[POWERPC] Handle alignment faults on SPE load/store instructions
[linux-2.6/mini2440.git] / drivers / scsi / megaraid / megaraid_sas.c
blobebb948c016bbfa871db78ebc3ce5508562440585
1 /*
3 * Linux MegaRAID driver for SAS based RAID controllers
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
12 * FILE : megaraid_sas.c
13 * Version : v00.00.03.10-rc5
15 * Authors:
16 * (email-id : megaraidlinux@lsi.com)
17 * Sreenivas Bagalkote
18 * Sumant Patro
19 * Bo Yang
21 * List of supported controllers
23 * OEM Product Name VID DID SSVID SSID
24 * --- ------------ --- --- ---- ----
27 #include <linux/kernel.h>
28 #include <linux/types.h>
29 #include <linux/pci.h>
30 #include <linux/list.h>
31 #include <linux/moduleparam.h>
32 #include <linux/module.h>
33 #include <linux/spinlock.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/uio.h>
37 #include <asm/uaccess.h>
38 #include <linux/fs.h>
39 #include <linux/compat.h>
40 #include <linux/blkdev.h>
41 #include <linux/mutex.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_device.h>
46 #include <scsi/scsi_host.h>
47 #include "megaraid_sas.h"
49 MODULE_LICENSE("GPL");
50 MODULE_VERSION(MEGASAS_VERSION);
51 MODULE_AUTHOR("megaraidlinux@lsi.com");
52 MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
55 * PCI ID table for all supported controllers
57 static struct pci_device_id megasas_pci_table[] = {
59 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1064R)},
60 /* xscale IOP */
61 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_SAS1078R)},
62 /* ppc IOP */
63 {PCI_DEVICE(PCI_VENDOR_ID_LSI_LOGIC, PCI_DEVICE_ID_LSI_VERDE_ZCR)},
64 /* xscale IOP, vega */
65 {PCI_DEVICE(PCI_VENDOR_ID_DELL, PCI_DEVICE_ID_DELL_PERC5)},
66 /* xscale IOP */
70 MODULE_DEVICE_TABLE(pci, megasas_pci_table);
72 static int megasas_mgmt_majorno;
73 static struct megasas_mgmt_info megasas_mgmt_info;
74 static struct fasync_struct *megasas_async_queue;
75 static DEFINE_MUTEX(megasas_async_queue_mutex);
77 static u32 megasas_dbg_lvl;
79 /**
80 * megasas_get_cmd - Get a command from the free pool
81 * @instance: Adapter soft state
83 * Returns a free command from the pool
85 static struct megasas_cmd *megasas_get_cmd(struct megasas_instance
86 *instance)
88 unsigned long flags;
89 struct megasas_cmd *cmd = NULL;
91 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
93 if (!list_empty(&instance->cmd_pool)) {
94 cmd = list_entry((&instance->cmd_pool)->next,
95 struct megasas_cmd, list);
96 list_del_init(&cmd->list);
97 } else {
98 printk(KERN_ERR "megasas: Command pool empty!\n");
101 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
102 return cmd;
106 * megasas_return_cmd - Return a cmd to free command pool
107 * @instance: Adapter soft state
108 * @cmd: Command packet to be returned to free command pool
110 static inline void
111 megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
113 unsigned long flags;
115 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
117 cmd->scmd = NULL;
118 list_add_tail(&cmd->list, &instance->cmd_pool);
120 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
125 * The following functions are defined for xscale
126 * (deviceid : 1064R, PERC5) controllers
130 * megasas_enable_intr_xscale - Enables interrupts
131 * @regs: MFI register set
133 static inline void
134 megasas_enable_intr_xscale(struct megasas_register_set __iomem * regs)
136 writel(1, &(regs)->outbound_intr_mask);
138 /* Dummy readl to force pci flush */
139 readl(&regs->outbound_intr_mask);
143 * megasas_disable_intr_xscale -Disables interrupt
144 * @regs: MFI register set
146 static inline void
147 megasas_disable_intr_xscale(struct megasas_register_set __iomem * regs)
149 u32 mask = 0x1f;
150 writel(mask, &regs->outbound_intr_mask);
151 /* Dummy readl to force pci flush */
152 readl(&regs->outbound_intr_mask);
156 * megasas_read_fw_status_reg_xscale - returns the current FW status value
157 * @regs: MFI register set
159 static u32
160 megasas_read_fw_status_reg_xscale(struct megasas_register_set __iomem * regs)
162 return readl(&(regs)->outbound_msg_0);
165 * megasas_clear_interrupt_xscale - Check & clear interrupt
166 * @regs: MFI register set
168 static int
169 megasas_clear_intr_xscale(struct megasas_register_set __iomem * regs)
171 u32 status;
173 * Check if it is our interrupt
175 status = readl(&regs->outbound_intr_status);
177 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
178 return 1;
182 * Clear the interrupt by writing back the same value
184 writel(status, &regs->outbound_intr_status);
186 return 0;
190 * megasas_fire_cmd_xscale - Sends command to the FW
191 * @frame_phys_addr : Physical address of cmd
192 * @frame_count : Number of frames for the command
193 * @regs : MFI register set
195 static inline void
196 megasas_fire_cmd_xscale(dma_addr_t frame_phys_addr,u32 frame_count, struct megasas_register_set __iomem *regs)
198 writel((frame_phys_addr >> 3)|(frame_count),
199 &(regs)->inbound_queue_port);
202 static struct megasas_instance_template megasas_instance_template_xscale = {
204 .fire_cmd = megasas_fire_cmd_xscale,
205 .enable_intr = megasas_enable_intr_xscale,
206 .disable_intr = megasas_disable_intr_xscale,
207 .clear_intr = megasas_clear_intr_xscale,
208 .read_fw_status_reg = megasas_read_fw_status_reg_xscale,
212 * This is the end of set of functions & definitions specific
213 * to xscale (deviceid : 1064R, PERC5) controllers
217 * The following functions are defined for ppc (deviceid : 0x60)
218 * controllers
222 * megasas_enable_intr_ppc - Enables interrupts
223 * @regs: MFI register set
225 static inline void
226 megasas_enable_intr_ppc(struct megasas_register_set __iomem * regs)
228 writel(0xFFFFFFFF, &(regs)->outbound_doorbell_clear);
230 writel(~0x80000004, &(regs)->outbound_intr_mask);
232 /* Dummy readl to force pci flush */
233 readl(&regs->outbound_intr_mask);
237 * megasas_disable_intr_ppc - Disable interrupt
238 * @regs: MFI register set
240 static inline void
241 megasas_disable_intr_ppc(struct megasas_register_set __iomem * regs)
243 u32 mask = 0xFFFFFFFF;
244 writel(mask, &regs->outbound_intr_mask);
245 /* Dummy readl to force pci flush */
246 readl(&regs->outbound_intr_mask);
250 * megasas_read_fw_status_reg_ppc - returns the current FW status value
251 * @regs: MFI register set
253 static u32
254 megasas_read_fw_status_reg_ppc(struct megasas_register_set __iomem * regs)
256 return readl(&(regs)->outbound_scratch_pad);
260 * megasas_clear_interrupt_ppc - Check & clear interrupt
261 * @regs: MFI register set
263 static int
264 megasas_clear_intr_ppc(struct megasas_register_set __iomem * regs)
266 u32 status;
268 * Check if it is our interrupt
270 status = readl(&regs->outbound_intr_status);
272 if (!(status & MFI_REPLY_1078_MESSAGE_INTERRUPT)) {
273 return 1;
277 * Clear the interrupt by writing back the same value
279 writel(status, &regs->outbound_doorbell_clear);
281 return 0;
284 * megasas_fire_cmd_ppc - Sends command to the FW
285 * @frame_phys_addr : Physical address of cmd
286 * @frame_count : Number of frames for the command
287 * @regs : MFI register set
289 static inline void
290 megasas_fire_cmd_ppc(dma_addr_t frame_phys_addr, u32 frame_count, struct megasas_register_set __iomem *regs)
292 writel((frame_phys_addr | (frame_count<<1))|1,
293 &(regs)->inbound_queue_port);
296 static struct megasas_instance_template megasas_instance_template_ppc = {
298 .fire_cmd = megasas_fire_cmd_ppc,
299 .enable_intr = megasas_enable_intr_ppc,
300 .disable_intr = megasas_disable_intr_ppc,
301 .clear_intr = megasas_clear_intr_ppc,
302 .read_fw_status_reg = megasas_read_fw_status_reg_ppc,
306 * This is the end of set of functions & definitions
307 * specific to ppc (deviceid : 0x60) controllers
311 * megasas_issue_polled - Issues a polling command
312 * @instance: Adapter soft state
313 * @cmd: Command packet to be issued
315 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
317 static int
318 megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
320 int i;
321 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
323 struct megasas_header *frame_hdr = &cmd->frame->hdr;
325 frame_hdr->cmd_status = 0xFF;
326 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
329 * Issue the frame using inbound queue port
331 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
334 * Wait for cmd_status to change
336 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
337 rmb();
338 msleep(1);
341 if (frame_hdr->cmd_status == 0xff)
342 return -ETIME;
344 return 0;
348 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
349 * @instance: Adapter soft state
350 * @cmd: Command to be issued
352 * This function waits on an event for the command to be returned from ISR.
353 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
354 * Used to issue ioctl commands.
356 static int
357 megasas_issue_blocked_cmd(struct megasas_instance *instance,
358 struct megasas_cmd *cmd)
360 cmd->cmd_status = ENODATA;
362 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
364 wait_event_timeout(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA),
365 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
367 return 0;
371 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
372 * @instance: Adapter soft state
373 * @cmd_to_abort: Previously issued cmd to be aborted
375 * MFI firmware can abort previously issued AEN comamnd (automatic event
376 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
377 * cmd and waits for return status.
378 * Max wait time is MEGASAS_INTERNAL_CMD_WAIT_TIME secs
380 static int
381 megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
382 struct megasas_cmd *cmd_to_abort)
384 struct megasas_cmd *cmd;
385 struct megasas_abort_frame *abort_fr;
387 cmd = megasas_get_cmd(instance);
389 if (!cmd)
390 return -1;
392 abort_fr = &cmd->frame->abort;
395 * Prepare and issue the abort frame
397 abort_fr->cmd = MFI_CMD_ABORT;
398 abort_fr->cmd_status = 0xFF;
399 abort_fr->flags = 0;
400 abort_fr->abort_context = cmd_to_abort->index;
401 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
402 abort_fr->abort_mfi_phys_addr_hi = 0;
404 cmd->sync_cmd = 1;
405 cmd->cmd_status = 0xFF;
407 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
410 * Wait for this cmd to complete
412 wait_event_timeout(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF),
413 MEGASAS_INTERNAL_CMD_WAIT_TIME*HZ);
415 megasas_return_cmd(instance, cmd);
416 return 0;
420 * megasas_make_sgl32 - Prepares 32-bit SGL
421 * @instance: Adapter soft state
422 * @scp: SCSI command from the mid-layer
423 * @mfi_sgl: SGL to be filled in
425 * If successful, this function returns the number of SG elements. Otherwise,
426 * it returnes -1.
428 static int
429 megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
430 union megasas_sgl *mfi_sgl)
432 int i;
433 int sge_count;
434 struct scatterlist *os_sgl;
436 sge_count = scsi_dma_map(scp);
437 BUG_ON(sge_count < 0);
439 if (sge_count) {
440 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
441 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
442 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
445 return sge_count;
449 * megasas_make_sgl64 - Prepares 64-bit SGL
450 * @instance: Adapter soft state
451 * @scp: SCSI command from the mid-layer
452 * @mfi_sgl: SGL to be filled in
454 * If successful, this function returns the number of SG elements. Otherwise,
455 * it returnes -1.
457 static int
458 megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
459 union megasas_sgl *mfi_sgl)
461 int i;
462 int sge_count;
463 struct scatterlist *os_sgl;
465 sge_count = scsi_dma_map(scp);
466 BUG_ON(sge_count < 0);
468 if (sge_count) {
469 scsi_for_each_sg(scp, os_sgl, sge_count, i) {
470 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
471 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
474 return sge_count;
478 * megasas_get_frame_count - Computes the number of frames
479 * @sge_count : number of sg elements
481 * Returns the number of frames required for numnber of sge's (sge_count)
484 static u32 megasas_get_frame_count(u8 sge_count)
486 int num_cnt;
487 int sge_bytes;
488 u32 sge_sz;
489 u32 frame_count=0;
491 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
492 sizeof(struct megasas_sge32);
495 * Main frame can contain 2 SGEs for 64-bit SGLs and
496 * 3 SGEs for 32-bit SGLs
498 if (IS_DMA64)
499 num_cnt = sge_count - 2;
500 else
501 num_cnt = sge_count - 3;
503 if(num_cnt>0){
504 sge_bytes = sge_sz * num_cnt;
506 frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
507 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) ;
509 /* Main frame */
510 frame_count +=1;
512 if (frame_count > 7)
513 frame_count = 8;
514 return frame_count;
518 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
519 * @instance: Adapter soft state
520 * @scp: SCSI command
521 * @cmd: Command to be prepared in
523 * This function prepares CDB commands. These are typcially pass-through
524 * commands to the devices.
526 static int
527 megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
528 struct megasas_cmd *cmd)
530 u32 is_logical;
531 u32 device_id;
532 u16 flags = 0;
533 struct megasas_pthru_frame *pthru;
535 is_logical = MEGASAS_IS_LOGICAL(scp);
536 device_id = MEGASAS_DEV_INDEX(instance, scp);
537 pthru = (struct megasas_pthru_frame *)cmd->frame;
539 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
540 flags = MFI_FRAME_DIR_WRITE;
541 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
542 flags = MFI_FRAME_DIR_READ;
543 else if (scp->sc_data_direction == PCI_DMA_NONE)
544 flags = MFI_FRAME_DIR_NONE;
547 * Prepare the DCDB frame
549 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
550 pthru->cmd_status = 0x0;
551 pthru->scsi_status = 0x0;
552 pthru->target_id = device_id;
553 pthru->lun = scp->device->lun;
554 pthru->cdb_len = scp->cmd_len;
555 pthru->timeout = 0;
556 pthru->flags = flags;
557 pthru->data_xfer_len = scsi_bufflen(scp);
559 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
562 * Construct SGL
564 if (IS_DMA64) {
565 pthru->flags |= MFI_FRAME_SGL64;
566 pthru->sge_count = megasas_make_sgl64(instance, scp,
567 &pthru->sgl);
568 } else
569 pthru->sge_count = megasas_make_sgl32(instance, scp,
570 &pthru->sgl);
573 * Sense info specific
575 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
576 pthru->sense_buf_phys_addr_hi = 0;
577 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
580 * Compute the total number of frames this command consumes. FW uses
581 * this number to pull sufficient number of frames from host memory.
583 cmd->frame_count = megasas_get_frame_count(pthru->sge_count);
585 return cmd->frame_count;
589 * megasas_build_ldio - Prepares IOs to logical devices
590 * @instance: Adapter soft state
591 * @scp: SCSI command
592 * @cmd: Command to to be prepared
594 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
596 static int
597 megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
598 struct megasas_cmd *cmd)
600 u32 device_id;
601 u8 sc = scp->cmnd[0];
602 u16 flags = 0;
603 struct megasas_io_frame *ldio;
605 device_id = MEGASAS_DEV_INDEX(instance, scp);
606 ldio = (struct megasas_io_frame *)cmd->frame;
608 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
609 flags = MFI_FRAME_DIR_WRITE;
610 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
611 flags = MFI_FRAME_DIR_READ;
614 * Prepare the Logical IO frame: 2nd bit is zero for all read cmds
616 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
617 ldio->cmd_status = 0x0;
618 ldio->scsi_status = 0x0;
619 ldio->target_id = device_id;
620 ldio->timeout = 0;
621 ldio->reserved_0 = 0;
622 ldio->pad_0 = 0;
623 ldio->flags = flags;
624 ldio->start_lba_hi = 0;
625 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
628 * 6-byte READ(0x08) or WRITE(0x0A) cdb
630 if (scp->cmd_len == 6) {
631 ldio->lba_count = (u32) scp->cmnd[4];
632 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
633 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
635 ldio->start_lba_lo &= 0x1FFFFF;
639 * 10-byte READ(0x28) or WRITE(0x2A) cdb
641 else if (scp->cmd_len == 10) {
642 ldio->lba_count = (u32) scp->cmnd[8] |
643 ((u32) scp->cmnd[7] << 8);
644 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
645 ((u32) scp->cmnd[3] << 16) |
646 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
650 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
652 else if (scp->cmd_len == 12) {
653 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
654 ((u32) scp->cmnd[7] << 16) |
655 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
657 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
658 ((u32) scp->cmnd[3] << 16) |
659 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
663 * 16-byte READ(0x88) or WRITE(0x8A) cdb
665 else if (scp->cmd_len == 16) {
666 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
667 ((u32) scp->cmnd[11] << 16) |
668 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
670 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
671 ((u32) scp->cmnd[7] << 16) |
672 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
674 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
675 ((u32) scp->cmnd[3] << 16) |
676 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
681 * Construct SGL
683 if (IS_DMA64) {
684 ldio->flags |= MFI_FRAME_SGL64;
685 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
686 } else
687 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
690 * Sense info specific
692 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
693 ldio->sense_buf_phys_addr_hi = 0;
694 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
697 * Compute the total number of frames this command consumes. FW uses
698 * this number to pull sufficient number of frames from host memory.
700 cmd->frame_count = megasas_get_frame_count(ldio->sge_count);
702 return cmd->frame_count;
706 * megasas_is_ldio - Checks if the cmd is for logical drive
707 * @scmd: SCSI command
709 * Called by megasas_queue_command to find out if the command to be queued
710 * is a logical drive command
712 static inline int megasas_is_ldio(struct scsi_cmnd *cmd)
714 if (!MEGASAS_IS_LOGICAL(cmd))
715 return 0;
716 switch (cmd->cmnd[0]) {
717 case READ_10:
718 case WRITE_10:
719 case READ_12:
720 case WRITE_12:
721 case READ_6:
722 case WRITE_6:
723 case READ_16:
724 case WRITE_16:
725 return 1;
726 default:
727 return 0;
732 * megasas_dump_pending_frames - Dumps the frame address of all pending cmds
733 * in FW
734 * @instance: Adapter soft state
736 static inline void
737 megasas_dump_pending_frames(struct megasas_instance *instance)
739 struct megasas_cmd *cmd;
740 int i,n;
741 union megasas_sgl *mfi_sgl;
742 struct megasas_io_frame *ldio;
743 struct megasas_pthru_frame *pthru;
744 u32 sgcount;
745 u32 max_cmd = instance->max_fw_cmds;
747 printk(KERN_ERR "\nmegasas[%d]: Dumping Frame Phys Address of all pending cmds in FW\n",instance->host->host_no);
748 printk(KERN_ERR "megasas[%d]: Total OS Pending cmds : %d\n",instance->host->host_no,atomic_read(&instance->fw_outstanding));
749 if (IS_DMA64)
750 printk(KERN_ERR "\nmegasas[%d]: 64 bit SGLs were sent to FW\n",instance->host->host_no);
751 else
752 printk(KERN_ERR "\nmegasas[%d]: 32 bit SGLs were sent to FW\n",instance->host->host_no);
754 printk(KERN_ERR "megasas[%d]: Pending OS cmds in FW : \n",instance->host->host_no);
755 for (i = 0; i < max_cmd; i++) {
756 cmd = instance->cmd_list[i];
757 if(!cmd->scmd)
758 continue;
759 printk(KERN_ERR "megasas[%d]: Frame addr :0x%08lx : ",instance->host->host_no,(unsigned long)cmd->frame_phys_addr);
760 if (megasas_is_ldio(cmd->scmd)){
761 ldio = (struct megasas_io_frame *)cmd->frame;
762 mfi_sgl = &ldio->sgl;
763 sgcount = ldio->sge_count;
764 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lba lo : 0x%x, lba_hi : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no, cmd->frame_count,ldio->cmd,ldio->target_id, ldio->start_lba_lo,ldio->start_lba_hi,ldio->sense_buf_phys_addr_lo,sgcount);
766 else {
767 pthru = (struct megasas_pthru_frame *) cmd->frame;
768 mfi_sgl = &pthru->sgl;
769 sgcount = pthru->sge_count;
770 printk(KERN_ERR "megasas[%d]: frame count : 0x%x, Cmd : 0x%x, Tgt id : 0x%x, lun : 0x%x, cdb_len : 0x%x, data xfer len : 0x%x, sense_buf addr : 0x%x,sge count : 0x%x\n",instance->host->host_no,cmd->frame_count,pthru->cmd,pthru->target_id,pthru->lun,pthru->cdb_len , pthru->data_xfer_len,pthru->sense_buf_phys_addr_lo,sgcount);
772 if(megasas_dbg_lvl & MEGASAS_DBG_LVL){
773 for (n = 0; n < sgcount; n++){
774 if (IS_DMA64)
775 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%08lx ",mfi_sgl->sge64[n].length , (unsigned long)mfi_sgl->sge64[n].phys_addr) ;
776 else
777 printk(KERN_ERR "megasas: sgl len : 0x%x, sgl addr : 0x%x ",mfi_sgl->sge32[n].length , mfi_sgl->sge32[n].phys_addr) ;
780 printk(KERN_ERR "\n");
781 } /*for max_cmd*/
782 printk(KERN_ERR "\nmegasas[%d]: Pending Internal cmds in FW : \n",instance->host->host_no);
783 for (i = 0; i < max_cmd; i++) {
785 cmd = instance->cmd_list[i];
787 if(cmd->sync_cmd == 1){
788 printk(KERN_ERR "0x%08lx : ", (unsigned long)cmd->frame_phys_addr);
791 printk(KERN_ERR "megasas[%d]: Dumping Done.\n\n",instance->host->host_no);
795 * megasas_queue_command - Queue entry point
796 * @scmd: SCSI command to be queued
797 * @done: Callback entry point
799 static int
800 megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
802 u32 frame_count;
803 struct megasas_cmd *cmd;
804 struct megasas_instance *instance;
806 instance = (struct megasas_instance *)
807 scmd->device->host->hostdata;
809 /* Don't process if we have already declared adapter dead */
810 if (instance->hw_crit_error)
811 return SCSI_MLQUEUE_HOST_BUSY;
813 scmd->scsi_done = done;
814 scmd->result = 0;
816 if (MEGASAS_IS_LOGICAL(scmd) &&
817 (scmd->device->id >= MEGASAS_MAX_LD || scmd->device->lun)) {
818 scmd->result = DID_BAD_TARGET << 16;
819 goto out_done;
822 switch (scmd->cmnd[0]) {
823 case SYNCHRONIZE_CACHE:
825 * FW takes care of flush cache on its own
826 * No need to send it down
828 scmd->result = DID_OK << 16;
829 goto out_done;
830 default:
831 break;
834 cmd = megasas_get_cmd(instance);
835 if (!cmd)
836 return SCSI_MLQUEUE_HOST_BUSY;
839 * Logical drive command
841 if (megasas_is_ldio(scmd))
842 frame_count = megasas_build_ldio(instance, scmd, cmd);
843 else
844 frame_count = megasas_build_dcdb(instance, scmd, cmd);
846 if (!frame_count)
847 goto out_return_cmd;
849 cmd->scmd = scmd;
850 scmd->SCp.ptr = (char *)cmd;
853 * Issue the command to the FW
855 atomic_inc(&instance->fw_outstanding);
857 instance->instancet->fire_cmd(cmd->frame_phys_addr ,cmd->frame_count-1,instance->reg_set);
859 return 0;
861 out_return_cmd:
862 megasas_return_cmd(instance, cmd);
863 out_done:
864 done(scmd);
865 return 0;
868 static int megasas_slave_configure(struct scsi_device *sdev)
871 * Don't export physical disk devices to the disk driver.
873 * FIXME: Currently we don't export them to the midlayer at all.
874 * That will be fixed once LSI engineers have audited the
875 * firmware for possible issues.
877 if (sdev->channel < MEGASAS_MAX_PD_CHANNELS && sdev->type == TYPE_DISK)
878 return -ENXIO;
881 * The RAID firmware may require extended timeouts.
883 if (sdev->channel >= MEGASAS_MAX_PD_CHANNELS)
884 sdev->timeout = MEGASAS_DEFAULT_CMD_TIMEOUT * HZ;
885 return 0;
889 * megasas_wait_for_outstanding - Wait for all outstanding cmds
890 * @instance: Adapter soft state
892 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
893 * complete all its outstanding commands. Returns error if one or more IOs
894 * are pending after this time period. It also marks the controller dead.
896 static int megasas_wait_for_outstanding(struct megasas_instance *instance)
898 int i;
899 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
901 for (i = 0; i < wait_time; i++) {
903 int outstanding = atomic_read(&instance->fw_outstanding);
905 if (!outstanding)
906 break;
908 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
909 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
910 "commands to complete\n",i,outstanding);
913 msleep(1000);
916 if (atomic_read(&instance->fw_outstanding)) {
918 * Send signal to FW to stop processing any pending cmds.
919 * The controller will be taken offline by the OS now.
921 writel(MFI_STOP_ADP,
922 &instance->reg_set->inbound_doorbell);
923 megasas_dump_pending_frames(instance);
924 instance->hw_crit_error = 1;
925 return FAILED;
928 return SUCCESS;
932 * megasas_generic_reset - Generic reset routine
933 * @scmd: Mid-layer SCSI command
935 * This routine implements a generic reset handler for device, bus and host
936 * reset requests. Device, bus and host specific reset handlers can use this
937 * function after they do their specific tasks.
939 static int megasas_generic_reset(struct scsi_cmnd *scmd)
941 int ret_val;
942 struct megasas_instance *instance;
944 instance = (struct megasas_instance *)scmd->device->host->hostdata;
946 scmd_printk(KERN_NOTICE, scmd, "megasas: RESET -%ld cmd=%x retries=%x\n",
947 scmd->serial_number, scmd->cmnd[0], scmd->retries);
949 if (instance->hw_crit_error) {
950 printk(KERN_ERR "megasas: cannot recover from previous reset "
951 "failures\n");
952 return FAILED;
955 ret_val = megasas_wait_for_outstanding(instance);
956 if (ret_val == SUCCESS)
957 printk(KERN_NOTICE "megasas: reset successful \n");
958 else
959 printk(KERN_ERR "megasas: failed to do reset\n");
961 return ret_val;
965 * megasas_reset_timer - quiesce the adapter if required
966 * @scmd: scsi cmnd
968 * Sets the FW busy flag and reduces the host->can_queue if the
969 * cmd has not been completed within the timeout period.
971 static enum
972 scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
974 struct megasas_cmd *cmd = (struct megasas_cmd *)scmd->SCp.ptr;
975 struct megasas_instance *instance;
976 unsigned long flags;
978 if (time_after(jiffies, scmd->jiffies_at_alloc +
979 (MEGASAS_DEFAULT_CMD_TIMEOUT * 2) * HZ)) {
980 return EH_NOT_HANDLED;
983 instance = cmd->instance;
984 if (!(instance->flag & MEGASAS_FW_BUSY)) {
985 /* FW is busy, throttle IO */
986 spin_lock_irqsave(instance->host->host_lock, flags);
988 instance->host->can_queue = 16;
989 instance->last_time = jiffies;
990 instance->flag |= MEGASAS_FW_BUSY;
992 spin_unlock_irqrestore(instance->host->host_lock, flags);
994 return EH_RESET_TIMER;
998 * megasas_reset_device - Device reset handler entry point
1000 static int megasas_reset_device(struct scsi_cmnd *scmd)
1002 int ret;
1005 * First wait for all commands to complete
1007 ret = megasas_generic_reset(scmd);
1009 return ret;
1013 * megasas_reset_bus_host - Bus & host reset handler entry point
1015 static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
1017 int ret;
1020 * First wait for all commands to complete
1022 ret = megasas_generic_reset(scmd);
1024 return ret;
1028 * megasas_bios_param - Returns disk geometry for a disk
1029 * @sdev: device handle
1030 * @bdev: block device
1031 * @capacity: drive capacity
1032 * @geom: geometry parameters
1034 static int
1035 megasas_bios_param(struct scsi_device *sdev, struct block_device *bdev,
1036 sector_t capacity, int geom[])
1038 int heads;
1039 int sectors;
1040 sector_t cylinders;
1041 unsigned long tmp;
1042 /* Default heads (64) & sectors (32) */
1043 heads = 64;
1044 sectors = 32;
1046 tmp = heads * sectors;
1047 cylinders = capacity;
1049 sector_div(cylinders, tmp);
1052 * Handle extended translation size for logical drives > 1Gb
1055 if (capacity >= 0x200000) {
1056 heads = 255;
1057 sectors = 63;
1058 tmp = heads*sectors;
1059 cylinders = capacity;
1060 sector_div(cylinders, tmp);
1063 geom[0] = heads;
1064 geom[1] = sectors;
1065 geom[2] = cylinders;
1067 return 0;
1071 * megasas_service_aen - Processes an event notification
1072 * @instance: Adapter soft state
1073 * @cmd: AEN command completed by the ISR
1075 * For AEN, driver sends a command down to FW that is held by the FW till an
1076 * event occurs. When an event of interest occurs, FW completes the command
1077 * that it was previously holding.
1079 * This routines sends SIGIO signal to processes that have registered with the
1080 * driver for AEN.
1082 static void
1083 megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
1086 * Don't signal app if it is just an aborted previously registered aen
1088 if (!cmd->abort_aen)
1089 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
1090 else
1091 cmd->abort_aen = 0;
1093 instance->aen_cmd = NULL;
1094 megasas_return_cmd(instance, cmd);
1098 * Scsi host template for megaraid_sas driver
1100 static struct scsi_host_template megasas_template = {
1102 .module = THIS_MODULE,
1103 .name = "LSI Logic SAS based MegaRAID driver",
1104 .proc_name = "megaraid_sas",
1105 .slave_configure = megasas_slave_configure,
1106 .queuecommand = megasas_queue_command,
1107 .eh_device_reset_handler = megasas_reset_device,
1108 .eh_bus_reset_handler = megasas_reset_bus_host,
1109 .eh_host_reset_handler = megasas_reset_bus_host,
1110 .eh_timed_out = megasas_reset_timer,
1111 .bios_param = megasas_bios_param,
1112 .use_clustering = ENABLE_CLUSTERING,
1116 * megasas_complete_int_cmd - Completes an internal command
1117 * @instance: Adapter soft state
1118 * @cmd: Command to be completed
1120 * The megasas_issue_blocked_cmd() function waits for a command to complete
1121 * after it issues a command. This function wakes up that waiting routine by
1122 * calling wake_up() on the wait queue.
1124 static void
1125 megasas_complete_int_cmd(struct megasas_instance *instance,
1126 struct megasas_cmd *cmd)
1128 cmd->cmd_status = cmd->frame->io.cmd_status;
1130 if (cmd->cmd_status == ENODATA) {
1131 cmd->cmd_status = 0;
1133 wake_up(&instance->int_cmd_wait_q);
1137 * megasas_complete_abort - Completes aborting a command
1138 * @instance: Adapter soft state
1139 * @cmd: Cmd that was issued to abort another cmd
1141 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
1142 * after it issues an abort on a previously issued command. This function
1143 * wakes up all functions waiting on the same wait queue.
1145 static void
1146 megasas_complete_abort(struct megasas_instance *instance,
1147 struct megasas_cmd *cmd)
1149 if (cmd->sync_cmd) {
1150 cmd->sync_cmd = 0;
1151 cmd->cmd_status = 0;
1152 wake_up(&instance->abort_cmd_wait_q);
1155 return;
1159 * megasas_complete_cmd - Completes a command
1160 * @instance: Adapter soft state
1161 * @cmd: Command to be completed
1162 * @alt_status: If non-zero, use this value as status to
1163 * SCSI mid-layer instead of the value returned
1164 * by the FW. This should be used if caller wants
1165 * an alternate status (as in the case of aborted
1166 * commands)
1168 static void
1169 megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
1170 u8 alt_status)
1172 int exception = 0;
1173 struct megasas_header *hdr = &cmd->frame->hdr;
1175 if (cmd->scmd)
1176 cmd->scmd->SCp.ptr = NULL;
1178 switch (hdr->cmd) {
1180 case MFI_CMD_PD_SCSI_IO:
1181 case MFI_CMD_LD_SCSI_IO:
1184 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
1185 * issued either through an IO path or an IOCTL path. If it
1186 * was via IOCTL, we will send it to internal completion.
1188 if (cmd->sync_cmd) {
1189 cmd->sync_cmd = 0;
1190 megasas_complete_int_cmd(instance, cmd);
1191 break;
1194 case MFI_CMD_LD_READ:
1195 case MFI_CMD_LD_WRITE:
1197 if (alt_status) {
1198 cmd->scmd->result = alt_status << 16;
1199 exception = 1;
1202 if (exception) {
1204 atomic_dec(&instance->fw_outstanding);
1206 scsi_dma_unmap(cmd->scmd);
1207 cmd->scmd->scsi_done(cmd->scmd);
1208 megasas_return_cmd(instance, cmd);
1210 break;
1213 switch (hdr->cmd_status) {
1215 case MFI_STAT_OK:
1216 cmd->scmd->result = DID_OK << 16;
1217 break;
1219 case MFI_STAT_SCSI_IO_FAILED:
1220 case MFI_STAT_LD_INIT_IN_PROGRESS:
1221 cmd->scmd->result =
1222 (DID_ERROR << 16) | hdr->scsi_status;
1223 break;
1225 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1227 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1229 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1230 memset(cmd->scmd->sense_buffer, 0,
1231 SCSI_SENSE_BUFFERSIZE);
1232 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1233 hdr->sense_len);
1235 cmd->scmd->result |= DRIVER_SENSE << 24;
1238 break;
1240 case MFI_STAT_LD_OFFLINE:
1241 case MFI_STAT_DEVICE_NOT_FOUND:
1242 cmd->scmd->result = DID_BAD_TARGET << 16;
1243 break;
1245 default:
1246 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1247 hdr->cmd_status);
1248 cmd->scmd->result = DID_ERROR << 16;
1249 break;
1252 atomic_dec(&instance->fw_outstanding);
1254 scsi_dma_unmap(cmd->scmd);
1255 cmd->scmd->scsi_done(cmd->scmd);
1256 megasas_return_cmd(instance, cmd);
1258 break;
1260 case MFI_CMD_SMP:
1261 case MFI_CMD_STP:
1262 case MFI_CMD_DCMD:
1265 * See if got an event notification
1267 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1268 megasas_service_aen(instance, cmd);
1269 else
1270 megasas_complete_int_cmd(instance, cmd);
1272 break;
1274 case MFI_CMD_ABORT:
1276 * Cmd issued to abort another cmd returned
1278 megasas_complete_abort(instance, cmd);
1279 break;
1281 default:
1282 printk("megasas: Unknown command completed! [0x%X]\n",
1283 hdr->cmd);
1284 break;
1289 * megasas_deplete_reply_queue - Processes all completed commands
1290 * @instance: Adapter soft state
1291 * @alt_status: Alternate status to be returned to
1292 * SCSI mid-layer instead of the status
1293 * returned by the FW
1295 static int
1296 megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1299 * Check if it is our interrupt
1300 * Clear the interrupt
1302 if(instance->instancet->clear_intr(instance->reg_set))
1303 return IRQ_NONE;
1305 if (instance->hw_crit_error)
1306 goto out_done;
1308 * Schedule the tasklet for cmd completion
1310 tasklet_schedule(&instance->isr_tasklet);
1311 out_done:
1312 return IRQ_HANDLED;
1316 * megasas_isr - isr entry point
1318 static irqreturn_t megasas_isr(int irq, void *devp)
1320 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1321 DID_OK);
1325 * megasas_transition_to_ready - Move the FW to READY state
1326 * @instance: Adapter soft state
1328 * During the initialization, FW passes can potentially be in any one of
1329 * several possible states. If the FW in operational, waiting-for-handshake
1330 * states, driver must take steps to bring it to ready state. Otherwise, it
1331 * has to wait for the ready state.
1333 static int
1334 megasas_transition_to_ready(struct megasas_instance* instance)
1336 int i;
1337 u8 max_wait;
1338 u32 fw_state;
1339 u32 cur_state;
1341 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) & MFI_STATE_MASK;
1343 if (fw_state != MFI_STATE_READY)
1344 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1345 " state\n");
1347 while (fw_state != MFI_STATE_READY) {
1349 switch (fw_state) {
1351 case MFI_STATE_FAULT:
1353 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1354 return -ENODEV;
1356 case MFI_STATE_WAIT_HANDSHAKE:
1358 * Set the CLR bit in inbound doorbell
1360 writel(MFI_INIT_CLEAR_HANDSHAKE|MFI_INIT_HOTPLUG,
1361 &instance->reg_set->inbound_doorbell);
1363 max_wait = 2;
1364 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1365 break;
1367 case MFI_STATE_BOOT_MESSAGE_PENDING:
1368 writel(MFI_INIT_HOTPLUG,
1369 &instance->reg_set->inbound_doorbell);
1371 max_wait = 10;
1372 cur_state = MFI_STATE_BOOT_MESSAGE_PENDING;
1373 break;
1375 case MFI_STATE_OPERATIONAL:
1377 * Bring it to READY state; assuming max wait 10 secs
1379 instance->instancet->disable_intr(instance->reg_set);
1380 writel(MFI_RESET_FLAGS, &instance->reg_set->inbound_doorbell);
1382 max_wait = 10;
1383 cur_state = MFI_STATE_OPERATIONAL;
1384 break;
1386 case MFI_STATE_UNDEFINED:
1388 * This state should not last for more than 2 seconds
1390 max_wait = 2;
1391 cur_state = MFI_STATE_UNDEFINED;
1392 break;
1394 case MFI_STATE_BB_INIT:
1395 max_wait = 2;
1396 cur_state = MFI_STATE_BB_INIT;
1397 break;
1399 case MFI_STATE_FW_INIT:
1400 max_wait = 20;
1401 cur_state = MFI_STATE_FW_INIT;
1402 break;
1404 case MFI_STATE_FW_INIT_2:
1405 max_wait = 20;
1406 cur_state = MFI_STATE_FW_INIT_2;
1407 break;
1409 case MFI_STATE_DEVICE_SCAN:
1410 max_wait = 20;
1411 cur_state = MFI_STATE_DEVICE_SCAN;
1412 break;
1414 case MFI_STATE_FLUSH_CACHE:
1415 max_wait = 20;
1416 cur_state = MFI_STATE_FLUSH_CACHE;
1417 break;
1419 default:
1420 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1421 fw_state);
1422 return -ENODEV;
1426 * The cur_state should not last for more than max_wait secs
1428 for (i = 0; i < (max_wait * 1000); i++) {
1429 fw_state = instance->instancet->read_fw_status_reg(instance->reg_set) &
1430 MFI_STATE_MASK ;
1432 if (fw_state == cur_state) {
1433 msleep(1);
1434 } else
1435 break;
1439 * Return error if fw_state hasn't changed after max_wait
1441 if (fw_state == cur_state) {
1442 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1443 "in %d secs\n", fw_state, max_wait);
1444 return -ENODEV;
1447 printk(KERN_INFO "megasas: FW now in Ready state\n");
1449 return 0;
1453 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1454 * @instance: Adapter soft state
1456 static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1458 int i;
1459 u32 max_cmd = instance->max_fw_cmds;
1460 struct megasas_cmd *cmd;
1462 if (!instance->frame_dma_pool)
1463 return;
1466 * Return all frames to pool
1468 for (i = 0; i < max_cmd; i++) {
1470 cmd = instance->cmd_list[i];
1472 if (cmd->frame)
1473 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1474 cmd->frame_phys_addr);
1476 if (cmd->sense)
1477 pci_pool_free(instance->sense_dma_pool, cmd->sense,
1478 cmd->sense_phys_addr);
1482 * Now destroy the pool itself
1484 pci_pool_destroy(instance->frame_dma_pool);
1485 pci_pool_destroy(instance->sense_dma_pool);
1487 instance->frame_dma_pool = NULL;
1488 instance->sense_dma_pool = NULL;
1492 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1493 * @instance: Adapter soft state
1495 * Each command packet has an embedded DMA memory buffer that is used for
1496 * filling MFI frame and the SG list that immediately follows the frame. This
1497 * function creates those DMA memory buffers for each command packet by using
1498 * PCI pool facility.
1500 static int megasas_create_frame_pool(struct megasas_instance *instance)
1502 int i;
1503 u32 max_cmd;
1504 u32 sge_sz;
1505 u32 sgl_sz;
1506 u32 total_sz;
1507 u32 frame_count;
1508 struct megasas_cmd *cmd;
1510 max_cmd = instance->max_fw_cmds;
1513 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1514 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1516 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1517 sizeof(struct megasas_sge32);
1520 * Calculated the number of 64byte frames required for SGL
1522 sgl_sz = sge_sz * instance->max_num_sge;
1523 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1526 * We need one extra frame for the MFI command
1528 frame_count++;
1530 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1532 * Use DMA pool facility provided by PCI layer
1534 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1535 instance->pdev, total_sz, 64,
1538 if (!instance->frame_dma_pool) {
1539 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1540 return -ENOMEM;
1543 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1544 instance->pdev, 128, 4, 0);
1546 if (!instance->sense_dma_pool) {
1547 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1549 pci_pool_destroy(instance->frame_dma_pool);
1550 instance->frame_dma_pool = NULL;
1552 return -ENOMEM;
1556 * Allocate and attach a frame to each of the commands in cmd_list.
1557 * By making cmd->index as the context instead of the &cmd, we can
1558 * always use 32bit context regardless of the architecture
1560 for (i = 0; i < max_cmd; i++) {
1562 cmd = instance->cmd_list[i];
1564 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1565 GFP_KERNEL, &cmd->frame_phys_addr);
1567 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1568 GFP_KERNEL, &cmd->sense_phys_addr);
1571 * megasas_teardown_frame_pool() takes care of freeing
1572 * whatever has been allocated
1574 if (!cmd->frame || !cmd->sense) {
1575 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1576 megasas_teardown_frame_pool(instance);
1577 return -ENOMEM;
1580 cmd->frame->io.context = cmd->index;
1583 return 0;
1587 * megasas_free_cmds - Free all the cmds in the free cmd pool
1588 * @instance: Adapter soft state
1590 static void megasas_free_cmds(struct megasas_instance *instance)
1592 int i;
1593 /* First free the MFI frame pool */
1594 megasas_teardown_frame_pool(instance);
1596 /* Free all the commands in the cmd_list */
1597 for (i = 0; i < instance->max_fw_cmds; i++)
1598 kfree(instance->cmd_list[i]);
1600 /* Free the cmd_list buffer itself */
1601 kfree(instance->cmd_list);
1602 instance->cmd_list = NULL;
1604 INIT_LIST_HEAD(&instance->cmd_pool);
1608 * megasas_alloc_cmds - Allocates the command packets
1609 * @instance: Adapter soft state
1611 * Each command that is issued to the FW, whether IO commands from the OS or
1612 * internal commands like IOCTLs, are wrapped in local data structure called
1613 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1614 * the FW.
1616 * Each frame has a 32-bit field called context (tag). This context is used
1617 * to get back the megasas_cmd from the frame when a frame gets completed in
1618 * the ISR. Typically the address of the megasas_cmd itself would be used as
1619 * the context. But we wanted to keep the differences between 32 and 64 bit
1620 * systems to the mininum. We always use 32 bit integers for the context. In
1621 * this driver, the 32 bit values are the indices into an array cmd_list.
1622 * This array is used only to look up the megasas_cmd given the context. The
1623 * free commands themselves are maintained in a linked list called cmd_pool.
1625 static int megasas_alloc_cmds(struct megasas_instance *instance)
1627 int i;
1628 int j;
1629 u32 max_cmd;
1630 struct megasas_cmd *cmd;
1632 max_cmd = instance->max_fw_cmds;
1635 * instance->cmd_list is an array of struct megasas_cmd pointers.
1636 * Allocate the dynamic array first and then allocate individual
1637 * commands.
1639 instance->cmd_list = kcalloc(max_cmd, sizeof(struct megasas_cmd*), GFP_KERNEL);
1641 if (!instance->cmd_list) {
1642 printk(KERN_DEBUG "megasas: out of memory\n");
1643 return -ENOMEM;
1647 for (i = 0; i < max_cmd; i++) {
1648 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1649 GFP_KERNEL);
1651 if (!instance->cmd_list[i]) {
1653 for (j = 0; j < i; j++)
1654 kfree(instance->cmd_list[j]);
1656 kfree(instance->cmd_list);
1657 instance->cmd_list = NULL;
1659 return -ENOMEM;
1664 * Add all the commands to command pool (instance->cmd_pool)
1666 for (i = 0; i < max_cmd; i++) {
1667 cmd = instance->cmd_list[i];
1668 memset(cmd, 0, sizeof(struct megasas_cmd));
1669 cmd->index = i;
1670 cmd->instance = instance;
1672 list_add_tail(&cmd->list, &instance->cmd_pool);
1676 * Create a frame pool and assign one frame to each cmd
1678 if (megasas_create_frame_pool(instance)) {
1679 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1680 megasas_free_cmds(instance);
1683 return 0;
1687 * megasas_get_controller_info - Returns FW's controller structure
1688 * @instance: Adapter soft state
1689 * @ctrl_info: Controller information structure
1691 * Issues an internal command (DCMD) to get the FW's controller structure.
1692 * This information is mainly used to find out the maximum IO transfer per
1693 * command supported by the FW.
1695 static int
1696 megasas_get_ctrl_info(struct megasas_instance *instance,
1697 struct megasas_ctrl_info *ctrl_info)
1699 int ret = 0;
1700 struct megasas_cmd *cmd;
1701 struct megasas_dcmd_frame *dcmd;
1702 struct megasas_ctrl_info *ci;
1703 dma_addr_t ci_h = 0;
1705 cmd = megasas_get_cmd(instance);
1707 if (!cmd) {
1708 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1709 return -ENOMEM;
1712 dcmd = &cmd->frame->dcmd;
1714 ci = pci_alloc_consistent(instance->pdev,
1715 sizeof(struct megasas_ctrl_info), &ci_h);
1717 if (!ci) {
1718 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1719 megasas_return_cmd(instance, cmd);
1720 return -ENOMEM;
1723 memset(ci, 0, sizeof(*ci));
1724 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1726 dcmd->cmd = MFI_CMD_DCMD;
1727 dcmd->cmd_status = 0xFF;
1728 dcmd->sge_count = 1;
1729 dcmd->flags = MFI_FRAME_DIR_READ;
1730 dcmd->timeout = 0;
1731 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1732 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1733 dcmd->sgl.sge32[0].phys_addr = ci_h;
1734 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1736 if (!megasas_issue_polled(instance, cmd)) {
1737 ret = 0;
1738 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1739 } else {
1740 ret = -1;
1743 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1744 ci, ci_h);
1746 megasas_return_cmd(instance, cmd);
1747 return ret;
1751 * megasas_complete_cmd_dpc - Returns FW's controller structure
1752 * @instance_addr: Address of adapter soft state
1754 * Tasklet to complete cmds
1756 static void megasas_complete_cmd_dpc(unsigned long instance_addr)
1758 u32 producer;
1759 u32 consumer;
1760 u32 context;
1761 struct megasas_cmd *cmd;
1762 struct megasas_instance *instance = (struct megasas_instance *)instance_addr;
1763 unsigned long flags;
1765 /* If we have already declared adapter dead, donot complete cmds */
1766 if (instance->hw_crit_error)
1767 return;
1769 producer = *instance->producer;
1770 consumer = *instance->consumer;
1772 while (consumer != producer) {
1773 context = instance->reply_queue[consumer];
1775 cmd = instance->cmd_list[context];
1777 megasas_complete_cmd(instance, cmd, DID_OK);
1779 consumer++;
1780 if (consumer == (instance->max_fw_cmds + 1)) {
1781 consumer = 0;
1785 *instance->consumer = producer;
1788 * Check if we can restore can_queue
1790 if (instance->flag & MEGASAS_FW_BUSY
1791 && time_after(jiffies, instance->last_time + 5 * HZ)
1792 && atomic_read(&instance->fw_outstanding) < 17) {
1794 spin_lock_irqsave(instance->host->host_lock, flags);
1795 instance->flag &= ~MEGASAS_FW_BUSY;
1796 instance->host->can_queue =
1797 instance->max_fw_cmds - MEGASAS_INT_CMDS;
1799 spin_unlock_irqrestore(instance->host->host_lock, flags);
1805 * megasas_init_mfi - Initializes the FW
1806 * @instance: Adapter soft state
1808 * This is the main function for initializing MFI firmware.
1810 static int megasas_init_mfi(struct megasas_instance *instance)
1812 u32 context_sz;
1813 u32 reply_q_sz;
1814 u32 max_sectors_1;
1815 u32 max_sectors_2;
1816 struct megasas_register_set __iomem *reg_set;
1818 struct megasas_cmd *cmd;
1819 struct megasas_ctrl_info *ctrl_info;
1821 struct megasas_init_frame *init_frame;
1822 struct megasas_init_queue_info *initq_info;
1823 dma_addr_t init_frame_h;
1824 dma_addr_t initq_info_h;
1827 * Map the message registers
1829 instance->base_addr = pci_resource_start(instance->pdev, 0);
1831 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1832 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1833 return -EBUSY;
1836 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1838 if (!instance->reg_set) {
1839 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1840 goto fail_ioremap;
1843 reg_set = instance->reg_set;
1845 switch(instance->pdev->device)
1847 case PCI_DEVICE_ID_LSI_SAS1078R:
1848 instance->instancet = &megasas_instance_template_ppc;
1849 break;
1850 case PCI_DEVICE_ID_LSI_SAS1064R:
1851 case PCI_DEVICE_ID_DELL_PERC5:
1852 default:
1853 instance->instancet = &megasas_instance_template_xscale;
1854 break;
1858 * We expect the FW state to be READY
1860 if (megasas_transition_to_ready(instance))
1861 goto fail_ready_state;
1864 * Get various operational parameters from status register
1866 instance->max_fw_cmds = instance->instancet->read_fw_status_reg(reg_set) & 0x00FFFF;
1868 * Reduce the max supported cmds by 1. This is to ensure that the
1869 * reply_q_sz (1 more than the max cmd that driver may send)
1870 * does not exceed max cmds that the FW can support
1872 instance->max_fw_cmds = instance->max_fw_cmds-1;
1873 instance->max_num_sge = (instance->instancet->read_fw_status_reg(reg_set) & 0xFF0000) >>
1874 0x10;
1876 * Create a pool of commands
1878 if (megasas_alloc_cmds(instance))
1879 goto fail_alloc_cmds;
1882 * Allocate memory for reply queue. Length of reply queue should
1883 * be _one_ more than the maximum commands handled by the firmware.
1885 * Note: When FW completes commands, it places corresponding contex
1886 * values in this circular reply queue. This circular queue is a fairly
1887 * typical producer-consumer queue. FW is the producer (of completed
1888 * commands) and the driver is the consumer.
1890 context_sz = sizeof(u32);
1891 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1893 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1894 reply_q_sz,
1895 &instance->reply_queue_h);
1897 if (!instance->reply_queue) {
1898 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1899 goto fail_reply_queue;
1903 * Prepare a init frame. Note the init frame points to queue info
1904 * structure. Each frame has SGL allocated after first 64 bytes. For
1905 * this frame - since we don't need any SGL - we use SGL's space as
1906 * queue info structure
1908 * We will not get a NULL command below. We just created the pool.
1910 cmd = megasas_get_cmd(instance);
1912 init_frame = (struct megasas_init_frame *)cmd->frame;
1913 initq_info = (struct megasas_init_queue_info *)
1914 ((unsigned long)init_frame + 64);
1916 init_frame_h = cmd->frame_phys_addr;
1917 initq_info_h = init_frame_h + 64;
1919 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1920 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1922 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1923 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1925 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1926 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1928 init_frame->cmd = MFI_CMD_INIT;
1929 init_frame->cmd_status = 0xFF;
1930 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1932 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1935 * disable the intr before firing the init frame to FW
1937 instance->instancet->disable_intr(instance->reg_set);
1940 * Issue the init frame in polled mode
1942 if (megasas_issue_polled(instance, cmd)) {
1943 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1944 goto fail_fw_init;
1947 megasas_return_cmd(instance, cmd);
1949 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1952 * Compute the max allowed sectors per IO: The controller info has two
1953 * limits on max sectors. Driver should use the minimum of these two.
1955 * 1 << stripe_sz_ops.min = max sectors per strip
1957 * Note that older firmwares ( < FW ver 30) didn't report information
1958 * to calculate max_sectors_1. So the number ended up as zero always.
1960 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1962 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1963 ctrl_info->max_strips_per_io;
1964 max_sectors_2 = ctrl_info->max_request_size;
1966 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1967 ? max_sectors_1 : max_sectors_2;
1968 } else
1969 instance->max_sectors_per_req = instance->max_num_sge *
1970 PAGE_SIZE / 512;
1972 kfree(ctrl_info);
1975 * Setup tasklet for cmd completion
1978 tasklet_init(&instance->isr_tasklet, megasas_complete_cmd_dpc,
1979 (unsigned long)instance);
1980 return 0;
1982 fail_fw_init:
1983 megasas_return_cmd(instance, cmd);
1985 pci_free_consistent(instance->pdev, reply_q_sz,
1986 instance->reply_queue, instance->reply_queue_h);
1987 fail_reply_queue:
1988 megasas_free_cmds(instance);
1990 fail_alloc_cmds:
1991 fail_ready_state:
1992 iounmap(instance->reg_set);
1994 fail_ioremap:
1995 pci_release_regions(instance->pdev);
1997 return -EINVAL;
2001 * megasas_release_mfi - Reverses the FW initialization
2002 * @intance: Adapter soft state
2004 static void megasas_release_mfi(struct megasas_instance *instance)
2006 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
2008 pci_free_consistent(instance->pdev, reply_q_sz,
2009 instance->reply_queue, instance->reply_queue_h);
2011 megasas_free_cmds(instance);
2013 iounmap(instance->reg_set);
2015 pci_release_regions(instance->pdev);
2019 * megasas_get_seq_num - Gets latest event sequence numbers
2020 * @instance: Adapter soft state
2021 * @eli: FW event log sequence numbers information
2023 * FW maintains a log of all events in a non-volatile area. Upper layers would
2024 * usually find out the latest sequence number of the events, the seq number at
2025 * the boot etc. They would "read" all the events below the latest seq number
2026 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
2027 * number), they would subsribe to AEN (asynchronous event notification) and
2028 * wait for the events to happen.
2030 static int
2031 megasas_get_seq_num(struct megasas_instance *instance,
2032 struct megasas_evt_log_info *eli)
2034 struct megasas_cmd *cmd;
2035 struct megasas_dcmd_frame *dcmd;
2036 struct megasas_evt_log_info *el_info;
2037 dma_addr_t el_info_h = 0;
2039 cmd = megasas_get_cmd(instance);
2041 if (!cmd) {
2042 return -ENOMEM;
2045 dcmd = &cmd->frame->dcmd;
2046 el_info = pci_alloc_consistent(instance->pdev,
2047 sizeof(struct megasas_evt_log_info),
2048 &el_info_h);
2050 if (!el_info) {
2051 megasas_return_cmd(instance, cmd);
2052 return -ENOMEM;
2055 memset(el_info, 0, sizeof(*el_info));
2056 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2058 dcmd->cmd = MFI_CMD_DCMD;
2059 dcmd->cmd_status = 0x0;
2060 dcmd->sge_count = 1;
2061 dcmd->flags = MFI_FRAME_DIR_READ;
2062 dcmd->timeout = 0;
2063 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
2064 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
2065 dcmd->sgl.sge32[0].phys_addr = el_info_h;
2066 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
2068 megasas_issue_blocked_cmd(instance, cmd);
2071 * Copy the data back into callers buffer
2073 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
2075 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
2076 el_info, el_info_h);
2078 megasas_return_cmd(instance, cmd);
2080 return 0;
2084 * megasas_register_aen - Registers for asynchronous event notification
2085 * @instance: Adapter soft state
2086 * @seq_num: The starting sequence number
2087 * @class_locale: Class of the event
2089 * This function subscribes for AEN for events beyond the @seq_num. It requests
2090 * to be notified if and only if the event is of type @class_locale
2092 static int
2093 megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
2094 u32 class_locale_word)
2096 int ret_val;
2097 struct megasas_cmd *cmd;
2098 struct megasas_dcmd_frame *dcmd;
2099 union megasas_evt_class_locale curr_aen;
2100 union megasas_evt_class_locale prev_aen;
2103 * If there an AEN pending already (aen_cmd), check if the
2104 * class_locale of that pending AEN is inclusive of the new
2105 * AEN request we currently have. If it is, then we don't have
2106 * to do anything. In other words, whichever events the current
2107 * AEN request is subscribing to, have already been subscribed
2108 * to.
2110 * If the old_cmd is _not_ inclusive, then we have to abort
2111 * that command, form a class_locale that is superset of both
2112 * old and current and re-issue to the FW
2115 curr_aen.word = class_locale_word;
2117 if (instance->aen_cmd) {
2119 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
2122 * A class whose enum value is smaller is inclusive of all
2123 * higher values. If a PROGRESS (= -1) was previously
2124 * registered, then a new registration requests for higher
2125 * classes need not be sent to FW. They are automatically
2126 * included.
2128 * Locale numbers don't have such hierarchy. They are bitmap
2129 * values
2131 if ((prev_aen.members.class <= curr_aen.members.class) &&
2132 !((prev_aen.members.locale & curr_aen.members.locale) ^
2133 curr_aen.members.locale)) {
2135 * Previously issued event registration includes
2136 * current request. Nothing to do.
2138 return 0;
2139 } else {
2140 curr_aen.members.locale |= prev_aen.members.locale;
2142 if (prev_aen.members.class < curr_aen.members.class)
2143 curr_aen.members.class = prev_aen.members.class;
2145 instance->aen_cmd->abort_aen = 1;
2146 ret_val = megasas_issue_blocked_abort_cmd(instance,
2147 instance->
2148 aen_cmd);
2150 if (ret_val) {
2151 printk(KERN_DEBUG "megasas: Failed to abort "
2152 "previous AEN command\n");
2153 return ret_val;
2158 cmd = megasas_get_cmd(instance);
2160 if (!cmd)
2161 return -ENOMEM;
2163 dcmd = &cmd->frame->dcmd;
2165 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
2168 * Prepare DCMD for aen registration
2170 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2172 dcmd->cmd = MFI_CMD_DCMD;
2173 dcmd->cmd_status = 0x0;
2174 dcmd->sge_count = 1;
2175 dcmd->flags = MFI_FRAME_DIR_READ;
2176 dcmd->timeout = 0;
2177 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
2178 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
2179 dcmd->mbox.w[0] = seq_num;
2180 dcmd->mbox.w[1] = curr_aen.word;
2181 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
2182 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
2185 * Store reference to the cmd used to register for AEN. When an
2186 * application wants us to register for AEN, we have to abort this
2187 * cmd and re-register with a new EVENT LOCALE supplied by that app
2189 instance->aen_cmd = cmd;
2192 * Issue the aen registration frame
2194 instance->instancet->fire_cmd(cmd->frame_phys_addr ,0,instance->reg_set);
2196 return 0;
2200 * megasas_start_aen - Subscribes to AEN during driver load time
2201 * @instance: Adapter soft state
2203 static int megasas_start_aen(struct megasas_instance *instance)
2205 struct megasas_evt_log_info eli;
2206 union megasas_evt_class_locale class_locale;
2209 * Get the latest sequence number from FW
2211 memset(&eli, 0, sizeof(eli));
2213 if (megasas_get_seq_num(instance, &eli))
2214 return -1;
2217 * Register AEN with FW for latest sequence number plus 1
2219 class_locale.members.reserved = 0;
2220 class_locale.members.locale = MR_EVT_LOCALE_ALL;
2221 class_locale.members.class = MR_EVT_CLASS_DEBUG;
2223 return megasas_register_aen(instance, eli.newest_seq_num + 1,
2224 class_locale.word);
2228 * megasas_io_attach - Attaches this driver to SCSI mid-layer
2229 * @instance: Adapter soft state
2231 static int megasas_io_attach(struct megasas_instance *instance)
2233 struct Scsi_Host *host = instance->host;
2236 * Export parameters required by SCSI mid-layer
2238 host->irq = instance->pdev->irq;
2239 host->unique_id = instance->unique_id;
2240 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
2241 host->this_id = instance->init_id;
2242 host->sg_tablesize = instance->max_num_sge;
2243 host->max_sectors = instance->max_sectors_per_req;
2244 host->cmd_per_lun = 128;
2245 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
2246 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
2247 host->max_lun = MEGASAS_MAX_LUN;
2248 host->max_cmd_len = 16;
2251 * Notify the mid-layer about the new controller
2253 if (scsi_add_host(host, &instance->pdev->dev)) {
2254 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2255 return -ENODEV;
2259 * Trigger SCSI to scan our drives
2261 scsi_scan_host(host);
2262 return 0;
2266 * megasas_probe_one - PCI hotplug entry point
2267 * @pdev: PCI device structure
2268 * @id: PCI ids of supported hotplugged adapter
2270 static int __devinit
2271 megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2273 int rval;
2274 struct Scsi_Host *host;
2275 struct megasas_instance *instance;
2278 * Announce PCI information
2280 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2281 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2282 pdev->subsystem_device);
2284 printk("bus %d:slot %d:func %d\n",
2285 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2288 * PCI prepping: enable device set bus mastering and dma mask
2290 rval = pci_enable_device(pdev);
2292 if (rval) {
2293 return rval;
2296 pci_set_master(pdev);
2299 * All our contollers are capable of performing 64-bit DMA
2301 if (IS_DMA64) {
2302 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2304 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2305 goto fail_set_dma_mask;
2307 } else {
2308 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2309 goto fail_set_dma_mask;
2312 host = scsi_host_alloc(&megasas_template,
2313 sizeof(struct megasas_instance));
2315 if (!host) {
2316 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2317 goto fail_alloc_instance;
2320 instance = (struct megasas_instance *)host->hostdata;
2321 memset(instance, 0, sizeof(*instance));
2323 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2324 &instance->producer_h);
2325 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2326 &instance->consumer_h);
2328 if (!instance->producer || !instance->consumer) {
2329 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2330 "producer, consumer\n");
2331 goto fail_alloc_dma_buf;
2334 *instance->producer = 0;
2335 *instance->consumer = 0;
2337 instance->evt_detail = pci_alloc_consistent(pdev,
2338 sizeof(struct
2339 megasas_evt_detail),
2340 &instance->evt_detail_h);
2342 if (!instance->evt_detail) {
2343 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2344 "event detail structure\n");
2345 goto fail_alloc_dma_buf;
2349 * Initialize locks and queues
2351 INIT_LIST_HEAD(&instance->cmd_pool);
2353 atomic_set(&instance->fw_outstanding,0);
2355 init_waitqueue_head(&instance->int_cmd_wait_q);
2356 init_waitqueue_head(&instance->abort_cmd_wait_q);
2358 spin_lock_init(&instance->cmd_pool_lock);
2360 sema_init(&instance->aen_mutex, 1);
2361 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2364 * Initialize PCI related and misc parameters
2366 instance->pdev = pdev;
2367 instance->host = host;
2368 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2369 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2371 megasas_dbg_lvl = 0;
2372 instance->flag = 0;
2373 instance->last_time = 0;
2376 * Initialize MFI Firmware
2378 if (megasas_init_mfi(instance))
2379 goto fail_init_mfi;
2382 * Register IRQ
2384 if (request_irq(pdev->irq, megasas_isr, IRQF_SHARED, "megasas", instance)) {
2385 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2386 goto fail_irq;
2389 instance->instancet->enable_intr(instance->reg_set);
2392 * Store instance in PCI softstate
2394 pci_set_drvdata(pdev, instance);
2397 * Add this controller to megasas_mgmt_info structure so that it
2398 * can be exported to management applications
2400 megasas_mgmt_info.count++;
2401 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2402 megasas_mgmt_info.max_index++;
2405 * Initiate AEN (Asynchronous Event Notification)
2407 if (megasas_start_aen(instance)) {
2408 printk(KERN_DEBUG "megasas: start aen failed\n");
2409 goto fail_start_aen;
2413 * Register with SCSI mid-layer
2415 if (megasas_io_attach(instance))
2416 goto fail_io_attach;
2418 return 0;
2420 fail_start_aen:
2421 fail_io_attach:
2422 megasas_mgmt_info.count--;
2423 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2424 megasas_mgmt_info.max_index--;
2426 pci_set_drvdata(pdev, NULL);
2427 instance->instancet->disable_intr(instance->reg_set);
2428 free_irq(instance->pdev->irq, instance);
2430 megasas_release_mfi(instance);
2432 fail_irq:
2433 fail_init_mfi:
2434 fail_alloc_dma_buf:
2435 if (instance->evt_detail)
2436 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2437 instance->evt_detail,
2438 instance->evt_detail_h);
2440 if (instance->producer)
2441 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2442 instance->producer_h);
2443 if (instance->consumer)
2444 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2445 instance->consumer_h);
2446 scsi_host_put(host);
2448 fail_alloc_instance:
2449 fail_set_dma_mask:
2450 pci_disable_device(pdev);
2452 return -ENODEV;
2456 * megasas_flush_cache - Requests FW to flush all its caches
2457 * @instance: Adapter soft state
2459 static void megasas_flush_cache(struct megasas_instance *instance)
2461 struct megasas_cmd *cmd;
2462 struct megasas_dcmd_frame *dcmd;
2464 cmd = megasas_get_cmd(instance);
2466 if (!cmd)
2467 return;
2469 dcmd = &cmd->frame->dcmd;
2471 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2473 dcmd->cmd = MFI_CMD_DCMD;
2474 dcmd->cmd_status = 0x0;
2475 dcmd->sge_count = 0;
2476 dcmd->flags = MFI_FRAME_DIR_NONE;
2477 dcmd->timeout = 0;
2478 dcmd->data_xfer_len = 0;
2479 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2480 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2482 megasas_issue_blocked_cmd(instance, cmd);
2484 megasas_return_cmd(instance, cmd);
2486 return;
2490 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2491 * @instance: Adapter soft state
2493 static void megasas_shutdown_controller(struct megasas_instance *instance)
2495 struct megasas_cmd *cmd;
2496 struct megasas_dcmd_frame *dcmd;
2498 cmd = megasas_get_cmd(instance);
2500 if (!cmd)
2501 return;
2503 if (instance->aen_cmd)
2504 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2506 dcmd = &cmd->frame->dcmd;
2508 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2510 dcmd->cmd = MFI_CMD_DCMD;
2511 dcmd->cmd_status = 0x0;
2512 dcmd->sge_count = 0;
2513 dcmd->flags = MFI_FRAME_DIR_NONE;
2514 dcmd->timeout = 0;
2515 dcmd->data_xfer_len = 0;
2516 dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2518 megasas_issue_blocked_cmd(instance, cmd);
2520 megasas_return_cmd(instance, cmd);
2522 return;
2526 * megasas_detach_one - PCI hot"un"plug entry point
2527 * @pdev: PCI device structure
2529 static void megasas_detach_one(struct pci_dev *pdev)
2531 int i;
2532 struct Scsi_Host *host;
2533 struct megasas_instance *instance;
2535 instance = pci_get_drvdata(pdev);
2536 host = instance->host;
2538 scsi_remove_host(instance->host);
2539 megasas_flush_cache(instance);
2540 megasas_shutdown_controller(instance);
2541 tasklet_kill(&instance->isr_tasklet);
2544 * Take the instance off the instance array. Note that we will not
2545 * decrement the max_index. We let this array be sparse array
2547 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2548 if (megasas_mgmt_info.instance[i] == instance) {
2549 megasas_mgmt_info.count--;
2550 megasas_mgmt_info.instance[i] = NULL;
2552 break;
2556 pci_set_drvdata(instance->pdev, NULL);
2558 instance->instancet->disable_intr(instance->reg_set);
2560 free_irq(instance->pdev->irq, instance);
2562 megasas_release_mfi(instance);
2564 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2565 instance->evt_detail, instance->evt_detail_h);
2567 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2568 instance->producer_h);
2570 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2571 instance->consumer_h);
2573 scsi_host_put(host);
2575 pci_set_drvdata(pdev, NULL);
2577 pci_disable_device(pdev);
2579 return;
2583 * megasas_shutdown - Shutdown entry point
2584 * @device: Generic device structure
2586 static void megasas_shutdown(struct pci_dev *pdev)
2588 struct megasas_instance *instance = pci_get_drvdata(pdev);
2589 megasas_flush_cache(instance);
2593 * megasas_mgmt_open - char node "open" entry point
2595 static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2598 * Allow only those users with admin rights
2600 if (!capable(CAP_SYS_ADMIN))
2601 return -EACCES;
2603 return 0;
2607 * megasas_mgmt_release - char node "release" entry point
2609 static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2611 filep->private_data = NULL;
2612 fasync_helper(-1, filep, 0, &megasas_async_queue);
2614 return 0;
2618 * megasas_mgmt_fasync - Async notifier registration from applications
2620 * This function adds the calling process to a driver global queue. When an
2621 * event occurs, SIGIO will be sent to all processes in this queue.
2623 static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2625 int rc;
2627 mutex_lock(&megasas_async_queue_mutex);
2629 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2631 mutex_unlock(&megasas_async_queue_mutex);
2633 if (rc >= 0) {
2634 /* For sanity check when we get ioctl */
2635 filep->private_data = filep;
2636 return 0;
2639 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2641 return rc;
2645 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2646 * @instance: Adapter soft state
2647 * @argp: User's ioctl packet
2649 static int
2650 megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2651 struct megasas_iocpacket __user * user_ioc,
2652 struct megasas_iocpacket *ioc)
2654 struct megasas_sge32 *kern_sge32;
2655 struct megasas_cmd *cmd;
2656 void *kbuff_arr[MAX_IOCTL_SGE];
2657 dma_addr_t buf_handle = 0;
2658 int error = 0, i;
2659 void *sense = NULL;
2660 dma_addr_t sense_handle;
2661 u32 *sense_ptr;
2663 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2665 if (ioc->sge_count > MAX_IOCTL_SGE) {
2666 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2667 ioc->sge_count, MAX_IOCTL_SGE);
2668 return -EINVAL;
2671 cmd = megasas_get_cmd(instance);
2672 if (!cmd) {
2673 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2674 return -ENOMEM;
2678 * User's IOCTL packet has 2 frames (maximum). Copy those two
2679 * frames into our cmd's frames. cmd->frame's context will get
2680 * overwritten when we copy from user's frames. So set that value
2681 * alone separately
2683 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2684 cmd->frame->hdr.context = cmd->index;
2687 * The management interface between applications and the fw uses
2688 * MFI frames. E.g, RAID configuration changes, LD property changes
2689 * etc are accomplishes through different kinds of MFI frames. The
2690 * driver needs to care only about substituting user buffers with
2691 * kernel buffers in SGLs. The location of SGL is embedded in the
2692 * struct iocpacket itself.
2694 kern_sge32 = (struct megasas_sge32 *)
2695 ((unsigned long)cmd->frame + ioc->sgl_off);
2698 * For each user buffer, create a mirror buffer and copy in
2700 for (i = 0; i < ioc->sge_count; i++) {
2701 kbuff_arr[i] = dma_alloc_coherent(&instance->pdev->dev,
2702 ioc->sgl[i].iov_len,
2703 &buf_handle, GFP_KERNEL);
2704 if (!kbuff_arr[i]) {
2705 printk(KERN_DEBUG "megasas: Failed to alloc "
2706 "kernel SGL buffer for IOCTL \n");
2707 error = -ENOMEM;
2708 goto out;
2712 * We don't change the dma_coherent_mask, so
2713 * pci_alloc_consistent only returns 32bit addresses
2715 kern_sge32[i].phys_addr = (u32) buf_handle;
2716 kern_sge32[i].length = ioc->sgl[i].iov_len;
2719 * We created a kernel buffer corresponding to the
2720 * user buffer. Now copy in from the user buffer
2722 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2723 (u32) (ioc->sgl[i].iov_len))) {
2724 error = -EFAULT;
2725 goto out;
2729 if (ioc->sense_len) {
2730 sense = dma_alloc_coherent(&instance->pdev->dev, ioc->sense_len,
2731 &sense_handle, GFP_KERNEL);
2732 if (!sense) {
2733 error = -ENOMEM;
2734 goto out;
2737 sense_ptr =
2738 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2739 *sense_ptr = sense_handle;
2743 * Set the sync_cmd flag so that the ISR knows not to complete this
2744 * cmd to the SCSI mid-layer
2746 cmd->sync_cmd = 1;
2747 megasas_issue_blocked_cmd(instance, cmd);
2748 cmd->sync_cmd = 0;
2751 * copy out the kernel buffers to user buffers
2753 for (i = 0; i < ioc->sge_count; i++) {
2754 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2755 ioc->sgl[i].iov_len)) {
2756 error = -EFAULT;
2757 goto out;
2762 * copy out the sense
2764 if (ioc->sense_len) {
2766 * sense_ptr points to the location that has the user
2767 * sense buffer address
2769 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2770 ioc->sense_off);
2772 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2773 sense, ioc->sense_len)) {
2774 error = -EFAULT;
2775 goto out;
2780 * copy the status codes returned by the fw
2782 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2783 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2784 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2785 error = -EFAULT;
2788 out:
2789 if (sense) {
2790 dma_free_coherent(&instance->pdev->dev, ioc->sense_len,
2791 sense, sense_handle);
2794 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2795 dma_free_coherent(&instance->pdev->dev,
2796 kern_sge32[i].length,
2797 kbuff_arr[i], kern_sge32[i].phys_addr);
2800 megasas_return_cmd(instance, cmd);
2801 return error;
2804 static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2806 int i;
2808 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2810 if ((megasas_mgmt_info.instance[i]) &&
2811 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2812 return megasas_mgmt_info.instance[i];
2815 return NULL;
2818 static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2820 struct megasas_iocpacket __user *user_ioc =
2821 (struct megasas_iocpacket __user *)arg;
2822 struct megasas_iocpacket *ioc;
2823 struct megasas_instance *instance;
2824 int error;
2826 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2827 if (!ioc)
2828 return -ENOMEM;
2830 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2831 error = -EFAULT;
2832 goto out_kfree_ioc;
2835 instance = megasas_lookup_instance(ioc->host_no);
2836 if (!instance) {
2837 error = -ENODEV;
2838 goto out_kfree_ioc;
2842 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2844 if (down_interruptible(&instance->ioctl_sem)) {
2845 error = -ERESTARTSYS;
2846 goto out_kfree_ioc;
2848 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2849 up(&instance->ioctl_sem);
2851 out_kfree_ioc:
2852 kfree(ioc);
2853 return error;
2856 static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2858 struct megasas_instance *instance;
2859 struct megasas_aen aen;
2860 int error;
2862 if (file->private_data != file) {
2863 printk(KERN_DEBUG "megasas: fasync_helper was not "
2864 "called first\n");
2865 return -EINVAL;
2868 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2869 return -EFAULT;
2871 instance = megasas_lookup_instance(aen.host_no);
2873 if (!instance)
2874 return -ENODEV;
2876 down(&instance->aen_mutex);
2877 error = megasas_register_aen(instance, aen.seq_num,
2878 aen.class_locale_word);
2879 up(&instance->aen_mutex);
2880 return error;
2884 * megasas_mgmt_ioctl - char node ioctl entry point
2886 static long
2887 megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2889 switch (cmd) {
2890 case MEGASAS_IOC_FIRMWARE:
2891 return megasas_mgmt_ioctl_fw(file, arg);
2893 case MEGASAS_IOC_GET_AEN:
2894 return megasas_mgmt_ioctl_aen(file, arg);
2897 return -ENOTTY;
2900 #ifdef CONFIG_COMPAT
2901 static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2903 struct compat_megasas_iocpacket __user *cioc =
2904 (struct compat_megasas_iocpacket __user *)arg;
2905 struct megasas_iocpacket __user *ioc =
2906 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2907 int i;
2908 int error = 0;
2910 if (clear_user(ioc, sizeof(*ioc)))
2911 return -EFAULT;
2913 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2914 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2915 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2916 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2917 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2918 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2919 return -EFAULT;
2921 for (i = 0; i < MAX_IOCTL_SGE; i++) {
2922 compat_uptr_t ptr;
2924 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2925 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2926 copy_in_user(&ioc->sgl[i].iov_len,
2927 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2928 return -EFAULT;
2931 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2933 if (copy_in_user(&cioc->frame.hdr.cmd_status,
2934 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2935 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2936 return -EFAULT;
2938 return error;
2941 static long
2942 megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2943 unsigned long arg)
2945 switch (cmd) {
2946 case MEGASAS_IOC_FIRMWARE32:
2947 return megasas_mgmt_compat_ioctl_fw(file, arg);
2948 case MEGASAS_IOC_GET_AEN:
2949 return megasas_mgmt_ioctl_aen(file, arg);
2952 return -ENOTTY;
2954 #endif
2957 * File operations structure for management interface
2959 static const struct file_operations megasas_mgmt_fops = {
2960 .owner = THIS_MODULE,
2961 .open = megasas_mgmt_open,
2962 .release = megasas_mgmt_release,
2963 .fasync = megasas_mgmt_fasync,
2964 .unlocked_ioctl = megasas_mgmt_ioctl,
2965 #ifdef CONFIG_COMPAT
2966 .compat_ioctl = megasas_mgmt_compat_ioctl,
2967 #endif
2971 * PCI hotplug support registration structure
2973 static struct pci_driver megasas_pci_driver = {
2975 .name = "megaraid_sas",
2976 .id_table = megasas_pci_table,
2977 .probe = megasas_probe_one,
2978 .remove = __devexit_p(megasas_detach_one),
2979 .shutdown = megasas_shutdown,
2983 * Sysfs driver attributes
2985 static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2987 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2988 MEGASAS_VERSION);
2991 static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2993 static ssize_t
2994 megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2996 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2997 MEGASAS_RELDATE);
3000 static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
3001 NULL);
3003 static ssize_t
3004 megasas_sysfs_show_dbg_lvl(struct device_driver *dd, char *buf)
3006 return sprintf(buf,"%u",megasas_dbg_lvl);
3009 static ssize_t
3010 megasas_sysfs_set_dbg_lvl(struct device_driver *dd, const char *buf, size_t count)
3012 int retval = count;
3013 if(sscanf(buf,"%u",&megasas_dbg_lvl)<1){
3014 printk(KERN_ERR "megasas: could not set dbg_lvl\n");
3015 retval = -EINVAL;
3017 return retval;
3020 static DRIVER_ATTR(dbg_lvl, S_IRUGO|S_IWUGO, megasas_sysfs_show_dbg_lvl,
3021 megasas_sysfs_set_dbg_lvl);
3024 * megasas_init - Driver load entry point
3026 static int __init megasas_init(void)
3028 int rval;
3031 * Announce driver version and other information
3033 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
3034 MEGASAS_EXT_VERSION);
3036 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
3039 * Register character device node
3041 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
3043 if (rval < 0) {
3044 printk(KERN_DEBUG "megasas: failed to open device node\n");
3045 return rval;
3048 megasas_mgmt_majorno = rval;
3051 * Register ourselves as PCI hotplug module
3053 rval = pci_register_driver(&megasas_pci_driver);
3055 if (rval) {
3056 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
3057 goto err_pcidrv;
3060 rval = driver_create_file(&megasas_pci_driver.driver,
3061 &driver_attr_version);
3062 if (rval)
3063 goto err_dcf_attr_ver;
3064 rval = driver_create_file(&megasas_pci_driver.driver,
3065 &driver_attr_release_date);
3066 if (rval)
3067 goto err_dcf_rel_date;
3068 rval = driver_create_file(&megasas_pci_driver.driver,
3069 &driver_attr_dbg_lvl);
3070 if (rval)
3071 goto err_dcf_dbg_lvl;
3073 return rval;
3074 err_dcf_dbg_lvl:
3075 driver_remove_file(&megasas_pci_driver.driver,
3076 &driver_attr_release_date);
3077 err_dcf_rel_date:
3078 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3079 err_dcf_attr_ver:
3080 pci_unregister_driver(&megasas_pci_driver);
3081 err_pcidrv:
3082 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3083 return rval;
3087 * megasas_exit - Driver unload entry point
3089 static void __exit megasas_exit(void)
3091 driver_remove_file(&megasas_pci_driver.driver,
3092 &driver_attr_dbg_lvl);
3093 driver_remove_file(&megasas_pci_driver.driver,
3094 &driver_attr_release_date);
3095 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
3097 pci_unregister_driver(&megasas_pci_driver);
3098 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
3101 module_init(megasas_init);
3102 module_exit(megasas_exit);