2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/statfs.h>
30 #include <linux/compat.h>
33 #include "transaction.h"
34 #include "btrfs_inode.h"
36 #include "print-tree.h"
42 /* simple helper to fault in pages and copy. This should go away
43 * and be replaced with calls into generic code.
45 static noinline
int btrfs_copy_from_user(loff_t pos
, int num_pages
,
47 struct page
**prepared_pages
,
48 const char __user
*buf
)
52 int offset
= pos
& (PAGE_CACHE_SIZE
- 1);
54 for (i
= 0; i
< num_pages
&& write_bytes
> 0; i
++, offset
= 0) {
55 size_t count
= min_t(size_t,
56 PAGE_CACHE_SIZE
- offset
, write_bytes
);
57 struct page
*page
= prepared_pages
[i
];
58 fault_in_pages_readable(buf
, count
);
60 /* Copy data from userspace to the current page */
62 page_fault
= __copy_from_user(page_address(page
) + offset
,
64 /* Flush processor's dcache for this page */
65 flush_dcache_page(page
);
73 return page_fault
? -EFAULT
: 0;
77 * unlocks pages after btrfs_file_write is done with them
79 static noinline
void btrfs_drop_pages(struct page
**pages
, size_t num_pages
)
82 for (i
= 0; i
< num_pages
; i
++) {
85 /* page checked is some magic around finding pages that
86 * have been modified without going through btrfs_set_page_dirty
89 ClearPageChecked(pages
[i
]);
90 unlock_page(pages
[i
]);
91 mark_page_accessed(pages
[i
]);
92 page_cache_release(pages
[i
]);
97 * after copy_from_user, pages need to be dirtied and we need to make
98 * sure holes are created between the current EOF and the start of
99 * any next extents (if required).
101 * this also makes the decision about creating an inline extent vs
102 * doing real data extents, marking pages dirty and delalloc as required.
104 static noinline
int dirty_and_release_pages(struct btrfs_trans_handle
*trans
,
105 struct btrfs_root
*root
,
114 struct inode
*inode
= fdentry(file
)->d_inode
;
115 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
119 u64 end_of_last_block
;
120 u64 end_pos
= pos
+ write_bytes
;
121 loff_t isize
= i_size_read(inode
);
123 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
124 num_bytes
= (write_bytes
+ pos
- start_pos
+
125 root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
127 end_of_last_block
= start_pos
+ num_bytes
- 1;
129 lock_extent(io_tree
, start_pos
, end_of_last_block
, GFP_NOFS
);
130 trans
= btrfs_join_transaction(root
, 1);
135 btrfs_set_trans_block_group(trans
, inode
);
138 set_extent_uptodate(io_tree
, start_pos
, end_of_last_block
, GFP_NOFS
);
140 /* check for reserved extents on each page, we don't want
141 * to reset the delalloc bit on things that already have
144 btrfs_set_extent_delalloc(inode
, start_pos
, end_of_last_block
);
145 for (i
= 0; i
< num_pages
; i
++) {
146 struct page
*p
= pages
[i
];
151 if (end_pos
> isize
) {
152 i_size_write(inode
, end_pos
);
153 /* we've only changed i_size in ram, and we haven't updated
154 * the disk i_size. There is no need to log the inode
158 err
= btrfs_end_transaction(trans
, root
);
160 unlock_extent(io_tree
, start_pos
, end_of_last_block
, GFP_NOFS
);
165 * this drops all the extents in the cache that intersect the range
166 * [start, end]. Existing extents are split as required.
168 int btrfs_drop_extent_cache(struct inode
*inode
, u64 start
, u64 end
,
171 struct extent_map
*em
;
172 struct extent_map
*split
= NULL
;
173 struct extent_map
*split2
= NULL
;
174 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
175 u64 len
= end
- start
+ 1;
181 WARN_ON(end
< start
);
182 if (end
== (u64
)-1) {
188 split
= alloc_extent_map(GFP_NOFS
);
190 split2
= alloc_extent_map(GFP_NOFS
);
192 spin_lock(&em_tree
->lock
);
193 em
= lookup_extent_mapping(em_tree
, start
, len
);
195 spin_unlock(&em_tree
->lock
);
199 if (skip_pinned
&& test_bit(EXTENT_FLAG_PINNED
, &em
->flags
)) {
200 spin_unlock(&em_tree
->lock
);
201 if (em
->start
<= start
&&
202 (!testend
|| em
->start
+ em
->len
>= start
+ len
)) {
206 if (start
< em
->start
) {
207 len
= em
->start
- start
;
209 len
= start
+ len
- (em
->start
+ em
->len
);
210 start
= em
->start
+ em
->len
;
215 compressed
= test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
216 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
217 remove_extent_mapping(em_tree
, em
);
219 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
221 split
->start
= em
->start
;
222 split
->len
= start
- em
->start
;
223 split
->orig_start
= em
->orig_start
;
224 split
->block_start
= em
->block_start
;
227 split
->block_len
= em
->block_len
;
229 split
->block_len
= split
->len
;
231 split
->bdev
= em
->bdev
;
232 split
->flags
= flags
;
233 ret
= add_extent_mapping(em_tree
, split
);
235 free_extent_map(split
);
239 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
240 testend
&& em
->start
+ em
->len
> start
+ len
) {
241 u64 diff
= start
+ len
- em
->start
;
243 split
->start
= start
+ len
;
244 split
->len
= em
->start
+ em
->len
- (start
+ len
);
245 split
->bdev
= em
->bdev
;
246 split
->flags
= flags
;
249 split
->block_len
= em
->block_len
;
250 split
->block_start
= em
->block_start
;
251 split
->orig_start
= em
->orig_start
;
253 split
->block_len
= split
->len
;
254 split
->block_start
= em
->block_start
+ diff
;
255 split
->orig_start
= split
->start
;
258 ret
= add_extent_mapping(em_tree
, split
);
260 free_extent_map(split
);
263 spin_unlock(&em_tree
->lock
);
267 /* once for the tree*/
271 free_extent_map(split
);
273 free_extent_map(split2
);
278 * this is very complex, but the basic idea is to drop all extents
279 * in the range start - end. hint_block is filled in with a block number
280 * that would be a good hint to the block allocator for this file.
282 * If an extent intersects the range but is not entirely inside the range
283 * it is either truncated or split. Anything entirely inside the range
284 * is deleted from the tree.
286 * inline_limit is used to tell this code which offsets in the file to keep
287 * if they contain inline extents.
289 noinline
int btrfs_drop_extents(struct btrfs_trans_handle
*trans
,
290 struct btrfs_root
*root
, struct inode
*inode
,
291 u64 start
, u64 end
, u64 locked_end
,
292 u64 inline_limit
, u64
*hint_byte
)
295 u64 search_start
= start
;
298 u64 orig_locked_end
= locked_end
;
301 u16 other_encoding
= 0;
302 struct extent_buffer
*leaf
;
303 struct btrfs_file_extent_item
*extent
;
304 struct btrfs_path
*path
;
305 struct btrfs_key key
;
306 struct btrfs_file_extent_item old
;
317 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
319 path
= btrfs_alloc_path();
324 btrfs_release_path(root
, path
);
325 ret
= btrfs_lookup_file_extent(trans
, root
, path
, inode
->i_ino
,
330 if (path
->slots
[0] == 0) {
344 leaf
= path
->nodes
[0];
345 slot
= path
->slots
[0];
347 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
348 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
&&
352 if (btrfs_key_type(&key
) > BTRFS_EXTENT_DATA_KEY
||
353 key
.objectid
!= inode
->i_ino
) {
357 search_start
= max(key
.offset
, start
);
360 if (btrfs_key_type(&key
) == BTRFS_EXTENT_DATA_KEY
) {
361 extent
= btrfs_item_ptr(leaf
, slot
,
362 struct btrfs_file_extent_item
);
363 found_type
= btrfs_file_extent_type(leaf
, extent
);
364 compression
= btrfs_file_extent_compression(leaf
,
366 encryption
= btrfs_file_extent_encryption(leaf
,
368 other_encoding
= btrfs_file_extent_other_encoding(leaf
,
370 if (found_type
== BTRFS_FILE_EXTENT_REG
||
371 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
373 btrfs_file_extent_disk_bytenr(leaf
,
376 *hint_byte
= extent_end
;
378 extent_end
= key
.offset
+
379 btrfs_file_extent_num_bytes(leaf
, extent
);
380 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
,
383 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
385 extent_end
= key
.offset
+
386 btrfs_file_extent_inline_len(leaf
, extent
);
389 extent_end
= search_start
;
392 /* we found nothing we can drop */
393 if ((!found_extent
&& !found_inline
) ||
394 search_start
>= extent_end
) {
397 nritems
= btrfs_header_nritems(leaf
);
398 if (slot
>= nritems
- 1) {
399 nextret
= btrfs_next_leaf(root
, path
);
409 if (end
<= extent_end
&& start
>= key
.offset
&& found_inline
)
410 *hint_byte
= EXTENT_MAP_INLINE
;
413 read_extent_buffer(leaf
, &old
, (unsigned long)extent
,
417 if (end
< extent_end
&& end
>= key
.offset
) {
419 if (found_inline
&& start
<= key
.offset
)
423 if (bookend
&& found_extent
) {
424 if (locked_end
< extent_end
) {
425 ret
= try_lock_extent(&BTRFS_I(inode
)->io_tree
,
426 locked_end
, extent_end
- 1,
429 btrfs_release_path(root
, path
);
430 lock_extent(&BTRFS_I(inode
)->io_tree
,
431 locked_end
, extent_end
- 1,
433 locked_end
= extent_end
;
436 locked_end
= extent_end
;
438 disk_bytenr
= le64_to_cpu(old
.disk_bytenr
);
439 if (disk_bytenr
!= 0) {
440 ret
= btrfs_inc_extent_ref(trans
, root
,
442 le64_to_cpu(old
.disk_num_bytes
), 0,
443 root
->root_key
.objectid
,
444 key
.objectid
, key
.offset
-
445 le64_to_cpu(old
.offset
));
451 u64 mask
= root
->sectorsize
- 1;
452 search_start
= (extent_end
+ mask
) & ~mask
;
454 search_start
= extent_end
;
456 /* truncate existing extent */
457 if (start
> key
.offset
) {
461 WARN_ON(start
& (root
->sectorsize
- 1));
463 new_num
= start
- key
.offset
;
464 old_num
= btrfs_file_extent_num_bytes(leaf
,
467 btrfs_file_extent_disk_bytenr(leaf
,
469 if (btrfs_file_extent_disk_bytenr(leaf
,
471 inode_sub_bytes(inode
, old_num
-
474 btrfs_set_file_extent_num_bytes(leaf
,
476 btrfs_mark_buffer_dirty(leaf
);
477 } else if (key
.offset
< inline_limit
&&
478 (end
> extent_end
) &&
479 (inline_limit
< extent_end
)) {
481 new_size
= btrfs_file_extent_calc_inline_size(
482 inline_limit
- key
.offset
);
483 inode_sub_bytes(inode
, extent_end
-
485 btrfs_set_file_extent_ram_bytes(leaf
, extent
,
487 if (!compression
&& !encryption
) {
488 btrfs_truncate_item(trans
, root
, path
,
493 /* delete the entire extent */
496 inode_sub_bytes(inode
, extent_end
-
498 ret
= btrfs_del_item(trans
, root
, path
);
499 /* TODO update progress marker and return */
502 btrfs_release_path(root
, path
);
503 /* the extent will be freed later */
505 if (bookend
&& found_inline
&& start
<= key
.offset
) {
507 new_size
= btrfs_file_extent_calc_inline_size(
509 inode_sub_bytes(inode
, end
- key
.offset
);
510 btrfs_set_file_extent_ram_bytes(leaf
, extent
,
512 if (!compression
&& !encryption
)
513 ret
= btrfs_truncate_item(trans
, root
, path
,
517 /* create bookend, splitting the extent in two */
518 if (bookend
&& found_extent
) {
519 struct btrfs_key ins
;
520 ins
.objectid
= inode
->i_ino
;
522 btrfs_set_key_type(&ins
, BTRFS_EXTENT_DATA_KEY
);
524 btrfs_release_path(root
, path
);
525 path
->leave_spinning
= 1;
526 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
530 leaf
= path
->nodes
[0];
531 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
532 struct btrfs_file_extent_item
);
533 write_extent_buffer(leaf
, &old
,
534 (unsigned long)extent
, sizeof(old
));
536 btrfs_set_file_extent_compression(leaf
, extent
,
538 btrfs_set_file_extent_encryption(leaf
, extent
,
540 btrfs_set_file_extent_other_encoding(leaf
, extent
,
542 btrfs_set_file_extent_offset(leaf
, extent
,
543 le64_to_cpu(old
.offset
) + end
- key
.offset
);
544 WARN_ON(le64_to_cpu(old
.num_bytes
) <
546 btrfs_set_file_extent_num_bytes(leaf
, extent
,
550 * set the ram bytes to the size of the full extent
551 * before splitting. This is a worst case flag,
552 * but its the best we can do because we don't know
553 * how splitting affects compression
555 btrfs_set_file_extent_ram_bytes(leaf
, extent
,
557 btrfs_set_file_extent_type(leaf
, extent
, found_type
);
559 btrfs_unlock_up_safe(path
, 1);
560 btrfs_mark_buffer_dirty(path
->nodes
[0]);
561 btrfs_set_lock_blocking(path
->nodes
[0]);
563 path
->leave_spinning
= 0;
564 btrfs_release_path(root
, path
);
565 if (disk_bytenr
!= 0)
566 inode_add_bytes(inode
, extent_end
- end
);
569 if (found_extent
&& !keep
) {
570 u64 old_disk_bytenr
= le64_to_cpu(old
.disk_bytenr
);
572 if (old_disk_bytenr
!= 0) {
573 inode_sub_bytes(inode
,
574 le64_to_cpu(old
.num_bytes
));
575 ret
= btrfs_free_extent(trans
, root
,
577 le64_to_cpu(old
.disk_num_bytes
),
578 0, root
->root_key
.objectid
,
579 key
.objectid
, key
.offset
-
580 le64_to_cpu(old
.offset
));
582 *hint_byte
= old_disk_bytenr
;
586 if (search_start
>= end
) {
592 btrfs_free_path(path
);
593 if (locked_end
> orig_locked_end
) {
594 unlock_extent(&BTRFS_I(inode
)->io_tree
, orig_locked_end
,
595 locked_end
- 1, GFP_NOFS
);
600 static int extent_mergeable(struct extent_buffer
*leaf
, int slot
,
601 u64 objectid
, u64 bytenr
, u64
*start
, u64
*end
)
603 struct btrfs_file_extent_item
*fi
;
604 struct btrfs_key key
;
607 if (slot
< 0 || slot
>= btrfs_header_nritems(leaf
))
610 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
611 if (key
.objectid
!= objectid
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
614 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
615 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
||
616 btrfs_file_extent_disk_bytenr(leaf
, fi
) != bytenr
||
617 btrfs_file_extent_compression(leaf
, fi
) ||
618 btrfs_file_extent_encryption(leaf
, fi
) ||
619 btrfs_file_extent_other_encoding(leaf
, fi
))
622 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
623 if ((*start
&& *start
!= key
.offset
) || (*end
&& *end
!= extent_end
))
632 * Mark extent in the range start - end as written.
634 * This changes extent type from 'pre-allocated' to 'regular'. If only
635 * part of extent is marked as written, the extent will be split into
638 int btrfs_mark_extent_written(struct btrfs_trans_handle
*trans
,
639 struct btrfs_root
*root
,
640 struct inode
*inode
, u64 start
, u64 end
)
642 struct extent_buffer
*leaf
;
643 struct btrfs_path
*path
;
644 struct btrfs_file_extent_item
*fi
;
645 struct btrfs_key key
;
653 u64 locked_end
= end
;
658 btrfs_drop_extent_cache(inode
, start
, end
- 1, 0);
660 path
= btrfs_alloc_path();
663 key
.objectid
= inode
->i_ino
;
664 key
.type
= BTRFS_EXTENT_DATA_KEY
;
668 key
.offset
= split
- 1;
670 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
671 if (ret
> 0 && path
->slots
[0] > 0)
674 leaf
= path
->nodes
[0];
675 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
676 BUG_ON(key
.objectid
!= inode
->i_ino
||
677 key
.type
!= BTRFS_EXTENT_DATA_KEY
);
678 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
679 struct btrfs_file_extent_item
);
680 extent_type
= btrfs_file_extent_type(leaf
, fi
);
681 BUG_ON(extent_type
!= BTRFS_FILE_EXTENT_PREALLOC
);
682 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
683 BUG_ON(key
.offset
> start
|| extent_end
< end
);
685 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
686 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
687 orig_offset
= key
.offset
- btrfs_file_extent_offset(leaf
, fi
);
689 if (key
.offset
== start
)
692 if (key
.offset
== start
&& extent_end
== end
) {
697 if (extent_mergeable(leaf
, path
->slots
[0] + 1, inode
->i_ino
,
698 bytenr
, &other_start
, &other_end
)) {
699 extent_end
= other_end
;
700 del_slot
= path
->slots
[0] + 1;
702 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
703 0, root
->root_key
.objectid
,
704 inode
->i_ino
, orig_offset
);
709 if (extent_mergeable(leaf
, path
->slots
[0] - 1, inode
->i_ino
,
710 bytenr
, &other_start
, &other_end
)) {
711 key
.offset
= other_start
;
712 del_slot
= path
->slots
[0];
714 ret
= btrfs_free_extent(trans
, root
, bytenr
, num_bytes
,
715 0, root
->root_key
.objectid
,
716 inode
->i_ino
, orig_offset
);
721 btrfs_set_file_extent_type(leaf
, fi
,
722 BTRFS_FILE_EXTENT_REG
);
726 fi
= btrfs_item_ptr(leaf
, del_slot
- 1,
727 struct btrfs_file_extent_item
);
728 btrfs_set_file_extent_type(leaf
, fi
, BTRFS_FILE_EXTENT_REG
);
729 btrfs_set_file_extent_num_bytes(leaf
, fi
,
730 extent_end
- key
.offset
);
731 btrfs_mark_buffer_dirty(leaf
);
733 ret
= btrfs_del_items(trans
, root
, path
, del_slot
, del_nr
);
736 } else if (split
== start
) {
737 if (locked_end
< extent_end
) {
738 ret
= try_lock_extent(&BTRFS_I(inode
)->io_tree
,
739 locked_end
, extent_end
- 1, GFP_NOFS
);
741 btrfs_release_path(root
, path
);
742 lock_extent(&BTRFS_I(inode
)->io_tree
,
743 locked_end
, extent_end
- 1, GFP_NOFS
);
744 locked_end
= extent_end
;
747 locked_end
= extent_end
;
749 btrfs_set_file_extent_num_bytes(leaf
, fi
, split
- key
.offset
);
751 BUG_ON(key
.offset
!= start
);
753 btrfs_set_file_extent_offset(leaf
, fi
, key
.offset
-
755 btrfs_set_file_extent_num_bytes(leaf
, fi
, extent_end
- split
);
756 btrfs_set_item_key_safe(trans
, root
, path
, &key
);
760 if (extent_end
== end
) {
762 extent_type
= BTRFS_FILE_EXTENT_REG
;
764 if (extent_end
== end
&& split
== start
) {
767 if (extent_mergeable(leaf
, path
->slots
[0] + 1, inode
->i_ino
,
768 bytenr
, &other_start
, &other_end
)) {
770 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
771 struct btrfs_file_extent_item
);
773 btrfs_set_item_key_safe(trans
, root
, path
, &key
);
774 btrfs_set_file_extent_offset(leaf
, fi
, key
.offset
-
776 btrfs_set_file_extent_num_bytes(leaf
, fi
,
781 if (extent_end
== end
&& split
== end
) {
784 if (extent_mergeable(leaf
, path
->slots
[0] - 1 , inode
->i_ino
,
785 bytenr
, &other_start
, &other_end
)) {
787 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
788 struct btrfs_file_extent_item
);
789 btrfs_set_file_extent_num_bytes(leaf
, fi
, extent_end
-
795 btrfs_mark_buffer_dirty(leaf
);
797 ret
= btrfs_inc_extent_ref(trans
, root
, bytenr
, num_bytes
, 0,
798 root
->root_key
.objectid
,
799 inode
->i_ino
, orig_offset
);
801 btrfs_release_path(root
, path
);
804 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, sizeof(*fi
));
807 leaf
= path
->nodes
[0];
808 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
809 struct btrfs_file_extent_item
);
810 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
811 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
812 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, bytenr
);
813 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, num_bytes
);
814 btrfs_set_file_extent_offset(leaf
, fi
, key
.offset
- orig_offset
);
815 btrfs_set_file_extent_num_bytes(leaf
, fi
, extent_end
- key
.offset
);
816 btrfs_set_file_extent_ram_bytes(leaf
, fi
, num_bytes
);
817 btrfs_set_file_extent_compression(leaf
, fi
, 0);
818 btrfs_set_file_extent_encryption(leaf
, fi
, 0);
819 btrfs_set_file_extent_other_encoding(leaf
, fi
, 0);
821 btrfs_mark_buffer_dirty(leaf
);
824 btrfs_release_path(root
, path
);
825 if (split_end
&& split
== start
) {
829 if (locked_end
> end
) {
830 unlock_extent(&BTRFS_I(inode
)->io_tree
, end
, locked_end
- 1,
833 btrfs_free_path(path
);
838 * this gets pages into the page cache and locks them down, it also properly
839 * waits for data=ordered extents to finish before allowing the pages to be
842 static noinline
int prepare_pages(struct btrfs_root
*root
, struct file
*file
,
843 struct page
**pages
, size_t num_pages
,
844 loff_t pos
, unsigned long first_index
,
845 unsigned long last_index
, size_t write_bytes
)
848 unsigned long index
= pos
>> PAGE_CACHE_SHIFT
;
849 struct inode
*inode
= fdentry(file
)->d_inode
;
854 start_pos
= pos
& ~((u64
)root
->sectorsize
- 1);
855 last_pos
= ((u64
)index
+ num_pages
) << PAGE_CACHE_SHIFT
;
857 if (start_pos
> inode
->i_size
) {
858 err
= btrfs_cont_expand(inode
, start_pos
);
863 memset(pages
, 0, num_pages
* sizeof(struct page
*));
865 for (i
= 0; i
< num_pages
; i
++) {
866 pages
[i
] = grab_cache_page(inode
->i_mapping
, index
+ i
);
871 wait_on_page_writeback(pages
[i
]);
873 if (start_pos
< inode
->i_size
) {
874 struct btrfs_ordered_extent
*ordered
;
875 lock_extent(&BTRFS_I(inode
)->io_tree
,
876 start_pos
, last_pos
- 1, GFP_NOFS
);
877 ordered
= btrfs_lookup_first_ordered_extent(inode
,
880 ordered
->file_offset
+ ordered
->len
> start_pos
&&
881 ordered
->file_offset
< last_pos
) {
882 btrfs_put_ordered_extent(ordered
);
883 unlock_extent(&BTRFS_I(inode
)->io_tree
,
884 start_pos
, last_pos
- 1, GFP_NOFS
);
885 for (i
= 0; i
< num_pages
; i
++) {
886 unlock_page(pages
[i
]);
887 page_cache_release(pages
[i
]);
889 btrfs_wait_ordered_range(inode
, start_pos
,
890 last_pos
- start_pos
);
894 btrfs_put_ordered_extent(ordered
);
896 clear_extent_bits(&BTRFS_I(inode
)->io_tree
, start_pos
,
897 last_pos
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
,
899 unlock_extent(&BTRFS_I(inode
)->io_tree
,
900 start_pos
, last_pos
- 1, GFP_NOFS
);
902 for (i
= 0; i
< num_pages
; i
++) {
903 clear_page_dirty_for_io(pages
[i
]);
904 set_page_extent_mapped(pages
[i
]);
905 WARN_ON(!PageLocked(pages
[i
]));
910 static ssize_t
btrfs_file_write(struct file
*file
, const char __user
*buf
,
911 size_t count
, loff_t
*ppos
)
915 ssize_t num_written
= 0;
918 struct inode
*inode
= fdentry(file
)->d_inode
;
919 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
920 struct page
**pages
= NULL
;
922 struct page
*pinned
[2];
923 unsigned long first_index
;
924 unsigned long last_index
;
927 will_write
= ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
) ||
928 (file
->f_flags
& O_DIRECT
));
930 nrptrs
= min((count
+ PAGE_CACHE_SIZE
- 1) / PAGE_CACHE_SIZE
,
931 PAGE_CACHE_SIZE
/ (sizeof(struct page
*)));
938 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
939 current
->backing_dev_info
= inode
->i_mapping
->backing_dev_info
;
940 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
946 err
= file_remove_suid(file
);
949 file_update_time(file
);
951 pages
= kmalloc(nrptrs
* sizeof(struct page
*), GFP_KERNEL
);
953 mutex_lock(&inode
->i_mutex
);
954 BTRFS_I(inode
)->sequence
++;
955 first_index
= pos
>> PAGE_CACHE_SHIFT
;
956 last_index
= (pos
+ count
) >> PAGE_CACHE_SHIFT
;
959 * there are lots of better ways to do this, but this code
960 * makes sure the first and last page in the file range are
961 * up to date and ready for cow
963 if ((pos
& (PAGE_CACHE_SIZE
- 1))) {
964 pinned
[0] = grab_cache_page(inode
->i_mapping
, first_index
);
965 if (!PageUptodate(pinned
[0])) {
966 ret
= btrfs_readpage(NULL
, pinned
[0]);
968 wait_on_page_locked(pinned
[0]);
970 unlock_page(pinned
[0]);
973 if ((pos
+ count
) & (PAGE_CACHE_SIZE
- 1)) {
974 pinned
[1] = grab_cache_page(inode
->i_mapping
, last_index
);
975 if (!PageUptodate(pinned
[1])) {
976 ret
= btrfs_readpage(NULL
, pinned
[1]);
978 wait_on_page_locked(pinned
[1]);
980 unlock_page(pinned
[1]);
985 size_t offset
= pos
& (PAGE_CACHE_SIZE
- 1);
986 size_t write_bytes
= min(count
, nrptrs
*
987 (size_t)PAGE_CACHE_SIZE
-
989 size_t num_pages
= (write_bytes
+ PAGE_CACHE_SIZE
- 1) >>
992 WARN_ON(num_pages
> nrptrs
);
993 memset(pages
, 0, sizeof(struct page
*) * nrptrs
);
995 ret
= btrfs_check_data_free_space(root
, inode
, write_bytes
);
999 ret
= prepare_pages(root
, file
, pages
, num_pages
,
1000 pos
, first_index
, last_index
,
1003 btrfs_free_reserved_data_space(root
, inode
,
1008 ret
= btrfs_copy_from_user(pos
, num_pages
,
1009 write_bytes
, pages
, buf
);
1011 btrfs_free_reserved_data_space(root
, inode
,
1013 btrfs_drop_pages(pages
, num_pages
);
1017 ret
= dirty_and_release_pages(NULL
, root
, file
, pages
,
1018 num_pages
, pos
, write_bytes
);
1019 btrfs_drop_pages(pages
, num_pages
);
1021 btrfs_free_reserved_data_space(root
, inode
,
1027 btrfs_fdatawrite_range(inode
->i_mapping
, pos
,
1028 pos
+ write_bytes
- 1,
1031 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
,
1034 (root
->leafsize
>> PAGE_CACHE_SHIFT
) + 1)
1035 btrfs_btree_balance_dirty(root
, 1);
1036 btrfs_throttle(root
);
1040 count
-= write_bytes
;
1042 num_written
+= write_bytes
;
1047 mutex_unlock(&inode
->i_mutex
);
1054 page_cache_release(pinned
[0]);
1056 page_cache_release(pinned
[1]);
1060 * we want to make sure fsync finds this change
1061 * but we haven't joined a transaction running right now.
1063 * Later on, someone is sure to update the inode and get the
1064 * real transid recorded.
1066 * We set last_trans now to the fs_info generation + 1,
1067 * this will either be one more than the running transaction
1068 * or the generation used for the next transaction if there isn't
1069 * one running right now.
1071 BTRFS_I(inode
)->last_trans
= root
->fs_info
->generation
+ 1;
1073 if (num_written
> 0 && will_write
) {
1074 struct btrfs_trans_handle
*trans
;
1076 err
= btrfs_wait_ordered_range(inode
, start_pos
, num_written
);
1080 if ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
)) {
1081 trans
= btrfs_start_transaction(root
, 1);
1082 ret
= btrfs_log_dentry_safe(trans
, root
,
1085 ret
= btrfs_sync_log(trans
, root
);
1087 btrfs_end_transaction(trans
, root
);
1089 btrfs_commit_transaction(trans
, root
);
1091 btrfs_commit_transaction(trans
, root
);
1094 if (file
->f_flags
& O_DIRECT
) {
1095 invalidate_mapping_pages(inode
->i_mapping
,
1096 start_pos
>> PAGE_CACHE_SHIFT
,
1097 (start_pos
+ num_written
- 1) >> PAGE_CACHE_SHIFT
);
1100 current
->backing_dev_info
= NULL
;
1101 return num_written
? num_written
: err
;
1104 int btrfs_release_file(struct inode
*inode
, struct file
*filp
)
1107 * ordered_data_close is set by settattr when we are about to truncate
1108 * a file from a non-zero size to a zero size. This tries to
1109 * flush down new bytes that may have been written if the
1110 * application were using truncate to replace a file in place.
1112 if (BTRFS_I(inode
)->ordered_data_close
) {
1113 BTRFS_I(inode
)->ordered_data_close
= 0;
1114 btrfs_add_ordered_operation(NULL
, BTRFS_I(inode
)->root
, inode
);
1115 if (inode
->i_size
> BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT
)
1116 filemap_flush(inode
->i_mapping
);
1118 if (filp
->private_data
)
1119 btrfs_ioctl_trans_end(filp
);
1124 * fsync call for both files and directories. This logs the inode into
1125 * the tree log instead of forcing full commits whenever possible.
1127 * It needs to call filemap_fdatawait so that all ordered extent updates are
1128 * in the metadata btree are up to date for copying to the log.
1130 * It drops the inode mutex before doing the tree log commit. This is an
1131 * important optimization for directories because holding the mutex prevents
1132 * new operations on the dir while we write to disk.
1134 int btrfs_sync_file(struct file
*file
, struct dentry
*dentry
, int datasync
)
1136 struct inode
*inode
= dentry
->d_inode
;
1137 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1139 struct btrfs_trans_handle
*trans
;
1142 * check the transaction that last modified this inode
1143 * and see if its already been committed
1145 if (!BTRFS_I(inode
)->last_trans
)
1148 mutex_lock(&root
->fs_info
->trans_mutex
);
1149 if (BTRFS_I(inode
)->last_trans
<=
1150 root
->fs_info
->last_trans_committed
) {
1151 BTRFS_I(inode
)->last_trans
= 0;
1152 mutex_unlock(&root
->fs_info
->trans_mutex
);
1155 mutex_unlock(&root
->fs_info
->trans_mutex
);
1158 filemap_fdatawrite(inode
->i_mapping
);
1159 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1162 if (datasync
&& !(inode
->i_state
& I_DIRTY_PAGES
))
1165 * ok we haven't committed the transaction yet, lets do a commit
1167 if (file
&& file
->private_data
)
1168 btrfs_ioctl_trans_end(file
);
1170 trans
= btrfs_start_transaction(root
, 1);
1176 ret
= btrfs_log_dentry_safe(trans
, root
, dentry
);
1180 /* we've logged all the items and now have a consistent
1181 * version of the file in the log. It is possible that
1182 * someone will come in and modify the file, but that's
1183 * fine because the log is consistent on disk, and we
1184 * have references to all of the file's extents
1186 * It is possible that someone will come in and log the
1187 * file again, but that will end up using the synchronization
1188 * inside btrfs_sync_log to keep things safe.
1190 mutex_unlock(&dentry
->d_inode
->i_mutex
);
1193 ret
= btrfs_commit_transaction(trans
, root
);
1195 ret
= btrfs_sync_log(trans
, root
);
1197 ret
= btrfs_end_transaction(trans
, root
);
1199 ret
= btrfs_commit_transaction(trans
, root
);
1201 mutex_lock(&dentry
->d_inode
->i_mutex
);
1203 return ret
> 0 ? EIO
: ret
;
1206 static struct vm_operations_struct btrfs_file_vm_ops
= {
1207 .fault
= filemap_fault
,
1208 .page_mkwrite
= btrfs_page_mkwrite
,
1211 static int btrfs_file_mmap(struct file
*filp
, struct vm_area_struct
*vma
)
1213 vma
->vm_ops
= &btrfs_file_vm_ops
;
1214 file_accessed(filp
);
1218 struct file_operations btrfs_file_operations
= {
1219 .llseek
= generic_file_llseek
,
1220 .read
= do_sync_read
,
1221 .aio_read
= generic_file_aio_read
,
1222 .splice_read
= generic_file_splice_read
,
1223 .write
= btrfs_file_write
,
1224 .mmap
= btrfs_file_mmap
,
1225 .open
= generic_file_open
,
1226 .release
= btrfs_release_file
,
1227 .fsync
= btrfs_sync_file
,
1228 .unlocked_ioctl
= btrfs_ioctl
,
1229 #ifdef CONFIG_COMPAT
1230 .compat_ioctl
= btrfs_ioctl
,