm(struct ext4_ext_path *path)
1893 BUG_ON(path->p_idx == NULL);
1895 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
1896 return 0;
1899 * if truncate on deeper level happened, it wasn't partial,
1900 * so we have to consider current index for truncation
1902 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
1903 return 0;
1904 return 1;
1907 int ext4_ext_remove_space(struct inode *inode, unsigned long start)
1909 struct super_block *sb = inode->i_sb;
1910 int depth = ext_depth(inode);
1911 struct ext4_ext_path *path;
1912 handle_t *handle;
1913 int i = 0, err = 0;
1915 ext_debug("truncate since %lu\n", start);
1917 /* probably first extent we're gonna free will be last in block */
1918 handle = ext4_journal_start(inode, depth + 1);
1919 if (IS_ERR(handle))
1920 return PTR_ERR(handle);
1922 ext4_ext_invalidate_cache(inode);
1925 * We start scanning from right side, freeing all the blocks
1926 * after i_size and walking into the tree depth-wise.
1928 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1), GFP_KERNEL);
1929 if (path == NULL) {
1930 ext4_journal_stop(handle);
1931 return -ENOMEM;
1933 path[0].p_hdr = ext_inode_hdr(inode);
1934 if (ext4_ext_check_header(inode, path[0].p_hdr, depth)) {
1935 err = -EIO;
1936 goto out;
1938 path[0].p_depth = depth;
1940 while (i >= 0 && err == 0) {
1941 if (i == depth) {
1942 /* this is leaf block */
1943 err = ext4_ext_rm_leaf(handle, inode, path, start);
1944 /* root level has p_bh == NULL, brelse() eats this */
1945 brelse(path[i].p_bh);
1946 path[i].p_bh = NULL;
1947 i--;
1948 continue;
1951 /* this is index block */
1952 if (!path[i].p_hdr) {
1953 ext_debug("initialize header\n");
1954 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
1957 if (!path[i].p_idx) {
1958 /* this level hasn't been touched yet */
1959 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
1960 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
1961 ext_debug("init index ptr: hdr 0x%p, num %d\n",
1962 path[i].p_hdr,
1963 le16_to_cpu(path[i].p_hdr->eh_entries));
1964 } else {
1965 /* we were already here, see at next index */
1966 path[i].p_idx--;
1969 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
1970 i, EXT_FIRST_INDEX(path[i].p_hdr),
1971 path[i].p_idx);
1972 if (ext4_ext_more_to_rm(path + i)) {
1973 struct buffer_head *bh;
1974 /* go to the next level */
1975 ext_debug("move to level %d (block %llu)\n",
1976 i + 1, idx_pblock(path[i].p_idx));
1977 memset(path + i + 1, 0, sizeof(*path));
1978 bh = sb_bread(sb, idx_pblock(path[i].p_idx));
1979 if (!bh) {
1980 /* should we reset i_size? */
1981 err = -EIO;
1982 break;
1984 if (WARN_ON(i + 1 > depth)) {
1985 err = -EIO;
1986 break;
1988 if (ext4_ext_check_header(inode, ext_block_hdr(bh),
1989 depth - i - 1)) {
1990 err = -EIO;
1991 break;
1993 path[i + 1].p_bh = bh;
1995 /* save actual number of indexes since this
1996 * number is changed at the next iteration */
1997 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
1998 i++;
1999 } else {
2000 /* we finished processing this index, go up */
2001 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2002 /* index is empty, remove it;
2003 * handle must be already prepared by the
2004 * truncatei_leaf() */
2005 err = ext4_ext_rm_idx(handle, inode, path + i);
2007 /* root level has p_bh == NULL, brelse() eats this */
2008 brelse(path[i].p_bh);
2009 path[i].p_bh = NULL;
2010 i--;
2011 ext_debug("return to level %d\n", i);
2015 /* TODO: flexible tree reduction should be here */
2016 if (path->p_hdr->eh_entries == 0) {
2018 * truncate to zero freed all the tree,
2019 * so we need to correct eh_depth
2021 err = ext4_ext_get_access(handle, inode, path);
2022 if (err == 0) {
2023 ext_inode_hdr(inode)->eh_depth = 0;
2024 ext_inode_hdr(inode)->eh_max =
2025 cpu_to_le16(ext4_ext_space_root(inode));
2026 err = ext4_ext_dirty(handle, inode, path);
2029 out:
2030 ext4_ext_tree_changed(inode);
2031 ext4_ext_drop_refs(path);
2032 kfree(path);
2033 ext4_journal_stop(handle);
2035 return err;
2039 * called at mount time
2041 void ext4_ext_init(struct super_block *sb)
2044 * possible initialization would be here
2047 if (test_opt(sb, EXTENTS)) {
2048 printk("EXT4-fs: file extents enabled");
2049 #ifdef AGGRESSIVE_TEST
2050 printk(", aggressive tests");
2051 #endif
2052 #ifdef CHECK_BINSEARCH
2053 printk(", check binsearch");
2054 #endif
2055 #ifdef EXTENTS_STATS
2056 printk(", stats");
2057 #endif
2058 printk("\n");
2059 #ifdef EXTENTS_STATS
2060 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2061 EXT4_SB(sb)->s_ext_min = 1 << 30;
2062 EXT4_SB(sb)->s_ext_max = 0;
2063 #endif
2068 * called at umount time
2070 void ext4_ext_release(struct super_block *sb)
2072 if (!test_opt(sb, EXTENTS))
2073 return;
2075 #ifdef EXTENTS_STATS
2076 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2077 struct ext4_sb_info *sbi = EXT4_SB(sb);
2078 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2079 sbi->s_ext_blocks, sbi->s_ext_extents,
2080 sbi->s_ext_blocks / sbi->s_ext_extents);
2081 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2082 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2084 #endif
2088 * This function is called by ext4_ext_get_blocks() if someone tries to write
2089 * to an uninitialized extent. It may result in splitting the uninitialized
2090 * extent into multiple extents (upto three - one initialized and two
2091 * uninitialized).
2092 * There are three possibilities:
2093 * a> There is no split required: Entire extent should be initialized
2094 * b> Splits in two extents: Write is happening at either end of the extent
2095 * c> Splits in three extents: Somone is writing in middle of the extent
2097 int ext4_ext_convert_to_initialized(handle_t *handle, struct inode *inode,
2098 struct ext4_ext_path *path,
2099 ext4_fsblk_t iblock,
2100 unsigned long max_blocks)
2102 struct ext4_extent *ex, newex;
2103 struct ext4_extent *ex1 = NULL;
2104 struct ext4_extent *ex2 = NULL;
2105 struct ext4_extent *ex3 = NULL;
2106 struct ext4_extent_header *eh;
2107 unsigned int allocated, ee_block, ee_len, depth;
2108 ext4_fsblk_t newblock;
2109 int err = 0;
2110 int ret = 0;
2112 depth = ext_depth(inode);
2113 eh = path[depth].p_hdr;
2114 ex = path[depth].p_ext;
2115 ee_block = le32_to_cpu(ex->ee_block);
2116 ee_len = ext4_ext_get_actual_len(ex);
2117 allocated = ee_len - (iblock - ee_block);
2118 newblock = iblock - ee_block + ext_pblock(ex);
2119 ex2 = ex;
2121 /* ex1: ee_block to iblock - 1 : uninitialized */
2122 if (iblock > ee_block) {
2123 ex1 = ex;
2124 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2125 ext4_ext_mark_uninitialized(ex1);
2126 ex2 = &newex;
2129 * for sanity, update the length of the ex2 extent before
2130 * we insert ex3, if ex1 is NULL. This is to avoid temporary
2131 * overlap of blocks.
2133 if (!ex1 && allocated > max_blocks)
2134 ex2->ee_len = cpu_to_le16(max_blocks);
2135 /* ex3: to ee_block + ee_len : uninitialised */
2136 if (allocated > max_blocks) {
2137 unsigned int newdepth;
2138 ex3 = &newex;
2139 ex3->ee_block = cpu_to_le32(iblock + max_blocks);
2140 ext4_ext_store_pblock(ex3, newblock + max_blocks);
2141 ex3->ee_len = cpu_to_le16(allocated - max_blocks);
2142 ext4_ext_mark_uninitialized(ex3);
2143 err = ext4_ext_insert_extent(handle, inode, path, ex3);
2144 if (err)
2145 goto out;
2147 * The depth, and hence eh & ex might change
2148 * as part of the insert above.
2150 newdepth = ext_depth(inode);
2151 if (newdepth != depth) {
2152 depth = newdepth;
2153 path = ext4_ext_find_extent(inode, iblock, NULL);
2154 if (IS_ERR(path)) {
2155 err = PTR_ERR(path);
2156 path = NULL;
2157 goto out;
2159 eh = path[depth].p_hdr;
2160 ex = path[depth].p_ext;
2161 if (ex2 != &newex)
2162 ex2 = ex;
2164 allocated = max_blocks;
2167 * If there was a change of depth as part of the
2168 * insertion of ex3 above, we need to update the length
2169 * of the ex1 extent again here
2171 if (ex1 && ex1 != ex) {
2172 ex1 = ex;
2173 ex1->ee_len = cpu_to_le16(iblock - ee_block);
2174 ext4_ext_mark_uninitialized(ex1);
2175 ex2 = &newex;
2177 /* ex2: iblock to iblock + maxblocks-1 : initialised */
2178 ex2->ee_block = cpu_to_le32(iblock);
2179 ext4_ext_store_pblock(ex2, newblock);
2180 ex2->ee_len = cpu_to_le16(allocated);
2181 if (ex2 != ex)
2182 goto insert;
2183 err = ext4_ext_get_access(handle, inode, path + depth);
2184 if (err)
2185 goto out;
2187 * New (initialized) extent starts from the first block
2188 * in the current extent. i.e., ex2 == ex
2189 * We have to see if it can be merged with the extent
2190 * on the left.
2192 if (ex2 > EXT_FIRST_EXTENT(eh)) {
2194 * To merge left, pass "ex2 - 1" to try_to_merge(),
2195 * since it merges towards right _only_.
2197 ret = ext4_ext_try_to_merge(inode, path, ex2 - 1);
2198 if (ret) {
2199 err = ext4_ext_correct_indexes(handle, inode, path);
2200 if (err)
2201 goto out;
2202 depth = ext_depth(inode);
2203 ex2--;
2207 * Try to Merge towards right. This might be required
2208 * only when the whole extent is being written to.
2209 * i.e. ex2 == ex and ex3 == NULL.
2211 if (!ex3) {
2212 ret = ext4_ext_try_to_merge(inode, path, ex2);
2213 if (ret) {
2214 err = ext4_ext_correct_indexes(handle, inode, path);
2215 if (err)
2216 goto out;
2219 /* Mark modified extent as dirty */
2220 err = ext4_ext_dirty(handle, inode, path + depth);
2221 goto out;
2222 insert:
2223 err = ext4_ext_insert_extent(handle, inode, path, &newex);
2224 out:
2225 return err ? err : allocated;
2228 int ext4_ext_get_blocks(handle_t *handle, struct inode *inode,
2229 ext4_fsblk_t iblock,
2230 unsigned long max_blocks, struct buffer_head *bh_result,
2231 int create, int extend_disksize)
2233 struct ext4_ext_path *path = NULL;
2234 struct ext4_extent_header *eh;
2235 struct ext4_extent newex, *ex;
2236 ext4_fsblk_t goal, newblock;
2237 int err = 0, depth, ret;
2238 unsigned long allocated = 0;
2240 __clear_bit(BH_New, &bh_result->b_state);
2241 ext_debug("blocks %d/%lu requested for inode %u\n", (int) iblock,
2242 max_blocks, (unsigned) inode->i_ino);
2243 mutex_lock(&EXT4_I(inode)->truncate_mutex);
2245 /* check in cache */
2246 goal = ext4_ext_in_cache(inode, iblock, &newex);
2247 if (goal) {
2248 if (goal == EXT4_EXT_CACHE_GAP) {
2249 if (!create) {
2251 * block isn't allocated yet and
2252 * user doesn't want to allocate it
2254 goto out2;
2256 /* we should allocate requested block */
2257 } else if (goal == EXT4_EXT_CACHE_EXTENT) {
2258 /* block is already allocated */
2259 newblock = iblock
2260 - le32_to_cpu(newex.ee_block)
2261 + ext_pblock(&newex);
2262 /* number of remaining blocks in the extent */
2263 allocated = le16_to_cpu(newex.ee_len) -
2264 (iblock - le32_to_cpu(newex.ee_block));
2265 goto out;
2266 } else {
2267 BUG();
2271 /* find extent for this block */
2272 path = ext4_ext_find_extent(inode, iblock, NULL);
2273 if (IS_ERR(path)) {
2274 err = PTR_ERR(path);
2275 path = NULL;
2276 goto out2;
2279 depth = ext_depth(inode);
2282 * consistent leaf must not be empty;
2283 * this situation is possible, though, _during_ tree modification;
2284 * this is why assert can't be put in ext4_ext_find_extent()
2286 BUG_ON(path[depth].p_ext == NULL && depth != 0);
2287 eh = path[depth].p_hdr;
2289 ex = path[depth].p_ext;
2290 if (ex) {
2291 unsigned long ee_block = le32_to_cpu(ex->ee_block);
2292 ext4_fsblk_t ee_start = ext_pblock(ex);
2293 unsigned short ee_len;
2296 * Uninitialized extents are treated as holes, except that
2297 * we split out initialized portions during a write.
2299 ee_len = ext4_ext_get_actual_len(ex);
2300 /* if found extent covers block, simply return it */
2301 if (iblock >= ee_block && iblock < ee_block + ee_len) {
2302 newblock = iblock - ee_block + ee_start;
2303 /* number of remaining blocks in the extent */
2304 allocated = ee_len - (iblock - ee_block);
2305 ext_debug("%d fit into %lu:%d -> %llu\n", (int) iblock,
2306 ee_block, ee_len, newblock);
2308 /* Do not put uninitialized extent in the cache */
2309 if (!ext4_ext_is_uninitialized(ex)) {
2310 ext4_ext_put_in_cache(inode, ee_block,
2311 ee_len, ee_start,
2312 EXT4_EXT_CACHE_EXTENT);
2313 goto out;
2315 if (create == EXT4_CREATE_UNINITIALIZED_EXT)
2316 goto out;
2317 if (!create)
2318 goto out2;
2320 ret = ext4_ext_convert_to_initialized(handle, inode,
2321 path, iblock,
2322 max_blocks);
2323 if (ret <= 0)
2324 goto out2;
2325 else
2326 allocated = ret;
2327 goto outnew;
2332 * requested block isn't allocated yet;
2333 * we couldn't try to create block if create flag is zero
2335 if (!create) {
2337 * put just found gap into cache to speed up
2338 * subsequent requests
2340 ext4_ext_put_gap_in_cache(inode, path, iblock);
2341 goto out2;
2344 * Okay, we need to do block allocation. Lazily initialize the block
2345 * allocation info here if necessary.
2347 if (S_ISREG(inode->i_mode) && (!EXT4_I(inode)->i_block_alloc_info))
2348 ext4_init_block_alloc_info(inode);
2350 /* allocate new block */
2351 goal = ext4_ext_find_goal(inode, path, iblock);
2354 * See if request is beyond maximum number of blocks we can have in
2355 * a single extent. For an initialized extent this limit is
2356 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
2357 * EXT_UNINIT_MAX_LEN.
2359 if (max_blocks > EXT_INIT_MAX_LEN &&
2360 create != EXT4_CREATE_UNINITIALIZED_EXT)
2361 max_blocks = EXT_INIT_MAX_LEN;
2362 else if (max_blocks > EXT_UNINIT_MAX_LEN &&
2363 create == EXT4_CREATE_UNINITIALIZED_EXT)
2364 max_blocks = EXT_UNINIT_MAX_LEN;
2366 /* Check if we can really insert (iblock)::(iblock+max_blocks) extent */
2367 newex.ee_block = cpu_to_le32(iblock);
2368 newex.ee_len = cpu_to_le16(max_blocks);
2369 err = ext4_ext_check_overlap(inode, &newex, path);
2370 if (err)
2371 allocated = le16_to_cpu(newex.ee_len);
2372 else
2373 allocated = max_blocks;
2374 newblock = ext4_new_blocks(handle, inode, goal, &allocated, &err);
2375 if (!newblock)
2376 goto out2;
2377 ext_debug("allocate new block: goal %llu, found %llu/%lu\n",
2378 goal, newblock, allocated);
2380 /* try to insert new extent into found leaf and return */
2381 ext4_ext_store_pblock(&newex, newblock);
2382 newex.ee_len = cpu_to_le16(allocated);
2383 if (create == EXT4_CREATE_UNINITIALIZED_EXT) /* Mark uninitialized */
2384 ext4_ext_mark_uninitialized(&newex);
2385 err = ext4_ext_insert_extent(handle, inode, path, &newex);
2386 if (err) {
2387 /* free data blocks we just allocated */
2388 ext4_free_blocks(handle, inode, ext_pblock(&newex),
2389 le16_to_cpu(newex.ee_len));
2390 goto out2;
2393 if (extend_disksize && inode->i_size > EXT4_I(inode)->i_disksize)
2394 EXT4_I(inode)->i_disksize = inode->i_size;
2396 /* previous routine could use block we allocated */
2397 newblock = ext_pblock(&newex);
2398 outnew:
2399 __set_bit(BH_New, &bh_result->b_state);
2401 /* Cache only when it is _not_ an uninitialized extent */
2402 if (create != EXT4_CREATE_UNINITIALIZED_EXT)
2403 ext4_ext_put_in_cache(inode, iblock, allocated, newblock,
2404 EXT4_EXT_CACHE_EXTENT);
2405 out:
2406 if (allocated > max_blocks)
2407 allocated = max_blocks;
2408 ext4_ext_show_leaf(inode, path);
2409 __set_bit(BH_Mapped, &bh_result->b_state);
2410 bh_result->b_bdev = inode->i_sb->s_bdev;
2411 bh_result->b_blocknr = newblock;
2412 out2:
2413 if (path) {
2414 ext4_ext_drop_refs(path);
2415 kfree(path);
2417 mutex_unlock(&EXT4_I(inode)->truncate_mutex);
2419 return err ? err : allocated;
2422 void ext4_ext_truncate(struct inode * inode, struct page *page)
2424 struct address_space *mapping = inode->i_mapping;
2425 struct super_block *sb = inode->i_sb;
2426 unsigned long last_block;
2427 handle_t *handle;
2428 int err = 0;
2431 * probably first extent we're gonna free will be last in block
2433 err = ext4_writepage_trans_blocks(inode) + 3;
2434 handle = ext4_journal_start(inode, err);
2435 if (IS_ERR(handle)) {
2436 if (page) {
2437 clear_highpage(page);
2438 flush_dcache_page(page);
2439 unlock_page(page);
2440 page_cache_release(page);
2442 return;
2445 if (page)
2446 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2448 mutex_lock(&EXT4_I(inode)->truncate_mutex);
2449 ext4_ext_invalidate_cache(inode);
2452 * TODO: optimization is possible here.
2453 * Probably we need not scan at all,
2454 * because page truncation is enough.
2456 if (ext4_orphan_add(handle, inode))
2457 goto out_stop;
2459 /* we have to know where to truncate from in crash case */
2460 EXT4_I(inode)->i_disksize = inode->i_size;
2461 ext4_mark_inode_dirty(handle, inode);
2463 last_block = (inode->i_size + sb->s_blocksize - 1)
2464 >> EXT4_BLOCK_SIZE_BITS(sb);
2465 err = ext4_ext_remove_space(inode, last_block);
2467 /* In a multi-transaction truncate, we only make the final
2468 * transaction synchronous.
2470 if (IS_SYNC(inode))
2471 handle->h_sync = 1;
2473 out_stop:
2475 * If this was a simple ftruncate() and the file will remain alive,
2476 * then we need to clear up the orphan record which we created above.
2477 * However, if this was a real unlink then we were called by
2478 * ext4_delete_inode(), and we allow that function to clean up the
2479 * orphan info for us.
2481 if (inode->i_nlink)
2482 ext4_orphan_del(handle, inode);
2484 mutex_unlock(&EXT4_I(inode)->truncate_mutex);
2485 ext4_journal_stop(handle);
2489 * ext4_ext_writepage_trans_blocks:
2490 * calculate max number of blocks we could modify
2491 * in order to allocate new block for an inode
2493 int ext4_ext_writepage_trans_blocks(struct inode *inode, int num)
2495 int needed;
2497 needed = ext4_ext_calc_credits_for_insert(inode, NULL);
2499 /* caller wants to allocate num blocks, but note it includes sb */
2500 needed = needed * num - (num - 1);
2502 #ifdef CONFIG_QUOTA
2503 needed += 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
2504 #endif
2506 return needed;
2510 * preallocate space for a file. This implements ext4's fallocate inode
2511 * operation, which gets called from sys_fallocate system call.
2512 * For block-mapped files, posix_fallocate should fall back to the method
2513 * of writing zeroes to the required new blocks (the same behavior which is
2514 * expected for file systems which do not support fallocate() system call).
2516 long ext4_fallocate(struct inode *inode, int mode, loff_t offset, loff_t len)
2518 handle_t *handle;
2519 ext4_fsblk_t block, max_blocks;
2520 ext4_fsblk_t nblocks = 0;
2521 int ret = 0;
2522 int ret2 = 0;
2523 int retries = 0;
2524 struct buffer_head map_bh;
2525 unsigned int credits, blkbits = inode->i_blkbits;
2528 * currently supporting (pre)allocate mode for extent-based
2529 * files _only_
2531 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
2532 return -EOPNOTSUPP;
2534 /* preallocation to directories is currently not supported */
2535 if (S_ISDIR(inode->i_mode))
2536 return -ENODEV;
2538 block = offset >> blkbits;
2539 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
2540 - block;
2543 * credits to insert 1 extent into extent tree + buffers to be able to
2544 * modify 1 super block, 1 block bitmap and 1 group descriptor.
2546 credits = EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + 3;
2547 retry:
2548 while (ret >= 0 && ret < max_blocks) {
2549 block = block + ret;
2550 max_blocks = max_blocks - ret;
2551 handle = ext4_journal_start(inode, credits);
2552 if (IS_ERR(handle)) {
2553 ret = PTR_ERR(handle);
2554 break;
2557 ret = ext4_ext_get_blocks(handle, inode, block,
2558 max_blocks, &map_bh,
2559 EXT4_CREATE_UNINITIALIZED_EXT, 0);
2560 WARN_ON(!ret);
2561 if (!ret) {
2562 ext4_error(inode->i_sb, "ext4_fallocate",
2563 "ext4_ext_get_blocks returned 0! inode#%lu"
2564 ", block=%llu, max_blocks=%llu",
2565 inode->i_ino, block, max_blocks);
2566 ret = -EIO;
2567 ext4_mark_inode_dirty(handle, inode);
2568 ret2 = ext4_journal_stop(handle);
2569 break;
2571 if (ret > 0) {
2572 /* check wrap through sign-bit/zero here */
2573 if ((block + ret) < 0 || (block + ret) < block) {
2574 ret = -EIO;
2575 ext4_mark_inode_dirty(handle, inode);
2576 ret2 = ext4_journal_stop(handle);
2577 break;
2579 if (buffer_new(&map_bh) && ((block + ret) >
2580 (EXT4_BLOCK_ALIGN(i_size_read(inode), blkbits)
2581 >> blkbits)))
2582 nblocks = nblocks + ret;
2585 /* Update ctime if new blocks get allocated */
2586 if (nblocks) {
2587 struct timespec now;
2589 now = current_fs_time(inode->i_sb);
2590 if (!timespec_equal(&inode->i_ctime, &now))
2591 inode->i_ctime = now;
2594 ext4_mark_inode_dirty(handle, inode);
2595 ret2 = ext4_journal_stop(handle);
2596 if (ret2)
2597 break;
2600 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2601 goto retry;
2604 * Time to update the file size.
2605 * Update only when preallocation was requested beyond the file size.
2607 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
2608 (offset + len) > i_size_read(inode)) {
2609 if (ret > 0) {
2611 * if no error, we assume preallocation succeeded
2612 * completely
2614 mutex_lock(&inode->i_mutex);
2615 i_size_write(inode, offset + len);
2616 EXT4_I(inode)->i_disksize = i_size_read(inode);
2617 mutex_unlock(&inode->i_mutex);
2618 } else if (ret < 0 && nblocks) {
2619 /* Handle partial allocation scenario */
2620 loff_t newsize;
2622 mutex_lock(&inode->i_mutex);
2623 newsize = (nblocks << blkbits) + i_size_read(inode);
2624 i_size_write(inode, EXT4_BLOCK_ALIGN(newsize, blkbits));
2625 EXT4_I(inode)->i_disksize = i_size_read(inode);
2626 mutex_unlock(&inode->i_mutex);
2630 return ret > 0 ? ret2 : ret;