3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
58 * SMP-threaded, sysctl's added
59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc <alan@redhat.com>
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
70 * Pavel Emelianov <xemul@openvz.org>
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/smp_lock.h>
79 #include <linux/security.h>
80 #include <linux/syscalls.h>
81 #include <linux/audit.h>
82 #include <linux/capability.h>
83 #include <linux/seq_file.h>
84 #include <linux/mutex.h>
85 #include <linux/nsproxy.h>
87 #include <asm/uaccess.h>
90 #define sem_ids(ns) (*((ns)->ids[IPC_SEM_IDS]))
92 #define sem_lock(ns, id) ((struct sem_array*)ipc_lock(&sem_ids(ns), id))
93 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
94 #define sem_rmid(ns, id) ((struct sem_array*)ipc_rmid(&sem_ids(ns), id))
95 #define sem_checkid(ns, sma, semid) \
96 ipc_checkid(&sem_ids(ns),&sma->sem_perm,semid)
97 #define sem_buildid(ns, id, seq) \
98 ipc_buildid(&sem_ids(ns), id, seq)
100 static struct ipc_ids init_sem_ids
;
102 static int newary(struct ipc_namespace
*, key_t
, int, int);
103 static void freeary(struct ipc_namespace
*ns
, struct sem_array
*sma
, int id
);
104 #ifdef CONFIG_PROC_FS
105 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
108 #define SEMMSL_FAST 256 /* 512 bytes on stack */
109 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
112 * linked list protection:
114 * sem_array.sem_pending{,last},
115 * sem_array.sem_undo: sem_lock() for read/write
116 * sem_undo.proc_next: only "current" is allowed to read/write that field.
120 #define sc_semmsl sem_ctls[0]
121 #define sc_semmns sem_ctls[1]
122 #define sc_semopm sem_ctls[2]
123 #define sc_semmni sem_ctls[3]
125 static void __ipc_init
__sem_init_ns(struct ipc_namespace
*ns
, struct ipc_ids
*ids
)
127 ns
->ids
[IPC_SEM_IDS
] = ids
;
128 ns
->sc_semmsl
= SEMMSL
;
129 ns
->sc_semmns
= SEMMNS
;
130 ns
->sc_semopm
= SEMOPM
;
131 ns
->sc_semmni
= SEMMNI
;
133 ipc_init_ids(ids
, ns
->sc_semmni
);
137 int sem_init_ns(struct ipc_namespace
*ns
)
141 ids
= kmalloc(sizeof(struct ipc_ids
), GFP_KERNEL
);
145 __sem_init_ns(ns
, ids
);
149 void sem_exit_ns(struct ipc_namespace
*ns
)
152 struct sem_array
*sma
;
154 mutex_lock(&sem_ids(ns
).mutex
);
155 for (i
= 0; i
<= sem_ids(ns
).max_id
; i
++) {
156 sma
= sem_lock(ns
, i
);
162 mutex_unlock(&sem_ids(ns
).mutex
);
164 kfree(ns
->ids
[IPC_SEM_IDS
]);
165 ns
->ids
[IPC_SEM_IDS
] = NULL
;
169 void __init
sem_init (void)
171 __sem_init_ns(&init_ipc_ns
, &init_sem_ids
);
172 ipc_init_proc_interface("sysvipc/sem",
173 " key semid perms nsems uid gid cuid cgid otime ctime\n",
174 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
178 * Lockless wakeup algorithm:
179 * Without the check/retry algorithm a lockless wakeup is possible:
180 * - queue.status is initialized to -EINTR before blocking.
181 * - wakeup is performed by
182 * * unlinking the queue entry from sma->sem_pending
183 * * setting queue.status to IN_WAKEUP
184 * This is the notification for the blocked thread that a
185 * result value is imminent.
186 * * call wake_up_process
187 * * set queue.status to the final value.
188 * - the previously blocked thread checks queue.status:
189 * * if it's IN_WAKEUP, then it must wait until the value changes
190 * * if it's not -EINTR, then the operation was completed by
191 * update_queue. semtimedop can return queue.status without
192 * performing any operation on the sem array.
193 * * otherwise it must acquire the spinlock and check what's up.
195 * The two-stage algorithm is necessary to protect against the following
197 * - if queue.status is set after wake_up_process, then the woken up idle
198 * thread could race forward and try (and fail) to acquire sma->lock
199 * before update_queue had a chance to set queue.status
200 * - if queue.status is written before wake_up_process and if the
201 * blocked process is woken up by a signal between writing
202 * queue.status and the wake_up_process, then the woken up
203 * process could return from semtimedop and die by calling
204 * sys_exit before wake_up_process is called. Then wake_up_process
205 * will oops, because the task structure is already invalid.
206 * (yes, this happened on s390 with sysv msg).
211 static int newary (struct ipc_namespace
*ns
, key_t key
, int nsems
, int semflg
)
215 struct sem_array
*sma
;
220 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
223 size
= sizeof (*sma
) + nsems
* sizeof (struct sem
);
224 sma
= ipc_rcu_alloc(size
);
228 memset (sma
, 0, size
);
230 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
231 sma
->sem_perm
.key
= key
;
233 sma
->sem_perm
.security
= NULL
;
234 retval
= security_sem_alloc(sma
);
240 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
242 security_sem_free(sma
);
246 ns
->used_sems
+= nsems
;
248 sma
->sem_id
= sem_buildid(ns
, id
, sma
->sem_perm
.seq
);
249 sma
->sem_base
= (struct sem
*) &sma
[1];
250 /* sma->sem_pending = NULL; */
251 sma
->sem_pending_last
= &sma
->sem_pending
;
252 /* sma->undo = NULL; */
253 sma
->sem_nsems
= nsems
;
254 sma
->sem_ctime
= get_seconds();
260 asmlinkage
long sys_semget (key_t key
, int nsems
, int semflg
)
262 int id
, err
= -EINVAL
;
263 struct sem_array
*sma
;
264 struct ipc_namespace
*ns
;
266 ns
= current
->nsproxy
->ipc_ns
;
268 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
270 mutex_lock(&sem_ids(ns
).mutex
);
272 if (key
== IPC_PRIVATE
) {
273 err
= newary(ns
, key
, nsems
, semflg
);
274 } else if ((id
= ipc_findkey(&sem_ids(ns
), key
)) == -1) { /* key not used */
275 if (!(semflg
& IPC_CREAT
))
278 err
= newary(ns
, key
, nsems
, semflg
);
279 } else if (semflg
& IPC_CREAT
&& semflg
& IPC_EXCL
) {
282 sma
= sem_lock(ns
, id
);
284 if (nsems
> sma
->sem_nsems
)
286 else if (ipcperms(&sma
->sem_perm
, semflg
))
289 int semid
= sem_buildid(ns
, id
, sma
->sem_perm
.seq
);
290 err
= security_sem_associate(sma
, semflg
);
297 mutex_unlock(&sem_ids(ns
).mutex
);
301 /* Manage the doubly linked list sma->sem_pending as a FIFO:
302 * insert new queue elements at the tail sma->sem_pending_last.
304 static inline void append_to_queue (struct sem_array
* sma
,
305 struct sem_queue
* q
)
307 *(q
->prev
= sma
->sem_pending_last
) = q
;
308 *(sma
->sem_pending_last
= &q
->next
) = NULL
;
311 static inline void prepend_to_queue (struct sem_array
* sma
,
312 struct sem_queue
* q
)
314 q
->next
= sma
->sem_pending
;
315 *(q
->prev
= &sma
->sem_pending
) = q
;
317 q
->next
->prev
= &q
->next
;
318 else /* sma->sem_pending_last == &sma->sem_pending */
319 sma
->sem_pending_last
= &q
->next
;
322 static inline void remove_from_queue (struct sem_array
* sma
,
323 struct sem_queue
* q
)
325 *(q
->prev
) = q
->next
;
327 q
->next
->prev
= q
->prev
;
328 else /* sma->sem_pending_last == &q->next */
329 sma
->sem_pending_last
= q
->prev
;
330 q
->prev
= NULL
; /* mark as removed */
334 * Determine whether a sequence of semaphore operations would succeed
335 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
338 static int try_atomic_semop (struct sem_array
* sma
, struct sembuf
* sops
,
339 int nsops
, struct sem_undo
*un
, int pid
)
345 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
346 curr
= sma
->sem_base
+ sop
->sem_num
;
347 sem_op
= sop
->sem_op
;
348 result
= curr
->semval
;
350 if (!sem_op
&& result
)
358 if (sop
->sem_flg
& SEM_UNDO
) {
359 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
361 * Exceeding the undo range is an error.
363 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
366 curr
->semval
= result
;
370 while (sop
>= sops
) {
371 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
372 if (sop
->sem_flg
& SEM_UNDO
)
373 un
->semadj
[sop
->sem_num
] -= sop
->sem_op
;
377 sma
->sem_otime
= get_seconds();
385 if (sop
->sem_flg
& IPC_NOWAIT
)
392 while (sop
>= sops
) {
393 sma
->sem_base
[sop
->sem_num
].semval
-= sop
->sem_op
;
400 /* Go through the pending queue for the indicated semaphore
401 * looking for tasks that can be completed.
403 static void update_queue (struct sem_array
* sma
)
406 struct sem_queue
* q
;
408 q
= sma
->sem_pending
;
410 error
= try_atomic_semop(sma
, q
->sops
, q
->nsops
,
413 /* Does q->sleeper still need to sleep? */
416 remove_from_queue(sma
,q
);
417 q
->status
= IN_WAKEUP
;
419 * Continue scanning. The next operation
420 * that must be checked depends on the type of the
421 * completed operation:
422 * - if the operation modified the array, then
423 * restart from the head of the queue and
424 * check for threads that might be waiting
425 * for semaphore values to become 0.
426 * - if the operation didn't modify the array,
427 * then just continue.
430 n
= sma
->sem_pending
;
433 wake_up_process(q
->sleeper
);
434 /* hands-off: q will disappear immediately after
446 /* The following counts are associated to each semaphore:
447 * semncnt number of tasks waiting on semval being nonzero
448 * semzcnt number of tasks waiting on semval being zero
449 * This model assumes that a task waits on exactly one semaphore.
450 * Since semaphore operations are to be performed atomically, tasks actually
451 * wait on a whole sequence of semaphores simultaneously.
452 * The counts we return here are a rough approximation, but still
453 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
455 static int count_semncnt (struct sem_array
* sma
, ushort semnum
)
458 struct sem_queue
* q
;
461 for (q
= sma
->sem_pending
; q
; q
= q
->next
) {
462 struct sembuf
* sops
= q
->sops
;
463 int nsops
= q
->nsops
;
465 for (i
= 0; i
< nsops
; i
++)
466 if (sops
[i
].sem_num
== semnum
467 && (sops
[i
].sem_op
< 0)
468 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
473 static int count_semzcnt (struct sem_array
* sma
, ushort semnum
)
476 struct sem_queue
* q
;
479 for (q
= sma
->sem_pending
; q
; q
= q
->next
) {
480 struct sembuf
* sops
= q
->sops
;
481 int nsops
= q
->nsops
;
483 for (i
= 0; i
< nsops
; i
++)
484 if (sops
[i
].sem_num
== semnum
485 && (sops
[i
].sem_op
== 0)
486 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
492 /* Free a semaphore set. freeary() is called with sem_ids.mutex locked and
493 * the spinlock for this semaphore set hold. sem_ids.mutex remains locked
496 static void freeary (struct ipc_namespace
*ns
, struct sem_array
*sma
, int id
)
502 /* Invalidate the existing undo structures for this semaphore set.
503 * (They will be freed without any further action in exit_sem()
504 * or during the next semop.)
506 for (un
= sma
->undo
; un
; un
= un
->id_next
)
509 /* Wake up all pending processes and let them fail with EIDRM. */
510 q
= sma
->sem_pending
;
513 /* lazy remove_from_queue: we are killing the whole queue */
516 q
->status
= IN_WAKEUP
;
517 wake_up_process(q
->sleeper
); /* doesn't sleep */
519 q
->status
= -EIDRM
; /* hands-off q */
523 /* Remove the semaphore set from the ID array*/
524 sma
= sem_rmid(ns
, id
);
527 ns
->used_sems
-= sma
->sem_nsems
;
528 size
= sizeof (*sma
) + sma
->sem_nsems
* sizeof (struct sem
);
529 security_sem_free(sma
);
533 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
537 return copy_to_user(buf
, in
, sizeof(*in
));
542 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
544 out
.sem_otime
= in
->sem_otime
;
545 out
.sem_ctime
= in
->sem_ctime
;
546 out
.sem_nsems
= in
->sem_nsems
;
548 return copy_to_user(buf
, &out
, sizeof(out
));
555 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
, int semnum
,
556 int cmd
, int version
, union semun arg
)
559 struct sem_array
*sma
;
565 struct seminfo seminfo
;
568 err
= security_sem_semctl(NULL
, cmd
);
572 memset(&seminfo
,0,sizeof(seminfo
));
573 seminfo
.semmni
= ns
->sc_semmni
;
574 seminfo
.semmns
= ns
->sc_semmns
;
575 seminfo
.semmsl
= ns
->sc_semmsl
;
576 seminfo
.semopm
= ns
->sc_semopm
;
577 seminfo
.semvmx
= SEMVMX
;
578 seminfo
.semmnu
= SEMMNU
;
579 seminfo
.semmap
= SEMMAP
;
580 seminfo
.semume
= SEMUME
;
581 mutex_lock(&sem_ids(ns
).mutex
);
582 if (cmd
== SEM_INFO
) {
583 seminfo
.semusz
= sem_ids(ns
).in_use
;
584 seminfo
.semaem
= ns
->used_sems
;
586 seminfo
.semusz
= SEMUSZ
;
587 seminfo
.semaem
= SEMAEM
;
589 max_id
= sem_ids(ns
).max_id
;
590 mutex_unlock(&sem_ids(ns
).mutex
);
591 if (copy_to_user (arg
.__buf
, &seminfo
, sizeof(struct seminfo
)))
593 return (max_id
< 0) ? 0: max_id
;
597 struct semid64_ds tbuf
;
600 if(semid
>= sem_ids(ns
).entries
->size
)
603 memset(&tbuf
,0,sizeof(tbuf
));
605 sma
= sem_lock(ns
, semid
);
610 if (ipcperms (&sma
->sem_perm
, S_IRUGO
))
613 err
= security_sem_semctl(sma
, cmd
);
617 id
= sem_buildid(ns
, semid
, sma
->sem_perm
.seq
);
619 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
620 tbuf
.sem_otime
= sma
->sem_otime
;
621 tbuf
.sem_ctime
= sma
->sem_ctime
;
622 tbuf
.sem_nsems
= sma
->sem_nsems
;
624 if (copy_semid_to_user (arg
.buf
, &tbuf
, version
))
637 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
638 int cmd
, int version
, union semun arg
)
640 struct sem_array
*sma
;
643 ushort fast_sem_io
[SEMMSL_FAST
];
644 ushort
* sem_io
= fast_sem_io
;
647 sma
= sem_lock(ns
, semid
);
651 nsems
= sma
->sem_nsems
;
654 if (sem_checkid(ns
,sma
,semid
))
658 if (ipcperms (&sma
->sem_perm
, (cmd
==SETVAL
||cmd
==SETALL
)?S_IWUGO
:S_IRUGO
))
661 err
= security_sem_semctl(sma
, cmd
);
669 ushort __user
*array
= arg
.array
;
672 if(nsems
> SEMMSL_FAST
) {
676 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
678 ipc_lock_by_ptr(&sma
->sem_perm
);
684 ipc_lock_by_ptr(&sma
->sem_perm
);
686 if (sma
->sem_perm
.deleted
) {
693 for (i
= 0; i
< sma
->sem_nsems
; i
++)
694 sem_io
[i
] = sma
->sem_base
[i
].semval
;
697 if(copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
709 if(nsems
> SEMMSL_FAST
) {
710 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
712 ipc_lock_by_ptr(&sma
->sem_perm
);
719 if (copy_from_user (sem_io
, arg
.array
, nsems
*sizeof(ushort
))) {
720 ipc_lock_by_ptr(&sma
->sem_perm
);
727 for (i
= 0; i
< nsems
; i
++) {
728 if (sem_io
[i
] > SEMVMX
) {
729 ipc_lock_by_ptr(&sma
->sem_perm
);
736 ipc_lock_by_ptr(&sma
->sem_perm
);
738 if (sma
->sem_perm
.deleted
) {
744 for (i
= 0; i
< nsems
; i
++)
745 sma
->sem_base
[i
].semval
= sem_io
[i
];
746 for (un
= sma
->undo
; un
; un
= un
->id_next
)
747 for (i
= 0; i
< nsems
; i
++)
749 sma
->sem_ctime
= get_seconds();
750 /* maybe some queued-up processes were waiting for this */
757 struct semid64_ds tbuf
;
758 memset(&tbuf
,0,sizeof(tbuf
));
759 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
760 tbuf
.sem_otime
= sma
->sem_otime
;
761 tbuf
.sem_ctime
= sma
->sem_ctime
;
762 tbuf
.sem_nsems
= sma
->sem_nsems
;
764 if (copy_semid_to_user (arg
.buf
, &tbuf
, version
))
768 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
771 if(semnum
< 0 || semnum
>= nsems
)
774 curr
= &sma
->sem_base
[semnum
];
784 err
= count_semncnt(sma
,semnum
);
787 err
= count_semzcnt(sma
,semnum
);
794 if (val
> SEMVMX
|| val
< 0)
797 for (un
= sma
->undo
; un
; un
= un
->id_next
)
798 un
->semadj
[semnum
] = 0;
800 curr
->sempid
= current
->tgid
;
801 sma
->sem_ctime
= get_seconds();
802 /* maybe some queued-up processes were waiting for this */
811 if(sem_io
!= fast_sem_io
)
812 ipc_free(sem_io
, sizeof(ushort
)*nsems
);
822 static inline unsigned long copy_semid_from_user(struct sem_setbuf
*out
, void __user
*buf
, int version
)
827 struct semid64_ds tbuf
;
829 if(copy_from_user(&tbuf
, buf
, sizeof(tbuf
)))
832 out
->uid
= tbuf
.sem_perm
.uid
;
833 out
->gid
= tbuf
.sem_perm
.gid
;
834 out
->mode
= tbuf
.sem_perm
.mode
;
840 struct semid_ds tbuf_old
;
842 if(copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
845 out
->uid
= tbuf_old
.sem_perm
.uid
;
846 out
->gid
= tbuf_old
.sem_perm
.gid
;
847 out
->mode
= tbuf_old
.sem_perm
.mode
;
856 static int semctl_down(struct ipc_namespace
*ns
, int semid
, int semnum
,
857 int cmd
, int version
, union semun arg
)
859 struct sem_array
*sma
;
861 struct sem_setbuf setbuf
;
862 struct kern_ipc_perm
*ipcp
;
865 if(copy_semid_from_user (&setbuf
, arg
.buf
, version
))
868 sma
= sem_lock(ns
, semid
);
872 if (sem_checkid(ns
,sma
,semid
)) {
876 ipcp
= &sma
->sem_perm
;
878 err
= audit_ipc_obj(ipcp
);
882 if (cmd
== IPC_SET
) {
883 err
= audit_ipc_set_perm(0, setbuf
.uid
, setbuf
.gid
, setbuf
.mode
);
887 if (current
->euid
!= ipcp
->cuid
&&
888 current
->euid
!= ipcp
->uid
&& !capable(CAP_SYS_ADMIN
)) {
893 err
= security_sem_semctl(sma
, cmd
);
899 freeary(ns
, sma
, semid
);
903 ipcp
->uid
= setbuf
.uid
;
904 ipcp
->gid
= setbuf
.gid
;
905 ipcp
->mode
= (ipcp
->mode
& ~S_IRWXUGO
)
906 | (setbuf
.mode
& S_IRWXUGO
);
907 sma
->sem_ctime
= get_seconds();
923 asmlinkage
long sys_semctl (int semid
, int semnum
, int cmd
, union semun arg
)
927 struct ipc_namespace
*ns
;
932 version
= ipc_parse_version(&cmd
);
933 ns
= current
->nsproxy
->ipc_ns
;
939 err
= semctl_nolock(ns
,semid
,semnum
,cmd
,version
,arg
);
949 err
= semctl_main(ns
,semid
,semnum
,cmd
,version
,arg
);
953 mutex_lock(&sem_ids(ns
).mutex
);
954 err
= semctl_down(ns
,semid
,semnum
,cmd
,version
,arg
);
955 mutex_unlock(&sem_ids(ns
).mutex
);
962 static inline void lock_semundo(void)
964 struct sem_undo_list
*undo_list
;
966 undo_list
= current
->sysvsem
.undo_list
;
968 spin_lock(&undo_list
->lock
);
971 /* This code has an interaction with copy_semundo().
972 * Consider; two tasks are sharing the undo_list. task1
973 * acquires the undo_list lock in lock_semundo(). If task2 now
974 * exits before task1 releases the lock (by calling
975 * unlock_semundo()), then task1 will never call spin_unlock().
976 * This leave the sem_undo_list in a locked state. If task1 now creats task3
977 * and once again shares the sem_undo_list, the sem_undo_list will still be
978 * locked, and future SEM_UNDO operations will deadlock. This case is
979 * dealt with in copy_semundo() by having it reinitialize the spin lock when
980 * the refcnt goes from 1 to 2.
982 static inline void unlock_semundo(void)
984 struct sem_undo_list
*undo_list
;
986 undo_list
= current
->sysvsem
.undo_list
;
988 spin_unlock(&undo_list
->lock
);
992 /* If the task doesn't already have a undo_list, then allocate one
993 * here. We guarantee there is only one thread using this undo list,
994 * and current is THE ONE
996 * If this allocation and assignment succeeds, but later
997 * portions of this code fail, there is no need to free the sem_undo_list.
998 * Just let it stay associated with the task, and it'll be freed later
1001 * This can block, so callers must hold no locks.
1003 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1005 struct sem_undo_list
*undo_list
;
1007 undo_list
= current
->sysvsem
.undo_list
;
1009 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1010 if (undo_list
== NULL
)
1012 spin_lock_init(&undo_list
->lock
);
1013 atomic_set(&undo_list
->refcnt
, 1);
1014 current
->sysvsem
.undo_list
= undo_list
;
1016 *undo_listp
= undo_list
;
1020 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1022 struct sem_undo
**last
, *un
;
1024 last
= &ulp
->proc_list
;
1027 if(un
->semid
==semid
)
1030 *last
=un
->proc_next
;
1033 last
=&un
->proc_next
;
1040 static struct sem_undo
*find_undo(struct ipc_namespace
*ns
, int semid
)
1042 struct sem_array
*sma
;
1043 struct sem_undo_list
*ulp
;
1044 struct sem_undo
*un
, *new;
1048 error
= get_undo_list(&ulp
);
1050 return ERR_PTR(error
);
1053 un
= lookup_undo(ulp
, semid
);
1055 if (likely(un
!=NULL
))
1058 /* no undo structure around - allocate one. */
1059 sma
= sem_lock(ns
, semid
);
1060 un
= ERR_PTR(-EINVAL
);
1063 un
= ERR_PTR(-EIDRM
);
1064 if (sem_checkid(ns
,sma
,semid
)) {
1068 nsems
= sma
->sem_nsems
;
1069 ipc_rcu_getref(sma
);
1072 new = (struct sem_undo
*) kmalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1074 ipc_lock_by_ptr(&sma
->sem_perm
);
1075 ipc_rcu_putref(sma
);
1077 return ERR_PTR(-ENOMEM
);
1079 memset(new, 0, sizeof(struct sem_undo
) + sizeof(short)*nsems
);
1080 new->semadj
= (short *) &new[1];
1084 un
= lookup_undo(ulp
, semid
);
1088 ipc_lock_by_ptr(&sma
->sem_perm
);
1089 ipc_rcu_putref(sma
);
1093 ipc_lock_by_ptr(&sma
->sem_perm
);
1094 ipc_rcu_putref(sma
);
1095 if (sma
->sem_perm
.deleted
) {
1099 un
= ERR_PTR(-EIDRM
);
1102 new->proc_next
= ulp
->proc_list
;
1103 ulp
->proc_list
= new;
1104 new->id_next
= sma
->undo
;
1113 asmlinkage
long sys_semtimedop(int semid
, struct sembuf __user
*tsops
,
1114 unsigned nsops
, const struct timespec __user
*timeout
)
1116 int error
= -EINVAL
;
1117 struct sem_array
*sma
;
1118 struct sembuf fast_sops
[SEMOPM_FAST
];
1119 struct sembuf
* sops
= fast_sops
, *sop
;
1120 struct sem_undo
*un
;
1121 int undos
= 0, alter
= 0, max
;
1122 struct sem_queue queue
;
1123 unsigned long jiffies_left
= 0;
1124 struct ipc_namespace
*ns
;
1126 ns
= current
->nsproxy
->ipc_ns
;
1128 if (nsops
< 1 || semid
< 0)
1130 if (nsops
> ns
->sc_semopm
)
1132 if(nsops
> SEMOPM_FAST
) {
1133 sops
= kmalloc(sizeof(*sops
)*nsops
,GFP_KERNEL
);
1137 if (copy_from_user (sops
, tsops
, nsops
* sizeof(*tsops
))) {
1142 struct timespec _timeout
;
1143 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1147 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1148 _timeout
.tv_nsec
>= 1000000000L) {
1152 jiffies_left
= timespec_to_jiffies(&_timeout
);
1155 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1156 if (sop
->sem_num
>= max
)
1158 if (sop
->sem_flg
& SEM_UNDO
)
1160 if (sop
->sem_op
!= 0)
1166 un
= find_undo(ns
, semid
);
1168 error
= PTR_ERR(un
);
1174 sma
= sem_lock(ns
, semid
);
1179 if (sem_checkid(ns
,sma
,semid
))
1180 goto out_unlock_free
;
1182 * semid identifies are not unique - find_undo may have
1183 * allocated an undo structure, it was invalidated by an RMID
1184 * and now a new array with received the same id. Check and retry.
1186 if (un
&& un
->semid
== -1) {
1191 if (max
>= sma
->sem_nsems
)
1192 goto out_unlock_free
;
1195 if (ipcperms(&sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1196 goto out_unlock_free
;
1198 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1200 goto out_unlock_free
;
1202 error
= try_atomic_semop (sma
, sops
, nsops
, un
, current
->tgid
);
1204 if (alter
&& error
== 0)
1206 goto out_unlock_free
;
1209 /* We need to sleep on this operation, so we put the current
1210 * task into the pending queue and go to sleep.
1215 queue
.nsops
= nsops
;
1217 queue
.pid
= current
->tgid
;
1219 queue
.alter
= alter
;
1221 append_to_queue(sma
,&queue
);
1223 prepend_to_queue(sma
,&queue
);
1225 queue
.status
= -EINTR
;
1226 queue
.sleeper
= current
;
1227 current
->state
= TASK_INTERRUPTIBLE
;
1231 jiffies_left
= schedule_timeout(jiffies_left
);
1235 error
= queue
.status
;
1236 while(unlikely(error
== IN_WAKEUP
)) {
1238 error
= queue
.status
;
1241 if (error
!= -EINTR
) {
1242 /* fast path: update_queue already obtained all requested
1247 sma
= sem_lock(ns
, semid
);
1249 BUG_ON(queue
.prev
!= NULL
);
1255 * If queue.status != -EINTR we are woken up by another process
1257 error
= queue
.status
;
1258 if (error
!= -EINTR
) {
1259 goto out_unlock_free
;
1263 * If an interrupt occurred we have to clean up the queue
1265 if (timeout
&& jiffies_left
== 0)
1267 remove_from_queue(sma
,&queue
);
1268 goto out_unlock_free
;
1273 if(sops
!= fast_sops
)
1278 asmlinkage
long sys_semop (int semid
, struct sembuf __user
*tsops
, unsigned nsops
)
1280 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
1283 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1284 * parent and child tasks.
1286 * See the notes above unlock_semundo() regarding the spin_lock_init()
1287 * in this code. Initialize the undo_list->lock here instead of get_undo_list()
1288 * because of the reasoning in the comment above unlock_semundo.
1291 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
1293 struct sem_undo_list
*undo_list
;
1296 if (clone_flags
& CLONE_SYSVSEM
) {
1297 error
= get_undo_list(&undo_list
);
1300 atomic_inc(&undo_list
->refcnt
);
1301 tsk
->sysvsem
.undo_list
= undo_list
;
1303 tsk
->sysvsem
.undo_list
= NULL
;
1309 * add semadj values to semaphores, free undo structures.
1310 * undo structures are not freed when semaphore arrays are destroyed
1311 * so some of them may be out of date.
1312 * IMPLEMENTATION NOTE: There is some confusion over whether the
1313 * set of adjustments that needs to be done should be done in an atomic
1314 * manner or not. That is, if we are attempting to decrement the semval
1315 * should we queue up and wait until we can do so legally?
1316 * The original implementation attempted to do this (queue and wait).
1317 * The current implementation does not do so. The POSIX standard
1318 * and SVID should be consulted to determine what behavior is mandated.
1320 void exit_sem(struct task_struct
*tsk
)
1322 struct sem_undo_list
*undo_list
;
1323 struct sem_undo
*u
, **up
;
1324 struct ipc_namespace
*ns
;
1326 undo_list
= tsk
->sysvsem
.undo_list
;
1330 if (!atomic_dec_and_test(&undo_list
->refcnt
))
1333 ns
= tsk
->nsproxy
->ipc_ns
;
1334 /* There's no need to hold the semundo list lock, as current
1335 * is the last task exiting for this undo list.
1337 for (up
= &undo_list
->proc_list
; (u
= *up
); *up
= u
->proc_next
, kfree(u
)) {
1338 struct sem_array
*sma
;
1340 struct sem_undo
*un
, **unp
;
1347 sma
= sem_lock(ns
, semid
);
1354 BUG_ON(sem_checkid(ns
,sma
,u
->semid
));
1356 /* remove u from the sma->undo list */
1357 for (unp
= &sma
->undo
; (un
= *unp
); unp
= &un
->id_next
) {
1361 printk ("exit_sem undo list error id=%d\n", u
->semid
);
1365 /* perform adjustments registered in u */
1366 nsems
= sma
->sem_nsems
;
1367 for (i
= 0; i
< nsems
; i
++) {
1368 struct sem
* semaphore
= &sma
->sem_base
[i
];
1370 semaphore
->semval
+= u
->semadj
[i
];
1372 * Range checks of the new semaphore value,
1373 * not defined by sus:
1374 * - Some unices ignore the undo entirely
1375 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1376 * - some cap the value (e.g. FreeBSD caps
1377 * at 0, but doesn't enforce SEMVMX)
1379 * Linux caps the semaphore value, both at 0
1382 * Manfred <manfred@colorfullife.com>
1384 if (semaphore
->semval
< 0)
1385 semaphore
->semval
= 0;
1386 if (semaphore
->semval
> SEMVMX
)
1387 semaphore
->semval
= SEMVMX
;
1388 semaphore
->sempid
= current
->tgid
;
1391 sma
->sem_otime
= get_seconds();
1392 /* maybe some queued-up processes were waiting for this */
1400 #ifdef CONFIG_PROC_FS
1401 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
1403 struct sem_array
*sma
= it
;
1405 return seq_printf(s
,
1406 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",