2 * sata_mv.c - Marvell SATA support
4 * Copyright 2008: Marvell Corporation, all rights reserved.
5 * Copyright 2005: EMC Corporation, all rights reserved.
6 * Copyright 2005 Red Hat, Inc. All rights reserved.
8 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
28 * --> Errata workaround for NCQ device errors.
30 * --> More errata workarounds for PCI-X.
32 * --> Complete a full errata audit for all chipsets to identify others.
34 * --> ATAPI support (Marvell claims the 60xx/70xx chips can do it).
36 * --> Investigate problems with PCI Message Signalled Interrupts (MSI).
38 * --> Cache frequently-accessed registers in mv_port_priv to reduce overhead.
40 * --> Develop a low-power-consumption strategy, and implement it.
42 * --> [Experiment, low priority] Investigate interrupt coalescing.
43 * Quite often, especially with PCI Message Signalled Interrupts (MSI),
44 * the overhead reduced by interrupt mitigation is quite often not
45 * worth the latency cost.
47 * --> [Experiment, Marvell value added] Is it possible to use target
48 * mode to cross-connect two Linux boxes with Marvell cards? If so,
49 * creating LibATA target mode support would be very interesting.
51 * Target mode, for those without docs, is the ability to directly
52 * connect two SATA ports.
55 #include <linux/kernel.h>
56 #include <linux/module.h>
57 #include <linux/pci.h>
58 #include <linux/init.h>
59 #include <linux/blkdev.h>
60 #include <linux/delay.h>
61 #include <linux/interrupt.h>
62 #include <linux/dmapool.h>
63 #include <linux/dma-mapping.h>
64 #include <linux/device.h>
65 #include <linux/platform_device.h>
66 #include <linux/ata_platform.h>
67 #include <linux/mbus.h>
68 #include <linux/bitops.h>
69 #include <scsi/scsi_host.h>
70 #include <scsi/scsi_cmnd.h>
71 #include <scsi/scsi_device.h>
72 #include <linux/libata.h>
74 #define DRV_NAME "sata_mv"
75 #define DRV_VERSION "1.24"
78 /* BAR's are enumerated in terms of pci_resource_start() terms */
79 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
80 MV_IO_BAR
= 2, /* offset 0x18: IO space */
81 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
83 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
84 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
87 MV_IRQ_COAL_REG_BASE
= 0x18000, /* 6xxx part only */
88 MV_IRQ_COAL_CAUSE
= (MV_IRQ_COAL_REG_BASE
+ 0x08),
89 MV_IRQ_COAL_CAUSE_LO
= (MV_IRQ_COAL_REG_BASE
+ 0x88),
90 MV_IRQ_COAL_CAUSE_HI
= (MV_IRQ_COAL_REG_BASE
+ 0x8c),
91 MV_IRQ_COAL_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xcc),
92 MV_IRQ_COAL_TIME_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xd0),
94 MV_SATAHC0_REG_BASE
= 0x20000,
95 MV_FLASH_CTL_OFS
= 0x1046c,
96 MV_GPIO_PORT_CTL_OFS
= 0x104f0,
97 MV_RESET_CFG_OFS
= 0x180d8,
99 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
100 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
101 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
102 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
105 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
107 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
108 * CRPB needs alignment on a 256B boundary. Size == 256B
109 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
111 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
112 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
114 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
116 /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */
117 MV_PORT_HC_SHIFT
= 2,
118 MV_PORTS_PER_HC
= (1 << MV_PORT_HC_SHIFT
), /* 4 */
119 /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */
120 MV_PORT_MASK
= (MV_PORTS_PER_HC
- 1), /* 3 */
123 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
124 MV_FLAG_IRQ_COALESCE
= (1 << 29), /* IRQ coalescing capability */
126 MV_COMMON_FLAGS
= ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
|
127 ATA_FLAG_MMIO
| ATA_FLAG_NO_ATAPI
|
128 ATA_FLAG_PIO_POLLING
,
130 MV_6XXX_FLAGS
= MV_FLAG_IRQ_COALESCE
,
132 MV_GENIIE_FLAGS
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
133 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
134 ATA_FLAG_NCQ
| ATA_FLAG_AN
,
136 CRQB_FLAG_READ
= (1 << 0),
138 CRQB_IOID_SHIFT
= 6, /* CRQB Gen-II/IIE IO Id shift */
139 CRQB_PMP_SHIFT
= 12, /* CRQB Gen-II/IIE PMP shift */
140 CRQB_HOSTQ_SHIFT
= 17, /* CRQB Gen-II/IIE HostQueTag shift */
141 CRQB_CMD_ADDR_SHIFT
= 8,
142 CRQB_CMD_CS
= (0x2 << 11),
143 CRQB_CMD_LAST
= (1 << 15),
145 CRPB_FLAG_STATUS_SHIFT
= 8,
146 CRPB_IOID_SHIFT_6
= 5, /* CRPB Gen-II IO Id shift */
147 CRPB_IOID_SHIFT_7
= 7, /* CRPB Gen-IIE IO Id shift */
149 EPRD_FLAG_END_OF_TBL
= (1 << 31),
151 /* PCI interface registers */
153 PCI_COMMAND_OFS
= 0xc00,
154 PCI_COMMAND_MRDTRIG
= (1 << 7), /* PCI Master Read Trigger */
156 PCI_MAIN_CMD_STS_OFS
= 0xd30,
157 STOP_PCI_MASTER
= (1 << 2),
158 PCI_MASTER_EMPTY
= (1 << 3),
159 GLOB_SFT_RST
= (1 << 4),
161 MV_PCI_MODE_OFS
= 0xd00,
162 MV_PCI_MODE_MASK
= 0x30,
164 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
165 MV_PCI_DISC_TIMER
= 0xd04,
166 MV_PCI_MSI_TRIGGER
= 0xc38,
167 MV_PCI_SERR_MASK
= 0xc28,
168 MV_PCI_XBAR_TMOUT_OFS
= 0x1d04,
169 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
170 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
171 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
172 MV_PCI_ERR_COMMAND
= 0x1d50,
174 PCI_IRQ_CAUSE_OFS
= 0x1d58,
175 PCI_IRQ_MASK_OFS
= 0x1d5c,
176 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
178 PCIE_IRQ_CAUSE_OFS
= 0x1900,
179 PCIE_IRQ_MASK_OFS
= 0x1910,
180 PCIE_UNMASK_ALL_IRQS
= 0x40a, /* assorted bits */
182 /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */
183 PCI_HC_MAIN_IRQ_CAUSE_OFS
= 0x1d60,
184 PCI_HC_MAIN_IRQ_MASK_OFS
= 0x1d64,
185 SOC_HC_MAIN_IRQ_CAUSE_OFS
= 0x20020,
186 SOC_HC_MAIN_IRQ_MASK_OFS
= 0x20024,
187 ERR_IRQ
= (1 << 0), /* shift by port # */
188 DONE_IRQ
= (1 << 1), /* shift by port # */
189 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
190 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
192 TRAN_LO_DONE
= (1 << 19), /* 6xxx: IRQ coalescing */
193 TRAN_HI_DONE
= (1 << 20), /* 6xxx: IRQ coalescing */
194 PORTS_0_3_COAL_DONE
= (1 << 8),
195 PORTS_4_7_COAL_DONE
= (1 << 17),
196 PORTS_0_7_COAL_DONE
= (1 << 21), /* 6xxx: IRQ coalescing */
197 GPIO_INT
= (1 << 22),
198 SELF_INT
= (1 << 23),
199 TWSI_INT
= (1 << 24),
200 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
201 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
202 HC_MAIN_RSVD_SOC
= (0x3fffffb << 6), /* bits 31-9, 7-6 */
204 /* SATAHC registers */
207 HC_IRQ_CAUSE_OFS
= 0x14,
208 DMA_IRQ
= (1 << 0), /* shift by port # */
209 HC_COAL_IRQ
= (1 << 4), /* IRQ coalescing */
210 DEV_IRQ
= (1 << 8), /* shift by port # */
212 /* Shadow block registers */
214 SHD_CTL_AST_OFS
= 0x20, /* ofs from SHD_BLK_OFS */
217 SATA_STATUS_OFS
= 0x300, /* ctrl, err regs follow status */
218 SATA_ACTIVE_OFS
= 0x350,
219 SATA_FIS_IRQ_CAUSE_OFS
= 0x364,
220 SATA_FIS_IRQ_AN
= (1 << 9), /* async notification */
223 LTMODE_BIT8
= (1 << 8), /* unknown, but necessary */
227 PHY_MODE4_CFG_MASK
= 0x00000003, /* phy internal config field */
228 PHY_MODE4_CFG_VALUE
= 0x00000001, /* phy internal config field */
229 PHY_MODE4_RSVD_ZEROS
= 0x5de3fffa, /* Gen2e always write zeros */
230 PHY_MODE4_RSVD_ONES
= 0x00000005, /* Gen2e always write ones */
233 SATA_IFCTL_OFS
= 0x344,
234 SATA_TESTCTL_OFS
= 0x348,
235 SATA_IFSTAT_OFS
= 0x34c,
236 VENDOR_UNIQUE_FIS_OFS
= 0x35c,
239 FISCFG_WAIT_DEV_ERR
= (1 << 8), /* wait for host on DevErr */
240 FISCFG_SINGLE_SYNC
= (1 << 16), /* SYNC on DMA activation */
243 MV5_LTMODE_OFS
= 0x30,
244 MV5_PHY_CTL_OFS
= 0x0C,
245 SATA_INTERFACE_CFG_OFS
= 0x050,
247 MV_M2_PREAMP_MASK
= 0x7e0,
251 EDMA_CFG_Q_DEPTH
= 0x1f, /* max device queue depth */
252 EDMA_CFG_NCQ
= (1 << 5), /* for R/W FPDMA queued */
253 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
254 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
255 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
256 EDMA_CFG_EDMA_FBS
= (1 << 16), /* EDMA FIS-Based Switching */
257 EDMA_CFG_FBS
= (1 << 26), /* FIS-Based Switching */
259 EDMA_ERR_IRQ_CAUSE_OFS
= 0x8,
260 EDMA_ERR_IRQ_MASK_OFS
= 0xc,
261 EDMA_ERR_D_PAR
= (1 << 0), /* UDMA data parity err */
262 EDMA_ERR_PRD_PAR
= (1 << 1), /* UDMA PRD parity err */
263 EDMA_ERR_DEV
= (1 << 2), /* device error */
264 EDMA_ERR_DEV_DCON
= (1 << 3), /* device disconnect */
265 EDMA_ERR_DEV_CON
= (1 << 4), /* device connected */
266 EDMA_ERR_SERR
= (1 << 5), /* SError bits [WBDST] raised */
267 EDMA_ERR_SELF_DIS
= (1 << 7), /* Gen II/IIE self-disable */
268 EDMA_ERR_SELF_DIS_5
= (1 << 8), /* Gen I self-disable */
269 EDMA_ERR_BIST_ASYNC
= (1 << 8), /* BIST FIS or Async Notify */
270 EDMA_ERR_TRANS_IRQ_7
= (1 << 8), /* Gen IIE transprt layer irq */
271 EDMA_ERR_CRQB_PAR
= (1 << 9), /* CRQB parity error */
272 EDMA_ERR_CRPB_PAR
= (1 << 10), /* CRPB parity error */
273 EDMA_ERR_INTRL_PAR
= (1 << 11), /* internal parity error */
274 EDMA_ERR_IORDY
= (1 << 12), /* IORdy timeout */
276 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13), /* link ctrl rx error */
277 EDMA_ERR_LNK_CTRL_RX_0
= (1 << 13), /* transient: CRC err */
278 EDMA_ERR_LNK_CTRL_RX_1
= (1 << 14), /* transient: FIFO err */
279 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15), /* fatal: caught SYNC */
280 EDMA_ERR_LNK_CTRL_RX_3
= (1 << 16), /* transient: FIS rx err */
282 EDMA_ERR_LNK_DATA_RX
= (0xf << 17), /* link data rx error */
284 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21), /* link ctrl tx error */
285 EDMA_ERR_LNK_CTRL_TX_0
= (1 << 21), /* transient: CRC err */
286 EDMA_ERR_LNK_CTRL_TX_1
= (1 << 22), /* transient: FIFO err */
287 EDMA_ERR_LNK_CTRL_TX_2
= (1 << 23), /* transient: caught SYNC */
288 EDMA_ERR_LNK_CTRL_TX_3
= (1 << 24), /* transient: caught DMAT */
289 EDMA_ERR_LNK_CTRL_TX_4
= (1 << 25), /* transient: FIS collision */
291 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26), /* link data tx error */
293 EDMA_ERR_TRANS_PROTO
= (1 << 31), /* transport protocol error */
294 EDMA_ERR_OVERRUN_5
= (1 << 5),
295 EDMA_ERR_UNDERRUN_5
= (1 << 6),
297 EDMA_ERR_IRQ_TRANSIENT
= EDMA_ERR_LNK_CTRL_RX_0
|
298 EDMA_ERR_LNK_CTRL_RX_1
|
299 EDMA_ERR_LNK_CTRL_RX_3
|
300 EDMA_ERR_LNK_CTRL_TX
,
302 EDMA_EH_FREEZE
= EDMA_ERR_D_PAR
|
312 EDMA_ERR_LNK_CTRL_RX_2
|
313 EDMA_ERR_LNK_DATA_RX
|
314 EDMA_ERR_LNK_DATA_TX
|
315 EDMA_ERR_TRANS_PROTO
,
317 EDMA_EH_FREEZE_5
= EDMA_ERR_D_PAR
|
322 EDMA_ERR_UNDERRUN_5
|
323 EDMA_ERR_SELF_DIS_5
|
329 EDMA_REQ_Q_BASE_HI_OFS
= 0x10,
330 EDMA_REQ_Q_IN_PTR_OFS
= 0x14, /* also contains BASE_LO */
332 EDMA_REQ_Q_OUT_PTR_OFS
= 0x18,
333 EDMA_REQ_Q_PTR_SHIFT
= 5,
335 EDMA_RSP_Q_BASE_HI_OFS
= 0x1c,
336 EDMA_RSP_Q_IN_PTR_OFS
= 0x20,
337 EDMA_RSP_Q_OUT_PTR_OFS
= 0x24, /* also contains BASE_LO */
338 EDMA_RSP_Q_PTR_SHIFT
= 3,
340 EDMA_CMD_OFS
= 0x28, /* EDMA command register */
341 EDMA_EN
= (1 << 0), /* enable EDMA */
342 EDMA_DS
= (1 << 1), /* disable EDMA; self-negated */
343 EDMA_RESET
= (1 << 2), /* reset eng/trans/link/phy */
345 EDMA_STATUS_OFS
= 0x30, /* EDMA engine status */
346 EDMA_STATUS_CACHE_EMPTY
= (1 << 6), /* GenIIe command cache empty */
347 EDMA_STATUS_IDLE
= (1 << 7), /* GenIIe EDMA enabled/idle */
349 EDMA_IORDY_TMOUT_OFS
= 0x34,
350 EDMA_ARB_CFG_OFS
= 0x38,
352 EDMA_HALTCOND_OFS
= 0x60, /* GenIIe halt conditions */
354 GEN_II_NCQ_MAX_SECTORS
= 256, /* max sects/io on Gen2 w/NCQ */
356 /* Host private flags (hp_flags) */
357 MV_HP_FLAG_MSI
= (1 << 0),
358 MV_HP_ERRATA_50XXB0
= (1 << 1),
359 MV_HP_ERRATA_50XXB2
= (1 << 2),
360 MV_HP_ERRATA_60X1B2
= (1 << 3),
361 MV_HP_ERRATA_60X1C0
= (1 << 4),
362 MV_HP_GEN_I
= (1 << 6), /* Generation I: 50xx */
363 MV_HP_GEN_II
= (1 << 7), /* Generation II: 60xx */
364 MV_HP_GEN_IIE
= (1 << 8), /* Generation IIE: 6042/7042 */
365 MV_HP_PCIE
= (1 << 9), /* PCIe bus/regs: 7042 */
366 MV_HP_CUT_THROUGH
= (1 << 10), /* can use EDMA cut-through */
367 MV_HP_FLAG_SOC
= (1 << 11), /* SystemOnChip, no PCI */
369 /* Port private flags (pp_flags) */
370 MV_PP_FLAG_EDMA_EN
= (1 << 0), /* is EDMA engine enabled? */
371 MV_PP_FLAG_NCQ_EN
= (1 << 1), /* is EDMA set up for NCQ? */
372 MV_PP_FLAG_FBS_EN
= (1 << 2), /* is EDMA set up for FBS? */
373 MV_PP_FLAG_DELAYED_EH
= (1 << 3), /* delayed dev err handling */
376 #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I)
377 #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II)
378 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
379 #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE)
380 #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC)
382 #define WINDOW_CTRL(i) (0x20030 + ((i) << 4))
383 #define WINDOW_BASE(i) (0x20034 + ((i) << 4))
386 /* DMA boundary 0xffff is required by the s/g splitting
387 * we need on /length/ in mv_fill-sg().
389 MV_DMA_BOUNDARY
= 0xffffU
,
391 /* mask of register bits containing lower 32 bits
392 * of EDMA request queue DMA address
394 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
396 /* ditto, for response queue */
397 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
411 /* Command ReQuest Block: 32B */
427 /* Command ResPonse Block: 8B */
434 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
442 struct mv_port_priv
{
443 struct mv_crqb
*crqb
;
445 struct mv_crpb
*crpb
;
447 struct mv_sg
*sg_tbl
[MV_MAX_Q_DEPTH
];
448 dma_addr_t sg_tbl_dma
[MV_MAX_Q_DEPTH
];
450 unsigned int req_idx
;
451 unsigned int resp_idx
;
454 unsigned int delayed_eh_pmp_map
;
457 struct mv_port_signal
{
462 struct mv_host_priv
{
465 struct mv_port_signal signal
[8];
466 const struct mv_hw_ops
*ops
;
469 void __iomem
*main_irq_cause_addr
;
470 void __iomem
*main_irq_mask_addr
;
475 * These consistent DMA memory pools give us guaranteed
476 * alignment for hardware-accessed data structures,
477 * and less memory waste in accomplishing the alignment.
479 struct dma_pool
*crqb_pool
;
480 struct dma_pool
*crpb_pool
;
481 struct dma_pool
*sg_tbl_pool
;
485 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
487 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
488 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
490 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
492 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
493 void (*reset_bus
)(struct ata_host
*host
, void __iomem
*mmio
);
496 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
497 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
498 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
);
499 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
);
500 static int mv_port_start(struct ata_port
*ap
);
501 static void mv_port_stop(struct ata_port
*ap
);
502 static int mv_qc_defer(struct ata_queued_cmd
*qc
);
503 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
504 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
505 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
506 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
507 unsigned long deadline
);
508 static void mv_eh_freeze(struct ata_port
*ap
);
509 static void mv_eh_thaw(struct ata_port
*ap
);
510 static void mv6_dev_config(struct ata_device
*dev
);
512 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
514 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
515 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
517 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
519 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
520 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
522 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
524 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
525 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
527 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
529 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
530 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
532 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
534 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
535 void __iomem
*mmio
, unsigned int n_hc
);
536 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
538 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
);
539 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
);
540 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
541 unsigned int port_no
);
542 static int mv_stop_edma(struct ata_port
*ap
);
543 static int mv_stop_edma_engine(void __iomem
*port_mmio
);
544 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
);
546 static void mv_pmp_select(struct ata_port
*ap
, int pmp
);
547 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
548 unsigned long deadline
);
549 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
550 unsigned long deadline
);
551 static void mv_pmp_error_handler(struct ata_port
*ap
);
552 static void mv_process_crpb_entries(struct ata_port
*ap
,
553 struct mv_port_priv
*pp
);
555 /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below
556 * because we have to allow room for worst case splitting of
557 * PRDs for 64K boundaries in mv_fill_sg().
559 static struct scsi_host_template mv5_sht
= {
560 ATA_BASE_SHT(DRV_NAME
),
561 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
562 .dma_boundary
= MV_DMA_BOUNDARY
,
565 static struct scsi_host_template mv6_sht
= {
566 ATA_NCQ_SHT(DRV_NAME
),
567 .can_queue
= MV_MAX_Q_DEPTH
- 1,
568 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
569 .dma_boundary
= MV_DMA_BOUNDARY
,
572 static struct ata_port_operations mv5_ops
= {
573 .inherits
= &ata_sff_port_ops
,
575 .qc_defer
= mv_qc_defer
,
576 .qc_prep
= mv_qc_prep
,
577 .qc_issue
= mv_qc_issue
,
579 .freeze
= mv_eh_freeze
,
581 .hardreset
= mv_hardreset
,
582 .error_handler
= ata_std_error_handler
, /* avoid SFF EH */
583 .post_internal_cmd
= ATA_OP_NULL
,
585 .scr_read
= mv5_scr_read
,
586 .scr_write
= mv5_scr_write
,
588 .port_start
= mv_port_start
,
589 .port_stop
= mv_port_stop
,
592 static struct ata_port_operations mv6_ops
= {
593 .inherits
= &mv5_ops
,
594 .dev_config
= mv6_dev_config
,
595 .scr_read
= mv_scr_read
,
596 .scr_write
= mv_scr_write
,
598 .pmp_hardreset
= mv_pmp_hardreset
,
599 .pmp_softreset
= mv_softreset
,
600 .softreset
= mv_softreset
,
601 .error_handler
= mv_pmp_error_handler
,
604 static struct ata_port_operations mv_iie_ops
= {
605 .inherits
= &mv6_ops
,
606 .dev_config
= ATA_OP_NULL
,
607 .qc_prep
= mv_qc_prep_iie
,
610 static const struct ata_port_info mv_port_info
[] = {
612 .flags
= MV_COMMON_FLAGS
,
613 .pio_mask
= 0x1f, /* pio0-4 */
614 .udma_mask
= ATA_UDMA6
,
615 .port_ops
= &mv5_ops
,
618 .flags
= MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
,
619 .pio_mask
= 0x1f, /* pio0-4 */
620 .udma_mask
= ATA_UDMA6
,
621 .port_ops
= &mv5_ops
,
624 .flags
= MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
,
625 .pio_mask
= 0x1f, /* pio0-4 */
626 .udma_mask
= ATA_UDMA6
,
627 .port_ops
= &mv5_ops
,
630 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
631 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
633 .pio_mask
= 0x1f, /* pio0-4 */
634 .udma_mask
= ATA_UDMA6
,
635 .port_ops
= &mv6_ops
,
638 .flags
= MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
639 ATA_FLAG_PMP
| ATA_FLAG_ACPI_SATA
|
640 ATA_FLAG_NCQ
| MV_FLAG_DUAL_HC
,
641 .pio_mask
= 0x1f, /* pio0-4 */
642 .udma_mask
= ATA_UDMA6
,
643 .port_ops
= &mv6_ops
,
646 .flags
= MV_GENIIE_FLAGS
,
647 .pio_mask
= 0x1f, /* pio0-4 */
648 .udma_mask
= ATA_UDMA6
,
649 .port_ops
= &mv_iie_ops
,
652 .flags
= MV_GENIIE_FLAGS
,
653 .pio_mask
= 0x1f, /* pio0-4 */
654 .udma_mask
= ATA_UDMA6
,
655 .port_ops
= &mv_iie_ops
,
658 .flags
= MV_GENIIE_FLAGS
,
659 .pio_mask
= 0x1f, /* pio0-4 */
660 .udma_mask
= ATA_UDMA6
,
661 .port_ops
= &mv_iie_ops
,
665 static const struct pci_device_id mv_pci_tbl
[] = {
666 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
667 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
668 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
669 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
670 /* RocketRAID 1720/174x have different identifiers */
671 { PCI_VDEVICE(TTI
, 0x1720), chip_6042
},
672 { PCI_VDEVICE(TTI
, 0x1740), chip_508x
},
673 { PCI_VDEVICE(TTI
, 0x1742), chip_508x
},
675 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
676 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
677 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
678 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
679 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
681 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
684 { PCI_VDEVICE(ADAPTEC2
, 0x0243), chip_7042
},
686 /* Marvell 7042 support */
687 { PCI_VDEVICE(MARVELL
, 0x7042), chip_7042
},
689 /* Highpoint RocketRAID PCIe series */
690 { PCI_VDEVICE(TTI
, 0x2300), chip_7042
},
691 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
693 { } /* terminate list */
696 static const struct mv_hw_ops mv5xxx_ops
= {
697 .phy_errata
= mv5_phy_errata
,
698 .enable_leds
= mv5_enable_leds
,
699 .read_preamp
= mv5_read_preamp
,
700 .reset_hc
= mv5_reset_hc
,
701 .reset_flash
= mv5_reset_flash
,
702 .reset_bus
= mv5_reset_bus
,
705 static const struct mv_hw_ops mv6xxx_ops
= {
706 .phy_errata
= mv6_phy_errata
,
707 .enable_leds
= mv6_enable_leds
,
708 .read_preamp
= mv6_read_preamp
,
709 .reset_hc
= mv6_reset_hc
,
710 .reset_flash
= mv6_reset_flash
,
711 .reset_bus
= mv_reset_pci_bus
,
714 static const struct mv_hw_ops mv_soc_ops
= {
715 .phy_errata
= mv6_phy_errata
,
716 .enable_leds
= mv_soc_enable_leds
,
717 .read_preamp
= mv_soc_read_preamp
,
718 .reset_hc
= mv_soc_reset_hc
,
719 .reset_flash
= mv_soc_reset_flash
,
720 .reset_bus
= mv_soc_reset_bus
,
727 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
730 (void) readl(addr
); /* flush to avoid PCI posted write */
733 static inline unsigned int mv_hc_from_port(unsigned int port
)
735 return port
>> MV_PORT_HC_SHIFT
;
738 static inline unsigned int mv_hardport_from_port(unsigned int port
)
740 return port
& MV_PORT_MASK
;
744 * Consolidate some rather tricky bit shift calculations.
745 * This is hot-path stuff, so not a function.
746 * Simple code, with two return values, so macro rather than inline.
748 * port is the sole input, in range 0..7.
749 * shift is one output, for use with main_irq_cause / main_irq_mask registers.
750 * hardport is the other output, in range 0..3.
752 * Note that port and hardport may be the same variable in some cases.
754 #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport) \
756 shift = mv_hc_from_port(port) * HC_SHIFT; \
757 hardport = mv_hardport_from_port(port); \
758 shift += hardport * 2; \
761 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
763 return (base
+ MV_SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
766 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
769 return mv_hc_base(base
, mv_hc_from_port(port
));
772 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
774 return mv_hc_base_from_port(base
, port
) +
775 MV_SATAHC_ARBTR_REG_SZ
+
776 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
779 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
781 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
782 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
784 return hc_mmio
+ ofs
;
787 static inline void __iomem
*mv_host_base(struct ata_host
*host
)
789 struct mv_host_priv
*hpriv
= host
->private_data
;
793 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
795 return mv_port_base(mv_host_base(ap
->host
), ap
->port_no
);
798 static inline int mv_get_hc_count(unsigned long port_flags
)
800 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
803 static void mv_set_edma_ptrs(void __iomem
*port_mmio
,
804 struct mv_host_priv
*hpriv
,
805 struct mv_port_priv
*pp
)
810 * initialize request queue
812 pp
->req_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
813 index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
815 WARN_ON(pp
->crqb_dma
& 0x3ff);
816 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI_OFS
);
817 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | index
,
818 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
819 writelfl(index
, port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
822 * initialize response queue
824 pp
->resp_idx
&= MV_MAX_Q_DEPTH_MASK
; /* paranoia */
825 index
= pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
;
827 WARN_ON(pp
->crpb_dma
& 0xff);
828 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI_OFS
);
829 writelfl(index
, port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
830 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) | index
,
831 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
834 static void mv_set_main_irq_mask(struct ata_host
*host
,
835 u32 disable_bits
, u32 enable_bits
)
837 struct mv_host_priv
*hpriv
= host
->private_data
;
838 u32 old_mask
, new_mask
;
840 old_mask
= hpriv
->main_irq_mask
;
841 new_mask
= (old_mask
& ~disable_bits
) | enable_bits
;
842 if (new_mask
!= old_mask
) {
843 hpriv
->main_irq_mask
= new_mask
;
844 writelfl(new_mask
, hpriv
->main_irq_mask_addr
);
848 static void mv_enable_port_irqs(struct ata_port
*ap
,
849 unsigned int port_bits
)
851 unsigned int shift
, hardport
, port
= ap
->port_no
;
852 u32 disable_bits
, enable_bits
;
854 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
856 disable_bits
= (DONE_IRQ
| ERR_IRQ
) << shift
;
857 enable_bits
= port_bits
<< shift
;
858 mv_set_main_irq_mask(ap
->host
, disable_bits
, enable_bits
);
862 * mv_start_dma - Enable eDMA engine
863 * @base: port base address
864 * @pp: port private data
866 * Verify the local cache of the eDMA state is accurate with a
870 * Inherited from caller.
872 static void mv_start_dma(struct ata_port
*ap
, void __iomem
*port_mmio
,
873 struct mv_port_priv
*pp
, u8 protocol
)
875 int want_ncq
= (protocol
== ATA_PROT_NCQ
);
877 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
878 int using_ncq
= ((pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) != 0);
879 if (want_ncq
!= using_ncq
)
882 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
)) {
883 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
884 int hardport
= mv_hardport_from_port(ap
->port_no
);
885 void __iomem
*hc_mmio
= mv_hc_base_from_port(
886 mv_host_base(ap
->host
), hardport
);
887 u32 hc_irq_cause
, ipending
;
889 /* clear EDMA event indicators, if any */
890 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
892 /* clear EDMA interrupt indicator, if any */
893 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
894 ipending
= (DEV_IRQ
| DMA_IRQ
) << hardport
;
895 if (hc_irq_cause
& ipending
) {
896 writelfl(hc_irq_cause
& ~ipending
,
897 hc_mmio
+ HC_IRQ_CAUSE_OFS
);
900 mv_edma_cfg(ap
, want_ncq
);
902 /* clear FIS IRQ Cause */
903 if (IS_GEN_IIE(hpriv
))
904 writelfl(0, port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
906 mv_set_edma_ptrs(port_mmio
, hpriv
, pp
);
907 mv_enable_port_irqs(ap
, DONE_IRQ
|ERR_IRQ
);
909 writelfl(EDMA_EN
, port_mmio
+ EDMA_CMD_OFS
);
910 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
914 static void mv_wait_for_edma_empty_idle(struct ata_port
*ap
)
916 void __iomem
*port_mmio
= mv_ap_base(ap
);
917 const u32 empty_idle
= (EDMA_STATUS_CACHE_EMPTY
| EDMA_STATUS_IDLE
);
918 const int per_loop
= 5, timeout
= (15 * 1000 / per_loop
);
922 * Wait for the EDMA engine to finish transactions in progress.
923 * No idea what a good "timeout" value might be, but measurements
924 * indicate that it often requires hundreds of microseconds
925 * with two drives in-use. So we use the 15msec value above
926 * as a rough guess at what even more drives might require.
928 for (i
= 0; i
< timeout
; ++i
) {
929 u32 edma_stat
= readl(port_mmio
+ EDMA_STATUS_OFS
);
930 if ((edma_stat
& empty_idle
) == empty_idle
)
934 /* ata_port_printk(ap, KERN_INFO, "%s: %u+ usecs\n", __func__, i); */
938 * mv_stop_edma_engine - Disable eDMA engine
939 * @port_mmio: io base address
942 * Inherited from caller.
944 static int mv_stop_edma_engine(void __iomem
*port_mmio
)
948 /* Disable eDMA. The disable bit auto clears. */
949 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
951 /* Wait for the chip to confirm eDMA is off. */
952 for (i
= 10000; i
> 0; i
--) {
953 u32 reg
= readl(port_mmio
+ EDMA_CMD_OFS
);
954 if (!(reg
& EDMA_EN
))
961 static int mv_stop_edma(struct ata_port
*ap
)
963 void __iomem
*port_mmio
= mv_ap_base(ap
);
964 struct mv_port_priv
*pp
= ap
->private_data
;
966 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
968 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
969 mv_wait_for_edma_empty_idle(ap
);
970 if (mv_stop_edma_engine(port_mmio
)) {
971 ata_port_printk(ap
, KERN_ERR
, "Unable to stop eDMA\n");
978 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
981 for (b
= 0; b
< bytes
; ) {
982 DPRINTK("%p: ", start
+ b
);
983 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
984 printk("%08x ", readl(start
+ b
));
992 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
997 for (b
= 0; b
< bytes
; ) {
998 DPRINTK("%02x: ", b
);
999 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
1000 (void) pci_read_config_dword(pdev
, b
, &dw
);
1001 printk("%08x ", dw
);
1008 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
1009 struct pci_dev
*pdev
)
1012 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
1013 port
>> MV_PORT_HC_SHIFT
);
1014 void __iomem
*port_base
;
1015 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
1018 start_hc
= start_port
= 0;
1019 num_ports
= 8; /* shld be benign for 4 port devs */
1022 start_hc
= port
>> MV_PORT_HC_SHIFT
;
1024 num_ports
= num_hcs
= 1;
1026 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
1027 num_ports
> 1 ? num_ports
- 1 : start_port
);
1030 DPRINTK("PCI config space regs:\n");
1031 mv_dump_pci_cfg(pdev
, 0x68);
1033 DPRINTK("PCI regs:\n");
1034 mv_dump_mem(mmio_base
+0xc00, 0x3c);
1035 mv_dump_mem(mmio_base
+0xd00, 0x34);
1036 mv_dump_mem(mmio_base
+0xf00, 0x4);
1037 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
1038 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
1039 hc_base
= mv_hc_base(mmio_base
, hc
);
1040 DPRINTK("HC regs (HC %i):\n", hc
);
1041 mv_dump_mem(hc_base
, 0x1c);
1043 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
1044 port_base
= mv_port_base(mmio_base
, p
);
1045 DPRINTK("EDMA regs (port %i):\n", p
);
1046 mv_dump_mem(port_base
, 0x54);
1047 DPRINTK("SATA regs (port %i):\n", p
);
1048 mv_dump_mem(port_base
+0x300, 0x60);
1053 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
1057 switch (sc_reg_in
) {
1061 ofs
= SATA_STATUS_OFS
+ (sc_reg_in
* sizeof(u32
));
1064 ofs
= SATA_ACTIVE_OFS
; /* active is not with the others */
1073 static int mv_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
1075 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1077 if (ofs
!= 0xffffffffU
) {
1078 *val
= readl(mv_ap_base(link
->ap
) + ofs
);
1084 static int mv_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
1086 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
1088 if (ofs
!= 0xffffffffU
) {
1089 writelfl(val
, mv_ap_base(link
->ap
) + ofs
);
1095 static void mv6_dev_config(struct ata_device
*adev
)
1098 * Deal with Gen-II ("mv6") hardware quirks/restrictions:
1100 * Gen-II does not support NCQ over a port multiplier
1101 * (no FIS-based switching).
1103 * We don't have hob_nsect when doing NCQ commands on Gen-II.
1104 * See mv_qc_prep() for more info.
1106 if (adev
->flags
& ATA_DFLAG_NCQ
) {
1107 if (sata_pmp_attached(adev
->link
->ap
)) {
1108 adev
->flags
&= ~ATA_DFLAG_NCQ
;
1109 ata_dev_printk(adev
, KERN_INFO
,
1110 "NCQ disabled for command-based switching\n");
1111 } else if (adev
->max_sectors
> GEN_II_NCQ_MAX_SECTORS
) {
1112 adev
->max_sectors
= GEN_II_NCQ_MAX_SECTORS
;
1113 ata_dev_printk(adev
, KERN_INFO
,
1114 "max_sectors limited to %u for NCQ\n",
1120 static int mv_qc_defer(struct ata_queued_cmd
*qc
)
1122 struct ata_link
*link
= qc
->dev
->link
;
1123 struct ata_port
*ap
= link
->ap
;
1124 struct mv_port_priv
*pp
= ap
->private_data
;
1127 * Don't allow new commands if we're in a delayed EH state
1128 * for NCQ and/or FIS-based switching.
1130 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
1131 return ATA_DEFER_PORT
;
1133 * If the port is completely idle, then allow the new qc.
1135 if (ap
->nr_active_links
== 0)
1139 * The port is operating in host queuing mode (EDMA) with NCQ
1140 * enabled, allow multiple NCQ commands. EDMA also allows
1141 * queueing multiple DMA commands but libata core currently
1144 if ((pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) &&
1145 (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) && ata_is_ncq(qc
->tf
.protocol
))
1148 return ATA_DEFER_PORT
;
1151 static void mv_config_fbs(void __iomem
*port_mmio
, int want_ncq
, int want_fbs
)
1153 u32 new_fiscfg
, old_fiscfg
;
1154 u32 new_ltmode
, old_ltmode
;
1155 u32 new_haltcond
, old_haltcond
;
1157 old_fiscfg
= readl(port_mmio
+ FISCFG_OFS
);
1158 old_ltmode
= readl(port_mmio
+ LTMODE_OFS
);
1159 old_haltcond
= readl(port_mmio
+ EDMA_HALTCOND_OFS
);
1161 new_fiscfg
= old_fiscfg
& ~(FISCFG_SINGLE_SYNC
| FISCFG_WAIT_DEV_ERR
);
1162 new_ltmode
= old_ltmode
& ~LTMODE_BIT8
;
1163 new_haltcond
= old_haltcond
| EDMA_ERR_DEV
;
1166 new_fiscfg
= old_fiscfg
| FISCFG_SINGLE_SYNC
;
1167 new_ltmode
= old_ltmode
| LTMODE_BIT8
;
1169 new_haltcond
&= ~EDMA_ERR_DEV
;
1171 new_fiscfg
|= FISCFG_WAIT_DEV_ERR
;
1174 if (new_fiscfg
!= old_fiscfg
)
1175 writelfl(new_fiscfg
, port_mmio
+ FISCFG_OFS
);
1176 if (new_ltmode
!= old_ltmode
)
1177 writelfl(new_ltmode
, port_mmio
+ LTMODE_OFS
);
1178 if (new_haltcond
!= old_haltcond
)
1179 writelfl(new_haltcond
, port_mmio
+ EDMA_HALTCOND_OFS
);
1182 static void mv_60x1_errata_sata25(struct ata_port
*ap
, int want_ncq
)
1184 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1187 /* workaround for 88SX60x1 FEr SATA#25 (part 1) */
1188 old
= readl(hpriv
->base
+ MV_GPIO_PORT_CTL_OFS
);
1190 new = old
| (1 << 22);
1192 new = old
& ~(1 << 22);
1194 writel(new, hpriv
->base
+ MV_GPIO_PORT_CTL_OFS
);
1197 static void mv_edma_cfg(struct ata_port
*ap
, int want_ncq
)
1200 struct mv_port_priv
*pp
= ap
->private_data
;
1201 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1202 void __iomem
*port_mmio
= mv_ap_base(ap
);
1204 /* set up non-NCQ EDMA configuration */
1205 cfg
= EDMA_CFG_Q_DEPTH
; /* always 0x1f for *all* chips */
1206 pp
->pp_flags
&= ~MV_PP_FLAG_FBS_EN
;
1208 if (IS_GEN_I(hpriv
))
1209 cfg
|= (1 << 8); /* enab config burst size mask */
1211 else if (IS_GEN_II(hpriv
)) {
1212 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
1213 mv_60x1_errata_sata25(ap
, want_ncq
);
1215 } else if (IS_GEN_IIE(hpriv
)) {
1216 int want_fbs
= sata_pmp_attached(ap
);
1218 * Possible future enhancement:
1220 * The chip can use FBS with non-NCQ, if we allow it,
1221 * But first we need to have the error handling in place
1222 * for this mode (datasheet section 7.3.15.4.2.3).
1223 * So disallow non-NCQ FBS for now.
1225 want_fbs
&= want_ncq
;
1227 mv_config_fbs(port_mmio
, want_ncq
, want_fbs
);
1230 pp
->pp_flags
|= MV_PP_FLAG_FBS_EN
;
1231 cfg
|= EDMA_CFG_EDMA_FBS
; /* FIS-based switching */
1234 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
1235 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
1237 cfg
|= (1 << 18); /* enab early completion */
1238 if (hpriv
->hp_flags
& MV_HP_CUT_THROUGH
)
1239 cfg
|= (1 << 17); /* enab cut-thru (dis stor&forwrd) */
1243 cfg
|= EDMA_CFG_NCQ
;
1244 pp
->pp_flags
|= MV_PP_FLAG_NCQ_EN
;
1246 pp
->pp_flags
&= ~MV_PP_FLAG_NCQ_EN
;
1248 writelfl(cfg
, port_mmio
+ EDMA_CFG_OFS
);
1251 static void mv_port_free_dma_mem(struct ata_port
*ap
)
1253 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1254 struct mv_port_priv
*pp
= ap
->private_data
;
1258 dma_pool_free(hpriv
->crqb_pool
, pp
->crqb
, pp
->crqb_dma
);
1262 dma_pool_free(hpriv
->crpb_pool
, pp
->crpb
, pp
->crpb_dma
);
1266 * For GEN_I, there's no NCQ, so we have only a single sg_tbl.
1267 * For later hardware, we have one unique sg_tbl per NCQ tag.
1269 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1270 if (pp
->sg_tbl
[tag
]) {
1271 if (tag
== 0 || !IS_GEN_I(hpriv
))
1272 dma_pool_free(hpriv
->sg_tbl_pool
,
1274 pp
->sg_tbl_dma
[tag
]);
1275 pp
->sg_tbl
[tag
] = NULL
;
1281 * mv_port_start - Port specific init/start routine.
1282 * @ap: ATA channel to manipulate
1284 * Allocate and point to DMA memory, init port private memory,
1288 * Inherited from caller.
1290 static int mv_port_start(struct ata_port
*ap
)
1292 struct device
*dev
= ap
->host
->dev
;
1293 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1294 struct mv_port_priv
*pp
;
1297 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
1300 ap
->private_data
= pp
;
1302 pp
->crqb
= dma_pool_alloc(hpriv
->crqb_pool
, GFP_KERNEL
, &pp
->crqb_dma
);
1305 memset(pp
->crqb
, 0, MV_CRQB_Q_SZ
);
1307 pp
->crpb
= dma_pool_alloc(hpriv
->crpb_pool
, GFP_KERNEL
, &pp
->crpb_dma
);
1309 goto out_port_free_dma_mem
;
1310 memset(pp
->crpb
, 0, MV_CRPB_Q_SZ
);
1312 /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */
1313 if (hpriv
->hp_flags
& MV_HP_ERRATA_60X1C0
)
1314 ap
->flags
|= ATA_FLAG_AN
;
1316 * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl.
1317 * For later hardware, we need one unique sg_tbl per NCQ tag.
1319 for (tag
= 0; tag
< MV_MAX_Q_DEPTH
; ++tag
) {
1320 if (tag
== 0 || !IS_GEN_I(hpriv
)) {
1321 pp
->sg_tbl
[tag
] = dma_pool_alloc(hpriv
->sg_tbl_pool
,
1322 GFP_KERNEL
, &pp
->sg_tbl_dma
[tag
]);
1323 if (!pp
->sg_tbl
[tag
])
1324 goto out_port_free_dma_mem
;
1326 pp
->sg_tbl
[tag
] = pp
->sg_tbl
[0];
1327 pp
->sg_tbl_dma
[tag
] = pp
->sg_tbl_dma
[0];
1332 out_port_free_dma_mem
:
1333 mv_port_free_dma_mem(ap
);
1338 * mv_port_stop - Port specific cleanup/stop routine.
1339 * @ap: ATA channel to manipulate
1341 * Stop DMA, cleanup port memory.
1344 * This routine uses the host lock to protect the DMA stop.
1346 static void mv_port_stop(struct ata_port
*ap
)
1349 mv_enable_port_irqs(ap
, 0);
1350 mv_port_free_dma_mem(ap
);
1354 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
1355 * @qc: queued command whose SG list to source from
1357 * Populate the SG list and mark the last entry.
1360 * Inherited from caller.
1362 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
1364 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1365 struct scatterlist
*sg
;
1366 struct mv_sg
*mv_sg
, *last_sg
= NULL
;
1369 mv_sg
= pp
->sg_tbl
[qc
->tag
];
1370 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
1371 dma_addr_t addr
= sg_dma_address(sg
);
1372 u32 sg_len
= sg_dma_len(sg
);
1375 u32 offset
= addr
& 0xffff;
1378 if ((offset
+ sg_len
> 0x10000))
1379 len
= 0x10000 - offset
;
1381 mv_sg
->addr
= cpu_to_le32(addr
& 0xffffffff);
1382 mv_sg
->addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
1383 mv_sg
->flags_size
= cpu_to_le32(len
& 0xffff);
1393 if (likely(last_sg
))
1394 last_sg
->flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
1397 static void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1399 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1400 (last
? CRQB_CMD_LAST
: 0);
1401 *cmdw
= cpu_to_le16(tmp
);
1405 * mv_qc_prep - Host specific command preparation.
1406 * @qc: queued command to prepare
1408 * This routine simply redirects to the general purpose routine
1409 * if command is not DMA. Else, it handles prep of the CRQB
1410 * (command request block), does some sanity checking, and calls
1411 * the SG load routine.
1414 * Inherited from caller.
1416 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
1418 struct ata_port
*ap
= qc
->ap
;
1419 struct mv_port_priv
*pp
= ap
->private_data
;
1421 struct ata_taskfile
*tf
;
1425 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1426 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1429 /* Fill in command request block
1431 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1432 flags
|= CRQB_FLAG_READ
;
1433 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1434 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1435 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1437 /* get current queue index from software */
1438 in_index
= pp
->req_idx
;
1440 pp
->crqb
[in_index
].sg_addr
=
1441 cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1442 pp
->crqb
[in_index
].sg_addr_hi
=
1443 cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1444 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
1446 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
1449 /* Sadly, the CRQB cannot accomodate all registers--there are
1450 * only 11 bytes...so we must pick and choose required
1451 * registers based on the command. So, we drop feature and
1452 * hob_feature for [RW] DMA commands, but they are needed for
1453 * NCQ. NCQ will drop hob_nsect.
1455 switch (tf
->command
) {
1457 case ATA_CMD_READ_EXT
:
1459 case ATA_CMD_WRITE_EXT
:
1460 case ATA_CMD_WRITE_FUA_EXT
:
1461 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
1463 case ATA_CMD_FPDMA_READ
:
1464 case ATA_CMD_FPDMA_WRITE
:
1465 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
1466 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
1469 /* The only other commands EDMA supports in non-queued and
1470 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1471 * of which are defined/used by Linux. If we get here, this
1472 * driver needs work.
1474 * FIXME: modify libata to give qc_prep a return value and
1475 * return error here.
1477 BUG_ON(tf
->command
);
1480 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
1481 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
1482 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
1483 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
1484 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
1485 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
1486 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
1487 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
1488 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
1490 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1496 * mv_qc_prep_iie - Host specific command preparation.
1497 * @qc: queued command to prepare
1499 * This routine simply redirects to the general purpose routine
1500 * if command is not DMA. Else, it handles prep of the CRQB
1501 * (command request block), does some sanity checking, and calls
1502 * the SG load routine.
1505 * Inherited from caller.
1507 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
1509 struct ata_port
*ap
= qc
->ap
;
1510 struct mv_port_priv
*pp
= ap
->private_data
;
1511 struct mv_crqb_iie
*crqb
;
1512 struct ata_taskfile
*tf
;
1516 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1517 (qc
->tf
.protocol
!= ATA_PROT_NCQ
))
1520 /* Fill in Gen IIE command request block */
1521 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1522 flags
|= CRQB_FLAG_READ
;
1524 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1525 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1526 flags
|= qc
->tag
<< CRQB_HOSTQ_SHIFT
;
1527 flags
|= (qc
->dev
->link
->pmp
& 0xf) << CRQB_PMP_SHIFT
;
1529 /* get current queue index from software */
1530 in_index
= pp
->req_idx
;
1532 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
1533 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
[qc
->tag
] & 0xffffffff);
1534 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
[qc
->tag
] >> 16) >> 16);
1535 crqb
->flags
= cpu_to_le32(flags
);
1538 crqb
->ata_cmd
[0] = cpu_to_le32(
1539 (tf
->command
<< 16) |
1542 crqb
->ata_cmd
[1] = cpu_to_le32(
1548 crqb
->ata_cmd
[2] = cpu_to_le32(
1549 (tf
->hob_lbal
<< 0) |
1550 (tf
->hob_lbam
<< 8) |
1551 (tf
->hob_lbah
<< 16) |
1552 (tf
->hob_feature
<< 24)
1554 crqb
->ata_cmd
[3] = cpu_to_le32(
1556 (tf
->hob_nsect
<< 8)
1559 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1565 * mv_qc_issue - Initiate a command to the host
1566 * @qc: queued command to start
1568 * This routine simply redirects to the general purpose routine
1569 * if command is not DMA. Else, it sanity checks our local
1570 * caches of the request producer/consumer indices then enables
1571 * DMA and bumps the request producer index.
1574 * Inherited from caller.
1576 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
1578 struct ata_port
*ap
= qc
->ap
;
1579 void __iomem
*port_mmio
= mv_ap_base(ap
);
1580 struct mv_port_priv
*pp
= ap
->private_data
;
1583 if ((qc
->tf
.protocol
!= ATA_PROT_DMA
) &&
1584 (qc
->tf
.protocol
!= ATA_PROT_NCQ
)) {
1585 static int limit_warnings
= 10;
1587 * Errata SATA#16, SATA#24: warn if multiple DRQs expected.
1589 * Someday, we might implement special polling workarounds
1590 * for these, but it all seems rather unnecessary since we
1591 * normally use only DMA for commands which transfer more
1592 * than a single block of data.
1594 * Much of the time, this could just work regardless.
1595 * So for now, just log the incident, and allow the attempt.
1597 if (limit_warnings
> 0 && (qc
->nbytes
/ qc
->sect_size
) > 1) {
1599 ata_link_printk(qc
->dev
->link
, KERN_WARNING
, DRV_NAME
1600 ": attempting PIO w/multiple DRQ: "
1601 "this may fail due to h/w errata\n");
1604 * We're about to send a non-EDMA capable command to the
1605 * port. Turn off EDMA so there won't be problems accessing
1606 * shadow block, etc registers.
1609 mv_enable_port_irqs(ap
, ERR_IRQ
);
1610 mv_pmp_select(ap
, qc
->dev
->link
->pmp
);
1611 return ata_sff_qc_issue(qc
);
1614 mv_start_dma(ap
, port_mmio
, pp
, qc
->tf
.protocol
);
1616 pp
->req_idx
= (pp
->req_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
1617 in_index
= pp
->req_idx
<< EDMA_REQ_Q_PTR_SHIFT
;
1619 /* and write the request in pointer to kick the EDMA to life */
1620 writelfl((pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
) | in_index
,
1621 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
1626 static struct ata_queued_cmd
*mv_get_active_qc(struct ata_port
*ap
)
1628 struct mv_port_priv
*pp
= ap
->private_data
;
1629 struct ata_queued_cmd
*qc
;
1631 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
)
1633 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1634 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1639 static void mv_pmp_error_handler(struct ata_port
*ap
)
1641 unsigned int pmp
, pmp_map
;
1642 struct mv_port_priv
*pp
= ap
->private_data
;
1644 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
) {
1646 * Perform NCQ error analysis on failed PMPs
1647 * before we freeze the port entirely.
1649 * The failed PMPs are marked earlier by mv_pmp_eh_prep().
1651 pmp_map
= pp
->delayed_eh_pmp_map
;
1652 pp
->pp_flags
&= ~MV_PP_FLAG_DELAYED_EH
;
1653 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
1654 unsigned int this_pmp
= (1 << pmp
);
1655 if (pmp_map
& this_pmp
) {
1656 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
1657 pmp_map
&= ~this_pmp
;
1658 ata_eh_analyze_ncq_error(link
);
1661 ata_port_freeze(ap
);
1663 sata_pmp_error_handler(ap
);
1666 static unsigned int mv_get_err_pmp_map(struct ata_port
*ap
)
1668 void __iomem
*port_mmio
= mv_ap_base(ap
);
1670 return readl(port_mmio
+ SATA_TESTCTL_OFS
) >> 16;
1673 static void mv_pmp_eh_prep(struct ata_port
*ap
, unsigned int pmp_map
)
1675 struct ata_eh_info
*ehi
;
1679 * Initialize EH info for PMPs which saw device errors
1681 ehi
= &ap
->link
.eh_info
;
1682 for (pmp
= 0; pmp_map
!= 0; pmp
++) {
1683 unsigned int this_pmp
= (1 << pmp
);
1684 if (pmp_map
& this_pmp
) {
1685 struct ata_link
*link
= &ap
->pmp_link
[pmp
];
1687 pmp_map
&= ~this_pmp
;
1688 ehi
= &link
->eh_info
;
1689 ata_ehi_clear_desc(ehi
);
1690 ata_ehi_push_desc(ehi
, "dev err");
1691 ehi
->err_mask
|= AC_ERR_DEV
;
1692 ehi
->action
|= ATA_EH_RESET
;
1693 ata_link_abort(link
);
1698 static int mv_req_q_empty(struct ata_port
*ap
)
1700 void __iomem
*port_mmio
= mv_ap_base(ap
);
1701 u32 in_ptr
, out_ptr
;
1703 in_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
)
1704 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1705 out_ptr
= (readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
)
1706 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1707 return (in_ptr
== out_ptr
); /* 1 == queue_is_empty */
1710 static int mv_handle_fbs_ncq_dev_err(struct ata_port
*ap
)
1712 struct mv_port_priv
*pp
= ap
->private_data
;
1714 unsigned int old_map
, new_map
;
1717 * Device error during FBS+NCQ operation:
1719 * Set a port flag to prevent further I/O being enqueued.
1720 * Leave the EDMA running to drain outstanding commands from this port.
1721 * Perform the post-mortem/EH only when all responses are complete.
1722 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2).
1724 if (!(pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)) {
1725 pp
->pp_flags
|= MV_PP_FLAG_DELAYED_EH
;
1726 pp
->delayed_eh_pmp_map
= 0;
1728 old_map
= pp
->delayed_eh_pmp_map
;
1729 new_map
= old_map
| mv_get_err_pmp_map(ap
);
1731 if (old_map
!= new_map
) {
1732 pp
->delayed_eh_pmp_map
= new_map
;
1733 mv_pmp_eh_prep(ap
, new_map
& ~old_map
);
1735 failed_links
= hweight16(new_map
);
1737 ata_port_printk(ap
, KERN_INFO
, "%s: pmp_map=%04x qc_map=%04x "
1738 "failed_links=%d nr_active_links=%d\n",
1739 __func__
, pp
->delayed_eh_pmp_map
,
1740 ap
->qc_active
, failed_links
,
1741 ap
->nr_active_links
);
1743 if (ap
->nr_active_links
<= failed_links
&& mv_req_q_empty(ap
)) {
1744 mv_process_crpb_entries(ap
, pp
);
1747 ata_port_printk(ap
, KERN_INFO
, "%s: done\n", __func__
);
1748 return 1; /* handled */
1750 ata_port_printk(ap
, KERN_INFO
, "%s: waiting\n", __func__
);
1751 return 1; /* handled */
1754 static int mv_handle_fbs_non_ncq_dev_err(struct ata_port
*ap
)
1757 * Possible future enhancement:
1759 * FBS+non-NCQ operation is not yet implemented.
1760 * See related notes in mv_edma_cfg().
1762 * Device error during FBS+non-NCQ operation:
1764 * We need to snapshot the shadow registers for each failed command.
1765 * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3).
1767 return 0; /* not handled */
1770 static int mv_handle_dev_err(struct ata_port
*ap
, u32 edma_err_cause
)
1772 struct mv_port_priv
*pp
= ap
->private_data
;
1774 if (!(pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
))
1775 return 0; /* EDMA was not active: not handled */
1776 if (!(pp
->pp_flags
& MV_PP_FLAG_FBS_EN
))
1777 return 0; /* FBS was not active: not handled */
1779 if (!(edma_err_cause
& EDMA_ERR_DEV
))
1780 return 0; /* non DEV error: not handled */
1781 edma_err_cause
&= ~EDMA_ERR_IRQ_TRANSIENT
;
1782 if (edma_err_cause
& ~(EDMA_ERR_DEV
| EDMA_ERR_SELF_DIS
))
1783 return 0; /* other problems: not handled */
1785 if (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
) {
1787 * EDMA should NOT have self-disabled for this case.
1788 * If it did, then something is wrong elsewhere,
1789 * and we cannot handle it here.
1791 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
1792 ata_port_printk(ap
, KERN_WARNING
,
1793 "%s: err_cause=0x%x pp_flags=0x%x\n",
1794 __func__
, edma_err_cause
, pp
->pp_flags
);
1795 return 0; /* not handled */
1797 return mv_handle_fbs_ncq_dev_err(ap
);
1800 * EDMA should have self-disabled for this case.
1801 * If it did not, then something is wrong elsewhere,
1802 * and we cannot handle it here.
1804 if (!(edma_err_cause
& EDMA_ERR_SELF_DIS
)) {
1805 ata_port_printk(ap
, KERN_WARNING
,
1806 "%s: err_cause=0x%x pp_flags=0x%x\n",
1807 __func__
, edma_err_cause
, pp
->pp_flags
);
1808 return 0; /* not handled */
1810 return mv_handle_fbs_non_ncq_dev_err(ap
);
1812 return 0; /* not handled */
1815 static void mv_unexpected_intr(struct ata_port
*ap
, int edma_was_enabled
)
1817 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
1818 char *when
= "idle";
1820 ata_ehi_clear_desc(ehi
);
1821 if (!ap
|| (ap
->flags
& ATA_FLAG_DISABLED
)) {
1823 } else if (edma_was_enabled
) {
1824 when
= "EDMA enabled";
1826 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1827 if (qc
&& (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1830 ata_ehi_push_desc(ehi
, "unexpected device interrupt while %s", when
);
1831 ehi
->err_mask
|= AC_ERR_OTHER
;
1832 ehi
->action
|= ATA_EH_RESET
;
1833 ata_port_freeze(ap
);
1837 * mv_err_intr - Handle error interrupts on the port
1838 * @ap: ATA channel to manipulate
1839 * @qc: affected command (non-NCQ), or NULL
1841 * Most cases require a full reset of the chip's state machine,
1842 * which also performs a COMRESET.
1843 * Also, if the port disabled DMA, update our cached copy to match.
1846 * Inherited from caller.
1848 static void mv_err_intr(struct ata_port
*ap
)
1850 void __iomem
*port_mmio
= mv_ap_base(ap
);
1851 u32 edma_err_cause
, eh_freeze_mask
, serr
= 0;
1853 struct mv_port_priv
*pp
= ap
->private_data
;
1854 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1855 unsigned int action
= 0, err_mask
= 0;
1856 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
1857 struct ata_queued_cmd
*qc
;
1861 * Read and clear the SError and err_cause bits.
1862 * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear
1863 * the FIS_IRQ_CAUSE register before clearing edma_err_cause.
1865 sata_scr_read(&ap
->link
, SCR_ERROR
, &serr
);
1866 sata_scr_write_flush(&ap
->link
, SCR_ERROR
, serr
);
1868 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1869 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
1870 fis_cause
= readl(port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
1871 writelfl(~fis_cause
, port_mmio
+ SATA_FIS_IRQ_CAUSE_OFS
);
1873 writelfl(~edma_err_cause
, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1875 if (edma_err_cause
& EDMA_ERR_DEV
) {
1877 * Device errors during FIS-based switching operation
1878 * require special handling.
1880 if (mv_handle_dev_err(ap
, edma_err_cause
))
1884 qc
= mv_get_active_qc(ap
);
1885 ata_ehi_clear_desc(ehi
);
1886 ata_ehi_push_desc(ehi
, "edma_err_cause=%08x pp_flags=%08x",
1887 edma_err_cause
, pp
->pp_flags
);
1889 if (IS_GEN_IIE(hpriv
) && (edma_err_cause
& EDMA_ERR_TRANS_IRQ_7
)) {
1890 ata_ehi_push_desc(ehi
, "fis_cause=%08x", fis_cause
);
1891 if (fis_cause
& SATA_FIS_IRQ_AN
) {
1892 u32 ec
= edma_err_cause
&
1893 ~(EDMA_ERR_TRANS_IRQ_7
| EDMA_ERR_IRQ_TRANSIENT
);
1894 sata_async_notification(ap
);
1896 return; /* Just an AN; no need for the nukes */
1897 ata_ehi_push_desc(ehi
, "SDB notify");
1901 * All generations share these EDMA error cause bits:
1903 if (edma_err_cause
& EDMA_ERR_DEV
) {
1904 err_mask
|= AC_ERR_DEV
;
1905 action
|= ATA_EH_RESET
;
1906 ata_ehi_push_desc(ehi
, "dev error");
1908 if (edma_err_cause
& (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
1909 EDMA_ERR_CRQB_PAR
| EDMA_ERR_CRPB_PAR
|
1910 EDMA_ERR_INTRL_PAR
)) {
1911 err_mask
|= AC_ERR_ATA_BUS
;
1912 action
|= ATA_EH_RESET
;
1913 ata_ehi_push_desc(ehi
, "parity error");
1915 if (edma_err_cause
& (EDMA_ERR_DEV_DCON
| EDMA_ERR_DEV_CON
)) {
1916 ata_ehi_hotplugged(ehi
);
1917 ata_ehi_push_desc(ehi
, edma_err_cause
& EDMA_ERR_DEV_DCON
?
1918 "dev disconnect" : "dev connect");
1919 action
|= ATA_EH_RESET
;
1923 * Gen-I has a different SELF_DIS bit,
1924 * different FREEZE bits, and no SERR bit:
1926 if (IS_GEN_I(hpriv
)) {
1927 eh_freeze_mask
= EDMA_EH_FREEZE_5
;
1928 if (edma_err_cause
& EDMA_ERR_SELF_DIS_5
) {
1929 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1930 ata_ehi_push_desc(ehi
, "EDMA self-disable");
1933 eh_freeze_mask
= EDMA_EH_FREEZE
;
1934 if (edma_err_cause
& EDMA_ERR_SELF_DIS
) {
1935 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1936 ata_ehi_push_desc(ehi
, "EDMA self-disable");
1938 if (edma_err_cause
& EDMA_ERR_SERR
) {
1939 ata_ehi_push_desc(ehi
, "SError=%08x", serr
);
1940 err_mask
|= AC_ERR_ATA_BUS
;
1941 action
|= ATA_EH_RESET
;
1946 err_mask
= AC_ERR_OTHER
;
1947 action
|= ATA_EH_RESET
;
1950 ehi
->serror
|= serr
;
1951 ehi
->action
|= action
;
1954 qc
->err_mask
|= err_mask
;
1956 ehi
->err_mask
|= err_mask
;
1958 if (err_mask
== AC_ERR_DEV
) {
1960 * Cannot do ata_port_freeze() here,
1961 * because it would kill PIO access,
1962 * which is needed for further diagnosis.
1966 } else if (edma_err_cause
& eh_freeze_mask
) {
1968 * Note to self: ata_port_freeze() calls ata_port_abort()
1970 ata_port_freeze(ap
);
1977 ata_link_abort(qc
->dev
->link
);
1983 static void mv_process_crpb_response(struct ata_port
*ap
,
1984 struct mv_crpb
*response
, unsigned int tag
, int ncq_enabled
)
1986 struct ata_queued_cmd
*qc
= ata_qc_from_tag(ap
, tag
);
1990 u16 edma_status
= le16_to_cpu(response
->flags
);
1992 * edma_status from a response queue entry:
1993 * LSB is from EDMA_ERR_IRQ_CAUSE_OFS (non-NCQ only).
1994 * MSB is saved ATA status from command completion.
1997 u8 err_cause
= edma_status
& 0xff & ~EDMA_ERR_DEV
;
2000 * Error will be seen/handled by mv_err_intr().
2001 * So do nothing at all here.
2006 ata_status
= edma_status
>> CRPB_FLAG_STATUS_SHIFT
;
2007 if (!ac_err_mask(ata_status
))
2008 ata_qc_complete(qc
);
2009 /* else: leave it for mv_err_intr() */
2011 ata_port_printk(ap
, KERN_ERR
, "%s: no qc for tag=%d\n",
2016 static void mv_process_crpb_entries(struct ata_port
*ap
, struct mv_port_priv
*pp
)
2018 void __iomem
*port_mmio
= mv_ap_base(ap
);
2019 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2021 bool work_done
= false;
2022 int ncq_enabled
= (pp
->pp_flags
& MV_PP_FLAG_NCQ_EN
);
2024 /* Get the hardware queue position index */
2025 in_index
= (readl(port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
)
2026 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
2028 /* Process new responses from since the last time we looked */
2029 while (in_index
!= pp
->resp_idx
) {
2031 struct mv_crpb
*response
= &pp
->crpb
[pp
->resp_idx
];
2033 pp
->resp_idx
= (pp
->resp_idx
+ 1) & MV_MAX_Q_DEPTH_MASK
;
2035 if (IS_GEN_I(hpriv
)) {
2036 /* 50xx: no NCQ, only one command active at a time */
2037 tag
= ap
->link
.active_tag
;
2039 /* Gen II/IIE: get command tag from CRPB entry */
2040 tag
= le16_to_cpu(response
->id
) & 0x1f;
2042 mv_process_crpb_response(ap
, response
, tag
, ncq_enabled
);
2046 /* Update the software queue position index in hardware */
2048 writelfl((pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
) |
2049 (pp
->resp_idx
<< EDMA_RSP_Q_PTR_SHIFT
),
2050 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
2053 static void mv_port_intr(struct ata_port
*ap
, u32 port_cause
)
2055 struct mv_port_priv
*pp
;
2056 int edma_was_enabled
;
2058 if (!ap
|| (ap
->flags
& ATA_FLAG_DISABLED
)) {
2059 mv_unexpected_intr(ap
, 0);
2063 * Grab a snapshot of the EDMA_EN flag setting,
2064 * so that we have a consistent view for this port,
2065 * even if something we call of our routines changes it.
2067 pp
= ap
->private_data
;
2068 edma_was_enabled
= (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
);
2070 * Process completed CRPB response(s) before other events.
2072 if (edma_was_enabled
&& (port_cause
& DONE_IRQ
)) {
2073 mv_process_crpb_entries(ap
, pp
);
2074 if (pp
->pp_flags
& MV_PP_FLAG_DELAYED_EH
)
2075 mv_handle_fbs_ncq_dev_err(ap
);
2078 * Handle chip-reported errors, or continue on to handle PIO.
2080 if (unlikely(port_cause
& ERR_IRQ
)) {
2082 } else if (!edma_was_enabled
) {
2083 struct ata_queued_cmd
*qc
= mv_get_active_qc(ap
);
2085 ata_sff_host_intr(ap
, qc
);
2087 mv_unexpected_intr(ap
, edma_was_enabled
);
2092 * mv_host_intr - Handle all interrupts on the given host controller
2093 * @host: host specific structure
2094 * @main_irq_cause: Main interrupt cause register for the chip.
2097 * Inherited from caller.
2099 static int mv_host_intr(struct ata_host
*host
, u32 main_irq_cause
)
2101 struct mv_host_priv
*hpriv
= host
->private_data
;
2102 void __iomem
*mmio
= hpriv
->base
, *hc_mmio
;
2103 unsigned int handled
= 0, port
;
2105 for (port
= 0; port
< hpriv
->n_ports
; port
++) {
2106 struct ata_port
*ap
= host
->ports
[port
];
2107 unsigned int p
, shift
, hardport
, port_cause
;
2109 MV_PORT_TO_SHIFT_AND_HARDPORT(port
, shift
, hardport
);
2111 * Each hc within the host has its own hc_irq_cause register,
2112 * where the interrupting ports bits get ack'd.
2114 if (hardport
== 0) { /* first port on this hc ? */
2115 u32 hc_cause
= (main_irq_cause
>> shift
) & HC0_IRQ_PEND
;
2116 u32 port_mask
, ack_irqs
;
2118 * Skip this entire hc if nothing pending for any ports
2121 port
+= MV_PORTS_PER_HC
- 1;
2125 * We don't need/want to read the hc_irq_cause register,
2126 * because doing so hurts performance, and
2127 * main_irq_cause already gives us everything we need.
2129 * But we do have to *write* to the hc_irq_cause to ack
2130 * the ports that we are handling this time through.
2132 * This requires that we create a bitmap for those
2133 * ports which interrupted us, and use that bitmap
2134 * to ack (only) those ports via hc_irq_cause.
2137 for (p
= 0; p
< MV_PORTS_PER_HC
; ++p
) {
2138 if ((port
+ p
) >= hpriv
->n_ports
)
2140 port_mask
= (DONE_IRQ
| ERR_IRQ
) << (p
* 2);
2141 if (hc_cause
& port_mask
)
2142 ack_irqs
|= (DMA_IRQ
| DEV_IRQ
) << p
;
2144 hc_mmio
= mv_hc_base_from_port(mmio
, port
);
2145 writelfl(~ack_irqs
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2149 * Handle interrupts signalled for this port:
2151 port_cause
= (main_irq_cause
>> shift
) & (DONE_IRQ
| ERR_IRQ
);
2153 mv_port_intr(ap
, port_cause
);
2158 static int mv_pci_error(struct ata_host
*host
, void __iomem
*mmio
)
2160 struct mv_host_priv
*hpriv
= host
->private_data
;
2161 struct ata_port
*ap
;
2162 struct ata_queued_cmd
*qc
;
2163 struct ata_eh_info
*ehi
;
2164 unsigned int i
, err_mask
, printed
= 0;
2167 err_cause
= readl(mmio
+ hpriv
->irq_cause_ofs
);
2169 dev_printk(KERN_ERR
, host
->dev
, "PCI ERROR; PCI IRQ cause=0x%08x\n",
2172 DPRINTK("All regs @ PCI error\n");
2173 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
2175 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
2177 for (i
= 0; i
< host
->n_ports
; i
++) {
2178 ap
= host
->ports
[i
];
2179 if (!ata_link_offline(&ap
->link
)) {
2180 ehi
= &ap
->link
.eh_info
;
2181 ata_ehi_clear_desc(ehi
);
2183 ata_ehi_push_desc(ehi
,
2184 "PCI err cause 0x%08x", err_cause
);
2185 err_mask
= AC_ERR_HOST_BUS
;
2186 ehi
->action
= ATA_EH_RESET
;
2187 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2189 qc
->err_mask
|= err_mask
;
2191 ehi
->err_mask
|= err_mask
;
2193 ata_port_freeze(ap
);
2196 return 1; /* handled */
2200 * mv_interrupt - Main interrupt event handler
2202 * @dev_instance: private data; in this case the host structure
2204 * Read the read only register to determine if any host
2205 * controllers have pending interrupts. If so, call lower level
2206 * routine to handle. Also check for PCI errors which are only
2210 * This routine holds the host lock while processing pending
2213 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
2215 struct ata_host
*host
= dev_instance
;
2216 struct mv_host_priv
*hpriv
= host
->private_data
;
2217 unsigned int handled
= 0;
2218 u32 main_irq_cause
, pending_irqs
;
2220 spin_lock(&host
->lock
);
2221 main_irq_cause
= readl(hpriv
->main_irq_cause_addr
);
2222 pending_irqs
= main_irq_cause
& hpriv
->main_irq_mask
;
2224 * Deal with cases where we either have nothing pending, or have read
2225 * a bogus register value which can indicate HW removal or PCI fault.
2227 if (pending_irqs
&& main_irq_cause
!= 0xffffffffU
) {
2228 if (unlikely((pending_irqs
& PCI_ERR
) && !IS_SOC(hpriv
)))
2229 handled
= mv_pci_error(host
, hpriv
->base
);
2231 handled
= mv_host_intr(host
, pending_irqs
);
2233 spin_unlock(&host
->lock
);
2234 return IRQ_RETVAL(handled
);
2237 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
2241 switch (sc_reg_in
) {
2245 ofs
= sc_reg_in
* sizeof(u32
);
2254 static int mv5_scr_read(struct ata_link
*link
, unsigned int sc_reg_in
, u32
*val
)
2256 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
2257 void __iomem
*mmio
= hpriv
->base
;
2258 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
2259 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
2261 if (ofs
!= 0xffffffffU
) {
2262 *val
= readl(addr
+ ofs
);
2268 static int mv5_scr_write(struct ata_link
*link
, unsigned int sc_reg_in
, u32 val
)
2270 struct mv_host_priv
*hpriv
= link
->ap
->host
->private_data
;
2271 void __iomem
*mmio
= hpriv
->base
;
2272 void __iomem
*addr
= mv5_phy_base(mmio
, link
->ap
->port_no
);
2273 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
2275 if (ofs
!= 0xffffffffU
) {
2276 writelfl(val
, addr
+ ofs
);
2282 static void mv5_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
2284 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
2287 early_5080
= (pdev
->device
== 0x5080) && (pdev
->revision
== 0);
2290 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2292 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2295 mv_reset_pci_bus(host
, mmio
);
2298 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2300 writel(0x0fcfffff, mmio
+ MV_FLASH_CTL_OFS
);
2303 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2306 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
2309 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
2311 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
2312 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
2315 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2319 writel(0, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2321 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
2323 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2325 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
2328 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2331 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
2332 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
2334 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
2337 tmp
= readl(phy_mmio
+ MV5_LTMODE_OFS
);
2339 writel(tmp
, phy_mmio
+ MV5_LTMODE_OFS
);
2341 tmp
= readl(phy_mmio
+ MV5_PHY_CTL_OFS
);
2344 writel(tmp
, phy_mmio
+ MV5_PHY_CTL_OFS
);
2347 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
2349 tmp
|= hpriv
->signal
[port
].pre
;
2350 tmp
|= hpriv
->signal
[port
].amps
;
2351 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
2356 #define ZERO(reg) writel(0, port_mmio + (reg))
2357 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2360 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2362 mv_reset_channel(hpriv
, mmio
, port
);
2364 ZERO(0x028); /* command */
2365 writel(0x11f, port_mmio
+ EDMA_CFG_OFS
);
2366 ZERO(0x004); /* timer */
2367 ZERO(0x008); /* irq err cause */
2368 ZERO(0x00c); /* irq err mask */
2369 ZERO(0x010); /* rq bah */
2370 ZERO(0x014); /* rq inp */
2371 ZERO(0x018); /* rq outp */
2372 ZERO(0x01c); /* respq bah */
2373 ZERO(0x024); /* respq outp */
2374 ZERO(0x020); /* respq inp */
2375 ZERO(0x02c); /* test control */
2376 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT_OFS
);
2380 #define ZERO(reg) writel(0, hc_mmio + (reg))
2381 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2384 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
2392 tmp
= readl(hc_mmio
+ 0x20);
2395 writel(tmp
, hc_mmio
+ 0x20);
2399 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2402 unsigned int hc
, port
;
2404 for (hc
= 0; hc
< n_hc
; hc
++) {
2405 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
2406 mv5_reset_hc_port(hpriv
, mmio
,
2407 (hc
* MV_PORTS_PER_HC
) + port
);
2409 mv5_reset_one_hc(hpriv
, mmio
, hc
);
2416 #define ZERO(reg) writel(0, mmio + (reg))
2417 static void mv_reset_pci_bus(struct ata_host
*host
, void __iomem
*mmio
)
2419 struct mv_host_priv
*hpriv
= host
->private_data
;
2422 tmp
= readl(mmio
+ MV_PCI_MODE_OFS
);
2424 writel(tmp
, mmio
+ MV_PCI_MODE_OFS
);
2426 ZERO(MV_PCI_DISC_TIMER
);
2427 ZERO(MV_PCI_MSI_TRIGGER
);
2428 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT_OFS
);
2429 ZERO(MV_PCI_SERR_MASK
);
2430 ZERO(hpriv
->irq_cause_ofs
);
2431 ZERO(hpriv
->irq_mask_ofs
);
2432 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
2433 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
2434 ZERO(MV_PCI_ERR_ATTRIBUTE
);
2435 ZERO(MV_PCI_ERR_COMMAND
);
2439 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2443 mv5_reset_flash(hpriv
, mmio
);
2445 tmp
= readl(mmio
+ MV_GPIO_PORT_CTL_OFS
);
2447 tmp
|= (1 << 5) | (1 << 6);
2448 writel(tmp
, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2452 * mv6_reset_hc - Perform the 6xxx global soft reset
2453 * @mmio: base address of the HBA
2455 * This routine only applies to 6xxx parts.
2458 * Inherited from caller.
2460 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2463 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS_OFS
;
2467 /* Following procedure defined in PCI "main command and status
2471 writel(t
| STOP_PCI_MASTER
, reg
);
2473 for (i
= 0; i
< 1000; i
++) {
2476 if (PCI_MASTER_EMPTY
& t
)
2479 if (!(PCI_MASTER_EMPTY
& t
)) {
2480 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
2488 writel(t
| GLOB_SFT_RST
, reg
);
2491 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
2493 if (!(GLOB_SFT_RST
& t
)) {
2494 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
2499 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
2502 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
2505 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
2507 if (GLOB_SFT_RST
& t
) {
2508 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
2515 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2518 void __iomem
*port_mmio
;
2521 tmp
= readl(mmio
+ MV_RESET_CFG_OFS
);
2522 if ((tmp
& (1 << 0)) == 0) {
2523 hpriv
->signal
[idx
].amps
= 0x7 << 8;
2524 hpriv
->signal
[idx
].pre
= 0x1 << 5;
2528 port_mmio
= mv_port_base(mmio
, idx
);
2529 tmp
= readl(port_mmio
+ PHY_MODE2
);
2531 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
2532 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
2535 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
2537 writel(0x00000060, mmio
+ MV_GPIO_PORT_CTL_OFS
);
2540 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2543 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2545 u32 hp_flags
= hpriv
->hp_flags
;
2547 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
2549 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
2552 if (fix_phy_mode2
) {
2553 m2
= readl(port_mmio
+ PHY_MODE2
);
2556 writel(m2
, port_mmio
+ PHY_MODE2
);
2560 m2
= readl(port_mmio
+ PHY_MODE2
);
2561 m2
&= ~((1 << 16) | (1 << 31));
2562 writel(m2
, port_mmio
+ PHY_MODE2
);
2568 * Gen-II/IIe PHY_MODE3 errata RM#2:
2569 * Achieves better receiver noise performance than the h/w default:
2571 m3
= readl(port_mmio
+ PHY_MODE3
);
2572 m3
= (m3
& 0x1f) | (0x5555601 << 5);
2574 /* Guideline 88F5182 (GL# SATA-S11) */
2578 if (fix_phy_mode4
) {
2579 u32 m4
= readl(port_mmio
+ PHY_MODE4
);
2581 * Enforce reserved-bit restrictions on GenIIe devices only.
2582 * For earlier chipsets, force only the internal config field
2583 * (workaround for errata FEr SATA#10 part 1).
2585 if (IS_GEN_IIE(hpriv
))
2586 m4
= (m4
& ~PHY_MODE4_RSVD_ZEROS
) | PHY_MODE4_RSVD_ONES
;
2588 m4
= (m4
& ~PHY_MODE4_CFG_MASK
) | PHY_MODE4_CFG_VALUE
;
2589 writel(m4
, port_mmio
+ PHY_MODE4
);
2592 * Workaround for 60x1-B2 errata SATA#13:
2593 * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3,
2594 * so we must always rewrite PHY_MODE3 after PHY_MODE4.
2596 writel(m3
, port_mmio
+ PHY_MODE3
);
2598 /* Revert values of pre-emphasis and signal amps to the saved ones */
2599 m2
= readl(port_mmio
+ PHY_MODE2
);
2601 m2
&= ~MV_M2_PREAMP_MASK
;
2602 m2
|= hpriv
->signal
[port
].amps
;
2603 m2
|= hpriv
->signal
[port
].pre
;
2606 /* according to mvSata 3.6.1, some IIE values are fixed */
2607 if (IS_GEN_IIE(hpriv
)) {
2612 writel(m2
, port_mmio
+ PHY_MODE2
);
2615 /* TODO: use the generic LED interface to configure the SATA Presence */
2616 /* & Acitivy LEDs on the board */
2617 static void mv_soc_enable_leds(struct mv_host_priv
*hpriv
,
2623 static void mv_soc_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
2626 void __iomem
*port_mmio
;
2629 port_mmio
= mv_port_base(mmio
, idx
);
2630 tmp
= readl(port_mmio
+ PHY_MODE2
);
2632 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
2633 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
2637 #define ZERO(reg) writel(0, port_mmio + (reg))
2638 static void mv_soc_reset_hc_port(struct mv_host_priv
*hpriv
,
2639 void __iomem
*mmio
, unsigned int port
)
2641 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2643 mv_reset_channel(hpriv
, mmio
, port
);
2645 ZERO(0x028); /* command */
2646 writel(0x101f, port_mmio
+ EDMA_CFG_OFS
);
2647 ZERO(0x004); /* timer */
2648 ZERO(0x008); /* irq err cause */
2649 ZERO(0x00c); /* irq err mask */
2650 ZERO(0x010); /* rq bah */
2651 ZERO(0x014); /* rq inp */
2652 ZERO(0x018); /* rq outp */
2653 ZERO(0x01c); /* respq bah */
2654 ZERO(0x024); /* respq outp */
2655 ZERO(0x020); /* respq inp */
2656 ZERO(0x02c); /* test control */
2657 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT_OFS
);
2662 #define ZERO(reg) writel(0, hc_mmio + (reg))
2663 static void mv_soc_reset_one_hc(struct mv_host_priv
*hpriv
,
2666 void __iomem
*hc_mmio
= mv_hc_base(mmio
, 0);
2676 static int mv_soc_reset_hc(struct mv_host_priv
*hpriv
,
2677 void __iomem
*mmio
, unsigned int n_hc
)
2681 for (port
= 0; port
< hpriv
->n_ports
; port
++)
2682 mv_soc_reset_hc_port(hpriv
, mmio
, port
);
2684 mv_soc_reset_one_hc(hpriv
, mmio
);
2689 static void mv_soc_reset_flash(struct mv_host_priv
*hpriv
,
2695 static void mv_soc_reset_bus(struct ata_host
*host
, void __iomem
*mmio
)
2700 static void mv_setup_ifcfg(void __iomem
*port_mmio
, int want_gen2i
)
2702 u32 ifcfg
= readl(port_mmio
+ SATA_INTERFACE_CFG_OFS
);
2704 ifcfg
= (ifcfg
& 0xf7f) | 0x9b1000; /* from chip spec */
2706 ifcfg
|= (1 << 7); /* enable gen2i speed */
2707 writelfl(ifcfg
, port_mmio
+ SATA_INTERFACE_CFG_OFS
);
2710 static void mv_reset_channel(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
2711 unsigned int port_no
)
2713 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
2716 * The datasheet warns against setting EDMA_RESET when EDMA is active
2717 * (but doesn't say what the problem might be). So we first try
2718 * to disable the EDMA engine before doing the EDMA_RESET operation.
2720 mv_stop_edma_engine(port_mmio
);
2721 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD_OFS
);
2723 if (!IS_GEN_I(hpriv
)) {
2724 /* Enable 3.0gb/s link speed: this survives EDMA_RESET */
2725 mv_setup_ifcfg(port_mmio
, 1);
2728 * Strobing EDMA_RESET here causes a hard reset of the SATA transport,
2729 * link, and physical layers. It resets all SATA interface registers
2730 * (except for SATA_INTERFACE_CFG), and issues a COMRESET to the dev.
2732 writelfl(EDMA_RESET
, port_mmio
+ EDMA_CMD_OFS
);
2733 udelay(25); /* allow reset propagation */
2734 writelfl(0, port_mmio
+ EDMA_CMD_OFS
);
2736 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
2738 if (IS_GEN_I(hpriv
))
2742 static void mv_pmp_select(struct ata_port
*ap
, int pmp
)
2744 if (sata_pmp_supported(ap
)) {
2745 void __iomem
*port_mmio
= mv_ap_base(ap
);
2746 u32 reg
= readl(port_mmio
+ SATA_IFCTL_OFS
);
2747 int old
= reg
& 0xf;
2750 reg
= (reg
& ~0xf) | pmp
;
2751 writelfl(reg
, port_mmio
+ SATA_IFCTL_OFS
);
2756 static int mv_pmp_hardreset(struct ata_link
*link
, unsigned int *class,
2757 unsigned long deadline
)
2759 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
2760 return sata_std_hardreset(link
, class, deadline
);
2763 static int mv_softreset(struct ata_link
*link
, unsigned int *class,
2764 unsigned long deadline
)
2766 mv_pmp_select(link
->ap
, sata_srst_pmp(link
));
2767 return ata_sff_softreset(link
, class, deadline
);
2770 static int mv_hardreset(struct ata_link
*link
, unsigned int *class,
2771 unsigned long deadline
)
2773 struct ata_port
*ap
= link
->ap
;
2774 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2775 struct mv_port_priv
*pp
= ap
->private_data
;
2776 void __iomem
*mmio
= hpriv
->base
;
2777 int rc
, attempts
= 0, extra
= 0;
2781 mv_reset_channel(hpriv
, mmio
, ap
->port_no
);
2782 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
2784 /* Workaround for errata FEr SATA#10 (part 2) */
2786 const unsigned long *timing
=
2787 sata_ehc_deb_timing(&link
->eh_context
);
2789 rc
= sata_link_hardreset(link
, timing
, deadline
+ extra
,
2791 rc
= online
? -EAGAIN
: rc
;
2794 sata_scr_read(link
, SCR_STATUS
, &sstatus
);
2795 if (!IS_GEN_I(hpriv
) && ++attempts
>= 5 && sstatus
== 0x121) {
2796 /* Force 1.5gb/s link speed and try again */
2797 mv_setup_ifcfg(mv_ap_base(ap
), 0);
2798 if (time_after(jiffies
+ HZ
, deadline
))
2799 extra
= HZ
; /* only extend it once, max */
2801 } while (sstatus
!= 0x0 && sstatus
!= 0x113 && sstatus
!= 0x123);
2806 static void mv_eh_freeze(struct ata_port
*ap
)
2809 mv_enable_port_irqs(ap
, 0);
2812 static void mv_eh_thaw(struct ata_port
*ap
)
2814 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
2815 unsigned int port
= ap
->port_no
;
2816 unsigned int hardport
= mv_hardport_from_port(port
);
2817 void __iomem
*hc_mmio
= mv_hc_base_from_port(hpriv
->base
, port
);
2818 void __iomem
*port_mmio
= mv_ap_base(ap
);
2821 /* clear EDMA errors on this port */
2822 writel(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2824 /* clear pending irq events */
2825 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2826 hc_irq_cause
&= ~((DEV_IRQ
| DMA_IRQ
) << hardport
);
2827 writelfl(hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2829 mv_enable_port_irqs(ap
, ERR_IRQ
);
2833 * mv_port_init - Perform some early initialization on a single port.
2834 * @port: libata data structure storing shadow register addresses
2835 * @port_mmio: base address of the port
2837 * Initialize shadow register mmio addresses, clear outstanding
2838 * interrupts on the port, and unmask interrupts for the future
2839 * start of the port.
2842 * Inherited from caller.
2844 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
2846 void __iomem
*shd_base
= port_mmio
+ SHD_BLK_OFS
;
2849 /* PIO related setup
2851 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
2853 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
2854 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
2855 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
2856 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
2857 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
2858 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
2860 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
2861 /* special case: control/altstatus doesn't have ATA_REG_ address */
2862 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST_OFS
;
2865 port
->cmd_addr
= port
->bmdma_addr
= port
->scr_addr
= NULL
;
2867 /* Clear any currently outstanding port interrupt conditions */
2868 serr_ofs
= mv_scr_offset(SCR_ERROR
);
2869 writelfl(readl(port_mmio
+ serr_ofs
), port_mmio
+ serr_ofs
);
2870 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2872 /* unmask all non-transient EDMA error interrupts */
2873 writelfl(~EDMA_ERR_IRQ_TRANSIENT
, port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
);
2875 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2876 readl(port_mmio
+ EDMA_CFG_OFS
),
2877 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
),
2878 readl(port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
));
2881 static unsigned int mv_in_pcix_mode(struct ata_host
*host
)
2883 struct mv_host_priv
*hpriv
= host
->private_data
;
2884 void __iomem
*mmio
= hpriv
->base
;
2887 if (IS_SOC(hpriv
) || !IS_PCIE(hpriv
))
2888 return 0; /* not PCI-X capable */
2889 reg
= readl(mmio
+ MV_PCI_MODE_OFS
);
2890 if ((reg
& MV_PCI_MODE_MASK
) == 0)
2891 return 0; /* conventional PCI mode */
2892 return 1; /* chip is in PCI-X mode */
2895 static int mv_pci_cut_through_okay(struct ata_host
*host
)
2897 struct mv_host_priv
*hpriv
= host
->private_data
;
2898 void __iomem
*mmio
= hpriv
->base
;
2901 if (!mv_in_pcix_mode(host
)) {
2902 reg
= readl(mmio
+ PCI_COMMAND_OFS
);
2903 if (reg
& PCI_COMMAND_MRDTRIG
)
2904 return 0; /* not okay */
2906 return 1; /* okay */
2909 static int mv_chip_id(struct ata_host
*host
, unsigned int board_idx
)
2911 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
2912 struct mv_host_priv
*hpriv
= host
->private_data
;
2913 u32 hp_flags
= hpriv
->hp_flags
;
2915 switch (board_idx
) {
2917 hpriv
->ops
= &mv5xxx_ops
;
2918 hp_flags
|= MV_HP_GEN_I
;
2920 switch (pdev
->revision
) {
2922 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2925 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2928 dev_printk(KERN_WARNING
, &pdev
->dev
,
2929 "Applying 50XXB2 workarounds to unknown rev\n");
2930 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2937 hpriv
->ops
= &mv5xxx_ops
;
2938 hp_flags
|= MV_HP_GEN_I
;
2940 switch (pdev
->revision
) {
2942 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2945 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2948 dev_printk(KERN_WARNING
, &pdev
->dev
,
2949 "Applying B2 workarounds to unknown rev\n");
2950 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2957 hpriv
->ops
= &mv6xxx_ops
;
2958 hp_flags
|= MV_HP_GEN_II
;
2960 switch (pdev
->revision
) {
2962 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2965 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2968 dev_printk(KERN_WARNING
, &pdev
->dev
,
2969 "Applying B2 workarounds to unknown rev\n");
2970 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2976 hp_flags
|= MV_HP_PCIE
| MV_HP_CUT_THROUGH
;
2977 if (pdev
->vendor
== PCI_VENDOR_ID_TTI
&&
2978 (pdev
->device
== 0x2300 || pdev
->device
== 0x2310))
2981 * Highpoint RocketRAID PCIe 23xx series cards:
2983 * Unconfigured drives are treated as "Legacy"
2984 * by the BIOS, and it overwrites sector 8 with
2985 * a "Lgcy" metadata block prior to Linux boot.
2987 * Configured drives (RAID or JBOD) leave sector 8
2988 * alone, but instead overwrite a high numbered
2989 * sector for the RAID metadata. This sector can
2990 * be determined exactly, by truncating the physical
2991 * drive capacity to a nice even GB value.
2993 * RAID metadata is at: (dev->n_sectors & ~0xfffff)
2995 * Warn the user, lest they think we're just buggy.
2997 printk(KERN_WARNING DRV_NAME
": Highpoint RocketRAID"
2998 " BIOS CORRUPTS DATA on all attached drives,"
2999 " regardless of if/how they are configured."
3001 printk(KERN_WARNING DRV_NAME
": For data safety, do not"
3002 " use sectors 8-9 on \"Legacy\" drives,"
3003 " and avoid the final two gigabytes on"
3004 " all RocketRAID BIOS initialized drives.\n");
3008 hpriv
->ops
= &mv6xxx_ops
;
3009 hp_flags
|= MV_HP_GEN_IIE
;
3010 if (board_idx
== chip_6042
&& mv_pci_cut_through_okay(host
))
3011 hp_flags
|= MV_HP_CUT_THROUGH
;
3013 switch (pdev
->revision
) {
3014 case 0x2: /* Rev.B0: the first/only public release */
3015 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3018 dev_printk(KERN_WARNING
, &pdev
->dev
,
3019 "Applying 60X1C0 workarounds to unknown rev\n");
3020 hp_flags
|= MV_HP_ERRATA_60X1C0
;
3025 hpriv
->ops
= &mv_soc_ops
;
3026 hp_flags
|= MV_HP_FLAG_SOC
| MV_HP_GEN_IIE
|
3027 MV_HP_ERRATA_60X1C0
;
3031 dev_printk(KERN_ERR
, host
->dev
,
3032 "BUG: invalid board index %u\n", board_idx
);
3036 hpriv
->hp_flags
= hp_flags
;
3037 if (hp_flags
& MV_HP_PCIE
) {
3038 hpriv
->irq_cause_ofs
= PCIE_IRQ_CAUSE_OFS
;
3039 hpriv
->irq_mask_ofs
= PCIE_IRQ_MASK_OFS
;
3040 hpriv
->unmask_all_irqs
= PCIE_UNMASK_ALL_IRQS
;
3042 hpriv
->irq_cause_ofs
= PCI_IRQ_CAUSE_OFS
;
3043 hpriv
->irq_mask_ofs
= PCI_IRQ_MASK_OFS
;
3044 hpriv
->unmask_all_irqs
= PCI_UNMASK_ALL_IRQS
;
3051 * mv_init_host - Perform some early initialization of the host.
3052 * @host: ATA host to initialize
3053 * @board_idx: controller index
3055 * If possible, do an early global reset of the host. Then do
3056 * our port init and clear/unmask all/relevant host interrupts.
3059 * Inherited from caller.
3061 static int mv_init_host(struct ata_host
*host
, unsigned int board_idx
)
3063 int rc
= 0, n_hc
, port
, hc
;
3064 struct mv_host_priv
*hpriv
= host
->private_data
;
3065 void __iomem
*mmio
= hpriv
->base
;
3067 rc
= mv_chip_id(host
, board_idx
);
3071 if (IS_SOC(hpriv
)) {
3072 hpriv
->main_irq_cause_addr
= mmio
+ SOC_HC_MAIN_IRQ_CAUSE_OFS
;
3073 hpriv
->main_irq_mask_addr
= mmio
+ SOC_HC_MAIN_IRQ_MASK_OFS
;
3075 hpriv
->main_irq_cause_addr
= mmio
+ PCI_HC_MAIN_IRQ_CAUSE_OFS
;
3076 hpriv
->main_irq_mask_addr
= mmio
+ PCI_HC_MAIN_IRQ_MASK_OFS
;
3079 /* global interrupt mask: 0 == mask everything */
3080 mv_set_main_irq_mask(host
, ~0, 0);
3082 n_hc
= mv_get_hc_count(host
->ports
[0]->flags
);
3084 for (port
= 0; port
< host
->n_ports
; port
++)
3085 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
3087 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
3091 hpriv
->ops
->reset_flash(hpriv
, mmio
);
3092 hpriv
->ops
->reset_bus(host
, mmio
);
3093 hpriv
->ops
->enable_leds(hpriv
, mmio
);
3095 for (port
= 0; port
< host
->n_ports
; port
++) {
3096 struct ata_port
*ap
= host
->ports
[port
];
3097 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
3099 mv_port_init(&ap
->ioaddr
, port_mmio
);
3102 if (!IS_SOC(hpriv
)) {
3103 unsigned int offset
= port_mmio
- mmio
;
3104 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, -1, "mmio");
3105 ata_port_pbar_desc(ap
, MV_PRIMARY_BAR
, offset
, "port");
3110 for (hc
= 0; hc
< n_hc
; hc
++) {
3111 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
3113 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
3114 "(before clear)=0x%08x\n", hc
,
3115 readl(hc_mmio
+ HC_CFG_OFS
),
3116 readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
));
3118 /* Clear any currently outstanding hc interrupt conditions */
3119 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
3122 if (!IS_SOC(hpriv
)) {
3123 /* Clear any currently outstanding host interrupt conditions */
3124 writelfl(0, mmio
+ hpriv
->irq_cause_ofs
);
3126 /* and unmask interrupt generation for host regs */
3127 writelfl(hpriv
->unmask_all_irqs
, mmio
+ hpriv
->irq_mask_ofs
);
3130 * enable only global host interrupts for now.
3131 * The per-port interrupts get done later as ports are set up.
3133 mv_set_main_irq_mask(host
, 0, PCI_ERR
);
3139 static int mv_create_dma_pools(struct mv_host_priv
*hpriv
, struct device
*dev
)
3141 hpriv
->crqb_pool
= dmam_pool_create("crqb_q", dev
, MV_CRQB_Q_SZ
,
3143 if (!hpriv
->crqb_pool
)
3146 hpriv
->crpb_pool
= dmam_pool_create("crpb_q", dev
, MV_CRPB_Q_SZ
,
3148 if (!hpriv
->crpb_pool
)
3151 hpriv
->sg_tbl_pool
= dmam_pool_create("sg_tbl", dev
, MV_SG_TBL_SZ
,
3153 if (!hpriv
->sg_tbl_pool
)
3159 static void mv_conf_mbus_windows(struct mv_host_priv
*hpriv
,
3160 struct mbus_dram_target_info
*dram
)
3164 for (i
= 0; i
< 4; i
++) {
3165 writel(0, hpriv
->base
+ WINDOW_CTRL(i
));
3166 writel(0, hpriv
->base
+ WINDOW_BASE(i
));
3169 for (i
= 0; i
< dram
->num_cs
; i
++) {
3170 struct mbus_dram_window
*cs
= dram
->cs
+ i
;
3172 writel(((cs
->size
- 1) & 0xffff0000) |
3173 (cs
->mbus_attr
<< 8) |
3174 (dram
->mbus_dram_target_id
<< 4) | 1,
3175 hpriv
->base
+ WINDOW_CTRL(i
));
3176 writel(cs
->base
, hpriv
->base
+ WINDOW_BASE(i
));
3181 * mv_platform_probe - handle a positive probe of an soc Marvell
3183 * @pdev: platform device found
3186 * Inherited from caller.
3188 static int mv_platform_probe(struct platform_device
*pdev
)
3190 static int printed_version
;
3191 const struct mv_sata_platform_data
*mv_platform_data
;
3192 const struct ata_port_info
*ppi
[] =
3193 { &mv_port_info
[chip_soc
], NULL
};
3194 struct ata_host
*host
;
3195 struct mv_host_priv
*hpriv
;
3196 struct resource
*res
;
3199 if (!printed_version
++)
3200 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
3203 * Simple resource validation ..
3205 if (unlikely(pdev
->num_resources
!= 2)) {
3206 dev_err(&pdev
->dev
, "invalid number of resources\n");
3211 * Get the register base first
3213 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
3218 mv_platform_data
= pdev
->dev
.platform_data
;
3219 n_ports
= mv_platform_data
->n_ports
;
3221 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
3222 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
3224 if (!host
|| !hpriv
)
3226 host
->private_data
= hpriv
;
3227 hpriv
->n_ports
= n_ports
;
3230 hpriv
->base
= devm_ioremap(&pdev
->dev
, res
->start
,
3231 res
->end
- res
->start
+ 1);
3232 hpriv
->base
-= MV_SATAHC0_REG_BASE
;
3235 * (Re-)program MBUS remapping windows if we are asked to.
3237 if (mv_platform_data
->dram
!= NULL
)
3238 mv_conf_mbus_windows(hpriv
, mv_platform_data
->dram
);
3240 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
3244 /* initialize adapter */
3245 rc
= mv_init_host(host
, chip_soc
);
3249 dev_printk(KERN_INFO
, &pdev
->dev
,
3250 "slots %u ports %d\n", (unsigned)MV_MAX_Q_DEPTH
,
3253 return ata_host_activate(host
, platform_get_irq(pdev
, 0), mv_interrupt
,
3254 IRQF_SHARED
, &mv6_sht
);
3259 * mv_platform_remove - unplug a platform interface
3260 * @pdev: platform device
3262 * A platform bus SATA device has been unplugged. Perform the needed
3263 * cleanup. Also called on module unload for any active devices.
3265 static int __devexit
mv_platform_remove(struct platform_device
*pdev
)
3267 struct device
*dev
= &pdev
->dev
;
3268 struct ata_host
*host
= dev_get_drvdata(dev
);
3270 ata_host_detach(host
);
3274 static struct platform_driver mv_platform_driver
= {
3275 .probe
= mv_platform_probe
,
3276 .remove
= __devexit_p(mv_platform_remove
),
3279 .owner
= THIS_MODULE
,
3285 static int mv_pci_init_one(struct pci_dev
*pdev
,
3286 const struct pci_device_id
*ent
);
3289 static struct pci_driver mv_pci_driver
= {
3291 .id_table
= mv_pci_tbl
,
3292 .probe
= mv_pci_init_one
,
3293 .remove
= ata_pci_remove_one
,
3299 static int msi
; /* Use PCI msi; either zero (off, default) or non-zero */
3302 /* move to PCI layer or libata core? */
3303 static int pci_go_64(struct pci_dev
*pdev
)
3307 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3308 rc
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3310 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3312 dev_printk(KERN_ERR
, &pdev
->dev
,
3313 "64-bit DMA enable failed\n");
3318 rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
3320 dev_printk(KERN_ERR
, &pdev
->dev
,
3321 "32-bit DMA enable failed\n");
3324 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3326 dev_printk(KERN_ERR
, &pdev
->dev
,
3327 "32-bit consistent DMA enable failed\n");
3336 * mv_print_info - Dump key info to kernel log for perusal.
3337 * @host: ATA host to print info about
3339 * FIXME: complete this.
3342 * Inherited from caller.
3344 static void mv_print_info(struct ata_host
*host
)
3346 struct pci_dev
*pdev
= to_pci_dev(host
->dev
);
3347 struct mv_host_priv
*hpriv
= host
->private_data
;
3349 const char *scc_s
, *gen
;
3351 /* Use this to determine the HW stepping of the chip so we know
3352 * what errata to workaround
3354 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
3357 else if (scc
== 0x01)
3362 if (IS_GEN_I(hpriv
))
3364 else if (IS_GEN_II(hpriv
))
3366 else if (IS_GEN_IIE(hpriv
))
3371 dev_printk(KERN_INFO
, &pdev
->dev
,
3372 "Gen-%s %u slots %u ports %s mode IRQ via %s\n",
3373 gen
, (unsigned)MV_MAX_Q_DEPTH
, host
->n_ports
,
3374 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
3378 * mv_pci_init_one - handle a positive probe of a PCI Marvell host
3379 * @pdev: PCI device found
3380 * @ent: PCI device ID entry for the matched host
3383 * Inherited from caller.
3385 static int mv_pci_init_one(struct pci_dev
*pdev
,
3386 const struct pci_device_id
*ent
)
3388 static int printed_version
;
3389 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
3390 const struct ata_port_info
*ppi
[] = { &mv_port_info
[board_idx
], NULL
};
3391 struct ata_host
*host
;
3392 struct mv_host_priv
*hpriv
;
3395 if (!printed_version
++)
3396 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
3399 n_ports
= mv_get_hc_count(ppi
[0]->flags
) * MV_PORTS_PER_HC
;
3401 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, n_ports
);
3402 hpriv
= devm_kzalloc(&pdev
->dev
, sizeof(*hpriv
), GFP_KERNEL
);
3403 if (!host
|| !hpriv
)
3405 host
->private_data
= hpriv
;
3406 hpriv
->n_ports
= n_ports
;
3408 /* acquire resources */
3409 rc
= pcim_enable_device(pdev
);
3413 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
3415 pcim_pin_device(pdev
);
3418 host
->iomap
= pcim_iomap_table(pdev
);
3419 hpriv
->base
= host
->iomap
[MV_PRIMARY_BAR
];
3421 rc
= pci_go_64(pdev
);
3425 rc
= mv_create_dma_pools(hpriv
, &pdev
->dev
);
3429 /* initialize adapter */
3430 rc
= mv_init_host(host
, board_idx
);
3434 /* Enable interrupts */
3435 if (msi
&& pci_enable_msi(pdev
))
3438 mv_dump_pci_cfg(pdev
, 0x68);
3439 mv_print_info(host
);
3441 pci_set_master(pdev
);
3442 pci_try_set_mwi(pdev
);
3443 return ata_host_activate(host
, pdev
->irq
, mv_interrupt
, IRQF_SHARED
,
3444 IS_GEN_I(hpriv
) ? &mv5_sht
: &mv6_sht
);
3448 static int mv_platform_probe(struct platform_device
*pdev
);
3449 static int __devexit
mv_platform_remove(struct platform_device
*pdev
);
3451 static int __init
mv_init(void)
3455 rc
= pci_register_driver(&mv_pci_driver
);
3459 rc
= platform_driver_register(&mv_platform_driver
);
3463 pci_unregister_driver(&mv_pci_driver
);
3468 static void __exit
mv_exit(void)
3471 pci_unregister_driver(&mv_pci_driver
);
3473 platform_driver_unregister(&mv_platform_driver
);
3476 MODULE_AUTHOR("Brett Russ");
3477 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
3478 MODULE_LICENSE("GPL");
3479 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
3480 MODULE_VERSION(DRV_VERSION
);
3481 MODULE_ALIAS("platform:" DRV_NAME
);
3484 module_param(msi
, int, 0444);
3485 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
3488 module_init(mv_init
);
3489 module_exit(mv_exit
);