[PATCH] update max_sectors documentation
[linux-2.6/mini2440.git] / drivers / md / dm.c
bloba64798ef481e585ef9c56e85ece676f42a2494b8
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
9 #include "dm-bio-list.h"
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/moduleparam.h>
14 #include <linux/blkpg.h>
15 #include <linux/bio.h>
16 #include <linux/buffer_head.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/idr.h>
20 #include <linux/blktrace_api.h>
22 static const char *_name = DM_NAME;
24 static unsigned int major = 0;
25 static unsigned int _major = 0;
28 * One of these is allocated per bio.
30 struct dm_io {
31 struct mapped_device *md;
32 int error;
33 struct bio *bio;
34 atomic_t io_count;
35 unsigned long start_time;
39 * One of these is allocated per target within a bio. Hopefully
40 * this will be simplified out one day.
42 struct target_io {
43 struct dm_io *io;
44 struct dm_target *ti;
45 union map_info info;
48 union map_info *dm_get_mapinfo(struct bio *bio)
50 if (bio && bio->bi_private)
51 return &((struct target_io *)bio->bi_private)->info;
52 return NULL;
56 * Bits for the md->flags field.
58 #define DMF_BLOCK_IO 0
59 #define DMF_SUSPENDED 1
60 #define DMF_FROZEN 2
62 struct mapped_device {
63 struct rw_semaphore io_lock;
64 struct semaphore suspend_lock;
65 rwlock_t map_lock;
66 atomic_t holders;
68 unsigned long flags;
70 request_queue_t *queue;
71 struct gendisk *disk;
73 void *interface_ptr;
76 * A list of ios that arrived while we were suspended.
78 atomic_t pending;
79 wait_queue_head_t wait;
80 struct bio_list deferred;
83 * The current mapping.
85 struct dm_table *map;
88 * io objects are allocated from here.
90 mempool_t *io_pool;
91 mempool_t *tio_pool;
94 * Event handling.
96 atomic_t event_nr;
97 wait_queue_head_t eventq;
100 * freeze/thaw support require holding onto a super block
102 struct super_block *frozen_sb;
103 struct block_device *suspended_bdev;
106 #define MIN_IOS 256
107 static kmem_cache_t *_io_cache;
108 static kmem_cache_t *_tio_cache;
110 static struct bio_set *dm_set;
112 static int __init local_init(void)
114 int r;
116 dm_set = bioset_create(16, 16, 4);
117 if (!dm_set)
118 return -ENOMEM;
120 /* allocate a slab for the dm_ios */
121 _io_cache = kmem_cache_create("dm_io",
122 sizeof(struct dm_io), 0, 0, NULL, NULL);
123 if (!_io_cache)
124 return -ENOMEM;
126 /* allocate a slab for the target ios */
127 _tio_cache = kmem_cache_create("dm_tio", sizeof(struct target_io),
128 0, 0, NULL, NULL);
129 if (!_tio_cache) {
130 kmem_cache_destroy(_io_cache);
131 return -ENOMEM;
134 _major = major;
135 r = register_blkdev(_major, _name);
136 if (r < 0) {
137 kmem_cache_destroy(_tio_cache);
138 kmem_cache_destroy(_io_cache);
139 return r;
142 if (!_major)
143 _major = r;
145 return 0;
148 static void local_exit(void)
150 kmem_cache_destroy(_tio_cache);
151 kmem_cache_destroy(_io_cache);
153 bioset_free(dm_set);
155 if (unregister_blkdev(_major, _name) < 0)
156 DMERR("devfs_unregister_blkdev failed");
158 _major = 0;
160 DMINFO("cleaned up");
163 int (*_inits[])(void) __initdata = {
164 local_init,
165 dm_target_init,
166 dm_linear_init,
167 dm_stripe_init,
168 dm_interface_init,
171 void (*_exits[])(void) = {
172 local_exit,
173 dm_target_exit,
174 dm_linear_exit,
175 dm_stripe_exit,
176 dm_interface_exit,
179 static int __init dm_init(void)
181 const int count = ARRAY_SIZE(_inits);
183 int r, i;
185 for (i = 0; i < count; i++) {
186 r = _inits[i]();
187 if (r)
188 goto bad;
191 return 0;
193 bad:
194 while (i--)
195 _exits[i]();
197 return r;
200 static void __exit dm_exit(void)
202 int i = ARRAY_SIZE(_exits);
204 while (i--)
205 _exits[i]();
209 * Block device functions
211 static int dm_blk_open(struct inode *inode, struct file *file)
213 struct mapped_device *md;
215 md = inode->i_bdev->bd_disk->private_data;
216 dm_get(md);
217 return 0;
220 static int dm_blk_close(struct inode *inode, struct file *file)
222 struct mapped_device *md;
224 md = inode->i_bdev->bd_disk->private_data;
225 dm_put(md);
226 return 0;
229 static inline struct dm_io *alloc_io(struct mapped_device *md)
231 return mempool_alloc(md->io_pool, GFP_NOIO);
234 static inline void free_io(struct mapped_device *md, struct dm_io *io)
236 mempool_free(io, md->io_pool);
239 static inline struct target_io *alloc_tio(struct mapped_device *md)
241 return mempool_alloc(md->tio_pool, GFP_NOIO);
244 static inline void free_tio(struct mapped_device *md, struct target_io *tio)
246 mempool_free(tio, md->tio_pool);
249 static void start_io_acct(struct dm_io *io)
251 struct mapped_device *md = io->md;
253 io->start_time = jiffies;
255 preempt_disable();
256 disk_round_stats(dm_disk(md));
257 preempt_enable();
258 dm_disk(md)->in_flight = atomic_inc_return(&md->pending);
261 static int end_io_acct(struct dm_io *io)
263 struct mapped_device *md = io->md;
264 struct bio *bio = io->bio;
265 unsigned long duration = jiffies - io->start_time;
266 int pending;
267 int rw = bio_data_dir(bio);
269 preempt_disable();
270 disk_round_stats(dm_disk(md));
271 preempt_enable();
272 dm_disk(md)->in_flight = pending = atomic_dec_return(&md->pending);
274 disk_stat_add(dm_disk(md), ticks[rw], duration);
276 return !pending;
280 * Add the bio to the list of deferred io.
282 static int queue_io(struct mapped_device *md, struct bio *bio)
284 down_write(&md->io_lock);
286 if (!test_bit(DMF_BLOCK_IO, &md->flags)) {
287 up_write(&md->io_lock);
288 return 1;
291 bio_list_add(&md->deferred, bio);
293 up_write(&md->io_lock);
294 return 0; /* deferred successfully */
298 * Everyone (including functions in this file), should use this
299 * function to access the md->map field, and make sure they call
300 * dm_table_put() when finished.
302 struct dm_table *dm_get_table(struct mapped_device *md)
304 struct dm_table *t;
306 read_lock(&md->map_lock);
307 t = md->map;
308 if (t)
309 dm_table_get(t);
310 read_unlock(&md->map_lock);
312 return t;
315 /*-----------------------------------------------------------------
316 * CRUD START:
317 * A more elegant soln is in the works that uses the queue
318 * merge fn, unfortunately there are a couple of changes to
319 * the block layer that I want to make for this. So in the
320 * interests of getting something for people to use I give
321 * you this clearly demarcated crap.
322 *---------------------------------------------------------------*/
325 * Decrements the number of outstanding ios that a bio has been
326 * cloned into, completing the original io if necc.
328 static void dec_pending(struct dm_io *io, int error)
330 if (error)
331 io->error = error;
333 if (atomic_dec_and_test(&io->io_count)) {
334 if (end_io_acct(io))
335 /* nudge anyone waiting on suspend queue */
336 wake_up(&io->md->wait);
338 blk_add_trace_bio(io->md->queue, io->bio, BLK_TA_COMPLETE);
340 bio_endio(io->bio, io->bio->bi_size, io->error);
341 free_io(io->md, io);
345 static int clone_endio(struct bio *bio, unsigned int done, int error)
347 int r = 0;
348 struct target_io *tio = bio->bi_private;
349 struct dm_io *io = tio->io;
350 dm_endio_fn endio = tio->ti->type->end_io;
352 if (bio->bi_size)
353 return 1;
355 if (!bio_flagged(bio, BIO_UPTODATE) && !error)
356 error = -EIO;
358 if (endio) {
359 r = endio(tio->ti, bio, error, &tio->info);
360 if (r < 0)
361 error = r;
363 else if (r > 0)
364 /* the target wants another shot at the io */
365 return 1;
368 free_tio(io->md, tio);
369 dec_pending(io, error);
370 bio_put(bio);
371 return r;
374 static sector_t max_io_len(struct mapped_device *md,
375 sector_t sector, struct dm_target *ti)
377 sector_t offset = sector - ti->begin;
378 sector_t len = ti->len - offset;
381 * Does the target need to split even further ?
383 if (ti->split_io) {
384 sector_t boundary;
385 boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
386 - offset;
387 if (len > boundary)
388 len = boundary;
391 return len;
394 static void __map_bio(struct dm_target *ti, struct bio *clone,
395 struct target_io *tio)
397 int r;
398 sector_t sector;
401 * Sanity checks.
403 BUG_ON(!clone->bi_size);
405 clone->bi_end_io = clone_endio;
406 clone->bi_private = tio;
409 * Map the clone. If r == 0 we don't need to do
410 * anything, the target has assumed ownership of
411 * this io.
413 atomic_inc(&tio->io->io_count);
414 sector = clone->bi_sector;
415 r = ti->type->map(ti, clone, &tio->info);
416 if (r > 0) {
417 /* the bio has been remapped so dispatch it */
419 blk_add_trace_remap(bdev_get_queue(clone->bi_bdev), clone,
420 tio->io->bio->bi_bdev->bd_dev, sector,
421 clone->bi_sector);
423 generic_make_request(clone);
426 else if (r < 0) {
427 /* error the io and bail out */
428 struct dm_io *io = tio->io;
429 free_tio(tio->io->md, tio);
430 dec_pending(io, r);
431 bio_put(clone);
435 struct clone_info {
436 struct mapped_device *md;
437 struct dm_table *map;
438 struct bio *bio;
439 struct dm_io *io;
440 sector_t sector;
441 sector_t sector_count;
442 unsigned short idx;
445 static void dm_bio_destructor(struct bio *bio)
447 bio_free(bio, dm_set);
451 * Creates a little bio that is just does part of a bvec.
453 static struct bio *split_bvec(struct bio *bio, sector_t sector,
454 unsigned short idx, unsigned int offset,
455 unsigned int len)
457 struct bio *clone;
458 struct bio_vec *bv = bio->bi_io_vec + idx;
460 clone = bio_alloc_bioset(GFP_NOIO, 1, dm_set);
461 clone->bi_destructor = dm_bio_destructor;
462 *clone->bi_io_vec = *bv;
464 clone->bi_sector = sector;
465 clone->bi_bdev = bio->bi_bdev;
466 clone->bi_rw = bio->bi_rw;
467 clone->bi_vcnt = 1;
468 clone->bi_size = to_bytes(len);
469 clone->bi_io_vec->bv_offset = offset;
470 clone->bi_io_vec->bv_len = clone->bi_size;
472 return clone;
476 * Creates a bio that consists of range of complete bvecs.
478 static struct bio *clone_bio(struct bio *bio, sector_t sector,
479 unsigned short idx, unsigned short bv_count,
480 unsigned int len)
482 struct bio *clone;
484 clone = bio_clone(bio, GFP_NOIO);
485 clone->bi_sector = sector;
486 clone->bi_idx = idx;
487 clone->bi_vcnt = idx + bv_count;
488 clone->bi_size = to_bytes(len);
489 clone->bi_flags &= ~(1 << BIO_SEG_VALID);
491 return clone;
494 static void __clone_and_map(struct clone_info *ci)
496 struct bio *clone, *bio = ci->bio;
497 struct dm_target *ti = dm_table_find_target(ci->map, ci->sector);
498 sector_t len = 0, max = max_io_len(ci->md, ci->sector, ti);
499 struct target_io *tio;
502 * Allocate a target io object.
504 tio = alloc_tio(ci->md);
505 tio->io = ci->io;
506 tio->ti = ti;
507 memset(&tio->info, 0, sizeof(tio->info));
509 if (ci->sector_count <= max) {
511 * Optimise for the simple case where we can do all of
512 * the remaining io with a single clone.
514 clone = clone_bio(bio, ci->sector, ci->idx,
515 bio->bi_vcnt - ci->idx, ci->sector_count);
516 __map_bio(ti, clone, tio);
517 ci->sector_count = 0;
519 } else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
521 * There are some bvecs that don't span targets.
522 * Do as many of these as possible.
524 int i;
525 sector_t remaining = max;
526 sector_t bv_len;
528 for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
529 bv_len = to_sector(bio->bi_io_vec[i].bv_len);
531 if (bv_len > remaining)
532 break;
534 remaining -= bv_len;
535 len += bv_len;
538 clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len);
539 __map_bio(ti, clone, tio);
541 ci->sector += len;
542 ci->sector_count -= len;
543 ci->idx = i;
545 } else {
547 * Handle a bvec that must be split between two or more targets.
549 struct bio_vec *bv = bio->bi_io_vec + ci->idx;
550 sector_t remaining = to_sector(bv->bv_len);
551 unsigned int offset = 0;
553 do {
554 if (offset) {
555 ti = dm_table_find_target(ci->map, ci->sector);
556 max = max_io_len(ci->md, ci->sector, ti);
558 tio = alloc_tio(ci->md);
559 tio->io = ci->io;
560 tio->ti = ti;
561 memset(&tio->info, 0, sizeof(tio->info));
564 len = min(remaining, max);
566 clone = split_bvec(bio, ci->sector, ci->idx,
567 bv->bv_offset + offset, len);
569 __map_bio(ti, clone, tio);
571 ci->sector += len;
572 ci->sector_count -= len;
573 offset += to_bytes(len);
574 } while (remaining -= len);
576 ci->idx++;
581 * Split the bio into several clones.
583 static void __split_bio(struct mapped_device *md, struct bio *bio)
585 struct clone_info ci;
587 ci.map = dm_get_table(md);
588 if (!ci.map) {
589 bio_io_error(bio, bio->bi_size);
590 return;
593 ci.md = md;
594 ci.bio = bio;
595 ci.io = alloc_io(md);
596 ci.io->error = 0;
597 atomic_set(&ci.io->io_count, 1);
598 ci.io->bio = bio;
599 ci.io->md = md;
600 ci.sector = bio->bi_sector;
601 ci.sector_count = bio_sectors(bio);
602 ci.idx = bio->bi_idx;
604 start_io_acct(ci.io);
605 while (ci.sector_count)
606 __clone_and_map(&ci);
608 /* drop the extra reference count */
609 dec_pending(ci.io, 0);
610 dm_table_put(ci.map);
612 /*-----------------------------------------------------------------
613 * CRUD END
614 *---------------------------------------------------------------*/
617 * The request function that just remaps the bio built up by
618 * dm_merge_bvec.
620 static int dm_request(request_queue_t *q, struct bio *bio)
622 int r;
623 int rw = bio_data_dir(bio);
624 struct mapped_device *md = q->queuedata;
626 down_read(&md->io_lock);
628 disk_stat_inc(dm_disk(md), ios[rw]);
629 disk_stat_add(dm_disk(md), sectors[rw], bio_sectors(bio));
632 * If we're suspended we have to queue
633 * this io for later.
635 while (test_bit(DMF_BLOCK_IO, &md->flags)) {
636 up_read(&md->io_lock);
638 if (bio_rw(bio) == READA) {
639 bio_io_error(bio, bio->bi_size);
640 return 0;
643 r = queue_io(md, bio);
644 if (r < 0) {
645 bio_io_error(bio, bio->bi_size);
646 return 0;
648 } else if (r == 0)
649 return 0; /* deferred successfully */
652 * We're in a while loop, because someone could suspend
653 * before we get to the following read lock.
655 down_read(&md->io_lock);
658 __split_bio(md, bio);
659 up_read(&md->io_lock);
660 return 0;
663 static int dm_flush_all(request_queue_t *q, struct gendisk *disk,
664 sector_t *error_sector)
666 struct mapped_device *md = q->queuedata;
667 struct dm_table *map = dm_get_table(md);
668 int ret = -ENXIO;
670 if (map) {
671 ret = dm_table_flush_all(map);
672 dm_table_put(map);
675 return ret;
678 static void dm_unplug_all(request_queue_t *q)
680 struct mapped_device *md = q->queuedata;
681 struct dm_table *map = dm_get_table(md);
683 if (map) {
684 dm_table_unplug_all(map);
685 dm_table_put(map);
689 static int dm_any_congested(void *congested_data, int bdi_bits)
691 int r;
692 struct mapped_device *md = (struct mapped_device *) congested_data;
693 struct dm_table *map = dm_get_table(md);
695 if (!map || test_bit(DMF_BLOCK_IO, &md->flags))
696 r = bdi_bits;
697 else
698 r = dm_table_any_congested(map, bdi_bits);
700 dm_table_put(map);
701 return r;
704 /*-----------------------------------------------------------------
705 * An IDR is used to keep track of allocated minor numbers.
706 *---------------------------------------------------------------*/
707 static DECLARE_MUTEX(_minor_lock);
708 static DEFINE_IDR(_minor_idr);
710 static void free_minor(unsigned int minor)
712 down(&_minor_lock);
713 idr_remove(&_minor_idr, minor);
714 up(&_minor_lock);
718 * See if the device with a specific minor # is free.
720 static int specific_minor(struct mapped_device *md, unsigned int minor)
722 int r, m;
724 if (minor >= (1 << MINORBITS))
725 return -EINVAL;
727 down(&_minor_lock);
729 if (idr_find(&_minor_idr, minor)) {
730 r = -EBUSY;
731 goto out;
734 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
735 if (!r) {
736 r = -ENOMEM;
737 goto out;
740 r = idr_get_new_above(&_minor_idr, md, minor, &m);
741 if (r) {
742 goto out;
745 if (m != minor) {
746 idr_remove(&_minor_idr, m);
747 r = -EBUSY;
748 goto out;
751 out:
752 up(&_minor_lock);
753 return r;
756 static int next_free_minor(struct mapped_device *md, unsigned int *minor)
758 int r;
759 unsigned int m;
761 down(&_minor_lock);
763 r = idr_pre_get(&_minor_idr, GFP_KERNEL);
764 if (!r) {
765 r = -ENOMEM;
766 goto out;
769 r = idr_get_new(&_minor_idr, md, &m);
770 if (r) {
771 goto out;
774 if (m >= (1 << MINORBITS)) {
775 idr_remove(&_minor_idr, m);
776 r = -ENOSPC;
777 goto out;
780 *minor = m;
782 out:
783 up(&_minor_lock);
784 return r;
787 static struct block_device_operations dm_blk_dops;
790 * Allocate and initialise a blank device with a given minor.
792 static struct mapped_device *alloc_dev(unsigned int minor, int persistent)
794 int r;
795 struct mapped_device *md = kmalloc(sizeof(*md), GFP_KERNEL);
797 if (!md) {
798 DMWARN("unable to allocate device, out of memory.");
799 return NULL;
802 /* get a minor number for the dev */
803 r = persistent ? specific_minor(md, minor) : next_free_minor(md, &minor);
804 if (r < 0)
805 goto bad1;
807 memset(md, 0, sizeof(*md));
808 init_rwsem(&md->io_lock);
809 init_MUTEX(&md->suspend_lock);
810 rwlock_init(&md->map_lock);
811 atomic_set(&md->holders, 1);
812 atomic_set(&md->event_nr, 0);
814 md->queue = blk_alloc_queue(GFP_KERNEL);
815 if (!md->queue)
816 goto bad1;
818 md->queue->queuedata = md;
819 md->queue->backing_dev_info.congested_fn = dm_any_congested;
820 md->queue->backing_dev_info.congested_data = md;
821 blk_queue_make_request(md->queue, dm_request);
822 blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
823 md->queue->unplug_fn = dm_unplug_all;
824 md->queue->issue_flush_fn = dm_flush_all;
826 md->io_pool = mempool_create_slab_pool(MIN_IOS, _io_cache);
827 if (!md->io_pool)
828 goto bad2;
830 md->tio_pool = mempool_create_slab_pool(MIN_IOS, _tio_cache);
831 if (!md->tio_pool)
832 goto bad3;
834 md->disk = alloc_disk(1);
835 if (!md->disk)
836 goto bad4;
838 md->disk->major = _major;
839 md->disk->first_minor = minor;
840 md->disk->fops = &dm_blk_dops;
841 md->disk->queue = md->queue;
842 md->disk->private_data = md;
843 sprintf(md->disk->disk_name, "dm-%d", minor);
844 add_disk(md->disk);
846 atomic_set(&md->pending, 0);
847 init_waitqueue_head(&md->wait);
848 init_waitqueue_head(&md->eventq);
850 return md;
852 bad4:
853 mempool_destroy(md->tio_pool);
854 bad3:
855 mempool_destroy(md->io_pool);
856 bad2:
857 blk_cleanup_queue(md->queue);
858 free_minor(minor);
859 bad1:
860 kfree(md);
861 return NULL;
864 static void free_dev(struct mapped_device *md)
866 unsigned int minor = md->disk->first_minor;
868 if (md->suspended_bdev) {
869 thaw_bdev(md->suspended_bdev, NULL);
870 bdput(md->suspended_bdev);
872 mempool_destroy(md->tio_pool);
873 mempool_destroy(md->io_pool);
874 del_gendisk(md->disk);
875 free_minor(minor);
876 put_disk(md->disk);
877 blk_cleanup_queue(md->queue);
878 kfree(md);
882 * Bind a table to the device.
884 static void event_callback(void *context)
886 struct mapped_device *md = (struct mapped_device *) context;
888 atomic_inc(&md->event_nr);
889 wake_up(&md->eventq);
892 static void __set_size(struct mapped_device *md, sector_t size)
894 set_capacity(md->disk, size);
896 mutex_lock(&md->suspended_bdev->bd_inode->i_mutex);
897 i_size_write(md->suspended_bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
898 mutex_unlock(&md->suspended_bdev->bd_inode->i_mutex);
901 static int __bind(struct mapped_device *md, struct dm_table *t)
903 request_queue_t *q = md->queue;
904 sector_t size;
906 size = dm_table_get_size(t);
907 __set_size(md, size);
908 if (size == 0)
909 return 0;
911 dm_table_get(t);
912 dm_table_event_callback(t, event_callback, md);
914 write_lock(&md->map_lock);
915 md->map = t;
916 dm_table_set_restrictions(t, q);
917 write_unlock(&md->map_lock);
919 return 0;
922 static void __unbind(struct mapped_device *md)
924 struct dm_table *map = md->map;
926 if (!map)
927 return;
929 dm_table_event_callback(map, NULL, NULL);
930 write_lock(&md->map_lock);
931 md->map = NULL;
932 write_unlock(&md->map_lock);
933 dm_table_put(map);
937 * Constructor for a new device.
939 static int create_aux(unsigned int minor, int persistent,
940 struct mapped_device **result)
942 struct mapped_device *md;
944 md = alloc_dev(minor, persistent);
945 if (!md)
946 return -ENXIO;
948 *result = md;
949 return 0;
952 int dm_create(struct mapped_device **result)
954 return create_aux(0, 0, result);
957 int dm_create_with_minor(unsigned int minor, struct mapped_device **result)
959 return create_aux(minor, 1, result);
962 static struct mapped_device *dm_find_md(dev_t dev)
964 struct mapped_device *md;
965 unsigned minor = MINOR(dev);
967 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
968 return NULL;
970 down(&_minor_lock);
972 md = idr_find(&_minor_idr, minor);
973 if (!md || (dm_disk(md)->first_minor != minor))
974 md = NULL;
976 up(&_minor_lock);
978 return md;
981 struct mapped_device *dm_get_md(dev_t dev)
983 struct mapped_device *md = dm_find_md(dev);
985 if (md)
986 dm_get(md);
988 return md;
991 void *dm_get_mdptr(dev_t dev)
993 struct mapped_device *md;
994 void *mdptr = NULL;
996 md = dm_find_md(dev);
997 if (md)
998 mdptr = md->interface_ptr;
999 return mdptr;
1002 void dm_set_mdptr(struct mapped_device *md, void *ptr)
1004 md->interface_ptr = ptr;
1007 void dm_get(struct mapped_device *md)
1009 atomic_inc(&md->holders);
1012 void dm_put(struct mapped_device *md)
1014 struct dm_table *map = dm_get_table(md);
1016 if (atomic_dec_and_test(&md->holders)) {
1017 if (!dm_suspended(md)) {
1018 dm_table_presuspend_targets(map);
1019 dm_table_postsuspend_targets(map);
1021 __unbind(md);
1022 free_dev(md);
1025 dm_table_put(map);
1029 * Process the deferred bios
1031 static void __flush_deferred_io(struct mapped_device *md, struct bio *c)
1033 struct bio *n;
1035 while (c) {
1036 n = c->bi_next;
1037 c->bi_next = NULL;
1038 __split_bio(md, c);
1039 c = n;
1044 * Swap in a new table (destroying old one).
1046 int dm_swap_table(struct mapped_device *md, struct dm_table *table)
1048 int r = -EINVAL;
1050 down(&md->suspend_lock);
1052 /* device must be suspended */
1053 if (!dm_suspended(md))
1054 goto out;
1056 __unbind(md);
1057 r = __bind(md, table);
1059 out:
1060 up(&md->suspend_lock);
1061 return r;
1065 * Functions to lock and unlock any filesystem running on the
1066 * device.
1068 static int lock_fs(struct mapped_device *md)
1070 int r;
1072 WARN_ON(md->frozen_sb);
1074 md->frozen_sb = freeze_bdev(md->suspended_bdev);
1075 if (IS_ERR(md->frozen_sb)) {
1076 r = PTR_ERR(md->frozen_sb);
1077 md->frozen_sb = NULL;
1078 return r;
1081 set_bit(DMF_FROZEN, &md->flags);
1083 /* don't bdput right now, we don't want the bdev
1084 * to go away while it is locked.
1086 return 0;
1089 static void unlock_fs(struct mapped_device *md)
1091 if (!test_bit(DMF_FROZEN, &md->flags))
1092 return;
1094 thaw_bdev(md->suspended_bdev, md->frozen_sb);
1095 md->frozen_sb = NULL;
1096 clear_bit(DMF_FROZEN, &md->flags);
1100 * We need to be able to change a mapping table under a mounted
1101 * filesystem. For example we might want to move some data in
1102 * the background. Before the table can be swapped with
1103 * dm_bind_table, dm_suspend must be called to flush any in
1104 * flight bios and ensure that any further io gets deferred.
1106 int dm_suspend(struct mapped_device *md, int do_lockfs)
1108 struct dm_table *map = NULL;
1109 DECLARE_WAITQUEUE(wait, current);
1110 int r = -EINVAL;
1112 down(&md->suspend_lock);
1114 if (dm_suspended(md))
1115 goto out;
1117 map = dm_get_table(md);
1119 /* This does not get reverted if there's an error later. */
1120 dm_table_presuspend_targets(map);
1122 md->suspended_bdev = bdget_disk(md->disk, 0);
1123 if (!md->suspended_bdev) {
1124 DMWARN("bdget failed in dm_suspend");
1125 r = -ENOMEM;
1126 goto out;
1129 /* Flush I/O to the device. */
1130 if (do_lockfs) {
1131 r = lock_fs(md);
1132 if (r)
1133 goto out;
1137 * First we set the BLOCK_IO flag so no more ios will be mapped.
1139 down_write(&md->io_lock);
1140 set_bit(DMF_BLOCK_IO, &md->flags);
1142 add_wait_queue(&md->wait, &wait);
1143 up_write(&md->io_lock);
1145 /* unplug */
1146 if (map)
1147 dm_table_unplug_all(map);
1150 * Then we wait for the already mapped ios to
1151 * complete.
1153 while (1) {
1154 set_current_state(TASK_INTERRUPTIBLE);
1156 if (!atomic_read(&md->pending) || signal_pending(current))
1157 break;
1159 io_schedule();
1161 set_current_state(TASK_RUNNING);
1163 down_write(&md->io_lock);
1164 remove_wait_queue(&md->wait, &wait);
1166 /* were we interrupted ? */
1167 r = -EINTR;
1168 if (atomic_read(&md->pending)) {
1169 up_write(&md->io_lock);
1170 unlock_fs(md);
1171 clear_bit(DMF_BLOCK_IO, &md->flags);
1172 goto out;
1174 up_write(&md->io_lock);
1176 dm_table_postsuspend_targets(map);
1178 set_bit(DMF_SUSPENDED, &md->flags);
1180 r = 0;
1182 out:
1183 if (r && md->suspended_bdev) {
1184 bdput(md->suspended_bdev);
1185 md->suspended_bdev = NULL;
1188 dm_table_put(map);
1189 up(&md->suspend_lock);
1190 return r;
1193 int dm_resume(struct mapped_device *md)
1195 int r = -EINVAL;
1196 struct bio *def;
1197 struct dm_table *map = NULL;
1199 down(&md->suspend_lock);
1200 if (!dm_suspended(md))
1201 goto out;
1203 map = dm_get_table(md);
1204 if (!map || !dm_table_get_size(map))
1205 goto out;
1207 dm_table_resume_targets(map);
1209 down_write(&md->io_lock);
1210 clear_bit(DMF_BLOCK_IO, &md->flags);
1212 def = bio_list_get(&md->deferred);
1213 __flush_deferred_io(md, def);
1214 up_write(&md->io_lock);
1216 unlock_fs(md);
1218 bdput(md->suspended_bdev);
1219 md->suspended_bdev = NULL;
1221 clear_bit(DMF_SUSPENDED, &md->flags);
1223 dm_table_unplug_all(map);
1225 r = 0;
1227 out:
1228 dm_table_put(map);
1229 up(&md->suspend_lock);
1231 return r;
1234 /*-----------------------------------------------------------------
1235 * Event notification.
1236 *---------------------------------------------------------------*/
1237 uint32_t dm_get_event_nr(struct mapped_device *md)
1239 return atomic_read(&md->event_nr);
1242 int dm_wait_event(struct mapped_device *md, int event_nr)
1244 return wait_event_interruptible(md->eventq,
1245 (event_nr != atomic_read(&md->event_nr)));
1249 * The gendisk is only valid as long as you have a reference
1250 * count on 'md'.
1252 struct gendisk *dm_disk(struct mapped_device *md)
1254 return md->disk;
1257 int dm_suspended(struct mapped_device *md)
1259 return test_bit(DMF_SUSPENDED, &md->flags);
1262 static struct block_device_operations dm_blk_dops = {
1263 .open = dm_blk_open,
1264 .release = dm_blk_close,
1265 .owner = THIS_MODULE
1268 EXPORT_SYMBOL(dm_get_mapinfo);
1271 * module hooks
1273 module_init(dm_init);
1274 module_exit(dm_exit);
1276 module_param(major, uint, 0);
1277 MODULE_PARM_DESC(major, "The major number of the device mapper");
1278 MODULE_DESCRIPTION(DM_NAME " driver");
1279 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1280 MODULE_LICENSE("GPL");