4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
59 #include <linux/kmod.h>
63 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
64 int suid_dumpable
= 0;
66 EXPORT_SYMBOL(suid_dumpable
);
67 /* The maximal length of core_pattern is also specified in sysctl.c */
69 static struct linux_binfmt
*formats
;
70 static DEFINE_RWLOCK(binfmt_lock
);
72 int register_binfmt(struct linux_binfmt
* fmt
)
74 struct linux_binfmt
** tmp
= &formats
;
80 write_lock(&binfmt_lock
);
83 write_unlock(&binfmt_lock
);
90 write_unlock(&binfmt_lock
);
94 EXPORT_SYMBOL(register_binfmt
);
96 int unregister_binfmt(struct linux_binfmt
* fmt
)
98 struct linux_binfmt
** tmp
= &formats
;
100 write_lock(&binfmt_lock
);
105 write_unlock(&binfmt_lock
);
110 write_unlock(&binfmt_lock
);
114 EXPORT_SYMBOL(unregister_binfmt
);
116 static inline void put_binfmt(struct linux_binfmt
* fmt
)
118 module_put(fmt
->module
);
122 * Note that a shared library must be both readable and executable due to
125 * Also note that we take the address to load from from the file itself.
127 asmlinkage
long sys_uselib(const char __user
* library
)
133 error
= __user_path_lookup_open(library
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
138 if (nd
.mnt
->mnt_flags
& MNT_NOEXEC
)
141 if (!S_ISREG(nd
.dentry
->d_inode
->i_mode
))
144 error
= vfs_permission(&nd
, MAY_READ
| MAY_EXEC
);
148 file
= nameidata_to_filp(&nd
, O_RDONLY
);
149 error
= PTR_ERR(file
);
155 struct linux_binfmt
* fmt
;
157 read_lock(&binfmt_lock
);
158 for (fmt
= formats
; fmt
; fmt
= fmt
->next
) {
159 if (!fmt
->load_shlib
)
161 if (!try_module_get(fmt
->module
))
163 read_unlock(&binfmt_lock
);
164 error
= fmt
->load_shlib(file
);
165 read_lock(&binfmt_lock
);
167 if (error
!= -ENOEXEC
)
170 read_unlock(&binfmt_lock
);
176 release_open_intent(&nd
);
183 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
189 #ifdef CONFIG_STACK_GROWSUP
191 ret
= expand_stack_downwards(bprm
->vma
, pos
);
196 ret
= get_user_pages(current
, bprm
->mm
, pos
,
197 1, write
, 1, &page
, NULL
);
202 struct rlimit
*rlim
= current
->signal
->rlim
;
203 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
206 * Limit to 1/4-th the stack size for the argv+env strings.
208 * - the remaining binfmt code will not run out of stack space,
209 * - the program will have a reasonable amount of stack left
212 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
/ 4) {
221 static void put_arg_page(struct page
*page
)
226 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
230 static void free_arg_pages(struct linux_binprm
*bprm
)
234 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
237 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
240 static int __bprm_mm_init(struct linux_binprm
*bprm
)
243 struct vm_area_struct
*vma
= NULL
;
244 struct mm_struct
*mm
= bprm
->mm
;
246 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
250 down_write(&mm
->mmap_sem
);
254 * Place the stack at the largest stack address the architecture
255 * supports. Later, we'll move this to an appropriate place. We don't
256 * use STACK_TOP because that can depend on attributes which aren't
259 vma
->vm_end
= STACK_TOP_MAX
;
260 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
262 vma
->vm_flags
= VM_STACK_FLAGS
;
263 vma
->vm_page_prot
= protection_map
[vma
->vm_flags
& 0x7];
264 err
= insert_vm_struct(mm
, vma
);
266 up_write(&mm
->mmap_sem
);
270 mm
->stack_vm
= mm
->total_vm
= 1;
271 up_write(&mm
->mmap_sem
);
273 bprm
->p
= vma
->vm_end
- sizeof(void *);
280 kmem_cache_free(vm_area_cachep
, vma
);
286 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
288 return len
<= MAX_ARG_STRLEN
;
293 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
298 page
= bprm
->page
[pos
/ PAGE_SIZE
];
299 if (!page
&& write
) {
300 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
303 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
309 static void put_arg_page(struct page
*page
)
313 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
316 __free_page(bprm
->page
[i
]);
317 bprm
->page
[i
] = NULL
;
321 static void free_arg_pages(struct linux_binprm
*bprm
)
325 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
326 free_arg_page(bprm
, i
);
329 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
334 static int __bprm_mm_init(struct linux_binprm
*bprm
)
336 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
340 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
342 return len
<= bprm
->p
;
345 #endif /* CONFIG_MMU */
348 * Create a new mm_struct and populate it with a temporary stack
349 * vm_area_struct. We don't have enough context at this point to set the stack
350 * flags, permissions, and offset, so we use temporary values. We'll update
351 * them later in setup_arg_pages().
353 int bprm_mm_init(struct linux_binprm
*bprm
)
356 struct mm_struct
*mm
= NULL
;
358 bprm
->mm
= mm
= mm_alloc();
363 err
= init_new_context(current
, mm
);
367 err
= __bprm_mm_init(bprm
);
383 * count() counts the number of strings in array ARGV.
385 static int count(char __user
* __user
* argv
, int max
)
393 if (get_user(p
, argv
))
407 * 'copy_strings()' copies argument/environment strings from the old
408 * processes's memory to the new process's stack. The call to get_user_pages()
409 * ensures the destination page is created and not swapped out.
411 static int copy_strings(int argc
, char __user
* __user
* argv
,
412 struct linux_binprm
*bprm
)
414 struct page
*kmapped_page
= NULL
;
416 unsigned long kpos
= 0;
424 if (get_user(str
, argv
+argc
) ||
425 !(len
= strnlen_user(str
, MAX_ARG_STRLEN
))) {
430 if (!valid_arg_len(bprm
, len
)) {
435 /* We're going to work our way backwords. */
441 int offset
, bytes_to_copy
;
443 offset
= pos
% PAGE_SIZE
;
447 bytes_to_copy
= offset
;
448 if (bytes_to_copy
> len
)
451 offset
-= bytes_to_copy
;
452 pos
-= bytes_to_copy
;
453 str
-= bytes_to_copy
;
454 len
-= bytes_to_copy
;
456 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
459 page
= get_arg_page(bprm
, pos
, 1);
466 flush_kernel_dcache_page(kmapped_page
);
467 kunmap(kmapped_page
);
468 put_arg_page(kmapped_page
);
471 kaddr
= kmap(kmapped_page
);
472 kpos
= pos
& PAGE_MASK
;
473 flush_arg_page(bprm
, kpos
, kmapped_page
);
475 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
484 flush_kernel_dcache_page(kmapped_page
);
485 kunmap(kmapped_page
);
486 put_arg_page(kmapped_page
);
492 * Like copy_strings, but get argv and its values from kernel memory.
494 int copy_strings_kernel(int argc
,char ** argv
, struct linux_binprm
*bprm
)
497 mm_segment_t oldfs
= get_fs();
499 r
= copy_strings(argc
, (char __user
* __user
*)argv
, bprm
);
503 EXPORT_SYMBOL(copy_strings_kernel
);
508 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
509 * the binfmt code determines where the new stack should reside, we shift it to
510 * its final location. The process proceeds as follows:
512 * 1) Use shift to calculate the new vma endpoints.
513 * 2) Extend vma to cover both the old and new ranges. This ensures the
514 * arguments passed to subsequent functions are consistent.
515 * 3) Move vma's page tables to the new range.
516 * 4) Free up any cleared pgd range.
517 * 5) Shrink the vma to cover only the new range.
519 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
521 struct mm_struct
*mm
= vma
->vm_mm
;
522 unsigned long old_start
= vma
->vm_start
;
523 unsigned long old_end
= vma
->vm_end
;
524 unsigned long length
= old_end
- old_start
;
525 unsigned long new_start
= old_start
- shift
;
526 unsigned long new_end
= old_end
- shift
;
527 struct mmu_gather
*tlb
;
529 BUG_ON(new_start
> new_end
);
532 * ensure there are no vmas between where we want to go
535 if (vma
!= find_vma(mm
, new_start
))
539 * cover the whole range: [new_start, old_end)
541 vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
);
544 * move the page tables downwards, on failure we rely on
545 * process cleanup to remove whatever mess we made.
547 if (length
!= move_page_tables(vma
, old_start
,
548 vma
, new_start
, length
))
552 tlb
= tlb_gather_mmu(mm
, 0);
553 if (new_end
> old_start
) {
555 * when the old and new regions overlap clear from new_end.
557 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
558 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
561 * otherwise, clean from old_start; this is done to not touch
562 * the address space in [new_end, old_start) some architectures
563 * have constraints on va-space that make this illegal (IA64) -
564 * for the others its just a little faster.
566 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
567 vma
->vm_next
? vma
->vm_next
->vm_start
: 0);
569 tlb_finish_mmu(tlb
, new_end
, old_end
);
572 * shrink the vma to just the new range.
574 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
579 #define EXTRA_STACK_VM_PAGES 20 /* random */
582 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
583 * the stack is optionally relocated, and some extra space is added.
585 int setup_arg_pages(struct linux_binprm
*bprm
,
586 unsigned long stack_top
,
587 int executable_stack
)
590 unsigned long stack_shift
;
591 struct mm_struct
*mm
= current
->mm
;
592 struct vm_area_struct
*vma
= bprm
->vma
;
593 struct vm_area_struct
*prev
= NULL
;
594 unsigned long vm_flags
;
595 unsigned long stack_base
;
597 #ifdef CONFIG_STACK_GROWSUP
598 /* Limit stack size to 1GB */
599 stack_base
= current
->signal
->rlim
[RLIMIT_STACK
].rlim_max
;
600 if (stack_base
> (1 << 30))
601 stack_base
= 1 << 30;
603 /* Make sure we didn't let the argument array grow too large. */
604 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
607 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
609 stack_shift
= vma
->vm_start
- stack_base
;
610 mm
->arg_start
= bprm
->p
- stack_shift
;
611 bprm
->p
= vma
->vm_end
- stack_shift
;
613 stack_top
= arch_align_stack(stack_top
);
614 stack_top
= PAGE_ALIGN(stack_top
);
615 stack_shift
= vma
->vm_end
- stack_top
;
617 bprm
->p
-= stack_shift
;
618 mm
->arg_start
= bprm
->p
;
622 bprm
->loader
-= stack_shift
;
623 bprm
->exec
-= stack_shift
;
625 down_write(&mm
->mmap_sem
);
626 vm_flags
= vma
->vm_flags
;
629 * Adjust stack execute permissions; explicitly enable for
630 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
631 * (arch default) otherwise.
633 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
635 else if (executable_stack
== EXSTACK_DISABLE_X
)
636 vm_flags
&= ~VM_EXEC
;
637 vm_flags
|= mm
->def_flags
;
639 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
645 /* Move stack pages down in memory. */
647 ret
= shift_arg_pages(vma
, stack_shift
);
649 up_write(&mm
->mmap_sem
);
654 #ifdef CONFIG_STACK_GROWSUP
655 stack_base
= vma
->vm_end
+ EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
657 stack_base
= vma
->vm_start
- EXTRA_STACK_VM_PAGES
* PAGE_SIZE
;
659 ret
= expand_stack(vma
, stack_base
);
664 up_write(&mm
->mmap_sem
);
667 EXPORT_SYMBOL(setup_arg_pages
);
669 #endif /* CONFIG_MMU */
671 struct file
*open_exec(const char *name
)
677 err
= path_lookup_open(AT_FDCWD
, name
, LOOKUP_FOLLOW
, &nd
, FMODE_READ
|FMODE_EXEC
);
681 struct inode
*inode
= nd
.dentry
->d_inode
;
682 file
= ERR_PTR(-EACCES
);
683 if (!(nd
.mnt
->mnt_flags
& MNT_NOEXEC
) &&
684 S_ISREG(inode
->i_mode
)) {
685 int err
= vfs_permission(&nd
, MAY_EXEC
);
688 file
= nameidata_to_filp(&nd
, O_RDONLY
);
690 err
= deny_write_access(file
);
700 release_open_intent(&nd
);
706 EXPORT_SYMBOL(open_exec
);
708 int kernel_read(struct file
*file
, unsigned long offset
,
709 char *addr
, unsigned long count
)
717 /* The cast to a user pointer is valid due to the set_fs() */
718 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
723 EXPORT_SYMBOL(kernel_read
);
725 static int exec_mmap(struct mm_struct
*mm
)
727 struct task_struct
*tsk
;
728 struct mm_struct
* old_mm
, *active_mm
;
730 /* Notify parent that we're no longer interested in the old VM */
732 old_mm
= current
->mm
;
733 mm_release(tsk
, old_mm
);
737 * Make sure that if there is a core dump in progress
738 * for the old mm, we get out and die instead of going
739 * through with the exec. We must hold mmap_sem around
740 * checking core_waiters and changing tsk->mm. The
741 * core-inducing thread will increment core_waiters for
742 * each thread whose ->mm == old_mm.
744 down_read(&old_mm
->mmap_sem
);
745 if (unlikely(old_mm
->core_waiters
)) {
746 up_read(&old_mm
->mmap_sem
);
751 active_mm
= tsk
->active_mm
;
754 activate_mm(active_mm
, mm
);
756 arch_pick_mmap_layout(mm
);
758 up_read(&old_mm
->mmap_sem
);
759 BUG_ON(active_mm
!= old_mm
);
768 * This function makes sure the current process has its own signal table,
769 * so that flush_signal_handlers can later reset the handlers without
770 * disturbing other processes. (Other processes might share the signal
771 * table via the CLONE_SIGHAND option to clone().)
773 static int de_thread(struct task_struct
*tsk
)
775 struct signal_struct
*sig
= tsk
->signal
;
776 struct sighand_struct
*newsighand
, *oldsighand
= tsk
->sighand
;
777 spinlock_t
*lock
= &oldsighand
->siglock
;
778 struct task_struct
*leader
= NULL
;
782 * If we don't share sighandlers, then we aren't sharing anything
783 * and we can just re-use it all.
785 if (atomic_read(&oldsighand
->count
) <= 1) {
790 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
794 if (thread_group_empty(tsk
))
795 goto no_thread_group
;
798 * Kill all other threads in the thread group.
799 * We must hold tasklist_lock to call zap_other_threads.
801 read_lock(&tasklist_lock
);
803 if (sig
->flags
& SIGNAL_GROUP_EXIT
) {
805 * Another group action in progress, just
806 * return so that the signal is processed.
808 spin_unlock_irq(lock
);
809 read_unlock(&tasklist_lock
);
810 kmem_cache_free(sighand_cachep
, newsighand
);
815 * child_reaper ignores SIGKILL, change it now.
816 * Reparenting needs write_lock on tasklist_lock,
817 * so it is safe to do it under read_lock.
819 if (unlikely(tsk
->group_leader
== child_reaper(tsk
)))
820 tsk
->nsproxy
->pid_ns
->child_reaper
= tsk
;
822 zap_other_threads(tsk
);
823 read_unlock(&tasklist_lock
);
826 * Account for the thread group leader hanging around:
829 if (!thread_group_leader(tsk
)) {
832 * The SIGALRM timer survives the exec, but needs to point
833 * at us as the new group leader now. We have a race with
834 * a timer firing now getting the old leader, so we need to
835 * synchronize with any firing (by calling del_timer_sync)
836 * before we can safely let the old group leader die.
839 spin_unlock_irq(lock
);
840 if (hrtimer_cancel(&sig
->real_timer
))
841 hrtimer_restart(&sig
->real_timer
);
844 while (atomic_read(&sig
->count
) > count
) {
845 sig
->group_exit_task
= tsk
;
846 sig
->notify_count
= count
;
847 __set_current_state(TASK_UNINTERRUPTIBLE
);
848 spin_unlock_irq(lock
);
852 sig
->group_exit_task
= NULL
;
853 sig
->notify_count
= 0;
854 spin_unlock_irq(lock
);
857 * At this point all other threads have exited, all we have to
858 * do is to wait for the thread group leader to become inactive,
859 * and to assume its PID:
861 if (!thread_group_leader(tsk
)) {
863 * Wait for the thread group leader to be a zombie.
864 * It should already be zombie at this point, most
867 leader
= tsk
->group_leader
;
868 while (leader
->exit_state
!= EXIT_ZOMBIE
)
872 * The only record we have of the real-time age of a
873 * process, regardless of execs it's done, is start_time.
874 * All the past CPU time is accumulated in signal_struct
875 * from sister threads now dead. But in this non-leader
876 * exec, nothing survives from the original leader thread,
877 * whose birth marks the true age of this process now.
878 * When we take on its identity by switching to its PID, we
879 * also take its birthdate (always earlier than our own).
881 tsk
->start_time
= leader
->start_time
;
883 write_lock_irq(&tasklist_lock
);
885 BUG_ON(leader
->tgid
!= tsk
->tgid
);
886 BUG_ON(tsk
->pid
== tsk
->tgid
);
888 * An exec() starts a new thread group with the
889 * TGID of the previous thread group. Rehash the
890 * two threads with a switched PID, and release
891 * the former thread group leader:
894 /* Become a process group leader with the old leader's pid.
895 * The old leader becomes a thread of the this thread group.
896 * Note: The old leader also uses this pid until release_task
897 * is called. Odd but simple and correct.
899 detach_pid(tsk
, PIDTYPE_PID
);
900 tsk
->pid
= leader
->pid
;
901 attach_pid(tsk
, PIDTYPE_PID
, find_pid(tsk
->pid
));
902 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
903 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
904 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
906 tsk
->group_leader
= tsk
;
907 leader
->group_leader
= tsk
;
909 tsk
->exit_signal
= SIGCHLD
;
911 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
912 leader
->exit_state
= EXIT_DEAD
;
914 write_unlock_irq(&tasklist_lock
);
918 * There may be one thread left which is just exiting,
919 * but it's safe to stop telling the group to kill themselves.
926 release_task(leader
);
928 if (atomic_read(&oldsighand
->count
) == 1) {
930 * Now that we nuked the rest of the thread group,
931 * it turns out we are not sharing sighand any more either.
932 * So we can just keep it.
934 kmem_cache_free(sighand_cachep
, newsighand
);
937 * Move our state over to newsighand and switch it in.
939 atomic_set(&newsighand
->count
, 1);
940 memcpy(newsighand
->action
, oldsighand
->action
,
941 sizeof(newsighand
->action
));
943 write_lock_irq(&tasklist_lock
);
944 spin_lock(&oldsighand
->siglock
);
945 spin_lock_nested(&newsighand
->siglock
, SINGLE_DEPTH_NESTING
);
947 rcu_assign_pointer(tsk
->sighand
, newsighand
);
950 spin_unlock(&newsighand
->siglock
);
951 spin_unlock(&oldsighand
->siglock
);
952 write_unlock_irq(&tasklist_lock
);
954 __cleanup_sighand(oldsighand
);
957 BUG_ON(!thread_group_leader(tsk
));
962 * These functions flushes out all traces of the currently running executable
963 * so that a new one can be started
966 static void flush_old_files(struct files_struct
* files
)
971 spin_lock(&files
->file_lock
);
973 unsigned long set
, i
;
977 fdt
= files_fdtable(files
);
978 if (i
>= fdt
->max_fds
)
980 set
= fdt
->close_on_exec
->fds_bits
[j
];
983 fdt
->close_on_exec
->fds_bits
[j
] = 0;
984 spin_unlock(&files
->file_lock
);
985 for ( ; set
; i
++,set
>>= 1) {
990 spin_lock(&files
->file_lock
);
993 spin_unlock(&files
->file_lock
);
996 void get_task_comm(char *buf
, struct task_struct
*tsk
)
998 /* buf must be at least sizeof(tsk->comm) in size */
1000 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1004 void set_task_comm(struct task_struct
*tsk
, char *buf
)
1007 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1011 int flush_old_exec(struct linux_binprm
* bprm
)
1015 struct files_struct
*files
;
1016 char tcomm
[sizeof(current
->comm
)];
1019 * Make sure we have a private signal table and that
1020 * we are unassociated from the previous thread group.
1022 retval
= de_thread(current
);
1027 * Make sure we have private file handles. Ask the
1028 * fork helper to do the work for us and the exit
1029 * helper to do the cleanup of the old one.
1031 files
= current
->files
; /* refcounted so safe to hold */
1032 retval
= unshare_files();
1036 * Release all of the old mmap stuff
1038 retval
= exec_mmap(bprm
->mm
);
1042 bprm
->mm
= NULL
; /* We're using it now */
1044 /* This is the point of no return */
1045 put_files_struct(files
);
1047 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1049 if (current
->euid
== current
->uid
&& current
->egid
== current
->gid
)
1050 set_dumpable(current
->mm
, 1);
1052 set_dumpable(current
->mm
, suid_dumpable
);
1054 name
= bprm
->filename
;
1056 /* Copies the binary name from after last slash */
1057 for (i
=0; (ch
= *(name
++)) != '\0';) {
1059 i
= 0; /* overwrite what we wrote */
1061 if (i
< (sizeof(tcomm
) - 1))
1065 set_task_comm(current
, tcomm
);
1067 current
->flags
&= ~PF_RANDOMIZE
;
1070 /* Set the new mm task size. We have to do that late because it may
1071 * depend on TIF_32BIT which is only updated in flush_thread() on
1072 * some architectures like powerpc
1074 current
->mm
->task_size
= TASK_SIZE
;
1076 if (bprm
->e_uid
!= current
->euid
|| bprm
->e_gid
!= current
->egid
) {
1078 set_dumpable(current
->mm
, suid_dumpable
);
1079 current
->pdeath_signal
= 0;
1080 } else if (file_permission(bprm
->file
, MAY_READ
) ||
1081 (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)) {
1083 set_dumpable(current
->mm
, suid_dumpable
);
1086 /* An exec changes our domain. We are no longer part of the thread
1089 current
->self_exec_id
++;
1091 flush_signal_handlers(current
, 0);
1092 flush_old_files(current
->files
);
1097 reset_files_struct(current
, files
);
1102 EXPORT_SYMBOL(flush_old_exec
);
1105 * Fill the binprm structure from the inode.
1106 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1108 int prepare_binprm(struct linux_binprm
*bprm
)
1111 struct inode
* inode
= bprm
->file
->f_path
.dentry
->d_inode
;
1114 mode
= inode
->i_mode
;
1115 if (bprm
->file
->f_op
== NULL
)
1118 bprm
->e_uid
= current
->euid
;
1119 bprm
->e_gid
= current
->egid
;
1121 if(!(bprm
->file
->f_path
.mnt
->mnt_flags
& MNT_NOSUID
)) {
1123 if (mode
& S_ISUID
) {
1124 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1125 bprm
->e_uid
= inode
->i_uid
;
1130 * If setgid is set but no group execute bit then this
1131 * is a candidate for mandatory locking, not a setgid
1134 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1135 current
->personality
&= ~PER_CLEAR_ON_SETID
;
1136 bprm
->e_gid
= inode
->i_gid
;
1140 /* fill in binprm security blob */
1141 retval
= security_bprm_set(bprm
);
1145 memset(bprm
->buf
,0,BINPRM_BUF_SIZE
);
1146 return kernel_read(bprm
->file
,0,bprm
->buf
,BINPRM_BUF_SIZE
);
1149 EXPORT_SYMBOL(prepare_binprm
);
1151 static int unsafe_exec(struct task_struct
*p
)
1154 if (p
->ptrace
& PT_PTRACED
) {
1155 if (p
->ptrace
& PT_PTRACE_CAP
)
1156 unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1158 unsafe
|= LSM_UNSAFE_PTRACE
;
1160 if (atomic_read(&p
->fs
->count
) > 1 ||
1161 atomic_read(&p
->files
->count
) > 1 ||
1162 atomic_read(&p
->sighand
->count
) > 1)
1163 unsafe
|= LSM_UNSAFE_SHARE
;
1168 void compute_creds(struct linux_binprm
*bprm
)
1172 if (bprm
->e_uid
!= current
->uid
) {
1174 current
->pdeath_signal
= 0;
1179 unsafe
= unsafe_exec(current
);
1180 security_bprm_apply_creds(bprm
, unsafe
);
1181 task_unlock(current
);
1182 security_bprm_post_apply_creds(bprm
);
1184 EXPORT_SYMBOL(compute_creds
);
1187 * Arguments are '\0' separated strings found at the location bprm->p
1188 * points to; chop off the first by relocating brpm->p to right after
1189 * the first '\0' encountered.
1191 int remove_arg_zero(struct linux_binprm
*bprm
)
1194 unsigned long offset
;
1202 offset
= bprm
->p
& ~PAGE_MASK
;
1203 page
= get_arg_page(bprm
, bprm
->p
, 0);
1208 kaddr
= kmap_atomic(page
, KM_USER0
);
1210 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1211 offset
++, bprm
->p
++)
1214 kunmap_atomic(kaddr
, KM_USER0
);
1217 if (offset
== PAGE_SIZE
)
1218 free_arg_page(bprm
, (bprm
->p
>> PAGE_SHIFT
) - 1);
1219 } while (offset
== PAGE_SIZE
);
1228 EXPORT_SYMBOL(remove_arg_zero
);
1231 * cycle the list of binary formats handler, until one recognizes the image
1233 int search_binary_handler(struct linux_binprm
*bprm
,struct pt_regs
*regs
)
1236 struct linux_binfmt
*fmt
;
1238 /* handle /sbin/loader.. */
1240 struct exec
* eh
= (struct exec
*) bprm
->buf
;
1242 if (!bprm
->loader
&& eh
->fh
.f_magic
== 0x183 &&
1243 (eh
->fh
.f_flags
& 0x3000) == 0x3000)
1246 unsigned long loader
;
1248 allow_write_access(bprm
->file
);
1252 loader
= bprm
->vma
->vm_end
- sizeof(void *);
1254 file
= open_exec("/sbin/loader");
1255 retval
= PTR_ERR(file
);
1259 /* Remember if the application is TASO. */
1260 bprm
->sh_bang
= eh
->ah
.entry
< 0x100000000UL
;
1263 bprm
->loader
= loader
;
1264 retval
= prepare_binprm(bprm
);
1267 /* should call search_binary_handler recursively here,
1268 but it does not matter */
1272 retval
= security_bprm_check(bprm
);
1276 /* kernel module loader fixup */
1277 /* so we don't try to load run modprobe in kernel space. */
1280 retval
= audit_bprm(bprm
);
1285 for (try=0; try<2; try++) {
1286 read_lock(&binfmt_lock
);
1287 for (fmt
= formats
; fmt
; fmt
= fmt
->next
) {
1288 int (*fn
)(struct linux_binprm
*, struct pt_regs
*) = fmt
->load_binary
;
1291 if (!try_module_get(fmt
->module
))
1293 read_unlock(&binfmt_lock
);
1294 retval
= fn(bprm
, regs
);
1297 allow_write_access(bprm
->file
);
1301 current
->did_exec
= 1;
1302 proc_exec_connector(current
);
1305 read_lock(&binfmt_lock
);
1307 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
)
1310 read_unlock(&binfmt_lock
);
1314 read_unlock(&binfmt_lock
);
1315 if (retval
!= -ENOEXEC
|| bprm
->mm
== NULL
) {
1319 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1320 if (printable(bprm
->buf
[0]) &&
1321 printable(bprm
->buf
[1]) &&
1322 printable(bprm
->buf
[2]) &&
1323 printable(bprm
->buf
[3]))
1324 break; /* -ENOEXEC */
1325 request_module("binfmt-%04x", *(unsigned short *)(&bprm
->buf
[2]));
1332 EXPORT_SYMBOL(search_binary_handler
);
1335 * sys_execve() executes a new program.
1337 int do_execve(char * filename
,
1338 char __user
*__user
*argv
,
1339 char __user
*__user
*envp
,
1340 struct pt_regs
* regs
)
1342 struct linux_binprm
*bprm
;
1344 unsigned long env_p
;
1348 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1352 file
= open_exec(filename
);
1353 retval
= PTR_ERR(file
);
1360 bprm
->filename
= filename
;
1361 bprm
->interp
= filename
;
1363 retval
= bprm_mm_init(bprm
);
1367 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1368 if ((retval
= bprm
->argc
) < 0)
1371 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1372 if ((retval
= bprm
->envc
) < 0)
1375 retval
= security_bprm_alloc(bprm
);
1379 retval
= prepare_binprm(bprm
);
1383 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1387 bprm
->exec
= bprm
->p
;
1388 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1393 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1396 bprm
->argv_len
= env_p
- bprm
->p
;
1398 retval
= search_binary_handler(bprm
,regs
);
1400 /* execve success */
1401 free_arg_pages(bprm
);
1402 security_bprm_free(bprm
);
1403 acct_update_integrals(current
);
1409 free_arg_pages(bprm
);
1411 security_bprm_free(bprm
);
1419 allow_write_access(bprm
->file
);
1429 int set_binfmt(struct linux_binfmt
*new)
1431 struct linux_binfmt
*old
= current
->binfmt
;
1434 if (!try_module_get(new->module
))
1437 current
->binfmt
= new;
1439 module_put(old
->module
);
1443 EXPORT_SYMBOL(set_binfmt
);
1445 /* format_corename will inspect the pattern parameter, and output a
1446 * name into corename, which must have space for at least
1447 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1449 static int format_corename(char *corename
, const char *pattern
, long signr
)
1451 const char *pat_ptr
= pattern
;
1452 char *out_ptr
= corename
;
1453 char *const out_end
= corename
+ CORENAME_MAX_SIZE
;
1455 int pid_in_pattern
= 0;
1458 if (*pattern
== '|')
1461 /* Repeat as long as we have more pattern to process and more output
1464 if (*pat_ptr
!= '%') {
1465 if (out_ptr
== out_end
)
1467 *out_ptr
++ = *pat_ptr
++;
1469 switch (*++pat_ptr
) {
1472 /* Double percent, output one percent */
1474 if (out_ptr
== out_end
)
1481 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1482 "%d", current
->tgid
);
1483 if (rc
> out_end
- out_ptr
)
1489 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1490 "%d", current
->uid
);
1491 if (rc
> out_end
- out_ptr
)
1497 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1498 "%d", current
->gid
);
1499 if (rc
> out_end
- out_ptr
)
1503 /* signal that caused the coredump */
1505 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1507 if (rc
> out_end
- out_ptr
)
1511 /* UNIX time of coredump */
1514 do_gettimeofday(&tv
);
1515 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1517 if (rc
> out_end
- out_ptr
)
1524 down_read(&uts_sem
);
1525 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1526 "%s", utsname()->nodename
);
1528 if (rc
> out_end
- out_ptr
)
1534 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1535 "%s", current
->comm
);
1536 if (rc
> out_end
- out_ptr
)
1546 /* Backward compatibility with core_uses_pid:
1548 * If core_pattern does not include a %p (as is the default)
1549 * and core_uses_pid is set, then .%pid will be appended to
1550 * the filename. Do not do this for piped commands. */
1551 if (!ispipe
&& !pid_in_pattern
1552 && (core_uses_pid
|| atomic_read(¤t
->mm
->mm_users
) != 1)) {
1553 rc
= snprintf(out_ptr
, out_end
- out_ptr
,
1554 ".%d", current
->tgid
);
1555 if (rc
> out_end
- out_ptr
)
1564 static void zap_process(struct task_struct
*start
)
1566 struct task_struct
*t
;
1568 start
->signal
->flags
= SIGNAL_GROUP_EXIT
;
1569 start
->signal
->group_stop_count
= 0;
1573 if (t
!= current
&& t
->mm
) {
1574 t
->mm
->core_waiters
++;
1575 sigaddset(&t
->pending
.signal
, SIGKILL
);
1576 signal_wake_up(t
, 1);
1578 } while ((t
= next_thread(t
)) != start
);
1581 static inline int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
1584 struct task_struct
*g
, *p
;
1585 unsigned long flags
;
1588 spin_lock_irq(&tsk
->sighand
->siglock
);
1589 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
)) {
1590 tsk
->signal
->group_exit_code
= exit_code
;
1594 spin_unlock_irq(&tsk
->sighand
->siglock
);
1598 if (atomic_read(&mm
->mm_users
) == mm
->core_waiters
+ 1)
1602 for_each_process(g
) {
1603 if (g
== tsk
->group_leader
)
1611 * p->sighand can't disappear, but
1612 * may be changed by de_thread()
1614 lock_task_sighand(p
, &flags
);
1616 unlock_task_sighand(p
, &flags
);
1620 } while ((p
= next_thread(p
)) != g
);
1624 return mm
->core_waiters
;
1627 static int coredump_wait(int exit_code
)
1629 struct task_struct
*tsk
= current
;
1630 struct mm_struct
*mm
= tsk
->mm
;
1631 struct completion startup_done
;
1632 struct completion
*vfork_done
;
1635 init_completion(&mm
->core_done
);
1636 init_completion(&startup_done
);
1637 mm
->core_startup_done
= &startup_done
;
1639 core_waiters
= zap_threads(tsk
, mm
, exit_code
);
1640 up_write(&mm
->mmap_sem
);
1642 if (unlikely(core_waiters
< 0))
1646 * Make sure nobody is waiting for us to release the VM,
1647 * otherwise we can deadlock when we wait on each other
1649 vfork_done
= tsk
->vfork_done
;
1651 tsk
->vfork_done
= NULL
;
1652 complete(vfork_done
);
1656 wait_for_completion(&startup_done
);
1658 BUG_ON(mm
->core_waiters
);
1659 return core_waiters
;
1663 * set_dumpable converts traditional three-value dumpable to two flags and
1664 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1665 * these bits are not changed atomically. So get_dumpable can observe the
1666 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1667 * return either old dumpable or new one by paying attention to the order of
1668 * modifying the bits.
1670 * dumpable | mm->flags (binary)
1671 * old new | initial interim final
1672 * ---------+-----------------------
1680 * (*) get_dumpable regards interim value of 10 as 11.
1682 void set_dumpable(struct mm_struct
*mm
, int value
)
1686 clear_bit(MMF_DUMPABLE
, &mm
->flags
);
1688 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1691 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1693 clear_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1696 set_bit(MMF_DUMP_SECURELY
, &mm
->flags
);
1698 set_bit(MMF_DUMPABLE
, &mm
->flags
);
1702 EXPORT_SYMBOL_GPL(set_dumpable
);
1704 int get_dumpable(struct mm_struct
*mm
)
1708 ret
= mm
->flags
& 0x3;
1709 return (ret
>= 2) ? 2 : ret
;
1712 int do_coredump(long signr
, int exit_code
, struct pt_regs
* regs
)
1714 char corename
[CORENAME_MAX_SIZE
+ 1];
1715 struct mm_struct
*mm
= current
->mm
;
1716 struct linux_binfmt
* binfmt
;
1717 struct inode
* inode
;
1720 int fsuid
= current
->fsuid
;
1724 audit_core_dumps(signr
);
1726 binfmt
= current
->binfmt
;
1727 if (!binfmt
|| !binfmt
->core_dump
)
1729 down_write(&mm
->mmap_sem
);
1730 if (!get_dumpable(mm
)) {
1731 up_write(&mm
->mmap_sem
);
1736 * We cannot trust fsuid as being the "true" uid of the
1737 * process nor do we know its entire history. We only know it
1738 * was tainted so we dump it as root in mode 2.
1740 if (get_dumpable(mm
) == 2) { /* Setuid core dump mode */
1741 flag
= O_EXCL
; /* Stop rewrite attacks */
1742 current
->fsuid
= 0; /* Dump root private */
1744 set_dumpable(mm
, 0);
1746 retval
= coredump_wait(exit_code
);
1751 * Clear any false indication of pending signals that might
1752 * be seen by the filesystem code called to write the core file.
1754 clear_thread_flag(TIF_SIGPENDING
);
1756 if (current
->signal
->rlim
[RLIMIT_CORE
].rlim_cur
< binfmt
->min_coredump
)
1760 * lock_kernel() because format_corename() is controlled by sysctl, which
1761 * uses lock_kernel()
1764 ispipe
= format_corename(corename
, core_pattern
, signr
);
1767 /* SIGPIPE can happen, but it's just never processed */
1768 if(call_usermodehelper_pipe(corename
+1, NULL
, NULL
, &file
)) {
1769 printk(KERN_INFO
"Core dump to %s pipe failed\n",
1774 file
= filp_open(corename
,
1775 O_CREAT
| 2 | O_NOFOLLOW
| O_LARGEFILE
| flag
,
1779 inode
= file
->f_path
.dentry
->d_inode
;
1780 if (inode
->i_nlink
> 1)
1781 goto close_fail
; /* multiple links - don't dump */
1782 if (!ispipe
&& d_unhashed(file
->f_path
.dentry
))
1785 /* AK: actually i see no reason to not allow this for named pipes etc.,
1786 but keep the previous behaviour for now. */
1787 if (!ispipe
&& !S_ISREG(inode
->i_mode
))
1791 if (!file
->f_op
->write
)
1793 if (!ispipe
&& do_truncate(file
->f_path
.dentry
, 0, 0, file
) != 0)
1796 retval
= binfmt
->core_dump(signr
, regs
, file
);
1799 current
->signal
->group_exit_code
|= 0x80;
1801 filp_close(file
, NULL
);
1803 current
->fsuid
= fsuid
;
1804 complete_all(&mm
->core_done
);