2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_types.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
31 #include "xfs_dmapi.h"
32 #include "xfs_mount.h"
33 #include "xfs_bmap_btree.h"
34 #include "xfs_alloc_btree.h"
35 #include "xfs_ialloc_btree.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
40 #include "xfs_buf_item.h"
41 #include "xfs_inode_item.h"
42 #include "xfs_btree.h"
43 #include "xfs_btree_trace.h"
44 #include "xfs_alloc.h"
45 #include "xfs_ialloc.h"
48 #include "xfs_error.h"
49 #include "xfs_utils.h"
50 #include "xfs_dir2_trace.h"
51 #include "xfs_quota.h"
53 #include "xfs_filestream.h"
54 #include "xfs_vnodeops.h"
56 kmem_zone_t
*xfs_ifork_zone
;
57 kmem_zone_t
*xfs_inode_zone
;
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
63 #define XFS_ITRUNC_MAX_EXTENTS 2
65 STATIC
int xfs_iflush_int(xfs_inode_t
*, xfs_buf_t
*);
66 STATIC
int xfs_iformat_local(xfs_inode_t
*, xfs_dinode_t
*, int, int);
67 STATIC
int xfs_iformat_extents(xfs_inode_t
*, xfs_dinode_t
*, int);
68 STATIC
int xfs_iformat_btree(xfs_inode_t
*, xfs_dinode_t
*, int);
72 * Make sure that the extents in the given memory buffer
82 xfs_bmbt_rec_host_t rec
;
85 for (i
= 0; i
< nrecs
; i
++) {
86 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
87 rec
.l0
= get_unaligned(&ep
->l0
);
88 rec
.l1
= get_unaligned(&ep
->l1
);
89 xfs_bmbt_get_all(&rec
, &irec
);
90 if (fmt
== XFS_EXTFMT_NOSTATE
)
91 ASSERT(irec
.br_state
== XFS_EXT_NORM
);
95 #define xfs_validate_extents(ifp, nrecs, fmt)
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
112 j
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
114 for (i
= 0; i
< j
; i
++) {
115 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
116 i
* mp
->m_sb
.sb_inodesize
);
117 if (!dip
->di_next_unlinked
) {
118 xfs_fs_cmn_err(CE_ALERT
, mp
,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
121 ASSERT(dip
->di_next_unlinked
);
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
136 struct xfs_imap
*imap
,
146 error
= xfs_trans_read_buf(mp
, tp
, mp
->m_ddev_targp
, imap
->im_blkno
,
147 (int)imap
->im_len
, buf_flags
, &bp
);
149 if (error
!= EAGAIN
) {
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
152 "an error %d on %s. Returning error.",
153 error
, mp
->m_fsname
);
155 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
165 ni
= BBTOB(imap
->im_len
) >> mp
->m_sb
.sb_inodelog
;
166 #else /* usual case */
170 for (i
= 0; i
< ni
; i
++) {
174 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
,
175 (i
<< mp
->m_sb
.sb_inodelog
));
176 di_ok
= be16_to_cpu(dip
->di_magic
) == XFS_DINODE_MAGIC
&&
177 XFS_DINODE_GOOD_VERSION(dip
->di_version
);
178 if (unlikely(XFS_TEST_ERROR(!di_ok
, mp
,
179 XFS_ERRTAG_ITOBP_INOTOBP
,
180 XFS_RANDOM_ITOBP_INOTOBP
))) {
181 if (iget_flags
& XFS_IGET_BULKSTAT
) {
182 xfs_trans_brelse(tp
, bp
);
183 return XFS_ERROR(EINVAL
);
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH
, mp
, dip
);
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp
->m_ddev_targp
),
192 (unsigned long long)imap
->im_blkno
, i
,
193 be16_to_cpu(dip
->di_magic
));
195 xfs_trans_brelse(tp
, bp
);
196 return XFS_ERROR(EFSCORRUPTED
);
200 xfs_inobp_check(mp
, bp
);
203 * Mark the buffer as an inode buffer now that it looks good
205 XFS_BUF_SET_VTYPE(bp
, B_FS_INO
);
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
234 struct xfs_imap imap
;
239 error
= xfs_imap(mp
, tp
, ino
, &imap
, imap_flags
);
243 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &bp
, XFS_BUF_LOCK
, imap_flags
);
247 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, imap
.im_boffset
);
249 *offset
= imap
.im_boffset
;
255 * This routine is called to map an inode to the buffer containing
256 * the on-disk version of the inode. It returns a pointer to the
257 * buffer containing the on-disk inode in the bpp parameter, and in
258 * the dip parameter it returns a pointer to the on-disk inode within
261 * If a non-zero error is returned, then the contents of bpp and
262 * dipp are undefined.
264 * The inode is expected to already been mapped to its buffer and read
265 * in once, thus we can use the mapping information stored in the inode
266 * rather than calling xfs_imap(). This allows us to avoid the overhead
267 * of looking at the inode btree for small block file systems
282 ASSERT(ip
->i_imap
.im_blkno
!= 0);
284 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
, buf_flags
, 0);
289 ASSERT(buf_flags
& XFS_BUF_TRYLOCK
);
295 *dipp
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
301 * Move inode type and inode format specific information from the
302 * on-disk inode to the in-core inode. For fifos, devs, and sockets
303 * this means set if_rdev to the proper value. For files, directories,
304 * and symlinks this means to bring in the in-line data or extent
305 * pointers. For a file in B-tree format, only the root is immediately
306 * brought in-core. The rest will be in-lined in if_extents when it
307 * is first referenced (see xfs_iread_extents()).
314 xfs_attr_shortform_t
*atp
;
318 ip
->i_df
.if_ext_max
=
319 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
322 if (unlikely(be32_to_cpu(dip
->di_nextents
) +
323 be16_to_cpu(dip
->di_anextents
) >
324 be64_to_cpu(dip
->di_nblocks
))) {
325 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
326 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
327 (unsigned long long)ip
->i_ino
,
328 (int)(be32_to_cpu(dip
->di_nextents
) +
329 be16_to_cpu(dip
->di_anextents
)),
331 be64_to_cpu(dip
->di_nblocks
));
332 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW
,
334 return XFS_ERROR(EFSCORRUPTED
);
337 if (unlikely(dip
->di_forkoff
> ip
->i_mount
->m_sb
.sb_inodesize
)) {
338 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
339 "corrupt dinode %Lu, forkoff = 0x%x.",
340 (unsigned long long)ip
->i_ino
,
342 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW
,
344 return XFS_ERROR(EFSCORRUPTED
);
347 switch (ip
->i_d
.di_mode
& S_IFMT
) {
352 if (unlikely(dip
->di_format
!= XFS_DINODE_FMT_DEV
)) {
353 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW
,
355 return XFS_ERROR(EFSCORRUPTED
);
359 ip
->i_df
.if_u2
.if_rdev
= xfs_dinode_get_rdev(dip
);
365 switch (dip
->di_format
) {
366 case XFS_DINODE_FMT_LOCAL
:
368 * no local regular files yet
370 if (unlikely((be16_to_cpu(dip
->di_mode
) & S_IFMT
) == S_IFREG
)) {
371 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
373 "(local format for regular file).",
374 (unsigned long long) ip
->i_ino
);
375 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
378 return XFS_ERROR(EFSCORRUPTED
);
381 di_size
= be64_to_cpu(dip
->di_size
);
382 if (unlikely(di_size
> XFS_DFORK_DSIZE(dip
, ip
->i_mount
))) {
383 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
385 "(bad size %Ld for local inode).",
386 (unsigned long long) ip
->i_ino
,
387 (long long) di_size
);
388 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
391 return XFS_ERROR(EFSCORRUPTED
);
395 error
= xfs_iformat_local(ip
, dip
, XFS_DATA_FORK
, size
);
397 case XFS_DINODE_FMT_EXTENTS
:
398 error
= xfs_iformat_extents(ip
, dip
, XFS_DATA_FORK
);
400 case XFS_DINODE_FMT_BTREE
:
401 error
= xfs_iformat_btree(ip
, dip
, XFS_DATA_FORK
);
404 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW
,
406 return XFS_ERROR(EFSCORRUPTED
);
411 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW
, ip
->i_mount
);
412 return XFS_ERROR(EFSCORRUPTED
);
417 if (!XFS_DFORK_Q(dip
))
419 ASSERT(ip
->i_afp
== NULL
);
420 ip
->i_afp
= kmem_zone_zalloc(xfs_ifork_zone
, KM_SLEEP
);
421 ip
->i_afp
->if_ext_max
=
422 XFS_IFORK_ASIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
423 switch (dip
->di_aformat
) {
424 case XFS_DINODE_FMT_LOCAL
:
425 atp
= (xfs_attr_shortform_t
*)XFS_DFORK_APTR(dip
);
426 size
= be16_to_cpu(atp
->hdr
.totsize
);
427 error
= xfs_iformat_local(ip
, dip
, XFS_ATTR_FORK
, size
);
429 case XFS_DINODE_FMT_EXTENTS
:
430 error
= xfs_iformat_extents(ip
, dip
, XFS_ATTR_FORK
);
432 case XFS_DINODE_FMT_BTREE
:
433 error
= xfs_iformat_btree(ip
, dip
, XFS_ATTR_FORK
);
436 error
= XFS_ERROR(EFSCORRUPTED
);
440 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
442 xfs_idestroy_fork(ip
, XFS_DATA_FORK
);
448 * The file is in-lined in the on-disk inode.
449 * If it fits into if_inline_data, then copy
450 * it there, otherwise allocate a buffer for it
451 * and copy the data there. Either way, set
452 * if_data to point at the data.
453 * If we allocate a buffer for the data, make
454 * sure that its size is a multiple of 4 and
455 * record the real size in i_real_bytes.
468 * If the size is unreasonable, then something
469 * is wrong and we just bail out rather than crash in
470 * kmem_alloc() or memcpy() below.
472 if (unlikely(size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
473 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
475 "(bad size %d for local fork, size = %d).",
476 (unsigned long long) ip
->i_ino
, size
,
477 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
));
478 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW
,
480 return XFS_ERROR(EFSCORRUPTED
);
482 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
485 ifp
->if_u1
.if_data
= NULL
;
486 else if (size
<= sizeof(ifp
->if_u2
.if_inline_data
))
487 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
489 real_size
= roundup(size
, 4);
490 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
492 ifp
->if_bytes
= size
;
493 ifp
->if_real_bytes
= real_size
;
495 memcpy(ifp
->if_u1
.if_data
, XFS_DFORK_PTR(dip
, whichfork
), size
);
496 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
497 ifp
->if_flags
|= XFS_IFINLINE
;
502 * The file consists of a set of extents all
503 * of which fit into the on-disk inode.
504 * If there are few enough extents to fit into
505 * the if_inline_ext, then copy them there.
506 * Otherwise allocate a buffer for them and copy
507 * them into it. Either way, set if_extents
508 * to point at the extents.
522 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
523 nex
= XFS_DFORK_NEXTENTS(dip
, whichfork
);
524 size
= nex
* (uint
)sizeof(xfs_bmbt_rec_t
);
527 * If the number of extents is unreasonable, then something
528 * is wrong and we just bail out rather than crash in
529 * kmem_alloc() or memcpy() below.
531 if (unlikely(size
< 0 || size
> XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
))) {
532 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
533 "corrupt inode %Lu ((a)extents = %d).",
534 (unsigned long long) ip
->i_ino
, nex
);
535 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW
,
537 return XFS_ERROR(EFSCORRUPTED
);
540 ifp
->if_real_bytes
= 0;
542 ifp
->if_u1
.if_extents
= NULL
;
543 else if (nex
<= XFS_INLINE_EXTS
)
544 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
546 xfs_iext_add(ifp
, 0, nex
);
548 ifp
->if_bytes
= size
;
550 dp
= (xfs_bmbt_rec_t
*) XFS_DFORK_PTR(dip
, whichfork
);
551 xfs_validate_extents(ifp
, nex
, XFS_EXTFMT_INODE(ip
));
552 for (i
= 0; i
< nex
; i
++, dp
++) {
553 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
554 ep
->l0
= get_unaligned_be64(&dp
->l0
);
555 ep
->l1
= get_unaligned_be64(&dp
->l1
);
557 XFS_BMAP_TRACE_EXLIST(ip
, nex
, whichfork
);
558 if (whichfork
!= XFS_DATA_FORK
||
559 XFS_EXTFMT_INODE(ip
) == XFS_EXTFMT_NOSTATE
)
560 if (unlikely(xfs_check_nostate_extents(
562 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
565 return XFS_ERROR(EFSCORRUPTED
);
568 ifp
->if_flags
|= XFS_IFEXTENTS
;
573 * The file has too many extents to fit into
574 * the inode, so they are in B-tree format.
575 * Allocate a buffer for the root of the B-tree
576 * and copy the root into it. The i_extents
577 * field will remain NULL until all of the
578 * extents are read in (when they are needed).
586 xfs_bmdr_block_t
*dfp
;
592 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
593 dfp
= (xfs_bmdr_block_t
*)XFS_DFORK_PTR(dip
, whichfork
);
594 size
= XFS_BMAP_BROOT_SPACE(dfp
);
595 nrecs
= be16_to_cpu(dfp
->bb_numrecs
);
598 * blow out if -- fork has less extents than can fit in
599 * fork (fork shouldn't be a btree format), root btree
600 * block has more records than can fit into the fork,
601 * or the number of extents is greater than the number of
604 if (unlikely(XFS_IFORK_NEXTENTS(ip
, whichfork
) <= ifp
->if_ext_max
605 || XFS_BMDR_SPACE_CALC(nrecs
) >
606 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
)
607 || XFS_IFORK_NEXTENTS(ip
, whichfork
) > ip
->i_d
.di_nblocks
)) {
608 xfs_fs_repair_cmn_err(CE_WARN
, ip
->i_mount
,
609 "corrupt inode %Lu (btree).",
610 (unsigned long long) ip
->i_ino
);
611 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW
,
613 return XFS_ERROR(EFSCORRUPTED
);
616 ifp
->if_broot_bytes
= size
;
617 ifp
->if_broot
= kmem_alloc(size
, KM_SLEEP
);
618 ASSERT(ifp
->if_broot
!= NULL
);
620 * Copy and convert from the on-disk structure
621 * to the in-memory structure.
623 xfs_bmdr_to_bmbt(ip
->i_mount
, dfp
,
624 XFS_DFORK_SIZE(dip
, ip
->i_mount
, whichfork
),
625 ifp
->if_broot
, size
);
626 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
627 ifp
->if_flags
|= XFS_IFBROOT
;
633 xfs_dinode_from_disk(
637 to
->di_magic
= be16_to_cpu(from
->di_magic
);
638 to
->di_mode
= be16_to_cpu(from
->di_mode
);
639 to
->di_version
= from
->di_version
;
640 to
->di_format
= from
->di_format
;
641 to
->di_onlink
= be16_to_cpu(from
->di_onlink
);
642 to
->di_uid
= be32_to_cpu(from
->di_uid
);
643 to
->di_gid
= be32_to_cpu(from
->di_gid
);
644 to
->di_nlink
= be32_to_cpu(from
->di_nlink
);
645 to
->di_projid
= be16_to_cpu(from
->di_projid
);
646 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
647 to
->di_flushiter
= be16_to_cpu(from
->di_flushiter
);
648 to
->di_atime
.t_sec
= be32_to_cpu(from
->di_atime
.t_sec
);
649 to
->di_atime
.t_nsec
= be32_to_cpu(from
->di_atime
.t_nsec
);
650 to
->di_mtime
.t_sec
= be32_to_cpu(from
->di_mtime
.t_sec
);
651 to
->di_mtime
.t_nsec
= be32_to_cpu(from
->di_mtime
.t_nsec
);
652 to
->di_ctime
.t_sec
= be32_to_cpu(from
->di_ctime
.t_sec
);
653 to
->di_ctime
.t_nsec
= be32_to_cpu(from
->di_ctime
.t_nsec
);
654 to
->di_size
= be64_to_cpu(from
->di_size
);
655 to
->di_nblocks
= be64_to_cpu(from
->di_nblocks
);
656 to
->di_extsize
= be32_to_cpu(from
->di_extsize
);
657 to
->di_nextents
= be32_to_cpu(from
->di_nextents
);
658 to
->di_anextents
= be16_to_cpu(from
->di_anextents
);
659 to
->di_forkoff
= from
->di_forkoff
;
660 to
->di_aformat
= from
->di_aformat
;
661 to
->di_dmevmask
= be32_to_cpu(from
->di_dmevmask
);
662 to
->di_dmstate
= be16_to_cpu(from
->di_dmstate
);
663 to
->di_flags
= be16_to_cpu(from
->di_flags
);
664 to
->di_gen
= be32_to_cpu(from
->di_gen
);
670 xfs_icdinode_t
*from
)
672 to
->di_magic
= cpu_to_be16(from
->di_magic
);
673 to
->di_mode
= cpu_to_be16(from
->di_mode
);
674 to
->di_version
= from
->di_version
;
675 to
->di_format
= from
->di_format
;
676 to
->di_onlink
= cpu_to_be16(from
->di_onlink
);
677 to
->di_uid
= cpu_to_be32(from
->di_uid
);
678 to
->di_gid
= cpu_to_be32(from
->di_gid
);
679 to
->di_nlink
= cpu_to_be32(from
->di_nlink
);
680 to
->di_projid
= cpu_to_be16(from
->di_projid
);
681 memcpy(to
->di_pad
, from
->di_pad
, sizeof(to
->di_pad
));
682 to
->di_flushiter
= cpu_to_be16(from
->di_flushiter
);
683 to
->di_atime
.t_sec
= cpu_to_be32(from
->di_atime
.t_sec
);
684 to
->di_atime
.t_nsec
= cpu_to_be32(from
->di_atime
.t_nsec
);
685 to
->di_mtime
.t_sec
= cpu_to_be32(from
->di_mtime
.t_sec
);
686 to
->di_mtime
.t_nsec
= cpu_to_be32(from
->di_mtime
.t_nsec
);
687 to
->di_ctime
.t_sec
= cpu_to_be32(from
->di_ctime
.t_sec
);
688 to
->di_ctime
.t_nsec
= cpu_to_be32(from
->di_ctime
.t_nsec
);
689 to
->di_size
= cpu_to_be64(from
->di_size
);
690 to
->di_nblocks
= cpu_to_be64(from
->di_nblocks
);
691 to
->di_extsize
= cpu_to_be32(from
->di_extsize
);
692 to
->di_nextents
= cpu_to_be32(from
->di_nextents
);
693 to
->di_anextents
= cpu_to_be16(from
->di_anextents
);
694 to
->di_forkoff
= from
->di_forkoff
;
695 to
->di_aformat
= from
->di_aformat
;
696 to
->di_dmevmask
= cpu_to_be32(from
->di_dmevmask
);
697 to
->di_dmstate
= cpu_to_be16(from
->di_dmstate
);
698 to
->di_flags
= cpu_to_be16(from
->di_flags
);
699 to
->di_gen
= cpu_to_be32(from
->di_gen
);
708 if (di_flags
& XFS_DIFLAG_ANY
) {
709 if (di_flags
& XFS_DIFLAG_REALTIME
)
710 flags
|= XFS_XFLAG_REALTIME
;
711 if (di_flags
& XFS_DIFLAG_PREALLOC
)
712 flags
|= XFS_XFLAG_PREALLOC
;
713 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
714 flags
|= XFS_XFLAG_IMMUTABLE
;
715 if (di_flags
& XFS_DIFLAG_APPEND
)
716 flags
|= XFS_XFLAG_APPEND
;
717 if (di_flags
& XFS_DIFLAG_SYNC
)
718 flags
|= XFS_XFLAG_SYNC
;
719 if (di_flags
& XFS_DIFLAG_NOATIME
)
720 flags
|= XFS_XFLAG_NOATIME
;
721 if (di_flags
& XFS_DIFLAG_NODUMP
)
722 flags
|= XFS_XFLAG_NODUMP
;
723 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
724 flags
|= XFS_XFLAG_RTINHERIT
;
725 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
726 flags
|= XFS_XFLAG_PROJINHERIT
;
727 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
728 flags
|= XFS_XFLAG_NOSYMLINKS
;
729 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
730 flags
|= XFS_XFLAG_EXTSIZE
;
731 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
732 flags
|= XFS_XFLAG_EXTSZINHERIT
;
733 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
734 flags
|= XFS_XFLAG_NODEFRAG
;
735 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
736 flags
|= XFS_XFLAG_FILESTREAM
;
746 xfs_icdinode_t
*dic
= &ip
->i_d
;
748 return _xfs_dic2xflags(dic
->di_flags
) |
749 (XFS_IFORK_Q(ip
) ? XFS_XFLAG_HASATTR
: 0);
756 return _xfs_dic2xflags(be16_to_cpu(dip
->di_flags
)) |
757 (XFS_DFORK_Q(dip
) ? XFS_XFLAG_HASATTR
: 0);
761 * Read the disk inode attributes into the in-core inode structure.
776 * Fill in the location information in the in-core inode.
778 ip
->i_imap
.im_blkno
= bno
;
779 error
= xfs_imap(mp
, tp
, ip
->i_ino
, &ip
->i_imap
, iget_flags
);
782 ASSERT(bno
== 0 || bno
== ip
->i_imap
.im_blkno
);
785 * Get pointers to the on-disk inode and the buffer containing it.
787 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &bp
,
788 XFS_BUF_LOCK
, iget_flags
);
791 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
794 * If we got something that isn't an inode it means someone
795 * (nfs or dmi) has a stale handle.
797 if (be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
) {
799 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
800 "dip->di_magic (0x%x) != "
801 "XFS_DINODE_MAGIC (0x%x)",
802 be16_to_cpu(dip
->di_magic
),
805 error
= XFS_ERROR(EINVAL
);
810 * If the on-disk inode is already linked to a directory
811 * entry, copy all of the inode into the in-core inode.
812 * xfs_iformat() handles copying in the inode format
813 * specific information.
814 * Otherwise, just get the truly permanent information.
817 xfs_dinode_from_disk(&ip
->i_d
, dip
);
818 error
= xfs_iformat(ip
, dip
);
821 xfs_fs_cmn_err(CE_ALERT
, mp
, "xfs_iread: "
822 "xfs_iformat() returned error %d",
828 ip
->i_d
.di_magic
= be16_to_cpu(dip
->di_magic
);
829 ip
->i_d
.di_version
= dip
->di_version
;
830 ip
->i_d
.di_gen
= be32_to_cpu(dip
->di_gen
);
831 ip
->i_d
.di_flushiter
= be16_to_cpu(dip
->di_flushiter
);
833 * Make sure to pull in the mode here as well in
834 * case the inode is released without being used.
835 * This ensures that xfs_inactive() will see that
836 * the inode is already free and not try to mess
837 * with the uninitialized part of it.
841 * Initialize the per-fork minima and maxima for a new
842 * inode here. xfs_iformat will do it for old inodes.
844 ip
->i_df
.if_ext_max
=
845 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
849 * The inode format changed when we moved the link count and
850 * made it 32 bits long. If this is an old format inode,
851 * convert it in memory to look like a new one. If it gets
852 * flushed to disk we will convert back before flushing or
853 * logging it. We zero out the new projid field and the old link
854 * count field. We'll handle clearing the pad field (the remains
855 * of the old uuid field) when we actually convert the inode to
856 * the new format. We don't change the version number so that we
857 * can distinguish this from a real new format inode.
859 if (ip
->i_d
.di_version
== 1) {
860 ip
->i_d
.di_nlink
= ip
->i_d
.di_onlink
;
861 ip
->i_d
.di_onlink
= 0;
862 ip
->i_d
.di_projid
= 0;
865 ip
->i_delayed_blks
= 0;
866 ip
->i_size
= ip
->i_d
.di_size
;
869 * Mark the buffer containing the inode as something to keep
870 * around for a while. This helps to keep recently accessed
871 * meta-data in-core longer.
873 XFS_BUF_SET_REF(bp
, XFS_INO_REF
);
876 * Use xfs_trans_brelse() to release the buffer containing the
877 * on-disk inode, because it was acquired with xfs_trans_read_buf()
878 * in xfs_itobp() above. If tp is NULL, this is just a normal
879 * brelse(). If we're within a transaction, then xfs_trans_brelse()
880 * will only release the buffer if it is not dirty within the
881 * transaction. It will be OK to release the buffer in this case,
882 * because inodes on disk are never destroyed and we will be
883 * locking the new in-core inode before putting it in the hash
884 * table where other processes can find it. Thus we don't have
885 * to worry about the inode being changed just because we released
889 xfs_trans_brelse(tp
, bp
);
894 * Read in extents from a btree-format inode.
895 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
905 xfs_extnum_t nextents
;
908 if (unlikely(XFS_IFORK_FORMAT(ip
, whichfork
) != XFS_DINODE_FMT_BTREE
)) {
909 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW
,
911 return XFS_ERROR(EFSCORRUPTED
);
913 nextents
= XFS_IFORK_NEXTENTS(ip
, whichfork
);
914 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
915 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
918 * We know that the size is valid (it's checked in iformat_btree)
920 ifp
->if_lastex
= NULLEXTNUM
;
921 ifp
->if_bytes
= ifp
->if_real_bytes
= 0;
922 ifp
->if_flags
|= XFS_IFEXTENTS
;
923 xfs_iext_add(ifp
, 0, nextents
);
924 error
= xfs_bmap_read_extents(tp
, ip
, whichfork
);
926 xfs_iext_destroy(ifp
);
927 ifp
->if_flags
&= ~XFS_IFEXTENTS
;
930 xfs_validate_extents(ifp
, nextents
, XFS_EXTFMT_INODE(ip
));
935 * Allocate an inode on disk and return a copy of its in-core version.
936 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
937 * appropriately within the inode. The uid and gid for the inode are
938 * set according to the contents of the given cred structure.
940 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
941 * has a free inode available, call xfs_iget()
942 * to obtain the in-core version of the allocated inode. Finally,
943 * fill in the inode and log its initial contents. In this case,
944 * ialloc_context would be set to NULL and call_again set to false.
946 * If xfs_dialloc() does not have an available inode,
947 * it will replenish its supply by doing an allocation. Since we can
948 * only do one allocation within a transaction without deadlocks, we
949 * must commit the current transaction before returning the inode itself.
950 * In this case, therefore, we will set call_again to true and return.
951 * The caller should then commit the current transaction, start a new
952 * transaction, and call xfs_ialloc() again to actually get the inode.
954 * To ensure that some other process does not grab the inode that
955 * was allocated during the first call to xfs_ialloc(), this routine
956 * also returns the [locked] bp pointing to the head of the freelist
957 * as ialloc_context. The caller should hold this buffer across
958 * the commit and pass it back into this routine on the second call.
960 * If we are allocating quota inodes, we do not have a parent inode
961 * to attach to or associate with (i.e. pip == NULL) because they
962 * are not linked into the directory structure - they are attached
963 * directly to the superblock - and so have no parent.
975 xfs_buf_t
**ialloc_context
,
976 boolean_t
*call_again
,
987 * Call the space management code to pick
988 * the on-disk inode to be allocated.
990 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
991 ialloc_context
, call_again
, &ino
);
994 if (*call_again
|| ino
== NULLFSINO
) {
998 ASSERT(*ialloc_context
== NULL
);
1001 * Get the in-core inode with the lock held exclusively.
1002 * This is because we're setting fields here we need
1003 * to prevent others from looking at until we're done.
1005 error
= xfs_trans_iget(tp
->t_mountp
, tp
, ino
,
1006 XFS_IGET_CREATE
, XFS_ILOCK_EXCL
, &ip
);
1011 ip
->i_d
.di_mode
= (__uint16_t
)mode
;
1012 ip
->i_d
.di_onlink
= 0;
1013 ip
->i_d
.di_nlink
= nlink
;
1014 ASSERT(ip
->i_d
.di_nlink
== nlink
);
1015 ip
->i_d
.di_uid
= current_fsuid();
1016 ip
->i_d
.di_gid
= current_fsgid();
1017 ip
->i_d
.di_projid
= prid
;
1018 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
1021 * If the superblock version is up to where we support new format
1022 * inodes and this is currently an old format inode, then change
1023 * the inode version number now. This way we only do the conversion
1024 * here rather than here and in the flush/logging code.
1026 if (xfs_sb_version_hasnlink(&tp
->t_mountp
->m_sb
) &&
1027 ip
->i_d
.di_version
== 1) {
1028 ip
->i_d
.di_version
= 2;
1030 * We've already zeroed the old link count, the projid field,
1031 * and the pad field.
1036 * Project ids won't be stored on disk if we are using a version 1 inode.
1038 if ((prid
!= 0) && (ip
->i_d
.di_version
== 1))
1039 xfs_bump_ino_vers2(tp
, ip
);
1041 if (pip
&& XFS_INHERIT_GID(pip
)) {
1042 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
1043 if ((pip
->i_d
.di_mode
& S_ISGID
) && (mode
& S_IFMT
) == S_IFDIR
) {
1044 ip
->i_d
.di_mode
|= S_ISGID
;
1049 * If the group ID of the new file does not match the effective group
1050 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1051 * (and only if the irix_sgid_inherit compatibility variable is set).
1053 if ((irix_sgid_inherit
) &&
1054 (ip
->i_d
.di_mode
& S_ISGID
) &&
1055 (!in_group_p((gid_t
)ip
->i_d
.di_gid
))) {
1056 ip
->i_d
.di_mode
&= ~S_ISGID
;
1059 ip
->i_d
.di_size
= 0;
1061 ip
->i_d
.di_nextents
= 0;
1062 ASSERT(ip
->i_d
.di_nblocks
== 0);
1065 ip
->i_d
.di_mtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
1066 ip
->i_d
.di_mtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
1067 ip
->i_d
.di_atime
= ip
->i_d
.di_mtime
;
1068 ip
->i_d
.di_ctime
= ip
->i_d
.di_mtime
;
1071 * di_gen will have been taken care of in xfs_iread.
1073 ip
->i_d
.di_extsize
= 0;
1074 ip
->i_d
.di_dmevmask
= 0;
1075 ip
->i_d
.di_dmstate
= 0;
1076 ip
->i_d
.di_flags
= 0;
1077 flags
= XFS_ILOG_CORE
;
1078 switch (mode
& S_IFMT
) {
1083 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
1084 ip
->i_df
.if_u2
.if_rdev
= rdev
;
1085 ip
->i_df
.if_flags
= 0;
1086 flags
|= XFS_ILOG_DEV
;
1090 * we can't set up filestreams until after the VFS inode
1091 * is set up properly.
1093 if (pip
&& xfs_inode_is_filestream(pip
))
1097 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
1100 if ((mode
& S_IFMT
) == S_IFDIR
) {
1101 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1102 di_flags
|= XFS_DIFLAG_RTINHERIT
;
1103 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1104 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
1105 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1107 } else if ((mode
& S_IFMT
) == S_IFREG
) {
1108 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
1109 di_flags
|= XFS_DIFLAG_REALTIME
;
1110 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
1111 di_flags
|= XFS_DIFLAG_EXTSIZE
;
1112 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
1115 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
1116 xfs_inherit_noatime
)
1117 di_flags
|= XFS_DIFLAG_NOATIME
;
1118 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
1120 di_flags
|= XFS_DIFLAG_NODUMP
;
1121 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
1123 di_flags
|= XFS_DIFLAG_SYNC
;
1124 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
1125 xfs_inherit_nosymlinks
)
1126 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
1127 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
1128 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
1129 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
1130 xfs_inherit_nodefrag
)
1131 di_flags
|= XFS_DIFLAG_NODEFRAG
;
1132 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
1133 di_flags
|= XFS_DIFLAG_FILESTREAM
;
1134 ip
->i_d
.di_flags
|= di_flags
;
1138 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
1139 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
1140 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
1141 ip
->i_df
.if_u1
.if_extents
= NULL
;
1147 * Attribute fork settings for new inode.
1149 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
1150 ip
->i_d
.di_anextents
= 0;
1153 * Log the new values stuffed into the inode.
1155 xfs_trans_log_inode(tp
, ip
, flags
);
1157 /* now that we have an i_mode we can setup inode ops and unlock */
1158 xfs_setup_inode(ip
);
1160 /* now we have set up the vfs inode we can associate the filestream */
1162 error
= xfs_filestream_associate(pip
, ip
);
1166 xfs_iflags_set(ip
, XFS_IFILESTREAM
);
1174 * Check to make sure that there are no blocks allocated to the
1175 * file beyond the size of the file. We don't check this for
1176 * files with fixed size extents or real time extents, but we
1177 * at least do it for regular files.
1186 xfs_fileoff_t map_first
;
1188 xfs_bmbt_irec_t imaps
[2];
1190 if ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
)
1193 if (XFS_IS_REALTIME_INODE(ip
))
1196 if (ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
)
1200 map_first
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)isize
);
1202 * The filesystem could be shutting down, so bmapi may return
1205 if (xfs_bmapi(NULL
, ip
, map_first
,
1207 (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
)) -
1209 XFS_BMAPI_ENTIRE
, NULL
, 0, imaps
, &nimaps
,
1212 ASSERT(nimaps
== 1);
1213 ASSERT(imaps
[0].br_startblock
== HOLESTARTBLOCK
);
1218 * Calculate the last possible buffered byte in a file. This must
1219 * include data that was buffered beyond the EOF by the write code.
1220 * This also needs to deal with overflowing the xfs_fsize_t type
1221 * which can happen for sizes near the limit.
1223 * We also need to take into account any blocks beyond the EOF. It
1224 * may be the case that they were buffered by a write which failed.
1225 * In that case the pages will still be in memory, but the inode size
1226 * will never have been updated.
1233 xfs_fsize_t last_byte
;
1234 xfs_fileoff_t last_block
;
1235 xfs_fileoff_t size_last_block
;
1238 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
));
1242 * Only check for blocks beyond the EOF if the extents have
1243 * been read in. This eliminates the need for the inode lock,
1244 * and it also saves us from looking when it really isn't
1247 if (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) {
1248 error
= xfs_bmap_last_offset(NULL
, ip
, &last_block
,
1256 size_last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)ip
->i_size
);
1257 last_block
= XFS_FILEOFF_MAX(last_block
, size_last_block
);
1259 last_byte
= XFS_FSB_TO_B(mp
, last_block
);
1260 if (last_byte
< 0) {
1261 return XFS_MAXIOFFSET(mp
);
1263 last_byte
+= (1 << mp
->m_writeio_log
);
1264 if (last_byte
< 0) {
1265 return XFS_MAXIOFFSET(mp
);
1270 #if defined(XFS_RW_TRACE)
1276 xfs_fsize_t new_size
,
1277 xfs_off_t toss_start
,
1278 xfs_off_t toss_finish
)
1280 if (ip
->i_rwtrace
== NULL
) {
1284 ktrace_enter(ip
->i_rwtrace
,
1287 (void*)(unsigned long)((ip
->i_d
.di_size
>> 32) & 0xffffffff),
1288 (void*)(unsigned long)(ip
->i_d
.di_size
& 0xffffffff),
1289 (void*)((long)flag
),
1290 (void*)(unsigned long)((new_size
>> 32) & 0xffffffff),
1291 (void*)(unsigned long)(new_size
& 0xffffffff),
1292 (void*)(unsigned long)((toss_start
>> 32) & 0xffffffff),
1293 (void*)(unsigned long)(toss_start
& 0xffffffff),
1294 (void*)(unsigned long)((toss_finish
>> 32) & 0xffffffff),
1295 (void*)(unsigned long)(toss_finish
& 0xffffffff),
1296 (void*)(unsigned long)current_cpu(),
1297 (void*)(unsigned long)current_pid(),
1303 #define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1307 * Start the truncation of the file to new_size. The new size
1308 * must be smaller than the current size. This routine will
1309 * clear the buffer and page caches of file data in the removed
1310 * range, and xfs_itruncate_finish() will remove the underlying
1313 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1314 * must NOT have the inode lock held at all. This is because we're
1315 * calling into the buffer/page cache code and we can't hold the
1316 * inode lock when we do so.
1318 * We need to wait for any direct I/Os in flight to complete before we
1319 * proceed with the truncate. This is needed to prevent the extents
1320 * being read or written by the direct I/Os from being removed while the
1321 * I/O is in flight as there is no other method of synchronising
1322 * direct I/O with the truncate operation. Also, because we hold
1323 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1324 * started until the truncate completes and drops the lock. Essentially,
1325 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1326 * ordering between direct I/Os and the truncate operation.
1328 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1329 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1330 * in the case that the caller is locking things out of order and
1331 * may not be able to call xfs_itruncate_finish() with the inode lock
1332 * held without dropping the I/O lock. If the caller must drop the
1333 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1334 * must be called again with all the same restrictions as the initial
1338 xfs_itruncate_start(
1341 xfs_fsize_t new_size
)
1343 xfs_fsize_t last_byte
;
1344 xfs_off_t toss_start
;
1348 ASSERT(xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1349 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1350 ASSERT((flags
== XFS_ITRUNC_DEFINITE
) ||
1351 (flags
== XFS_ITRUNC_MAYBE
));
1355 /* wait for the completion of any pending DIOs */
1356 if (new_size
== 0 || new_size
< ip
->i_size
)
1360 * Call toss_pages or flushinval_pages to get rid of pages
1361 * overlapping the region being removed. We have to use
1362 * the less efficient flushinval_pages in the case that the
1363 * caller may not be able to finish the truncate without
1364 * dropping the inode's I/O lock. Make sure
1365 * to catch any pages brought in by buffers overlapping
1366 * the EOF by searching out beyond the isize by our
1367 * block size. We round new_size up to a block boundary
1368 * so that we don't toss things on the same block as
1369 * new_size but before it.
1371 * Before calling toss_page or flushinval_pages, make sure to
1372 * call remapf() over the same region if the file is mapped.
1373 * This frees up mapped file references to the pages in the
1374 * given range and for the flushinval_pages case it ensures
1375 * that we get the latest mapped changes flushed out.
1377 toss_start
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1378 toss_start
= XFS_FSB_TO_B(mp
, toss_start
);
1379 if (toss_start
< 0) {
1381 * The place to start tossing is beyond our maximum
1382 * file size, so there is no way that the data extended
1387 last_byte
= xfs_file_last_byte(ip
);
1388 xfs_itrunc_trace(XFS_ITRUNC_START
, ip
, flags
, new_size
, toss_start
,
1390 if (last_byte
> toss_start
) {
1391 if (flags
& XFS_ITRUNC_DEFINITE
) {
1392 xfs_tosspages(ip
, toss_start
,
1393 -1, FI_REMAPF_LOCKED
);
1395 error
= xfs_flushinval_pages(ip
, toss_start
,
1396 -1, FI_REMAPF_LOCKED
);
1401 if (new_size
== 0) {
1402 ASSERT(VN_CACHED(VFS_I(ip
)) == 0);
1409 * Shrink the file to the given new_size. The new size must be smaller than
1410 * the current size. This will free up the underlying blocks in the removed
1411 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1413 * The transaction passed to this routine must have made a permanent log
1414 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1415 * given transaction and start new ones, so make sure everything involved in
1416 * the transaction is tidy before calling here. Some transaction will be
1417 * returned to the caller to be committed. The incoming transaction must
1418 * already include the inode, and both inode locks must be held exclusively.
1419 * The inode must also be "held" within the transaction. On return the inode
1420 * will be "held" within the returned transaction. This routine does NOT
1421 * require any disk space to be reserved for it within the transaction.
1423 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1424 * indicates the fork which is to be truncated. For the attribute fork we only
1425 * support truncation to size 0.
1427 * We use the sync parameter to indicate whether or not the first transaction
1428 * we perform might have to be synchronous. For the attr fork, it needs to be
1429 * so if the unlink of the inode is not yet known to be permanent in the log.
1430 * This keeps us from freeing and reusing the blocks of the attribute fork
1431 * before the unlink of the inode becomes permanent.
1433 * For the data fork, we normally have to run synchronously if we're being
1434 * called out of the inactive path or we're being called out of the create path
1435 * where we're truncating an existing file. Either way, the truncate needs to
1436 * be sync so blocks don't reappear in the file with altered data in case of a
1437 * crash. wsync filesystems can run the first case async because anything that
1438 * shrinks the inode has to run sync so by the time we're called here from
1439 * inactive, the inode size is permanently set to 0.
1441 * Calls from the truncate path always need to be sync unless we're in a wsync
1442 * filesystem and the file has already been unlinked.
1444 * The caller is responsible for correctly setting the sync parameter. It gets
1445 * too hard for us to guess here which path we're being called out of just
1446 * based on inode state.
1448 * If we get an error, we must return with the inode locked and linked into the
1449 * current transaction. This keeps things simple for the higher level code,
1450 * because it always knows that the inode is locked and held in the transaction
1451 * that returns to it whether errors occur or not. We don't mark the inode
1452 * dirty on error so that transactions can be easily aborted if possible.
1455 xfs_itruncate_finish(
1458 xfs_fsize_t new_size
,
1462 xfs_fsblock_t first_block
;
1463 xfs_fileoff_t first_unmap_block
;
1464 xfs_fileoff_t last_block
;
1465 xfs_filblks_t unmap_len
=0;
1470 xfs_bmap_free_t free_list
;
1473 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_IOLOCK_EXCL
));
1474 ASSERT((new_size
== 0) || (new_size
<= ip
->i_size
));
1475 ASSERT(*tp
!= NULL
);
1476 ASSERT((*tp
)->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1477 ASSERT(ip
->i_transp
== *tp
);
1478 ASSERT(ip
->i_itemp
!= NULL
);
1479 ASSERT(ip
->i_itemp
->ili_flags
& XFS_ILI_HOLD
);
1483 mp
= (ntp
)->t_mountp
;
1484 ASSERT(! XFS_NOT_DQATTACHED(mp
, ip
));
1487 * We only support truncating the entire attribute fork.
1489 if (fork
== XFS_ATTR_FORK
) {
1492 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1493 xfs_itrunc_trace(XFS_ITRUNC_FINISH1
, ip
, 0, new_size
, 0, 0);
1495 * The first thing we do is set the size to new_size permanently
1496 * on disk. This way we don't have to worry about anyone ever
1497 * being able to look at the data being freed even in the face
1498 * of a crash. What we're getting around here is the case where
1499 * we free a block, it is allocated to another file, it is written
1500 * to, and then we crash. If the new data gets written to the
1501 * file but the log buffers containing the free and reallocation
1502 * don't, then we'd end up with garbage in the blocks being freed.
1503 * As long as we make the new_size permanent before actually
1504 * freeing any blocks it doesn't matter if they get writtten to.
1506 * The callers must signal into us whether or not the size
1507 * setting here must be synchronous. There are a few cases
1508 * where it doesn't have to be synchronous. Those cases
1509 * occur if the file is unlinked and we know the unlink is
1510 * permanent or if the blocks being truncated are guaranteed
1511 * to be beyond the inode eof (regardless of the link count)
1512 * and the eof value is permanent. Both of these cases occur
1513 * only on wsync-mounted filesystems. In those cases, we're
1514 * guaranteed that no user will ever see the data in the blocks
1515 * that are being truncated so the truncate can run async.
1516 * In the free beyond eof case, the file may wind up with
1517 * more blocks allocated to it than it needs if we crash
1518 * and that won't get fixed until the next time the file
1519 * is re-opened and closed but that's ok as that shouldn't
1520 * be too many blocks.
1522 * However, we can't just make all wsync xactions run async
1523 * because there's one call out of the create path that needs
1524 * to run sync where it's truncating an existing file to size
1525 * 0 whose size is > 0.
1527 * It's probably possible to come up with a test in this
1528 * routine that would correctly distinguish all the above
1529 * cases from the values of the function parameters and the
1530 * inode state but for sanity's sake, I've decided to let the
1531 * layers above just tell us. It's simpler to correctly figure
1532 * out in the layer above exactly under what conditions we
1533 * can run async and I think it's easier for others read and
1534 * follow the logic in case something has to be changed.
1535 * cscope is your friend -- rcc.
1537 * The attribute fork is much simpler.
1539 * For the attribute fork we allow the caller to tell us whether
1540 * the unlink of the inode that led to this call is yet permanent
1541 * in the on disk log. If it is not and we will be freeing extents
1542 * in this inode then we make the first transaction synchronous
1543 * to make sure that the unlink is permanent by the time we free
1546 if (fork
== XFS_DATA_FORK
) {
1547 if (ip
->i_d
.di_nextents
> 0) {
1549 * If we are not changing the file size then do
1550 * not update the on-disk file size - we may be
1551 * called from xfs_inactive_free_eofblocks(). If we
1552 * update the on-disk file size and then the system
1553 * crashes before the contents of the file are
1554 * flushed to disk then the files may be full of
1555 * holes (ie NULL files bug).
1557 if (ip
->i_size
!= new_size
) {
1558 ip
->i_d
.di_size
= new_size
;
1559 ip
->i_size
= new_size
;
1560 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1564 ASSERT(!(mp
->m_flags
& XFS_MOUNT_WSYNC
));
1565 if (ip
->i_d
.di_anextents
> 0)
1566 xfs_trans_set_sync(ntp
);
1568 ASSERT(fork
== XFS_DATA_FORK
||
1569 (fork
== XFS_ATTR_FORK
&&
1570 ((sync
&& !(mp
->m_flags
& XFS_MOUNT_WSYNC
)) ||
1571 (sync
== 0 && (mp
->m_flags
& XFS_MOUNT_WSYNC
)))));
1574 * Since it is possible for space to become allocated beyond
1575 * the end of the file (in a crash where the space is allocated
1576 * but the inode size is not yet updated), simply remove any
1577 * blocks which show up between the new EOF and the maximum
1578 * possible file size. If the first block to be removed is
1579 * beyond the maximum file size (ie it is the same as last_block),
1580 * then there is nothing to do.
1582 last_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)XFS_MAXIOFFSET(mp
));
1583 ASSERT(first_unmap_block
<= last_block
);
1585 if (last_block
== first_unmap_block
) {
1588 unmap_len
= last_block
- first_unmap_block
+ 1;
1592 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1593 * will tell us whether it freed the entire range or
1594 * not. If this is a synchronous mount (wsync),
1595 * then we can tell bunmapi to keep all the
1596 * transactions asynchronous since the unlink
1597 * transaction that made this inode inactive has
1598 * already hit the disk. There's no danger of
1599 * the freed blocks being reused, there being a
1600 * crash, and the reused blocks suddenly reappearing
1601 * in this file with garbage in them once recovery
1604 XFS_BMAP_INIT(&free_list
, &first_block
);
1605 error
= xfs_bunmapi(ntp
, ip
,
1606 first_unmap_block
, unmap_len
,
1607 XFS_BMAPI_AFLAG(fork
) |
1608 (sync
? 0 : XFS_BMAPI_ASYNC
),
1609 XFS_ITRUNC_MAX_EXTENTS
,
1610 &first_block
, &free_list
,
1614 * If the bunmapi call encounters an error,
1615 * return to the caller where the transaction
1616 * can be properly aborted. We just need to
1617 * make sure we're not holding any resources
1618 * that we were not when we came in.
1620 xfs_bmap_cancel(&free_list
);
1625 * Duplicate the transaction that has the permanent
1626 * reservation and commit the old transaction.
1628 error
= xfs_bmap_finish(tp
, &free_list
, &committed
);
1631 /* link the inode into the next xact in the chain */
1632 xfs_trans_ijoin(ntp
, ip
,
1633 XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1634 xfs_trans_ihold(ntp
, ip
);
1639 * If the bmap finish call encounters an error, return
1640 * to the caller where the transaction can be properly
1641 * aborted. We just need to make sure we're not
1642 * holding any resources that we were not when we came
1645 * Aborting from this point might lose some blocks in
1646 * the file system, but oh well.
1648 xfs_bmap_cancel(&free_list
);
1654 * Mark the inode dirty so it will be logged and
1655 * moved forward in the log as part of every commit.
1657 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1660 ntp
= xfs_trans_dup(ntp
);
1661 error
= xfs_trans_commit(*tp
, 0);
1664 /* link the inode into the next transaction in the chain */
1665 xfs_trans_ijoin(ntp
, ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
1666 xfs_trans_ihold(ntp
, ip
);
1671 * transaction commit worked ok so we can drop the extra ticket
1672 * reference that we gained in xfs_trans_dup()
1674 xfs_log_ticket_put(ntp
->t_ticket
);
1675 error
= xfs_trans_reserve(ntp
, 0,
1676 XFS_ITRUNCATE_LOG_RES(mp
), 0,
1677 XFS_TRANS_PERM_LOG_RES
,
1678 XFS_ITRUNCATE_LOG_COUNT
);
1683 * Only update the size in the case of the data fork, but
1684 * always re-log the inode so that our permanent transaction
1685 * can keep on rolling it forward in the log.
1687 if (fork
== XFS_DATA_FORK
) {
1688 xfs_isize_check(mp
, ip
, new_size
);
1690 * If we are not changing the file size then do
1691 * not update the on-disk file size - we may be
1692 * called from xfs_inactive_free_eofblocks(). If we
1693 * update the on-disk file size and then the system
1694 * crashes before the contents of the file are
1695 * flushed to disk then the files may be full of
1696 * holes (ie NULL files bug).
1698 if (ip
->i_size
!= new_size
) {
1699 ip
->i_d
.di_size
= new_size
;
1700 ip
->i_size
= new_size
;
1703 xfs_trans_log_inode(ntp
, ip
, XFS_ILOG_CORE
);
1704 ASSERT((new_size
!= 0) ||
1705 (fork
== XFS_ATTR_FORK
) ||
1706 (ip
->i_delayed_blks
== 0));
1707 ASSERT((new_size
!= 0) ||
1708 (fork
== XFS_ATTR_FORK
) ||
1709 (ip
->i_d
.di_nextents
== 0));
1710 xfs_itrunc_trace(XFS_ITRUNC_FINISH2
, ip
, 0, new_size
, 0, 0);
1715 * This is called when the inode's link count goes to 0.
1716 * We place the on-disk inode on a list in the AGI. It
1717 * will be pulled from this list when the inode is freed.
1734 ASSERT(ip
->i_d
.di_nlink
== 0);
1735 ASSERT(ip
->i_d
.di_mode
!= 0);
1736 ASSERT(ip
->i_transp
== tp
);
1741 * Get the agi buffer first. It ensures lock ordering
1744 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
1747 agi
= XFS_BUF_TO_AGI(agibp
);
1750 * Get the index into the agi hash table for the
1751 * list this inode will go on.
1753 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1755 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1756 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1757 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
1759 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
) {
1761 * There is already another inode in the bucket we need
1762 * to add ourselves to. Add us at the front of the list.
1763 * Here we put the head pointer into our next pointer,
1764 * and then we fall through to point the head at us.
1766 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1770 ASSERT(be32_to_cpu(dip
->di_next_unlinked
) == NULLAGINO
);
1771 /* both on-disk, don't endian flip twice */
1772 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
1773 offset
= ip
->i_imap
.im_boffset
+
1774 offsetof(xfs_dinode_t
, di_next_unlinked
);
1775 xfs_trans_inode_buf(tp
, ibp
);
1776 xfs_trans_log_buf(tp
, ibp
, offset
,
1777 (offset
+ sizeof(xfs_agino_t
) - 1));
1778 xfs_inobp_check(mp
, ibp
);
1782 * Point the bucket head pointer at the inode being inserted.
1785 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
1786 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1787 (sizeof(xfs_agino_t
) * bucket_index
);
1788 xfs_trans_log_buf(tp
, agibp
, offset
,
1789 (offset
+ sizeof(xfs_agino_t
) - 1));
1794 * Pull the on-disk inode from the AGI unlinked list.
1807 xfs_agnumber_t agno
;
1809 xfs_agino_t next_agino
;
1810 xfs_buf_t
*last_ibp
;
1811 xfs_dinode_t
*last_dip
= NULL
;
1813 int offset
, last_offset
= 0;
1817 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
1820 * Get the agi buffer first. It ensures lock ordering
1823 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
1827 agi
= XFS_BUF_TO_AGI(agibp
);
1830 * Get the index into the agi hash table for the
1831 * list this inode will go on.
1833 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
1835 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
1836 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != NULLAGINO
);
1837 ASSERT(agi
->agi_unlinked
[bucket_index
]);
1839 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
1841 * We're at the head of the list. Get the inode's
1842 * on-disk buffer to see if there is anyone after us
1843 * on the list. Only modify our next pointer if it
1844 * is not already NULLAGINO. This saves us the overhead
1845 * of dealing with the buffer when there is no need to
1848 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1851 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1852 error
, mp
->m_fsname
);
1855 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1856 ASSERT(next_agino
!= 0);
1857 if (next_agino
!= NULLAGINO
) {
1858 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1859 offset
= ip
->i_imap
.im_boffset
+
1860 offsetof(xfs_dinode_t
, di_next_unlinked
);
1861 xfs_trans_inode_buf(tp
, ibp
);
1862 xfs_trans_log_buf(tp
, ibp
, offset
,
1863 (offset
+ sizeof(xfs_agino_t
) - 1));
1864 xfs_inobp_check(mp
, ibp
);
1866 xfs_trans_brelse(tp
, ibp
);
1869 * Point the bucket head pointer at the next inode.
1871 ASSERT(next_agino
!= 0);
1872 ASSERT(next_agino
!= agino
);
1873 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
1874 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
1875 (sizeof(xfs_agino_t
) * bucket_index
);
1876 xfs_trans_log_buf(tp
, agibp
, offset
,
1877 (offset
+ sizeof(xfs_agino_t
) - 1));
1880 * We need to search the list for the inode being freed.
1882 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
1884 while (next_agino
!= agino
) {
1886 * If the last inode wasn't the one pointing to
1887 * us, then release its buffer since we're not
1888 * going to do anything with it.
1890 if (last_ibp
!= NULL
) {
1891 xfs_trans_brelse(tp
, last_ibp
);
1893 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
1894 error
= xfs_inotobp(mp
, tp
, next_ino
, &last_dip
,
1895 &last_ibp
, &last_offset
, 0);
1898 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1899 error
, mp
->m_fsname
);
1902 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
1903 ASSERT(next_agino
!= NULLAGINO
);
1904 ASSERT(next_agino
!= 0);
1907 * Now last_ibp points to the buffer previous to us on
1908 * the unlinked list. Pull us from the list.
1910 error
= xfs_itobp(mp
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
1913 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1914 error
, mp
->m_fsname
);
1917 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
1918 ASSERT(next_agino
!= 0);
1919 ASSERT(next_agino
!= agino
);
1920 if (next_agino
!= NULLAGINO
) {
1921 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
1922 offset
= ip
->i_imap
.im_boffset
+
1923 offsetof(xfs_dinode_t
, di_next_unlinked
);
1924 xfs_trans_inode_buf(tp
, ibp
);
1925 xfs_trans_log_buf(tp
, ibp
, offset
,
1926 (offset
+ sizeof(xfs_agino_t
) - 1));
1927 xfs_inobp_check(mp
, ibp
);
1929 xfs_trans_brelse(tp
, ibp
);
1932 * Point the previous inode on the list to the next inode.
1934 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
1935 ASSERT(next_agino
!= 0);
1936 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
1937 xfs_trans_inode_buf(tp
, last_ibp
);
1938 xfs_trans_log_buf(tp
, last_ibp
, offset
,
1939 (offset
+ sizeof(xfs_agino_t
) - 1));
1940 xfs_inobp_check(mp
, last_ibp
);
1947 xfs_inode_t
*free_ip
,
1951 xfs_mount_t
*mp
= free_ip
->i_mount
;
1952 int blks_per_cluster
;
1955 int i
, j
, found
, pre_flushed
;
1958 xfs_inode_t
*ip
, **ip_found
;
1959 xfs_inode_log_item_t
*iip
;
1960 xfs_log_item_t
*lip
;
1961 xfs_perag_t
*pag
= xfs_get_perag(mp
, inum
);
1963 if (mp
->m_sb
.sb_blocksize
>= XFS_INODE_CLUSTER_SIZE(mp
)) {
1964 blks_per_cluster
= 1;
1965 ninodes
= mp
->m_sb
.sb_inopblock
;
1966 nbufs
= XFS_IALLOC_BLOCKS(mp
);
1968 blks_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) /
1969 mp
->m_sb
.sb_blocksize
;
1970 ninodes
= blks_per_cluster
* mp
->m_sb
.sb_inopblock
;
1971 nbufs
= XFS_IALLOC_BLOCKS(mp
) / blks_per_cluster
;
1974 ip_found
= kmem_alloc(ninodes
* sizeof(xfs_inode_t
*), KM_NOFS
);
1976 for (j
= 0; j
< nbufs
; j
++, inum
+= ninodes
) {
1977 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
1978 XFS_INO_TO_AGBNO(mp
, inum
));
1982 * Look for each inode in memory and attempt to lock it,
1983 * we can be racing with flush and tail pushing here.
1984 * any inode we get the locks on, add to an array of
1985 * inode items to process later.
1987 * The get the buffer lock, we could beat a flush
1988 * or tail pushing thread to the lock here, in which
1989 * case they will go looking for the inode buffer
1990 * and fail, we need some other form of interlock
1994 for (i
= 0; i
< ninodes
; i
++) {
1995 read_lock(&pag
->pag_ici_lock
);
1996 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
1997 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
1999 /* Inode not in memory or we found it already,
2002 if (!ip
|| xfs_iflags_test(ip
, XFS_ISTALE
)) {
2003 read_unlock(&pag
->pag_ici_lock
);
2007 if (xfs_inode_clean(ip
)) {
2008 read_unlock(&pag
->pag_ici_lock
);
2012 /* If we can get the locks then add it to the
2013 * list, otherwise by the time we get the bp lock
2014 * below it will already be attached to the
2018 /* This inode will already be locked - by us, lets
2022 if (ip
== free_ip
) {
2023 if (xfs_iflock_nowait(ip
)) {
2024 xfs_iflags_set(ip
, XFS_ISTALE
);
2025 if (xfs_inode_clean(ip
)) {
2028 ip_found
[found
++] = ip
;
2031 read_unlock(&pag
->pag_ici_lock
);
2035 if (xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2036 if (xfs_iflock_nowait(ip
)) {
2037 xfs_iflags_set(ip
, XFS_ISTALE
);
2039 if (xfs_inode_clean(ip
)) {
2041 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2043 ip_found
[found
++] = ip
;
2046 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2049 read_unlock(&pag
->pag_ici_lock
);
2052 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2053 mp
->m_bsize
* blks_per_cluster
,
2057 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
2059 if (lip
->li_type
== XFS_LI_INODE
) {
2060 iip
= (xfs_inode_log_item_t
*)lip
;
2061 ASSERT(iip
->ili_logged
== 1);
2062 lip
->li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*)) xfs_istale_done
;
2063 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2064 &iip
->ili_flush_lsn
,
2065 &iip
->ili_item
.li_lsn
);
2066 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2069 lip
= lip
->li_bio_list
;
2072 for (i
= 0; i
< found
; i
++) {
2077 ip
->i_update_core
= 0;
2079 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2083 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
2084 iip
->ili_format
.ilf_fields
= 0;
2085 iip
->ili_logged
= 1;
2086 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2087 &iip
->ili_item
.li_lsn
);
2089 xfs_buf_attach_iodone(bp
,
2090 (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
2091 xfs_istale_done
, (xfs_log_item_t
*)iip
);
2092 if (ip
!= free_ip
) {
2093 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2097 if (found
|| pre_flushed
)
2098 xfs_trans_stale_inode_buf(tp
, bp
);
2099 xfs_trans_binval(tp
, bp
);
2102 kmem_free(ip_found
);
2103 xfs_put_perag(mp
, pag
);
2107 * This is called to return an inode to the inode free list.
2108 * The inode should already be truncated to 0 length and have
2109 * no pages associated with it. This routine also assumes that
2110 * the inode is already a part of the transaction.
2112 * The on-disk copy of the inode will have been added to the list
2113 * of unlinked inodes in the AGI. We need to remove the inode from
2114 * that list atomically with respect to freeing it here.
2120 xfs_bmap_free_t
*flist
)
2124 xfs_ino_t first_ino
;
2128 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2129 ASSERT(ip
->i_transp
== tp
);
2130 ASSERT(ip
->i_d
.di_nlink
== 0);
2131 ASSERT(ip
->i_d
.di_nextents
== 0);
2132 ASSERT(ip
->i_d
.di_anextents
== 0);
2133 ASSERT((ip
->i_d
.di_size
== 0 && ip
->i_size
== 0) ||
2134 ((ip
->i_d
.di_mode
& S_IFMT
) != S_IFREG
));
2135 ASSERT(ip
->i_d
.di_nblocks
== 0);
2138 * Pull the on-disk inode from the AGI unlinked list.
2140 error
= xfs_iunlink_remove(tp
, ip
);
2145 error
= xfs_difree(tp
, ip
->i_ino
, flist
, &delete, &first_ino
);
2149 ip
->i_d
.di_mode
= 0; /* mark incore inode as free */
2150 ip
->i_d
.di_flags
= 0;
2151 ip
->i_d
.di_dmevmask
= 0;
2152 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2153 ip
->i_df
.if_ext_max
=
2154 XFS_IFORK_DSIZE(ip
) / (uint
)sizeof(xfs_bmbt_rec_t
);
2155 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2156 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2158 * Bump the generation count so no one will be confused
2159 * by reincarnations of this inode.
2163 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2165 error
= xfs_itobp(ip
->i_mount
, tp
, ip
, &dip
, &ibp
, XFS_BUF_LOCK
);
2170 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2171 * from picking up this inode when it is reclaimed (its incore state
2172 * initialzed but not flushed to disk yet). The in-core di_mode is
2173 * already cleared and a corresponding transaction logged.
2174 * The hack here just synchronizes the in-core to on-disk
2175 * di_mode value in advance before the actual inode sync to disk.
2176 * This is OK because the inode is already unlinked and would never
2177 * change its di_mode again for this inode generation.
2178 * This is a temporary hack that would require a proper fix
2184 xfs_ifree_cluster(ip
, tp
, first_ino
);
2191 * Reallocate the space for if_broot based on the number of records
2192 * being added or deleted as indicated in rec_diff. Move the records
2193 * and pointers in if_broot to fit the new size. When shrinking this
2194 * will eliminate holes between the records and pointers created by
2195 * the caller. When growing this will create holes to be filled in
2198 * The caller must not request to add more records than would fit in
2199 * the on-disk inode root. If the if_broot is currently NULL, then
2200 * if we adding records one will be allocated. The caller must also
2201 * not request that the number of records go below zero, although
2202 * it can go to zero.
2204 * ip -- the inode whose if_broot area is changing
2205 * ext_diff -- the change in the number of records, positive or negative,
2206 * requested for the if_broot array.
2214 struct xfs_mount
*mp
= ip
->i_mount
;
2217 struct xfs_btree_block
*new_broot
;
2224 * Handle the degenerate case quietly.
2226 if (rec_diff
== 0) {
2230 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2233 * If there wasn't any memory allocated before, just
2234 * allocate it now and get out.
2236 if (ifp
->if_broot_bytes
== 0) {
2237 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff
);
2238 ifp
->if_broot
= kmem_alloc(new_size
, KM_SLEEP
);
2239 ifp
->if_broot_bytes
= (int)new_size
;
2244 * If there is already an existing if_broot, then we need
2245 * to realloc() it and shift the pointers to their new
2246 * location. The records don't change location because
2247 * they are kept butted up against the btree block header.
2249 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2250 new_max
= cur_max
+ rec_diff
;
2251 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2252 ifp
->if_broot
= kmem_realloc(ifp
->if_broot
, new_size
,
2253 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max
), /* old size */
2255 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2256 ifp
->if_broot_bytes
);
2257 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2259 ifp
->if_broot_bytes
= (int)new_size
;
2260 ASSERT(ifp
->if_broot_bytes
<=
2261 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2262 memmove(np
, op
, cur_max
* (uint
)sizeof(xfs_dfsbno_t
));
2267 * rec_diff is less than 0. In this case, we are shrinking the
2268 * if_broot buffer. It must already exist. If we go to zero
2269 * records, just get rid of the root and clear the status bit.
2271 ASSERT((ifp
->if_broot
!= NULL
) && (ifp
->if_broot_bytes
> 0));
2272 cur_max
= xfs_bmbt_maxrecs(mp
, ifp
->if_broot_bytes
, 0);
2273 new_max
= cur_max
+ rec_diff
;
2274 ASSERT(new_max
>= 0);
2276 new_size
= (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max
);
2280 new_broot
= kmem_alloc(new_size
, KM_SLEEP
);
2282 * First copy over the btree block header.
2284 memcpy(new_broot
, ifp
->if_broot
, XFS_BTREE_LBLOCK_LEN
);
2287 ifp
->if_flags
&= ~XFS_IFBROOT
;
2291 * Only copy the records and pointers if there are any.
2295 * First copy the records.
2297 op
= (char *)XFS_BMBT_REC_ADDR(mp
, ifp
->if_broot
, 1);
2298 np
= (char *)XFS_BMBT_REC_ADDR(mp
, new_broot
, 1);
2299 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_bmbt_rec_t
));
2302 * Then copy the pointers.
2304 op
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, ifp
->if_broot
, 1,
2305 ifp
->if_broot_bytes
);
2306 np
= (char *)XFS_BMAP_BROOT_PTR_ADDR(mp
, new_broot
, 1,
2308 memcpy(np
, op
, new_max
* (uint
)sizeof(xfs_dfsbno_t
));
2310 kmem_free(ifp
->if_broot
);
2311 ifp
->if_broot
= new_broot
;
2312 ifp
->if_broot_bytes
= (int)new_size
;
2313 ASSERT(ifp
->if_broot_bytes
<=
2314 XFS_IFORK_SIZE(ip
, whichfork
) + XFS_BROOT_SIZE_ADJ
);
2320 * This is called when the amount of space needed for if_data
2321 * is increased or decreased. The change in size is indicated by
2322 * the number of bytes that need to be added or deleted in the
2323 * byte_diff parameter.
2325 * If the amount of space needed has decreased below the size of the
2326 * inline buffer, then switch to using the inline buffer. Otherwise,
2327 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2328 * to what is needed.
2330 * ip -- the inode whose if_data area is changing
2331 * byte_diff -- the change in the number of bytes, positive or negative,
2332 * requested for the if_data array.
2344 if (byte_diff
== 0) {
2348 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2349 new_size
= (int)ifp
->if_bytes
+ byte_diff
;
2350 ASSERT(new_size
>= 0);
2352 if (new_size
== 0) {
2353 if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2354 kmem_free(ifp
->if_u1
.if_data
);
2356 ifp
->if_u1
.if_data
= NULL
;
2358 } else if (new_size
<= sizeof(ifp
->if_u2
.if_inline_data
)) {
2360 * If the valid extents/data can fit in if_inline_ext/data,
2361 * copy them from the malloc'd vector and free it.
2363 if (ifp
->if_u1
.if_data
== NULL
) {
2364 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2365 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2366 ASSERT(ifp
->if_real_bytes
!= 0);
2367 memcpy(ifp
->if_u2
.if_inline_data
, ifp
->if_u1
.if_data
,
2369 kmem_free(ifp
->if_u1
.if_data
);
2370 ifp
->if_u1
.if_data
= ifp
->if_u2
.if_inline_data
;
2375 * Stuck with malloc/realloc.
2376 * For inline data, the underlying buffer must be
2377 * a multiple of 4 bytes in size so that it can be
2378 * logged and stay on word boundaries. We enforce
2381 real_size
= roundup(new_size
, 4);
2382 if (ifp
->if_u1
.if_data
== NULL
) {
2383 ASSERT(ifp
->if_real_bytes
== 0);
2384 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2385 } else if (ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) {
2387 * Only do the realloc if the underlying size
2388 * is really changing.
2390 if (ifp
->if_real_bytes
!= real_size
) {
2391 ifp
->if_u1
.if_data
=
2392 kmem_realloc(ifp
->if_u1
.if_data
,
2398 ASSERT(ifp
->if_real_bytes
== 0);
2399 ifp
->if_u1
.if_data
= kmem_alloc(real_size
, KM_SLEEP
);
2400 memcpy(ifp
->if_u1
.if_data
, ifp
->if_u2
.if_inline_data
,
2404 ifp
->if_real_bytes
= real_size
;
2405 ifp
->if_bytes
= new_size
;
2406 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2416 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2417 if (ifp
->if_broot
!= NULL
) {
2418 kmem_free(ifp
->if_broot
);
2419 ifp
->if_broot
= NULL
;
2423 * If the format is local, then we can't have an extents
2424 * array so just look for an inline data array. If we're
2425 * not local then we may or may not have an extents list,
2426 * so check and free it up if we do.
2428 if (XFS_IFORK_FORMAT(ip
, whichfork
) == XFS_DINODE_FMT_LOCAL
) {
2429 if ((ifp
->if_u1
.if_data
!= ifp
->if_u2
.if_inline_data
) &&
2430 (ifp
->if_u1
.if_data
!= NULL
)) {
2431 ASSERT(ifp
->if_real_bytes
!= 0);
2432 kmem_free(ifp
->if_u1
.if_data
);
2433 ifp
->if_u1
.if_data
= NULL
;
2434 ifp
->if_real_bytes
= 0;
2436 } else if ((ifp
->if_flags
& XFS_IFEXTENTS
) &&
2437 ((ifp
->if_flags
& XFS_IFEXTIREC
) ||
2438 ((ifp
->if_u1
.if_extents
!= NULL
) &&
2439 (ifp
->if_u1
.if_extents
!= ifp
->if_u2
.if_inline_ext
)))) {
2440 ASSERT(ifp
->if_real_bytes
!= 0);
2441 xfs_iext_destroy(ifp
);
2443 ASSERT(ifp
->if_u1
.if_extents
== NULL
||
2444 ifp
->if_u1
.if_extents
== ifp
->if_u2
.if_inline_ext
);
2445 ASSERT(ifp
->if_real_bytes
== 0);
2446 if (whichfork
== XFS_ATTR_FORK
) {
2447 kmem_zone_free(xfs_ifork_zone
, ip
->i_afp
);
2453 * Increment the pin count of the given buffer.
2454 * This value is protected by ipinlock spinlock in the mount structure.
2460 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2462 atomic_inc(&ip
->i_pincount
);
2466 * Decrement the pin count of the given inode, and wake up
2467 * anyone in xfs_iwait_unpin() if the count goes to 0. The
2468 * inode must have been previously pinned with a call to xfs_ipin().
2474 ASSERT(atomic_read(&ip
->i_pincount
) > 0);
2476 if (atomic_dec_and_test(&ip
->i_pincount
))
2477 wake_up(&ip
->i_ipin_wait
);
2481 * This is called to unpin an inode. It can be directed to wait or to return
2482 * immediately without waiting for the inode to be unpinned. The caller must
2483 * have the inode locked in at least shared mode so that the buffer cannot be
2484 * subsequently pinned once someone is waiting for it to be unpinned.
2491 xfs_inode_log_item_t
*iip
= ip
->i_itemp
;
2493 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2494 if (atomic_read(&ip
->i_pincount
) == 0)
2497 /* Give the log a push to start the unpinning I/O */
2498 xfs_log_force(ip
->i_mount
, (iip
&& iip
->ili_last_lsn
) ?
2499 iip
->ili_last_lsn
: 0, XFS_LOG_FORCE
);
2501 wait_event(ip
->i_ipin_wait
, (atomic_read(&ip
->i_pincount
) == 0));
2508 __xfs_iunpin_wait(ip
, 1);
2515 __xfs_iunpin_wait(ip
, 0);
2520 * xfs_iextents_copy()
2522 * This is called to copy the REAL extents (as opposed to the delayed
2523 * allocation extents) from the inode into the given buffer. It
2524 * returns the number of bytes copied into the buffer.
2526 * If there are no delayed allocation extents, then we can just
2527 * memcpy() the extents into the buffer. Otherwise, we need to
2528 * examine each extent in turn and skip those which are delayed.
2540 xfs_fsblock_t start_block
;
2542 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2543 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2544 ASSERT(ifp
->if_bytes
> 0);
2546 nrecs
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
2547 XFS_BMAP_TRACE_EXLIST(ip
, nrecs
, whichfork
);
2551 * There are some delayed allocation extents in the
2552 * inode, so copy the extents one at a time and skip
2553 * the delayed ones. There must be at least one
2554 * non-delayed extent.
2557 for (i
= 0; i
< nrecs
; i
++) {
2558 xfs_bmbt_rec_host_t
*ep
= xfs_iext_get_ext(ifp
, i
);
2559 start_block
= xfs_bmbt_get_startblock(ep
);
2560 if (ISNULLSTARTBLOCK(start_block
)) {
2562 * It's a delayed allocation extent, so skip it.
2567 /* Translate to on disk format */
2568 put_unaligned(cpu_to_be64(ep
->l0
), &dp
->l0
);
2569 put_unaligned(cpu_to_be64(ep
->l1
), &dp
->l1
);
2573 ASSERT(copied
!= 0);
2574 xfs_validate_extents(ifp
, copied
, XFS_EXTFMT_INODE(ip
));
2576 return (copied
* (uint
)sizeof(xfs_bmbt_rec_t
));
2580 * Each of the following cases stores data into the same region
2581 * of the on-disk inode, so only one of them can be valid at
2582 * any given time. While it is possible to have conflicting formats
2583 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2584 * in EXTENTS format, this can only happen when the fork has
2585 * changed formats after being modified but before being flushed.
2586 * In these cases, the format always takes precedence, because the
2587 * format indicates the current state of the fork.
2594 xfs_inode_log_item_t
*iip
,
2601 #ifdef XFS_TRANS_DEBUG
2604 static const short brootflag
[2] =
2605 { XFS_ILOG_DBROOT
, XFS_ILOG_ABROOT
};
2606 static const short dataflag
[2] =
2607 { XFS_ILOG_DDATA
, XFS_ILOG_ADATA
};
2608 static const short extflag
[2] =
2609 { XFS_ILOG_DEXT
, XFS_ILOG_AEXT
};
2613 ifp
= XFS_IFORK_PTR(ip
, whichfork
);
2615 * This can happen if we gave up in iformat in an error path,
2616 * for the attribute fork.
2619 ASSERT(whichfork
== XFS_ATTR_FORK
);
2622 cp
= XFS_DFORK_PTR(dip
, whichfork
);
2624 switch (XFS_IFORK_FORMAT(ip
, whichfork
)) {
2625 case XFS_DINODE_FMT_LOCAL
:
2626 if ((iip
->ili_format
.ilf_fields
& dataflag
[whichfork
]) &&
2627 (ifp
->if_bytes
> 0)) {
2628 ASSERT(ifp
->if_u1
.if_data
!= NULL
);
2629 ASSERT(ifp
->if_bytes
<= XFS_IFORK_SIZE(ip
, whichfork
));
2630 memcpy(cp
, ifp
->if_u1
.if_data
, ifp
->if_bytes
);
2634 case XFS_DINODE_FMT_EXTENTS
:
2635 ASSERT((ifp
->if_flags
& XFS_IFEXTENTS
) ||
2636 !(iip
->ili_format
.ilf_fields
& extflag
[whichfork
]));
2637 ASSERT((xfs_iext_get_ext(ifp
, 0) != NULL
) ||
2638 (ifp
->if_bytes
== 0));
2639 ASSERT((xfs_iext_get_ext(ifp
, 0) == NULL
) ||
2640 (ifp
->if_bytes
> 0));
2641 if ((iip
->ili_format
.ilf_fields
& extflag
[whichfork
]) &&
2642 (ifp
->if_bytes
> 0)) {
2643 ASSERT(XFS_IFORK_NEXTENTS(ip
, whichfork
) > 0);
2644 (void)xfs_iextents_copy(ip
, (xfs_bmbt_rec_t
*)cp
,
2649 case XFS_DINODE_FMT_BTREE
:
2650 if ((iip
->ili_format
.ilf_fields
& brootflag
[whichfork
]) &&
2651 (ifp
->if_broot_bytes
> 0)) {
2652 ASSERT(ifp
->if_broot
!= NULL
);
2653 ASSERT(ifp
->if_broot_bytes
<=
2654 (XFS_IFORK_SIZE(ip
, whichfork
) +
2655 XFS_BROOT_SIZE_ADJ
));
2656 xfs_bmbt_to_bmdr(mp
, ifp
->if_broot
, ifp
->if_broot_bytes
,
2657 (xfs_bmdr_block_t
*)cp
,
2658 XFS_DFORK_SIZE(dip
, mp
, whichfork
));
2662 case XFS_DINODE_FMT_DEV
:
2663 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_DEV
) {
2664 ASSERT(whichfork
== XFS_DATA_FORK
);
2665 xfs_dinode_put_rdev(dip
, ip
->i_df
.if_u2
.if_rdev
);
2669 case XFS_DINODE_FMT_UUID
:
2670 if (iip
->ili_format
.ilf_fields
& XFS_ILOG_UUID
) {
2671 ASSERT(whichfork
== XFS_DATA_FORK
);
2672 memcpy(XFS_DFORK_DPTR(dip
),
2673 &ip
->i_df
.if_u2
.if_uuid
,
2689 xfs_mount_t
*mp
= ip
->i_mount
;
2690 xfs_perag_t
*pag
= xfs_get_perag(mp
, ip
->i_ino
);
2691 unsigned long first_index
, mask
;
2692 unsigned long inodes_per_cluster
;
2694 xfs_inode_t
**ilist
;
2701 ASSERT(pag
->pagi_inodeok
);
2702 ASSERT(pag
->pag_ici_init
);
2704 inodes_per_cluster
= XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
;
2705 ilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
2706 ilist
= kmem_alloc(ilist_size
, KM_MAYFAIL
|KM_NOFS
);
2710 mask
= ~(((XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
)) - 1);
2711 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
2712 read_lock(&pag
->pag_ici_lock
);
2713 /* really need a gang lookup range call here */
2714 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)ilist
,
2715 first_index
, inodes_per_cluster
);
2719 for (i
= 0; i
< nr_found
; i
++) {
2723 /* if the inode lies outside this cluster, we're done. */
2724 if ((XFS_INO_TO_AGINO(mp
, iq
->i_ino
) & mask
) != first_index
)
2727 * Do an un-protected check to see if the inode is dirty and
2728 * is a candidate for flushing. These checks will be repeated
2729 * later after the appropriate locks are acquired.
2731 if (xfs_inode_clean(iq
) && xfs_ipincount(iq
) == 0)
2735 * Try to get locks. If any are unavailable or it is pinned,
2736 * then this inode cannot be flushed and is skipped.
2739 if (!xfs_ilock_nowait(iq
, XFS_ILOCK_SHARED
))
2741 if (!xfs_iflock_nowait(iq
)) {
2742 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2745 if (xfs_ipincount(iq
)) {
2747 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2752 * arriving here means that this inode can be flushed. First
2753 * re-check that it's dirty before flushing.
2755 if (!xfs_inode_clean(iq
)) {
2757 error
= xfs_iflush_int(iq
, bp
);
2759 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2760 goto cluster_corrupt_out
;
2766 xfs_iunlock(iq
, XFS_ILOCK_SHARED
);
2770 XFS_STATS_INC(xs_icluster_flushcnt
);
2771 XFS_STATS_ADD(xs_icluster_flushinode
, clcount
);
2775 read_unlock(&pag
->pag_ici_lock
);
2780 cluster_corrupt_out
:
2782 * Corruption detected in the clustering loop. Invalidate the
2783 * inode buffer and shut down the filesystem.
2785 read_unlock(&pag
->pag_ici_lock
);
2787 * Clean up the buffer. If it was B_DELWRI, just release it --
2788 * brelse can handle it with no problems. If not, shut down the
2789 * filesystem before releasing the buffer.
2791 bufwasdelwri
= XFS_BUF_ISDELAYWRITE(bp
);
2795 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2797 if (!bufwasdelwri
) {
2799 * Just like incore_relse: if we have b_iodone functions,
2800 * mark the buffer as an error and call them. Otherwise
2801 * mark it as stale and brelse.
2803 if (XFS_BUF_IODONE_FUNC(bp
)) {
2804 XFS_BUF_CLR_BDSTRAT_FUNC(bp
);
2807 XFS_BUF_ERROR(bp
,EIO
);
2816 * Unlocks the flush lock
2818 xfs_iflush_abort(iq
);
2820 return XFS_ERROR(EFSCORRUPTED
);
2824 * xfs_iflush() will write a modified inode's changes out to the
2825 * inode's on disk home. The caller must have the inode lock held
2826 * in at least shared mode and the inode flush completion must be
2827 * active as well. The inode lock will still be held upon return from
2828 * the call and the caller is free to unlock it.
2829 * The inode flush will be completed when the inode reaches the disk.
2830 * The flags indicate how the inode's buffer should be written out.
2837 xfs_inode_log_item_t
*iip
;
2842 int noblock
= (flags
== XFS_IFLUSH_ASYNC_NOBLOCK
);
2843 enum { INT_DELWRI
= (1 << 0), INT_ASYNC
= (1 << 1) };
2845 XFS_STATS_INC(xs_iflush_count
);
2847 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2848 ASSERT(!completion_done(&ip
->i_flush
));
2849 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
2850 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
2856 * If the inode isn't dirty, then just release the inode
2857 * flush lock and do nothing.
2859 if (xfs_inode_clean(ip
)) {
2865 * We can't flush the inode until it is unpinned, so wait for it if we
2866 * are allowed to block. We know noone new can pin it, because we are
2867 * holding the inode lock shared and you need to hold it exclusively to
2870 * If we are not allowed to block, force the log out asynchronously so
2871 * that when we come back the inode will be unpinned. If other inodes
2872 * in the same cluster are dirty, they will probably write the inode
2873 * out for us if they occur after the log force completes.
2875 if (noblock
&& xfs_ipincount(ip
)) {
2876 xfs_iunpin_nowait(ip
);
2880 xfs_iunpin_wait(ip
);
2883 * This may have been unpinned because the filesystem is shutting
2884 * down forcibly. If that's the case we must not write this inode
2885 * to disk, because the log record didn't make it to disk!
2887 if (XFS_FORCED_SHUTDOWN(mp
)) {
2888 ip
->i_update_core
= 0;
2890 iip
->ili_format
.ilf_fields
= 0;
2892 return XFS_ERROR(EIO
);
2896 * Decide how buffer will be flushed out. This is done before
2897 * the call to xfs_iflush_int because this field is zeroed by it.
2899 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
2901 * Flush out the inode buffer according to the directions
2902 * of the caller. In the cases where the caller has given
2903 * us a choice choose the non-delwri case. This is because
2904 * the inode is in the AIL and we need to get it out soon.
2907 case XFS_IFLUSH_SYNC
:
2908 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
2911 case XFS_IFLUSH_ASYNC_NOBLOCK
:
2912 case XFS_IFLUSH_ASYNC
:
2913 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
2916 case XFS_IFLUSH_DELWRI
:
2926 case XFS_IFLUSH_DELWRI_ELSE_SYNC
:
2927 case XFS_IFLUSH_DELWRI_ELSE_ASYNC
:
2928 case XFS_IFLUSH_DELWRI
:
2931 case XFS_IFLUSH_ASYNC_NOBLOCK
:
2932 case XFS_IFLUSH_ASYNC
:
2935 case XFS_IFLUSH_SYNC
:
2946 * Get the buffer containing the on-disk inode.
2948 error
= xfs_itobp(mp
, NULL
, ip
, &dip
, &bp
,
2949 noblock
? XFS_BUF_TRYLOCK
: XFS_BUF_LOCK
);
2956 * First flush out the inode that xfs_iflush was called with.
2958 error
= xfs_iflush_int(ip
, bp
);
2963 * If the buffer is pinned then push on the log now so we won't
2964 * get stuck waiting in the write for too long.
2966 if (XFS_BUF_ISPINNED(bp
))
2967 xfs_log_force(mp
, (xfs_lsn_t
)0, XFS_LOG_FORCE
);
2971 * see if other inodes can be gathered into this write
2973 error
= xfs_iflush_cluster(ip
, bp
);
2975 goto cluster_corrupt_out
;
2977 if (flags
& INT_DELWRI
) {
2978 xfs_bdwrite(mp
, bp
);
2979 } else if (flags
& INT_ASYNC
) {
2980 error
= xfs_bawrite(mp
, bp
);
2982 error
= xfs_bwrite(mp
, bp
);
2988 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
2989 cluster_corrupt_out
:
2991 * Unlocks the flush lock
2993 xfs_iflush_abort(ip
);
2994 return XFS_ERROR(EFSCORRUPTED
);
3003 xfs_inode_log_item_t
*iip
;
3006 #ifdef XFS_TRANS_DEBUG
3010 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3011 ASSERT(!completion_done(&ip
->i_flush
));
3012 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3013 ip
->i_d
.di_nextents
> ip
->i_df
.if_ext_max
);
3020 * If the inode isn't dirty, then just release the inode
3021 * flush lock and do nothing.
3023 if (xfs_inode_clean(ip
)) {
3028 /* set *dip = inode's place in the buffer */
3029 dip
= (xfs_dinode_t
*)xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3032 * Clear i_update_core before copying out the data.
3033 * This is for coordination with our timestamp updates
3034 * that don't hold the inode lock. They will always
3035 * update the timestamps BEFORE setting i_update_core,
3036 * so if we clear i_update_core after they set it we
3037 * are guaranteed to see their updates to the timestamps.
3038 * I believe that this depends on strongly ordered memory
3039 * semantics, but we have that. We use the SYNCHRONIZE
3040 * macro to make sure that the compiler does not reorder
3041 * the i_update_core access below the data copy below.
3043 ip
->i_update_core
= 0;
3047 * Make sure to get the latest atime from the Linux inode.
3049 xfs_synchronize_atime(ip
);
3051 if (XFS_TEST_ERROR(be16_to_cpu(dip
->di_magic
) != XFS_DINODE_MAGIC
,
3052 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3053 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3054 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3055 ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3058 if (XFS_TEST_ERROR(ip
->i_d
.di_magic
!= XFS_DINODE_MAGIC
,
3059 mp
, XFS_ERRTAG_IFLUSH_2
, XFS_RANDOM_IFLUSH_2
)) {
3060 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3061 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3062 ip
->i_ino
, ip
, ip
->i_d
.di_magic
);
3065 if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFREG
) {
3067 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3068 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3069 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3070 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3071 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3075 } else if ((ip
->i_d
.di_mode
& S_IFMT
) == S_IFDIR
) {
3077 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3078 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3079 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3080 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3081 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3082 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3087 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3088 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3089 XFS_RANDOM_IFLUSH_5
)) {
3090 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3091 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3093 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3098 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3099 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3100 xfs_cmn_err(XFS_PTAG_IFLUSH
, CE_ALERT
, mp
,
3101 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3102 ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3106 * bump the flush iteration count, used to detect flushes which
3107 * postdate a log record during recovery.
3110 ip
->i_d
.di_flushiter
++;
3113 * Copy the dirty parts of the inode into the on-disk
3114 * inode. We always copy out the core of the inode,
3115 * because if the inode is dirty at all the core must
3118 xfs_dinode_to_disk(dip
, &ip
->i_d
);
3120 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3121 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3122 ip
->i_d
.di_flushiter
= 0;
3125 * If this is really an old format inode and the superblock version
3126 * has not been updated to support only new format inodes, then
3127 * convert back to the old inode format. If the superblock version
3128 * has been updated, then make the conversion permanent.
3130 ASSERT(ip
->i_d
.di_version
== 1 || xfs_sb_version_hasnlink(&mp
->m_sb
));
3131 if (ip
->i_d
.di_version
== 1) {
3132 if (!xfs_sb_version_hasnlink(&mp
->m_sb
)) {
3136 ASSERT(ip
->i_d
.di_nlink
<= XFS_MAXLINK_1
);
3137 dip
->di_onlink
= cpu_to_be16(ip
->i_d
.di_nlink
);
3140 * The superblock version has already been bumped,
3141 * so just make the conversion to the new inode
3144 ip
->i_d
.di_version
= 2;
3145 dip
->di_version
= 2;
3146 ip
->i_d
.di_onlink
= 0;
3148 memset(&(ip
->i_d
.di_pad
[0]), 0, sizeof(ip
->i_d
.di_pad
));
3149 memset(&(dip
->di_pad
[0]), 0,
3150 sizeof(dip
->di_pad
));
3151 ASSERT(ip
->i_d
.di_projid
== 0);
3155 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
, bp
);
3156 if (XFS_IFORK_Q(ip
))
3157 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
, bp
);
3158 xfs_inobp_check(mp
, bp
);
3161 * We've recorded everything logged in the inode, so we'd
3162 * like to clear the ilf_fields bits so we don't log and
3163 * flush things unnecessarily. However, we can't stop
3164 * logging all this information until the data we've copied
3165 * into the disk buffer is written to disk. If we did we might
3166 * overwrite the copy of the inode in the log with all the
3167 * data after re-logging only part of it, and in the face of
3168 * a crash we wouldn't have all the data we need to recover.
3170 * What we do is move the bits to the ili_last_fields field.
3171 * When logging the inode, these bits are moved back to the
3172 * ilf_fields field. In the xfs_iflush_done() routine we
3173 * clear ili_last_fields, since we know that the information
3174 * those bits represent is permanently on disk. As long as
3175 * the flush completes before the inode is logged again, then
3176 * both ilf_fields and ili_last_fields will be cleared.
3178 * We can play with the ilf_fields bits here, because the inode
3179 * lock must be held exclusively in order to set bits there
3180 * and the flush lock protects the ili_last_fields bits.
3181 * Set ili_logged so the flush done
3182 * routine can tell whether or not to look in the AIL.
3183 * Also, store the current LSN of the inode so that we can tell
3184 * whether the item has moved in the AIL from xfs_iflush_done().
3185 * In order to read the lsn we need the AIL lock, because
3186 * it is a 64 bit value that cannot be read atomically.
3188 if (iip
!= NULL
&& iip
->ili_format
.ilf_fields
!= 0) {
3189 iip
->ili_last_fields
= iip
->ili_format
.ilf_fields
;
3190 iip
->ili_format
.ilf_fields
= 0;
3191 iip
->ili_logged
= 1;
3193 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3194 &iip
->ili_item
.li_lsn
);
3197 * Attach the function xfs_iflush_done to the inode's
3198 * buffer. This will remove the inode from the AIL
3199 * and unlock the inode's flush lock when the inode is
3200 * completely written to disk.
3202 xfs_buf_attach_iodone(bp
, (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
3203 xfs_iflush_done
, (xfs_log_item_t
*)iip
);
3205 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
3206 ASSERT(XFS_BUF_IODONE_FUNC(bp
) != NULL
);
3209 * We're flushing an inode which is not in the AIL and has
3210 * not been logged but has i_update_core set. For this
3211 * case we can use a B_DELWRI flush and immediately drop
3212 * the inode flush lock because we can avoid the whole
3213 * AIL state thing. It's OK to drop the flush lock now,
3214 * because we've already locked the buffer and to do anything
3215 * you really need both.
3218 ASSERT(iip
->ili_logged
== 0);
3219 ASSERT(iip
->ili_last_fields
== 0);
3220 ASSERT((iip
->ili_item
.li_flags
& XFS_LI_IN_AIL
) == 0);
3228 return XFS_ERROR(EFSCORRUPTED
);
3233 #ifdef XFS_ILOCK_TRACE
3235 xfs_ilock_trace(xfs_inode_t
*ip
, int lock
, unsigned int lockflags
, inst_t
*ra
)
3237 ktrace_enter(ip
->i_lock_trace
,
3239 (void *)(unsigned long)lock
, /* 1 = LOCK, 3=UNLOCK, etc */
3240 (void *)(unsigned long)lockflags
, /* XFS_ILOCK_EXCL etc */
3241 (void *)ra
, /* caller of ilock */
3242 (void *)(unsigned long)current_cpu(),
3243 (void *)(unsigned long)current_pid(),
3244 NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
,NULL
);
3249 * Return a pointer to the extent record at file index idx.
3251 xfs_bmbt_rec_host_t
*
3253 xfs_ifork_t
*ifp
, /* inode fork pointer */
3254 xfs_extnum_t idx
) /* index of target extent */
3257 if ((ifp
->if_flags
& XFS_IFEXTIREC
) && (idx
== 0)) {
3258 return ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3259 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3260 xfs_ext_irec_t
*erp
; /* irec pointer */
3261 int erp_idx
= 0; /* irec index */
3262 xfs_extnum_t page_idx
= idx
; /* ext index in target list */
3264 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3265 return &erp
->er_extbuf
[page_idx
];
3266 } else if (ifp
->if_bytes
) {
3267 return &ifp
->if_u1
.if_extents
[idx
];
3274 * Insert new item(s) into the extent records for incore inode
3275 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3279 xfs_ifork_t
*ifp
, /* inode fork pointer */
3280 xfs_extnum_t idx
, /* starting index of new items */
3281 xfs_extnum_t count
, /* number of inserted items */
3282 xfs_bmbt_irec_t
*new) /* items to insert */
3284 xfs_extnum_t i
; /* extent record index */
3286 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3287 xfs_iext_add(ifp
, idx
, count
);
3288 for (i
= idx
; i
< idx
+ count
; i
++, new++)
3289 xfs_bmbt_set_all(xfs_iext_get_ext(ifp
, i
), new);
3293 * This is called when the amount of space required for incore file
3294 * extents needs to be increased. The ext_diff parameter stores the
3295 * number of new extents being added and the idx parameter contains
3296 * the extent index where the new extents will be added. If the new
3297 * extents are being appended, then we just need to (re)allocate and
3298 * initialize the space. Otherwise, if the new extents are being
3299 * inserted into the middle of the existing entries, a bit more work
3300 * is required to make room for the new extents to be inserted. The
3301 * caller is responsible for filling in the new extent entries upon
3306 xfs_ifork_t
*ifp
, /* inode fork pointer */
3307 xfs_extnum_t idx
, /* index to begin adding exts */
3308 int ext_diff
) /* number of extents to add */
3310 int byte_diff
; /* new bytes being added */
3311 int new_size
; /* size of extents after adding */
3312 xfs_extnum_t nextents
; /* number of extents in file */
3314 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3315 ASSERT((idx
>= 0) && (idx
<= nextents
));
3316 byte_diff
= ext_diff
* sizeof(xfs_bmbt_rec_t
);
3317 new_size
= ifp
->if_bytes
+ byte_diff
;
3319 * If the new number of extents (nextents + ext_diff)
3320 * fits inside the inode, then continue to use the inline
3323 if (nextents
+ ext_diff
<= XFS_INLINE_EXTS
) {
3324 if (idx
< nextents
) {
3325 memmove(&ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3326 &ifp
->if_u2
.if_inline_ext
[idx
],
3327 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3328 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0, byte_diff
);
3330 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3331 ifp
->if_real_bytes
= 0;
3332 ifp
->if_lastex
= nextents
+ ext_diff
;
3335 * Otherwise use a linear (direct) extent list.
3336 * If the extents are currently inside the inode,
3337 * xfs_iext_realloc_direct will switch us from
3338 * inline to direct extent allocation mode.
3340 else if (nextents
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3341 xfs_iext_realloc_direct(ifp
, new_size
);
3342 if (idx
< nextents
) {
3343 memmove(&ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3344 &ifp
->if_u1
.if_extents
[idx
],
3345 (nextents
- idx
) * sizeof(xfs_bmbt_rec_t
));
3346 memset(&ifp
->if_u1
.if_extents
[idx
], 0, byte_diff
);
3349 /* Indirection array */
3351 xfs_ext_irec_t
*erp
;
3355 ASSERT(nextents
+ ext_diff
> XFS_LINEAR_EXTS
);
3356 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3357 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 1);
3359 xfs_iext_irec_init(ifp
);
3360 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3361 erp
= ifp
->if_u1
.if_ext_irec
;
3363 /* Extents fit in target extent page */
3364 if (erp
&& erp
->er_extcount
+ ext_diff
<= XFS_LINEAR_EXTS
) {
3365 if (page_idx
< erp
->er_extcount
) {
3366 memmove(&erp
->er_extbuf
[page_idx
+ ext_diff
],
3367 &erp
->er_extbuf
[page_idx
],
3368 (erp
->er_extcount
- page_idx
) *
3369 sizeof(xfs_bmbt_rec_t
));
3370 memset(&erp
->er_extbuf
[page_idx
], 0, byte_diff
);
3372 erp
->er_extcount
+= ext_diff
;
3373 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3375 /* Insert a new extent page */
3377 xfs_iext_add_indirect_multi(ifp
,
3378 erp_idx
, page_idx
, ext_diff
);
3381 * If extent(s) are being appended to the last page in
3382 * the indirection array and the new extent(s) don't fit
3383 * in the page, then erp is NULL and erp_idx is set to
3384 * the next index needed in the indirection array.
3387 int count
= ext_diff
;
3390 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3391 erp
->er_extcount
= count
;
3392 count
-= MIN(count
, (int)XFS_LINEAR_EXTS
);
3399 ifp
->if_bytes
= new_size
;
3403 * This is called when incore extents are being added to the indirection
3404 * array and the new extents do not fit in the target extent list. The
3405 * erp_idx parameter contains the irec index for the target extent list
3406 * in the indirection array, and the idx parameter contains the extent
3407 * index within the list. The number of extents being added is stored
3408 * in the count parameter.
3410 * |-------| |-------|
3411 * | | | | idx - number of extents before idx
3413 * | | | | count - number of extents being inserted at idx
3414 * |-------| |-------|
3415 * | count | | nex2 | nex2 - number of extents after idx + count
3416 * |-------| |-------|
3419 xfs_iext_add_indirect_multi(
3420 xfs_ifork_t
*ifp
, /* inode fork pointer */
3421 int erp_idx
, /* target extent irec index */
3422 xfs_extnum_t idx
, /* index within target list */
3423 int count
) /* new extents being added */
3425 int byte_diff
; /* new bytes being added */
3426 xfs_ext_irec_t
*erp
; /* pointer to irec entry */
3427 xfs_extnum_t ext_diff
; /* number of extents to add */
3428 xfs_extnum_t ext_cnt
; /* new extents still needed */
3429 xfs_extnum_t nex2
; /* extents after idx + count */
3430 xfs_bmbt_rec_t
*nex2_ep
= NULL
; /* temp list for nex2 extents */
3431 int nlists
; /* number of irec's (lists) */
3433 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3434 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3435 nex2
= erp
->er_extcount
- idx
;
3436 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3439 * Save second part of target extent list
3440 * (all extents past */
3442 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3443 nex2_ep
= (xfs_bmbt_rec_t
*) kmem_alloc(byte_diff
, KM_NOFS
);
3444 memmove(nex2_ep
, &erp
->er_extbuf
[idx
], byte_diff
);
3445 erp
->er_extcount
-= nex2
;
3446 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -nex2
);
3447 memset(&erp
->er_extbuf
[idx
], 0, byte_diff
);
3451 * Add the new extents to the end of the target
3452 * list, then allocate new irec record(s) and
3453 * extent buffer(s) as needed to store the rest
3454 * of the new extents.
3457 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
- erp
->er_extcount
);
3459 erp
->er_extcount
+= ext_diff
;
3460 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3461 ext_cnt
-= ext_diff
;
3465 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3466 ext_diff
= MIN(ext_cnt
, (int)XFS_LINEAR_EXTS
);
3467 erp
->er_extcount
= ext_diff
;
3468 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, ext_diff
);
3469 ext_cnt
-= ext_diff
;
3472 /* Add nex2 extents back to indirection array */
3474 xfs_extnum_t ext_avail
;
3477 byte_diff
= nex2
* sizeof(xfs_bmbt_rec_t
);
3478 ext_avail
= XFS_LINEAR_EXTS
- erp
->er_extcount
;
3481 * If nex2 extents fit in the current page, append
3482 * nex2_ep after the new extents.
3484 if (nex2
<= ext_avail
) {
3485 i
= erp
->er_extcount
;
3488 * Otherwise, check if space is available in the
3491 else if ((erp_idx
< nlists
- 1) &&
3492 (nex2
<= (ext_avail
= XFS_LINEAR_EXTS
-
3493 ifp
->if_u1
.if_ext_irec
[erp_idx
+1].er_extcount
))) {
3496 /* Create a hole for nex2 extents */
3497 memmove(&erp
->er_extbuf
[nex2
], erp
->er_extbuf
,
3498 erp
->er_extcount
* sizeof(xfs_bmbt_rec_t
));
3501 * Final choice, create a new extent page for
3506 erp
= xfs_iext_irec_new(ifp
, erp_idx
);
3508 memmove(&erp
->er_extbuf
[i
], nex2_ep
, byte_diff
);
3510 erp
->er_extcount
+= nex2
;
3511 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, nex2
);
3516 * This is called when the amount of space required for incore file
3517 * extents needs to be decreased. The ext_diff parameter stores the
3518 * number of extents to be removed and the idx parameter contains
3519 * the extent index where the extents will be removed from.
3521 * If the amount of space needed has decreased below the linear
3522 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3523 * extent array. Otherwise, use kmem_realloc() to adjust the
3524 * size to what is needed.
3528 xfs_ifork_t
*ifp
, /* inode fork pointer */
3529 xfs_extnum_t idx
, /* index to begin removing exts */
3530 int ext_diff
) /* number of extents to remove */
3532 xfs_extnum_t nextents
; /* number of extents in file */
3533 int new_size
; /* size of extents after removal */
3535 ASSERT(ext_diff
> 0);
3536 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3537 new_size
= (nextents
- ext_diff
) * sizeof(xfs_bmbt_rec_t
);
3539 if (new_size
== 0) {
3540 xfs_iext_destroy(ifp
);
3541 } else if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3542 xfs_iext_remove_indirect(ifp
, idx
, ext_diff
);
3543 } else if (ifp
->if_real_bytes
) {
3544 xfs_iext_remove_direct(ifp
, idx
, ext_diff
);
3546 xfs_iext_remove_inline(ifp
, idx
, ext_diff
);
3548 ifp
->if_bytes
= new_size
;
3552 * This removes ext_diff extents from the inline buffer, beginning
3553 * at extent index idx.
3556 xfs_iext_remove_inline(
3557 xfs_ifork_t
*ifp
, /* inode fork pointer */
3558 xfs_extnum_t idx
, /* index to begin removing exts */
3559 int ext_diff
) /* number of extents to remove */
3561 int nextents
; /* number of extents in file */
3563 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3564 ASSERT(idx
< XFS_INLINE_EXTS
);
3565 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3566 ASSERT(((nextents
- ext_diff
) > 0) &&
3567 (nextents
- ext_diff
) < XFS_INLINE_EXTS
);
3569 if (idx
+ ext_diff
< nextents
) {
3570 memmove(&ifp
->if_u2
.if_inline_ext
[idx
],
3571 &ifp
->if_u2
.if_inline_ext
[idx
+ ext_diff
],
3572 (nextents
- (idx
+ ext_diff
)) *
3573 sizeof(xfs_bmbt_rec_t
));
3574 memset(&ifp
->if_u2
.if_inline_ext
[nextents
- ext_diff
],
3575 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3577 memset(&ifp
->if_u2
.if_inline_ext
[idx
], 0,
3578 ext_diff
* sizeof(xfs_bmbt_rec_t
));
3583 * This removes ext_diff extents from a linear (direct) extent list,
3584 * beginning at extent index idx. If the extents are being removed
3585 * from the end of the list (ie. truncate) then we just need to re-
3586 * allocate the list to remove the extra space. Otherwise, if the
3587 * extents are being removed from the middle of the existing extent
3588 * entries, then we first need to move the extent records beginning
3589 * at idx + ext_diff up in the list to overwrite the records being
3590 * removed, then remove the extra space via kmem_realloc.
3593 xfs_iext_remove_direct(
3594 xfs_ifork_t
*ifp
, /* inode fork pointer */
3595 xfs_extnum_t idx
, /* index to begin removing exts */
3596 int ext_diff
) /* number of extents to remove */
3598 xfs_extnum_t nextents
; /* number of extents in file */
3599 int new_size
; /* size of extents after removal */
3601 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
3602 new_size
= ifp
->if_bytes
-
3603 (ext_diff
* sizeof(xfs_bmbt_rec_t
));
3604 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3606 if (new_size
== 0) {
3607 xfs_iext_destroy(ifp
);
3610 /* Move extents up in the list (if needed) */
3611 if (idx
+ ext_diff
< nextents
) {
3612 memmove(&ifp
->if_u1
.if_extents
[idx
],
3613 &ifp
->if_u1
.if_extents
[idx
+ ext_diff
],
3614 (nextents
- (idx
+ ext_diff
)) *
3615 sizeof(xfs_bmbt_rec_t
));
3617 memset(&ifp
->if_u1
.if_extents
[nextents
- ext_diff
],
3618 0, ext_diff
* sizeof(xfs_bmbt_rec_t
));
3620 * Reallocate the direct extent list. If the extents
3621 * will fit inside the inode then xfs_iext_realloc_direct
3622 * will switch from direct to inline extent allocation
3625 xfs_iext_realloc_direct(ifp
, new_size
);
3626 ifp
->if_bytes
= new_size
;
3630 * This is called when incore extents are being removed from the
3631 * indirection array and the extents being removed span multiple extent
3632 * buffers. The idx parameter contains the file extent index where we
3633 * want to begin removing extents, and the count parameter contains
3634 * how many extents need to be removed.
3636 * |-------| |-------|
3637 * | nex1 | | | nex1 - number of extents before idx
3638 * |-------| | count |
3639 * | | | | count - number of extents being removed at idx
3640 * | count | |-------|
3641 * | | | nex2 | nex2 - number of extents after idx + count
3642 * |-------| |-------|
3645 xfs_iext_remove_indirect(
3646 xfs_ifork_t
*ifp
, /* inode fork pointer */
3647 xfs_extnum_t idx
, /* index to begin removing extents */
3648 int count
) /* number of extents to remove */
3650 xfs_ext_irec_t
*erp
; /* indirection array pointer */
3651 int erp_idx
= 0; /* indirection array index */
3652 xfs_extnum_t ext_cnt
; /* extents left to remove */
3653 xfs_extnum_t ext_diff
; /* extents to remove in current list */
3654 xfs_extnum_t nex1
; /* number of extents before idx */
3655 xfs_extnum_t nex2
; /* extents after idx + count */
3656 int nlists
; /* entries in indirection array */
3657 int page_idx
= idx
; /* index in target extent list */
3659 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3660 erp
= xfs_iext_idx_to_irec(ifp
, &page_idx
, &erp_idx
, 0);
3661 ASSERT(erp
!= NULL
);
3662 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3666 nex2
= MAX((erp
->er_extcount
- (nex1
+ ext_cnt
)), 0);
3667 ext_diff
= MIN(ext_cnt
, (erp
->er_extcount
- nex1
));
3669 * Check for deletion of entire list;
3670 * xfs_iext_irec_remove() updates extent offsets.
3672 if (ext_diff
== erp
->er_extcount
) {
3673 xfs_iext_irec_remove(ifp
, erp_idx
);
3674 ext_cnt
-= ext_diff
;
3677 ASSERT(erp_idx
< ifp
->if_real_bytes
/
3679 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3686 /* Move extents up (if needed) */
3688 memmove(&erp
->er_extbuf
[nex1
],
3689 &erp
->er_extbuf
[nex1
+ ext_diff
],
3690 nex2
* sizeof(xfs_bmbt_rec_t
));
3692 /* Zero out rest of page */
3693 memset(&erp
->er_extbuf
[nex1
+ nex2
], 0, (XFS_IEXT_BUFSZ
-
3694 ((nex1
+ nex2
) * sizeof(xfs_bmbt_rec_t
))));
3695 /* Update remaining counters */
3696 erp
->er_extcount
-= ext_diff
;
3697 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1, -ext_diff
);
3698 ext_cnt
-= ext_diff
;
3703 ifp
->if_bytes
-= count
* sizeof(xfs_bmbt_rec_t
);
3704 xfs_iext_irec_compact(ifp
);
3708 * Create, destroy, or resize a linear (direct) block of extents.
3711 xfs_iext_realloc_direct(
3712 xfs_ifork_t
*ifp
, /* inode fork pointer */
3713 int new_size
) /* new size of extents */
3715 int rnew_size
; /* real new size of extents */
3717 rnew_size
= new_size
;
3719 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
) ||
3720 ((new_size
>= 0) && (new_size
<= XFS_IEXT_BUFSZ
) &&
3721 (new_size
!= ifp
->if_real_bytes
)));
3723 /* Free extent records */
3724 if (new_size
== 0) {
3725 xfs_iext_destroy(ifp
);
3727 /* Resize direct extent list and zero any new bytes */
3728 else if (ifp
->if_real_bytes
) {
3729 /* Check if extents will fit inside the inode */
3730 if (new_size
<= XFS_INLINE_EXTS
* sizeof(xfs_bmbt_rec_t
)) {
3731 xfs_iext_direct_to_inline(ifp
, new_size
/
3732 (uint
)sizeof(xfs_bmbt_rec_t
));
3733 ifp
->if_bytes
= new_size
;
3736 if (!is_power_of_2(new_size
)){
3737 rnew_size
= roundup_pow_of_two(new_size
);
3739 if (rnew_size
!= ifp
->if_real_bytes
) {
3740 ifp
->if_u1
.if_extents
=
3741 kmem_realloc(ifp
->if_u1
.if_extents
,
3743 ifp
->if_real_bytes
, KM_NOFS
);
3745 if (rnew_size
> ifp
->if_real_bytes
) {
3746 memset(&ifp
->if_u1
.if_extents
[ifp
->if_bytes
/
3747 (uint
)sizeof(xfs_bmbt_rec_t
)], 0,
3748 rnew_size
- ifp
->if_real_bytes
);
3752 * Switch from the inline extent buffer to a direct
3753 * extent list. Be sure to include the inline extent
3754 * bytes in new_size.
3757 new_size
+= ifp
->if_bytes
;
3758 if (!is_power_of_2(new_size
)) {
3759 rnew_size
= roundup_pow_of_two(new_size
);
3761 xfs_iext_inline_to_direct(ifp
, rnew_size
);
3763 ifp
->if_real_bytes
= rnew_size
;
3764 ifp
->if_bytes
= new_size
;
3768 * Switch from linear (direct) extent records to inline buffer.
3771 xfs_iext_direct_to_inline(
3772 xfs_ifork_t
*ifp
, /* inode fork pointer */
3773 xfs_extnum_t nextents
) /* number of extents in file */
3775 ASSERT(ifp
->if_flags
& XFS_IFEXTENTS
);
3776 ASSERT(nextents
<= XFS_INLINE_EXTS
);
3778 * The inline buffer was zeroed when we switched
3779 * from inline to direct extent allocation mode,
3780 * so we don't need to clear it here.
3782 memcpy(ifp
->if_u2
.if_inline_ext
, ifp
->if_u1
.if_extents
,
3783 nextents
* sizeof(xfs_bmbt_rec_t
));
3784 kmem_free(ifp
->if_u1
.if_extents
);
3785 ifp
->if_u1
.if_extents
= ifp
->if_u2
.if_inline_ext
;
3786 ifp
->if_real_bytes
= 0;
3790 * Switch from inline buffer to linear (direct) extent records.
3791 * new_size should already be rounded up to the next power of 2
3792 * by the caller (when appropriate), so use new_size as it is.
3793 * However, since new_size may be rounded up, we can't update
3794 * if_bytes here. It is the caller's responsibility to update
3795 * if_bytes upon return.
3798 xfs_iext_inline_to_direct(
3799 xfs_ifork_t
*ifp
, /* inode fork pointer */
3800 int new_size
) /* number of extents in file */
3802 ifp
->if_u1
.if_extents
= kmem_alloc(new_size
, KM_NOFS
);
3803 memset(ifp
->if_u1
.if_extents
, 0, new_size
);
3804 if (ifp
->if_bytes
) {
3805 memcpy(ifp
->if_u1
.if_extents
, ifp
->if_u2
.if_inline_ext
,
3807 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3808 sizeof(xfs_bmbt_rec_t
));
3810 ifp
->if_real_bytes
= new_size
;
3814 * Resize an extent indirection array to new_size bytes.
3817 xfs_iext_realloc_indirect(
3818 xfs_ifork_t
*ifp
, /* inode fork pointer */
3819 int new_size
) /* new indirection array size */
3821 int nlists
; /* number of irec's (ex lists) */
3822 int size
; /* current indirection array size */
3824 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3825 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3826 size
= nlists
* sizeof(xfs_ext_irec_t
);
3827 ASSERT(ifp
->if_real_bytes
);
3828 ASSERT((new_size
>= 0) && (new_size
!= size
));
3829 if (new_size
== 0) {
3830 xfs_iext_destroy(ifp
);
3832 ifp
->if_u1
.if_ext_irec
= (xfs_ext_irec_t
*)
3833 kmem_realloc(ifp
->if_u1
.if_ext_irec
,
3834 new_size
, size
, KM_NOFS
);
3839 * Switch from indirection array to linear (direct) extent allocations.
3842 xfs_iext_indirect_to_direct(
3843 xfs_ifork_t
*ifp
) /* inode fork pointer */
3845 xfs_bmbt_rec_host_t
*ep
; /* extent record pointer */
3846 xfs_extnum_t nextents
; /* number of extents in file */
3847 int size
; /* size of file extents */
3849 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3850 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3851 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
3852 size
= nextents
* sizeof(xfs_bmbt_rec_t
);
3854 xfs_iext_irec_compact_pages(ifp
);
3855 ASSERT(ifp
->if_real_bytes
== XFS_IEXT_BUFSZ
);
3857 ep
= ifp
->if_u1
.if_ext_irec
->er_extbuf
;
3858 kmem_free(ifp
->if_u1
.if_ext_irec
);
3859 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3860 ifp
->if_u1
.if_extents
= ep
;
3861 ifp
->if_bytes
= size
;
3862 if (nextents
< XFS_LINEAR_EXTS
) {
3863 xfs_iext_realloc_direct(ifp
, size
);
3868 * Free incore file extents.
3872 xfs_ifork_t
*ifp
) /* inode fork pointer */
3874 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3878 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3879 for (erp_idx
= nlists
- 1; erp_idx
>= 0 ; erp_idx
--) {
3880 xfs_iext_irec_remove(ifp
, erp_idx
);
3882 ifp
->if_flags
&= ~XFS_IFEXTIREC
;
3883 } else if (ifp
->if_real_bytes
) {
3884 kmem_free(ifp
->if_u1
.if_extents
);
3885 } else if (ifp
->if_bytes
) {
3886 memset(ifp
->if_u2
.if_inline_ext
, 0, XFS_INLINE_EXTS
*
3887 sizeof(xfs_bmbt_rec_t
));
3889 ifp
->if_u1
.if_extents
= NULL
;
3890 ifp
->if_real_bytes
= 0;
3895 * Return a pointer to the extent record for file system block bno.
3897 xfs_bmbt_rec_host_t
* /* pointer to found extent record */
3898 xfs_iext_bno_to_ext(
3899 xfs_ifork_t
*ifp
, /* inode fork pointer */
3900 xfs_fileoff_t bno
, /* block number to search for */
3901 xfs_extnum_t
*idxp
) /* index of target extent */
3903 xfs_bmbt_rec_host_t
*base
; /* pointer to first extent */
3904 xfs_filblks_t blockcount
= 0; /* number of blocks in extent */
3905 xfs_bmbt_rec_host_t
*ep
= NULL
; /* pointer to target extent */
3906 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3907 int high
; /* upper boundary in search */
3908 xfs_extnum_t idx
= 0; /* index of target extent */
3909 int low
; /* lower boundary in search */
3910 xfs_extnum_t nextents
; /* number of file extents */
3911 xfs_fileoff_t startoff
= 0; /* start offset of extent */
3913 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
3914 if (nextents
== 0) {
3919 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3920 /* Find target extent list */
3922 erp
= xfs_iext_bno_to_irec(ifp
, bno
, &erp_idx
);
3923 base
= erp
->er_extbuf
;
3924 high
= erp
->er_extcount
- 1;
3926 base
= ifp
->if_u1
.if_extents
;
3927 high
= nextents
- 1;
3929 /* Binary search extent records */
3930 while (low
<= high
) {
3931 idx
= (low
+ high
) >> 1;
3933 startoff
= xfs_bmbt_get_startoff(ep
);
3934 blockcount
= xfs_bmbt_get_blockcount(ep
);
3935 if (bno
< startoff
) {
3937 } else if (bno
>= startoff
+ blockcount
) {
3940 /* Convert back to file-based extent index */
3941 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3942 idx
+= erp
->er_extoff
;
3948 /* Convert back to file-based extent index */
3949 if (ifp
->if_flags
& XFS_IFEXTIREC
) {
3950 idx
+= erp
->er_extoff
;
3952 if (bno
>= startoff
+ blockcount
) {
3953 if (++idx
== nextents
) {
3956 ep
= xfs_iext_get_ext(ifp
, idx
);
3964 * Return a pointer to the indirection array entry containing the
3965 * extent record for filesystem block bno. Store the index of the
3966 * target irec in *erp_idxp.
3968 xfs_ext_irec_t
* /* pointer to found extent record */
3969 xfs_iext_bno_to_irec(
3970 xfs_ifork_t
*ifp
, /* inode fork pointer */
3971 xfs_fileoff_t bno
, /* block number to search for */
3972 int *erp_idxp
) /* irec index of target ext list */
3974 xfs_ext_irec_t
*erp
= NULL
; /* indirection array pointer */
3975 xfs_ext_irec_t
*erp_next
; /* next indirection array entry */
3976 int erp_idx
; /* indirection array index */
3977 int nlists
; /* number of extent irec's (lists) */
3978 int high
; /* binary search upper limit */
3979 int low
; /* binary search lower limit */
3981 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
3982 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
3986 while (low
<= high
) {
3987 erp_idx
= (low
+ high
) >> 1;
3988 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
3989 erp_next
= erp_idx
< nlists
- 1 ? erp
+ 1 : NULL
;
3990 if (bno
< xfs_bmbt_get_startoff(erp
->er_extbuf
)) {
3992 } else if (erp_next
&& bno
>=
3993 xfs_bmbt_get_startoff(erp_next
->er_extbuf
)) {
3999 *erp_idxp
= erp_idx
;
4004 * Return a pointer to the indirection array entry containing the
4005 * extent record at file extent index *idxp. Store the index of the
4006 * target irec in *erp_idxp and store the page index of the target
4007 * extent record in *idxp.
4010 xfs_iext_idx_to_irec(
4011 xfs_ifork_t
*ifp
, /* inode fork pointer */
4012 xfs_extnum_t
*idxp
, /* extent index (file -> page) */
4013 int *erp_idxp
, /* pointer to target irec */
4014 int realloc
) /* new bytes were just added */
4016 xfs_ext_irec_t
*prev
; /* pointer to previous irec */
4017 xfs_ext_irec_t
*erp
= NULL
; /* pointer to current irec */
4018 int erp_idx
; /* indirection array index */
4019 int nlists
; /* number of irec's (ex lists) */
4020 int high
; /* binary search upper limit */
4021 int low
; /* binary search lower limit */
4022 xfs_extnum_t page_idx
= *idxp
; /* extent index in target list */
4024 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4025 ASSERT(page_idx
>= 0 && page_idx
<=
4026 ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
));
4027 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4032 /* Binary search extent irec's */
4033 while (low
<= high
) {
4034 erp_idx
= (low
+ high
) >> 1;
4035 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4036 prev
= erp_idx
> 0 ? erp
- 1 : NULL
;
4037 if (page_idx
< erp
->er_extoff
|| (page_idx
== erp
->er_extoff
&&
4038 realloc
&& prev
&& prev
->er_extcount
< XFS_LINEAR_EXTS
)) {
4040 } else if (page_idx
> erp
->er_extoff
+ erp
->er_extcount
||
4041 (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4044 } else if (page_idx
== erp
->er_extoff
+ erp
->er_extcount
&&
4045 erp
->er_extcount
== XFS_LINEAR_EXTS
) {
4049 erp
= erp_idx
< nlists
? erp
+ 1 : NULL
;
4052 page_idx
-= erp
->er_extoff
;
4057 *erp_idxp
= erp_idx
;
4062 * Allocate and initialize an indirection array once the space needed
4063 * for incore extents increases above XFS_IEXT_BUFSZ.
4067 xfs_ifork_t
*ifp
) /* inode fork pointer */
4069 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4070 xfs_extnum_t nextents
; /* number of extents in file */
4072 ASSERT(!(ifp
->if_flags
& XFS_IFEXTIREC
));
4073 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4074 ASSERT(nextents
<= XFS_LINEAR_EXTS
);
4076 erp
= kmem_alloc(sizeof(xfs_ext_irec_t
), KM_NOFS
);
4078 if (nextents
== 0) {
4079 ifp
->if_u1
.if_extents
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4080 } else if (!ifp
->if_real_bytes
) {
4081 xfs_iext_inline_to_direct(ifp
, XFS_IEXT_BUFSZ
);
4082 } else if (ifp
->if_real_bytes
< XFS_IEXT_BUFSZ
) {
4083 xfs_iext_realloc_direct(ifp
, XFS_IEXT_BUFSZ
);
4085 erp
->er_extbuf
= ifp
->if_u1
.if_extents
;
4086 erp
->er_extcount
= nextents
;
4089 ifp
->if_flags
|= XFS_IFEXTIREC
;
4090 ifp
->if_real_bytes
= XFS_IEXT_BUFSZ
;
4091 ifp
->if_bytes
= nextents
* sizeof(xfs_bmbt_rec_t
);
4092 ifp
->if_u1
.if_ext_irec
= erp
;
4098 * Allocate and initialize a new entry in the indirection array.
4102 xfs_ifork_t
*ifp
, /* inode fork pointer */
4103 int erp_idx
) /* index for new irec */
4105 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4106 int i
; /* loop counter */
4107 int nlists
; /* number of irec's (ex lists) */
4109 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4110 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4112 /* Resize indirection array */
4113 xfs_iext_realloc_indirect(ifp
, ++nlists
*
4114 sizeof(xfs_ext_irec_t
));
4116 * Move records down in the array so the
4117 * new page can use erp_idx.
4119 erp
= ifp
->if_u1
.if_ext_irec
;
4120 for (i
= nlists
- 1; i
> erp_idx
; i
--) {
4121 memmove(&erp
[i
], &erp
[i
-1], sizeof(xfs_ext_irec_t
));
4123 ASSERT(i
== erp_idx
);
4125 /* Initialize new extent record */
4126 erp
= ifp
->if_u1
.if_ext_irec
;
4127 erp
[erp_idx
].er_extbuf
= kmem_alloc(XFS_IEXT_BUFSZ
, KM_NOFS
);
4128 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4129 memset(erp
[erp_idx
].er_extbuf
, 0, XFS_IEXT_BUFSZ
);
4130 erp
[erp_idx
].er_extcount
= 0;
4131 erp
[erp_idx
].er_extoff
= erp_idx
> 0 ?
4132 erp
[erp_idx
-1].er_extoff
+ erp
[erp_idx
-1].er_extcount
: 0;
4133 return (&erp
[erp_idx
]);
4137 * Remove a record from the indirection array.
4140 xfs_iext_irec_remove(
4141 xfs_ifork_t
*ifp
, /* inode fork pointer */
4142 int erp_idx
) /* irec index to remove */
4144 xfs_ext_irec_t
*erp
; /* indirection array pointer */
4145 int i
; /* loop counter */
4146 int nlists
; /* number of irec's (ex lists) */
4148 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4149 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4150 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4151 if (erp
->er_extbuf
) {
4152 xfs_iext_irec_update_extoffs(ifp
, erp_idx
+ 1,
4154 kmem_free(erp
->er_extbuf
);
4156 /* Compact extent records */
4157 erp
= ifp
->if_u1
.if_ext_irec
;
4158 for (i
= erp_idx
; i
< nlists
- 1; i
++) {
4159 memmove(&erp
[i
], &erp
[i
+1], sizeof(xfs_ext_irec_t
));
4162 * Manually free the last extent record from the indirection
4163 * array. A call to xfs_iext_realloc_indirect() with a size
4164 * of zero would result in a call to xfs_iext_destroy() which
4165 * would in turn call this function again, creating a nasty
4169 xfs_iext_realloc_indirect(ifp
,
4170 nlists
* sizeof(xfs_ext_irec_t
));
4172 kmem_free(ifp
->if_u1
.if_ext_irec
);
4174 ifp
->if_real_bytes
= nlists
* XFS_IEXT_BUFSZ
;
4178 * This is called to clean up large amounts of unused memory allocated
4179 * by the indirection array. Before compacting anything though, verify
4180 * that the indirection array is still needed and switch back to the
4181 * linear extent list (or even the inline buffer) if possible. The
4182 * compaction policy is as follows:
4184 * Full Compaction: Extents fit into a single page (or inline buffer)
4185 * Partial Compaction: Extents occupy less than 50% of allocated space
4186 * No Compaction: Extents occupy at least 50% of allocated space
4189 xfs_iext_irec_compact(
4190 xfs_ifork_t
*ifp
) /* inode fork pointer */
4192 xfs_extnum_t nextents
; /* number of extents in file */
4193 int nlists
; /* number of irec's (ex lists) */
4195 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4196 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4197 nextents
= ifp
->if_bytes
/ (uint
)sizeof(xfs_bmbt_rec_t
);
4199 if (nextents
== 0) {
4200 xfs_iext_destroy(ifp
);
4201 } else if (nextents
<= XFS_INLINE_EXTS
) {
4202 xfs_iext_indirect_to_direct(ifp
);
4203 xfs_iext_direct_to_inline(ifp
, nextents
);
4204 } else if (nextents
<= XFS_LINEAR_EXTS
) {
4205 xfs_iext_indirect_to_direct(ifp
);
4206 } else if (nextents
< (nlists
* XFS_LINEAR_EXTS
) >> 1) {
4207 xfs_iext_irec_compact_pages(ifp
);
4212 * Combine extents from neighboring extent pages.
4215 xfs_iext_irec_compact_pages(
4216 xfs_ifork_t
*ifp
) /* inode fork pointer */
4218 xfs_ext_irec_t
*erp
, *erp_next
;/* pointers to irec entries */
4219 int erp_idx
= 0; /* indirection array index */
4220 int nlists
; /* number of irec's (ex lists) */
4222 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4223 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4224 while (erp_idx
< nlists
- 1) {
4225 erp
= &ifp
->if_u1
.if_ext_irec
[erp_idx
];
4227 if (erp_next
->er_extcount
<=
4228 (XFS_LINEAR_EXTS
- erp
->er_extcount
)) {
4229 memcpy(&erp
->er_extbuf
[erp
->er_extcount
],
4230 erp_next
->er_extbuf
, erp_next
->er_extcount
*
4231 sizeof(xfs_bmbt_rec_t
));
4232 erp
->er_extcount
+= erp_next
->er_extcount
;
4234 * Free page before removing extent record
4235 * so er_extoffs don't get modified in
4236 * xfs_iext_irec_remove.
4238 kmem_free(erp_next
->er_extbuf
);
4239 erp_next
->er_extbuf
= NULL
;
4240 xfs_iext_irec_remove(ifp
, erp_idx
+ 1);
4241 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4249 * This is called to update the er_extoff field in the indirection
4250 * array when extents have been added or removed from one of the
4251 * extent lists. erp_idx contains the irec index to begin updating
4252 * at and ext_diff contains the number of extents that were added
4256 xfs_iext_irec_update_extoffs(
4257 xfs_ifork_t
*ifp
, /* inode fork pointer */
4258 int erp_idx
, /* irec index to update */
4259 int ext_diff
) /* number of new extents */
4261 int i
; /* loop counter */
4262 int nlists
; /* number of irec's (ex lists */
4264 ASSERT(ifp
->if_flags
& XFS_IFEXTIREC
);
4265 nlists
= ifp
->if_real_bytes
/ XFS_IEXT_BUFSZ
;
4266 for (i
= erp_idx
; i
< nlists
; i
++) {
4267 ifp
->if_u1
.if_ext_irec
[i
].er_extoff
+= ext_diff
;