KVM: Properly lock PIT creation
[linux-2.6/mini2440.git] / arch / x86 / kvm / x86.c
blob6fbc346033752132dccd2a5227c150078bc60bb4
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 * Amit Shah <amit.shah@qumranet.com>
14 * Ben-Ami Yassour <benami@il.ibm.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
21 #include <linux/kvm_host.h>
22 #include "irq.h"
23 #include "mmu.h"
24 #include "i8254.h"
25 #include "tss.h"
26 #include "kvm_cache_regs.h"
27 #include "x86.h"
29 #include <linux/clocksource.h>
30 #include <linux/interrupt.h>
31 #include <linux/kvm.h>
32 #include <linux/fs.h>
33 #include <linux/vmalloc.h>
34 #include <linux/module.h>
35 #include <linux/mman.h>
36 #include <linux/highmem.h>
37 #include <linux/iommu.h>
38 #include <linux/intel-iommu.h>
40 #include <asm/uaccess.h>
41 #include <asm/msr.h>
42 #include <asm/desc.h>
43 #include <asm/mtrr.h>
45 #define MAX_IO_MSRS 256
46 #define CR0_RESERVED_BITS \
47 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
48 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
49 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
50 #define CR4_RESERVED_BITS \
51 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
52 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
53 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
54 | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
56 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
57 /* EFER defaults:
58 * - enable syscall per default because its emulated by KVM
59 * - enable LME and LMA per default on 64 bit KVM
61 #ifdef CONFIG_X86_64
62 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
63 #else
64 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
65 #endif
67 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
68 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
70 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
71 struct kvm_cpuid_entry2 __user *entries);
72 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
73 u32 function, u32 index);
75 struct kvm_x86_ops *kvm_x86_ops;
76 EXPORT_SYMBOL_GPL(kvm_x86_ops);
78 struct kvm_stats_debugfs_item debugfs_entries[] = {
79 { "pf_fixed", VCPU_STAT(pf_fixed) },
80 { "pf_guest", VCPU_STAT(pf_guest) },
81 { "tlb_flush", VCPU_STAT(tlb_flush) },
82 { "invlpg", VCPU_STAT(invlpg) },
83 { "exits", VCPU_STAT(exits) },
84 { "io_exits", VCPU_STAT(io_exits) },
85 { "mmio_exits", VCPU_STAT(mmio_exits) },
86 { "signal_exits", VCPU_STAT(signal_exits) },
87 { "irq_window", VCPU_STAT(irq_window_exits) },
88 { "nmi_window", VCPU_STAT(nmi_window_exits) },
89 { "halt_exits", VCPU_STAT(halt_exits) },
90 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
91 { "hypercalls", VCPU_STAT(hypercalls) },
92 { "request_irq", VCPU_STAT(request_irq_exits) },
93 { "request_nmi", VCPU_STAT(request_nmi_exits) },
94 { "irq_exits", VCPU_STAT(irq_exits) },
95 { "host_state_reload", VCPU_STAT(host_state_reload) },
96 { "efer_reload", VCPU_STAT(efer_reload) },
97 { "fpu_reload", VCPU_STAT(fpu_reload) },
98 { "insn_emulation", VCPU_STAT(insn_emulation) },
99 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
100 { "irq_injections", VCPU_STAT(irq_injections) },
101 { "nmi_injections", VCPU_STAT(nmi_injections) },
102 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
103 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
104 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
105 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
106 { "mmu_flooded", VM_STAT(mmu_flooded) },
107 { "mmu_recycled", VM_STAT(mmu_recycled) },
108 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
109 { "mmu_unsync", VM_STAT(mmu_unsync) },
110 { "mmu_unsync_global", VM_STAT(mmu_unsync_global) },
111 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
112 { "largepages", VM_STAT(lpages) },
113 { NULL }
116 unsigned long segment_base(u16 selector)
118 struct descriptor_table gdt;
119 struct desc_struct *d;
120 unsigned long table_base;
121 unsigned long v;
123 if (selector == 0)
124 return 0;
126 asm("sgdt %0" : "=m"(gdt));
127 table_base = gdt.base;
129 if (selector & 4) { /* from ldt */
130 u16 ldt_selector;
132 asm("sldt %0" : "=g"(ldt_selector));
133 table_base = segment_base(ldt_selector);
135 d = (struct desc_struct *)(table_base + (selector & ~7));
136 v = d->base0 | ((unsigned long)d->base1 << 16) |
137 ((unsigned long)d->base2 << 24);
138 #ifdef CONFIG_X86_64
139 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
140 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
141 #endif
142 return v;
144 EXPORT_SYMBOL_GPL(segment_base);
146 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
148 if (irqchip_in_kernel(vcpu->kvm))
149 return vcpu->arch.apic_base;
150 else
151 return vcpu->arch.apic_base;
153 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
155 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
157 /* TODO: reserve bits check */
158 if (irqchip_in_kernel(vcpu->kvm))
159 kvm_lapic_set_base(vcpu, data);
160 else
161 vcpu->arch.apic_base = data;
163 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
165 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
167 WARN_ON(vcpu->arch.exception.pending);
168 vcpu->arch.exception.pending = true;
169 vcpu->arch.exception.has_error_code = false;
170 vcpu->arch.exception.nr = nr;
172 EXPORT_SYMBOL_GPL(kvm_queue_exception);
174 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
175 u32 error_code)
177 ++vcpu->stat.pf_guest;
179 if (vcpu->arch.exception.pending) {
180 if (vcpu->arch.exception.nr == PF_VECTOR) {
181 printk(KERN_DEBUG "kvm: inject_page_fault:"
182 " double fault 0x%lx\n", addr);
183 vcpu->arch.exception.nr = DF_VECTOR;
184 vcpu->arch.exception.error_code = 0;
185 } else if (vcpu->arch.exception.nr == DF_VECTOR) {
186 /* triple fault -> shutdown */
187 set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
189 return;
191 vcpu->arch.cr2 = addr;
192 kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
195 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
197 vcpu->arch.nmi_pending = 1;
199 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
201 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
203 WARN_ON(vcpu->arch.exception.pending);
204 vcpu->arch.exception.pending = true;
205 vcpu->arch.exception.has_error_code = true;
206 vcpu->arch.exception.nr = nr;
207 vcpu->arch.exception.error_code = error_code;
209 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
211 static void __queue_exception(struct kvm_vcpu *vcpu)
213 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
214 vcpu->arch.exception.has_error_code,
215 vcpu->arch.exception.error_code);
219 * Load the pae pdptrs. Return true is they are all valid.
221 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
223 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
224 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
225 int i;
226 int ret;
227 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
229 ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
230 offset * sizeof(u64), sizeof(pdpte));
231 if (ret < 0) {
232 ret = 0;
233 goto out;
235 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
236 if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
237 ret = 0;
238 goto out;
241 ret = 1;
243 memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
244 out:
246 return ret;
248 EXPORT_SYMBOL_GPL(load_pdptrs);
250 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
252 u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
253 bool changed = true;
254 int r;
256 if (is_long_mode(vcpu) || !is_pae(vcpu))
257 return false;
259 r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
260 if (r < 0)
261 goto out;
262 changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
263 out:
265 return changed;
268 void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
270 if (cr0 & CR0_RESERVED_BITS) {
271 printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
272 cr0, vcpu->arch.cr0);
273 kvm_inject_gp(vcpu, 0);
274 return;
277 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
278 printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
279 kvm_inject_gp(vcpu, 0);
280 return;
283 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
284 printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
285 "and a clear PE flag\n");
286 kvm_inject_gp(vcpu, 0);
287 return;
290 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
291 #ifdef CONFIG_X86_64
292 if ((vcpu->arch.shadow_efer & EFER_LME)) {
293 int cs_db, cs_l;
295 if (!is_pae(vcpu)) {
296 printk(KERN_DEBUG "set_cr0: #GP, start paging "
297 "in long mode while PAE is disabled\n");
298 kvm_inject_gp(vcpu, 0);
299 return;
301 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
302 if (cs_l) {
303 printk(KERN_DEBUG "set_cr0: #GP, start paging "
304 "in long mode while CS.L == 1\n");
305 kvm_inject_gp(vcpu, 0);
306 return;
309 } else
310 #endif
311 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
312 printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
313 "reserved bits\n");
314 kvm_inject_gp(vcpu, 0);
315 return;
320 kvm_x86_ops->set_cr0(vcpu, cr0);
321 vcpu->arch.cr0 = cr0;
323 kvm_mmu_sync_global(vcpu);
324 kvm_mmu_reset_context(vcpu);
325 return;
327 EXPORT_SYMBOL_GPL(kvm_set_cr0);
329 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
331 kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
332 KVMTRACE_1D(LMSW, vcpu,
333 (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)),
334 handler);
336 EXPORT_SYMBOL_GPL(kvm_lmsw);
338 void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
340 if (cr4 & CR4_RESERVED_BITS) {
341 printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
342 kvm_inject_gp(vcpu, 0);
343 return;
346 if (is_long_mode(vcpu)) {
347 if (!(cr4 & X86_CR4_PAE)) {
348 printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
349 "in long mode\n");
350 kvm_inject_gp(vcpu, 0);
351 return;
353 } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
354 && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
355 printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
356 kvm_inject_gp(vcpu, 0);
357 return;
360 if (cr4 & X86_CR4_VMXE) {
361 printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
362 kvm_inject_gp(vcpu, 0);
363 return;
365 kvm_x86_ops->set_cr4(vcpu, cr4);
366 vcpu->arch.cr4 = cr4;
367 vcpu->arch.mmu.base_role.cr4_pge = !!(cr4 & X86_CR4_PGE);
368 kvm_mmu_sync_global(vcpu);
369 kvm_mmu_reset_context(vcpu);
371 EXPORT_SYMBOL_GPL(kvm_set_cr4);
373 void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
375 if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
376 kvm_mmu_sync_roots(vcpu);
377 kvm_mmu_flush_tlb(vcpu);
378 return;
381 if (is_long_mode(vcpu)) {
382 if (cr3 & CR3_L_MODE_RESERVED_BITS) {
383 printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
384 kvm_inject_gp(vcpu, 0);
385 return;
387 } else {
388 if (is_pae(vcpu)) {
389 if (cr3 & CR3_PAE_RESERVED_BITS) {
390 printk(KERN_DEBUG
391 "set_cr3: #GP, reserved bits\n");
392 kvm_inject_gp(vcpu, 0);
393 return;
395 if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
396 printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
397 "reserved bits\n");
398 kvm_inject_gp(vcpu, 0);
399 return;
403 * We don't check reserved bits in nonpae mode, because
404 * this isn't enforced, and VMware depends on this.
409 * Does the new cr3 value map to physical memory? (Note, we
410 * catch an invalid cr3 even in real-mode, because it would
411 * cause trouble later on when we turn on paging anyway.)
413 * A real CPU would silently accept an invalid cr3 and would
414 * attempt to use it - with largely undefined (and often hard
415 * to debug) behavior on the guest side.
417 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
418 kvm_inject_gp(vcpu, 0);
419 else {
420 vcpu->arch.cr3 = cr3;
421 vcpu->arch.mmu.new_cr3(vcpu);
424 EXPORT_SYMBOL_GPL(kvm_set_cr3);
426 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
428 if (cr8 & CR8_RESERVED_BITS) {
429 printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
430 kvm_inject_gp(vcpu, 0);
431 return;
433 if (irqchip_in_kernel(vcpu->kvm))
434 kvm_lapic_set_tpr(vcpu, cr8);
435 else
436 vcpu->arch.cr8 = cr8;
438 EXPORT_SYMBOL_GPL(kvm_set_cr8);
440 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
442 if (irqchip_in_kernel(vcpu->kvm))
443 return kvm_lapic_get_cr8(vcpu);
444 else
445 return vcpu->arch.cr8;
447 EXPORT_SYMBOL_GPL(kvm_get_cr8);
449 static inline u32 bit(int bitno)
451 return 1 << (bitno & 31);
455 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
456 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
458 * This list is modified at module load time to reflect the
459 * capabilities of the host cpu.
461 static u32 msrs_to_save[] = {
462 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
463 MSR_K6_STAR,
464 #ifdef CONFIG_X86_64
465 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
466 #endif
467 MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
468 MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
471 static unsigned num_msrs_to_save;
473 static u32 emulated_msrs[] = {
474 MSR_IA32_MISC_ENABLE,
477 static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
479 if (efer & efer_reserved_bits) {
480 printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
481 efer);
482 kvm_inject_gp(vcpu, 0);
483 return;
486 if (is_paging(vcpu)
487 && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
488 printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
489 kvm_inject_gp(vcpu, 0);
490 return;
493 if (efer & EFER_SVME) {
494 struct kvm_cpuid_entry2 *feat;
496 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
497 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
498 printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
499 kvm_inject_gp(vcpu, 0);
500 return;
504 kvm_x86_ops->set_efer(vcpu, efer);
506 efer &= ~EFER_LMA;
507 efer |= vcpu->arch.shadow_efer & EFER_LMA;
509 vcpu->arch.shadow_efer = efer;
512 void kvm_enable_efer_bits(u64 mask)
514 efer_reserved_bits &= ~mask;
516 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
520 * Writes msr value into into the appropriate "register".
521 * Returns 0 on success, non-0 otherwise.
522 * Assumes vcpu_load() was already called.
524 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
526 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
530 * Adapt set_msr() to msr_io()'s calling convention
532 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
534 return kvm_set_msr(vcpu, index, *data);
537 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
539 static int version;
540 struct pvclock_wall_clock wc;
541 struct timespec now, sys, boot;
543 if (!wall_clock)
544 return;
546 version++;
548 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
551 * The guest calculates current wall clock time by adding
552 * system time (updated by kvm_write_guest_time below) to the
553 * wall clock specified here. guest system time equals host
554 * system time for us, thus we must fill in host boot time here.
556 now = current_kernel_time();
557 ktime_get_ts(&sys);
558 boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
560 wc.sec = boot.tv_sec;
561 wc.nsec = boot.tv_nsec;
562 wc.version = version;
564 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
566 version++;
567 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
570 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
572 uint32_t quotient, remainder;
574 /* Don't try to replace with do_div(), this one calculates
575 * "(dividend << 32) / divisor" */
576 __asm__ ( "divl %4"
577 : "=a" (quotient), "=d" (remainder)
578 : "0" (0), "1" (dividend), "r" (divisor) );
579 return quotient;
582 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
584 uint64_t nsecs = 1000000000LL;
585 int32_t shift = 0;
586 uint64_t tps64;
587 uint32_t tps32;
589 tps64 = tsc_khz * 1000LL;
590 while (tps64 > nsecs*2) {
591 tps64 >>= 1;
592 shift--;
595 tps32 = (uint32_t)tps64;
596 while (tps32 <= (uint32_t)nsecs) {
597 tps32 <<= 1;
598 shift++;
601 hv_clock->tsc_shift = shift;
602 hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
604 pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
605 __func__, tsc_khz, hv_clock->tsc_shift,
606 hv_clock->tsc_to_system_mul);
609 static void kvm_write_guest_time(struct kvm_vcpu *v)
611 struct timespec ts;
612 unsigned long flags;
613 struct kvm_vcpu_arch *vcpu = &v->arch;
614 void *shared_kaddr;
616 if ((!vcpu->time_page))
617 return;
619 if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) {
620 kvm_set_time_scale(tsc_khz, &vcpu->hv_clock);
621 vcpu->hv_clock_tsc_khz = tsc_khz;
624 /* Keep irq disabled to prevent changes to the clock */
625 local_irq_save(flags);
626 kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
627 &vcpu->hv_clock.tsc_timestamp);
628 ktime_get_ts(&ts);
629 local_irq_restore(flags);
631 /* With all the info we got, fill in the values */
633 vcpu->hv_clock.system_time = ts.tv_nsec +
634 (NSEC_PER_SEC * (u64)ts.tv_sec);
636 * The interface expects us to write an even number signaling that the
637 * update is finished. Since the guest won't see the intermediate
638 * state, we just increase by 2 at the end.
640 vcpu->hv_clock.version += 2;
642 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
644 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
645 sizeof(vcpu->hv_clock));
647 kunmap_atomic(shared_kaddr, KM_USER0);
649 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
652 static bool msr_mtrr_valid(unsigned msr)
654 switch (msr) {
655 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
656 case MSR_MTRRfix64K_00000:
657 case MSR_MTRRfix16K_80000:
658 case MSR_MTRRfix16K_A0000:
659 case MSR_MTRRfix4K_C0000:
660 case MSR_MTRRfix4K_C8000:
661 case MSR_MTRRfix4K_D0000:
662 case MSR_MTRRfix4K_D8000:
663 case MSR_MTRRfix4K_E0000:
664 case MSR_MTRRfix4K_E8000:
665 case MSR_MTRRfix4K_F0000:
666 case MSR_MTRRfix4K_F8000:
667 case MSR_MTRRdefType:
668 case MSR_IA32_CR_PAT:
669 return true;
670 case 0x2f8:
671 return true;
673 return false;
676 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
678 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
680 if (!msr_mtrr_valid(msr))
681 return 1;
683 if (msr == MSR_MTRRdefType) {
684 vcpu->arch.mtrr_state.def_type = data;
685 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
686 } else if (msr == MSR_MTRRfix64K_00000)
687 p[0] = data;
688 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
689 p[1 + msr - MSR_MTRRfix16K_80000] = data;
690 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
691 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
692 else if (msr == MSR_IA32_CR_PAT)
693 vcpu->arch.pat = data;
694 else { /* Variable MTRRs */
695 int idx, is_mtrr_mask;
696 u64 *pt;
698 idx = (msr - 0x200) / 2;
699 is_mtrr_mask = msr - 0x200 - 2 * idx;
700 if (!is_mtrr_mask)
701 pt =
702 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
703 else
704 pt =
705 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
706 *pt = data;
709 kvm_mmu_reset_context(vcpu);
710 return 0;
713 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
715 switch (msr) {
716 case MSR_EFER:
717 set_efer(vcpu, data);
718 break;
719 case MSR_IA32_MC0_STATUS:
720 pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
721 __func__, data);
722 break;
723 case MSR_IA32_MCG_STATUS:
724 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
725 __func__, data);
726 break;
727 case MSR_IA32_MCG_CTL:
728 pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
729 __func__, data);
730 break;
731 case MSR_IA32_DEBUGCTLMSR:
732 if (!data) {
733 /* We support the non-activated case already */
734 break;
735 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
736 /* Values other than LBR and BTF are vendor-specific,
737 thus reserved and should throw a #GP */
738 return 1;
740 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
741 __func__, data);
742 break;
743 case MSR_IA32_UCODE_REV:
744 case MSR_IA32_UCODE_WRITE:
745 case MSR_VM_HSAVE_PA:
746 break;
747 case 0x200 ... 0x2ff:
748 return set_msr_mtrr(vcpu, msr, data);
749 case MSR_IA32_APICBASE:
750 kvm_set_apic_base(vcpu, data);
751 break;
752 case MSR_IA32_MISC_ENABLE:
753 vcpu->arch.ia32_misc_enable_msr = data;
754 break;
755 case MSR_KVM_WALL_CLOCK:
756 vcpu->kvm->arch.wall_clock = data;
757 kvm_write_wall_clock(vcpu->kvm, data);
758 break;
759 case MSR_KVM_SYSTEM_TIME: {
760 if (vcpu->arch.time_page) {
761 kvm_release_page_dirty(vcpu->arch.time_page);
762 vcpu->arch.time_page = NULL;
765 vcpu->arch.time = data;
767 /* we verify if the enable bit is set... */
768 if (!(data & 1))
769 break;
771 /* ...but clean it before doing the actual write */
772 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
774 vcpu->arch.time_page =
775 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
777 if (is_error_page(vcpu->arch.time_page)) {
778 kvm_release_page_clean(vcpu->arch.time_page);
779 vcpu->arch.time_page = NULL;
782 kvm_write_guest_time(vcpu);
783 break;
785 default:
786 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
787 return 1;
789 return 0;
791 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
795 * Reads an msr value (of 'msr_index') into 'pdata'.
796 * Returns 0 on success, non-0 otherwise.
797 * Assumes vcpu_load() was already called.
799 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
801 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
804 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
806 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
808 if (!msr_mtrr_valid(msr))
809 return 1;
811 if (msr == MSR_MTRRdefType)
812 *pdata = vcpu->arch.mtrr_state.def_type +
813 (vcpu->arch.mtrr_state.enabled << 10);
814 else if (msr == MSR_MTRRfix64K_00000)
815 *pdata = p[0];
816 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
817 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
818 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
819 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
820 else if (msr == MSR_IA32_CR_PAT)
821 *pdata = vcpu->arch.pat;
822 else { /* Variable MTRRs */
823 int idx, is_mtrr_mask;
824 u64 *pt;
826 idx = (msr - 0x200) / 2;
827 is_mtrr_mask = msr - 0x200 - 2 * idx;
828 if (!is_mtrr_mask)
829 pt =
830 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
831 else
832 pt =
833 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
834 *pdata = *pt;
837 return 0;
840 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
842 u64 data;
844 switch (msr) {
845 case 0xc0010010: /* SYSCFG */
846 case 0xc0010015: /* HWCR */
847 case MSR_IA32_PLATFORM_ID:
848 case MSR_IA32_P5_MC_ADDR:
849 case MSR_IA32_P5_MC_TYPE:
850 case MSR_IA32_MC0_CTL:
851 case MSR_IA32_MCG_STATUS:
852 case MSR_IA32_MCG_CAP:
853 case MSR_IA32_MCG_CTL:
854 case MSR_IA32_MC0_MISC:
855 case MSR_IA32_MC0_MISC+4:
856 case MSR_IA32_MC0_MISC+8:
857 case MSR_IA32_MC0_MISC+12:
858 case MSR_IA32_MC0_MISC+16:
859 case MSR_IA32_MC0_MISC+20:
860 case MSR_IA32_UCODE_REV:
861 case MSR_IA32_EBL_CR_POWERON:
862 case MSR_IA32_DEBUGCTLMSR:
863 case MSR_IA32_LASTBRANCHFROMIP:
864 case MSR_IA32_LASTBRANCHTOIP:
865 case MSR_IA32_LASTINTFROMIP:
866 case MSR_IA32_LASTINTTOIP:
867 case MSR_VM_HSAVE_PA:
868 data = 0;
869 break;
870 case MSR_MTRRcap:
871 data = 0x500 | KVM_NR_VAR_MTRR;
872 break;
873 case 0x200 ... 0x2ff:
874 return get_msr_mtrr(vcpu, msr, pdata);
875 case 0xcd: /* fsb frequency */
876 data = 3;
877 break;
878 case MSR_IA32_APICBASE:
879 data = kvm_get_apic_base(vcpu);
880 break;
881 case MSR_IA32_MISC_ENABLE:
882 data = vcpu->arch.ia32_misc_enable_msr;
883 break;
884 case MSR_IA32_PERF_STATUS:
885 /* TSC increment by tick */
886 data = 1000ULL;
887 /* CPU multiplier */
888 data |= (((uint64_t)4ULL) << 40);
889 break;
890 case MSR_EFER:
891 data = vcpu->arch.shadow_efer;
892 break;
893 case MSR_KVM_WALL_CLOCK:
894 data = vcpu->kvm->arch.wall_clock;
895 break;
896 case MSR_KVM_SYSTEM_TIME:
897 data = vcpu->arch.time;
898 break;
899 default:
900 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
901 return 1;
903 *pdata = data;
904 return 0;
906 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
909 * Read or write a bunch of msrs. All parameters are kernel addresses.
911 * @return number of msrs set successfully.
913 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
914 struct kvm_msr_entry *entries,
915 int (*do_msr)(struct kvm_vcpu *vcpu,
916 unsigned index, u64 *data))
918 int i;
920 vcpu_load(vcpu);
922 down_read(&vcpu->kvm->slots_lock);
923 for (i = 0; i < msrs->nmsrs; ++i)
924 if (do_msr(vcpu, entries[i].index, &entries[i].data))
925 break;
926 up_read(&vcpu->kvm->slots_lock);
928 vcpu_put(vcpu);
930 return i;
934 * Read or write a bunch of msrs. Parameters are user addresses.
936 * @return number of msrs set successfully.
938 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
939 int (*do_msr)(struct kvm_vcpu *vcpu,
940 unsigned index, u64 *data),
941 int writeback)
943 struct kvm_msrs msrs;
944 struct kvm_msr_entry *entries;
945 int r, n;
946 unsigned size;
948 r = -EFAULT;
949 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
950 goto out;
952 r = -E2BIG;
953 if (msrs.nmsrs >= MAX_IO_MSRS)
954 goto out;
956 r = -ENOMEM;
957 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
958 entries = vmalloc(size);
959 if (!entries)
960 goto out;
962 r = -EFAULT;
963 if (copy_from_user(entries, user_msrs->entries, size))
964 goto out_free;
966 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
967 if (r < 0)
968 goto out_free;
970 r = -EFAULT;
971 if (writeback && copy_to_user(user_msrs->entries, entries, size))
972 goto out_free;
974 r = n;
976 out_free:
977 vfree(entries);
978 out:
979 return r;
982 int kvm_dev_ioctl_check_extension(long ext)
984 int r;
986 switch (ext) {
987 case KVM_CAP_IRQCHIP:
988 case KVM_CAP_HLT:
989 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
990 case KVM_CAP_SET_TSS_ADDR:
991 case KVM_CAP_EXT_CPUID:
992 case KVM_CAP_PIT:
993 case KVM_CAP_NOP_IO_DELAY:
994 case KVM_CAP_MP_STATE:
995 case KVM_CAP_SYNC_MMU:
996 case KVM_CAP_REINJECT_CONTROL:
997 r = 1;
998 break;
999 case KVM_CAP_COALESCED_MMIO:
1000 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1001 break;
1002 case KVM_CAP_VAPIC:
1003 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1004 break;
1005 case KVM_CAP_NR_VCPUS:
1006 r = KVM_MAX_VCPUS;
1007 break;
1008 case KVM_CAP_NR_MEMSLOTS:
1009 r = KVM_MEMORY_SLOTS;
1010 break;
1011 case KVM_CAP_PV_MMU:
1012 r = !tdp_enabled;
1013 break;
1014 case KVM_CAP_IOMMU:
1015 r = iommu_found();
1016 break;
1017 case KVM_CAP_CLOCKSOURCE:
1018 r = boot_cpu_has(X86_FEATURE_CONSTANT_TSC);
1019 break;
1020 default:
1021 r = 0;
1022 break;
1024 return r;
1028 long kvm_arch_dev_ioctl(struct file *filp,
1029 unsigned int ioctl, unsigned long arg)
1031 void __user *argp = (void __user *)arg;
1032 long r;
1034 switch (ioctl) {
1035 case KVM_GET_MSR_INDEX_LIST: {
1036 struct kvm_msr_list __user *user_msr_list = argp;
1037 struct kvm_msr_list msr_list;
1038 unsigned n;
1040 r = -EFAULT;
1041 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1042 goto out;
1043 n = msr_list.nmsrs;
1044 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1045 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1046 goto out;
1047 r = -E2BIG;
1048 if (n < num_msrs_to_save)
1049 goto out;
1050 r = -EFAULT;
1051 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1052 num_msrs_to_save * sizeof(u32)))
1053 goto out;
1054 if (copy_to_user(user_msr_list->indices
1055 + num_msrs_to_save * sizeof(u32),
1056 &emulated_msrs,
1057 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1058 goto out;
1059 r = 0;
1060 break;
1062 case KVM_GET_SUPPORTED_CPUID: {
1063 struct kvm_cpuid2 __user *cpuid_arg = argp;
1064 struct kvm_cpuid2 cpuid;
1066 r = -EFAULT;
1067 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1068 goto out;
1069 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1070 cpuid_arg->entries);
1071 if (r)
1072 goto out;
1074 r = -EFAULT;
1075 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1076 goto out;
1077 r = 0;
1078 break;
1080 default:
1081 r = -EINVAL;
1083 out:
1084 return r;
1087 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1089 kvm_x86_ops->vcpu_load(vcpu, cpu);
1090 kvm_write_guest_time(vcpu);
1093 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1095 kvm_x86_ops->vcpu_put(vcpu);
1096 kvm_put_guest_fpu(vcpu);
1099 static int is_efer_nx(void)
1101 u64 efer;
1103 rdmsrl(MSR_EFER, efer);
1104 return efer & EFER_NX;
1107 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1109 int i;
1110 struct kvm_cpuid_entry2 *e, *entry;
1112 entry = NULL;
1113 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1114 e = &vcpu->arch.cpuid_entries[i];
1115 if (e->function == 0x80000001) {
1116 entry = e;
1117 break;
1120 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1121 entry->edx &= ~(1 << 20);
1122 printk(KERN_INFO "kvm: guest NX capability removed\n");
1126 /* when an old userspace process fills a new kernel module */
1127 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1128 struct kvm_cpuid *cpuid,
1129 struct kvm_cpuid_entry __user *entries)
1131 int r, i;
1132 struct kvm_cpuid_entry *cpuid_entries;
1134 r = -E2BIG;
1135 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1136 goto out;
1137 r = -ENOMEM;
1138 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1139 if (!cpuid_entries)
1140 goto out;
1141 r = -EFAULT;
1142 if (copy_from_user(cpuid_entries, entries,
1143 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1144 goto out_free;
1145 for (i = 0; i < cpuid->nent; i++) {
1146 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1147 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1148 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1149 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1150 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1151 vcpu->arch.cpuid_entries[i].index = 0;
1152 vcpu->arch.cpuid_entries[i].flags = 0;
1153 vcpu->arch.cpuid_entries[i].padding[0] = 0;
1154 vcpu->arch.cpuid_entries[i].padding[1] = 0;
1155 vcpu->arch.cpuid_entries[i].padding[2] = 0;
1157 vcpu->arch.cpuid_nent = cpuid->nent;
1158 cpuid_fix_nx_cap(vcpu);
1159 r = 0;
1161 out_free:
1162 vfree(cpuid_entries);
1163 out:
1164 return r;
1167 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
1168 struct kvm_cpuid2 *cpuid,
1169 struct kvm_cpuid_entry2 __user *entries)
1171 int r;
1173 r = -E2BIG;
1174 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1175 goto out;
1176 r = -EFAULT;
1177 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
1178 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
1179 goto out;
1180 vcpu->arch.cpuid_nent = cpuid->nent;
1181 return 0;
1183 out:
1184 return r;
1187 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
1188 struct kvm_cpuid2 *cpuid,
1189 struct kvm_cpuid_entry2 __user *entries)
1191 int r;
1193 r = -E2BIG;
1194 if (cpuid->nent < vcpu->arch.cpuid_nent)
1195 goto out;
1196 r = -EFAULT;
1197 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
1198 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
1199 goto out;
1200 return 0;
1202 out:
1203 cpuid->nent = vcpu->arch.cpuid_nent;
1204 return r;
1207 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1208 u32 index)
1210 entry->function = function;
1211 entry->index = index;
1212 cpuid_count(entry->function, entry->index,
1213 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
1214 entry->flags = 0;
1217 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
1218 u32 index, int *nent, int maxnent)
1220 const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
1221 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1222 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1223 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1224 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1225 bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
1226 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1227 bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
1228 bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
1229 bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
1230 const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
1231 bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
1232 bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
1233 bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
1234 bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
1235 bit(X86_FEATURE_PGE) |
1236 bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
1237 bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
1238 bit(X86_FEATURE_SYSCALL) |
1239 (bit(X86_FEATURE_NX) && is_efer_nx()) |
1240 #ifdef CONFIG_X86_64
1241 bit(X86_FEATURE_LM) |
1242 #endif
1243 bit(X86_FEATURE_MMXEXT) |
1244 bit(X86_FEATURE_3DNOWEXT) |
1245 bit(X86_FEATURE_3DNOW);
1246 const u32 kvm_supported_word3_x86_features =
1247 bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
1248 const u32 kvm_supported_word6_x86_features =
1249 bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY) |
1250 bit(X86_FEATURE_SVM);
1252 /* all func 2 cpuid_count() should be called on the same cpu */
1253 get_cpu();
1254 do_cpuid_1_ent(entry, function, index);
1255 ++*nent;
1257 switch (function) {
1258 case 0:
1259 entry->eax = min(entry->eax, (u32)0xb);
1260 break;
1261 case 1:
1262 entry->edx &= kvm_supported_word0_x86_features;
1263 entry->ecx &= kvm_supported_word3_x86_features;
1264 break;
1265 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
1266 * may return different values. This forces us to get_cpu() before
1267 * issuing the first command, and also to emulate this annoying behavior
1268 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
1269 case 2: {
1270 int t, times = entry->eax & 0xff;
1272 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1273 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
1274 for (t = 1; t < times && *nent < maxnent; ++t) {
1275 do_cpuid_1_ent(&entry[t], function, 0);
1276 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
1277 ++*nent;
1279 break;
1281 /* function 4 and 0xb have additional index. */
1282 case 4: {
1283 int i, cache_type;
1285 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1286 /* read more entries until cache_type is zero */
1287 for (i = 1; *nent < maxnent; ++i) {
1288 cache_type = entry[i - 1].eax & 0x1f;
1289 if (!cache_type)
1290 break;
1291 do_cpuid_1_ent(&entry[i], function, i);
1292 entry[i].flags |=
1293 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1294 ++*nent;
1296 break;
1298 case 0xb: {
1299 int i, level_type;
1301 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1302 /* read more entries until level_type is zero */
1303 for (i = 1; *nent < maxnent; ++i) {
1304 level_type = entry[i - 1].ecx & 0xff00;
1305 if (!level_type)
1306 break;
1307 do_cpuid_1_ent(&entry[i], function, i);
1308 entry[i].flags |=
1309 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
1310 ++*nent;
1312 break;
1314 case 0x80000000:
1315 entry->eax = min(entry->eax, 0x8000001a);
1316 break;
1317 case 0x80000001:
1318 entry->edx &= kvm_supported_word1_x86_features;
1319 entry->ecx &= kvm_supported_word6_x86_features;
1320 break;
1322 put_cpu();
1325 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
1326 struct kvm_cpuid_entry2 __user *entries)
1328 struct kvm_cpuid_entry2 *cpuid_entries;
1329 int limit, nent = 0, r = -E2BIG;
1330 u32 func;
1332 if (cpuid->nent < 1)
1333 goto out;
1334 r = -ENOMEM;
1335 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
1336 if (!cpuid_entries)
1337 goto out;
1339 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
1340 limit = cpuid_entries[0].eax;
1341 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
1342 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1343 &nent, cpuid->nent);
1344 r = -E2BIG;
1345 if (nent >= cpuid->nent)
1346 goto out_free;
1348 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
1349 limit = cpuid_entries[nent - 1].eax;
1350 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
1351 do_cpuid_ent(&cpuid_entries[nent], func, 0,
1352 &nent, cpuid->nent);
1353 r = -EFAULT;
1354 if (copy_to_user(entries, cpuid_entries,
1355 nent * sizeof(struct kvm_cpuid_entry2)))
1356 goto out_free;
1357 cpuid->nent = nent;
1358 r = 0;
1360 out_free:
1361 vfree(cpuid_entries);
1362 out:
1363 return r;
1366 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
1367 struct kvm_lapic_state *s)
1369 vcpu_load(vcpu);
1370 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
1371 vcpu_put(vcpu);
1373 return 0;
1376 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
1377 struct kvm_lapic_state *s)
1379 vcpu_load(vcpu);
1380 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
1381 kvm_apic_post_state_restore(vcpu);
1382 vcpu_put(vcpu);
1384 return 0;
1387 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
1388 struct kvm_interrupt *irq)
1390 if (irq->irq < 0 || irq->irq >= 256)
1391 return -EINVAL;
1392 if (irqchip_in_kernel(vcpu->kvm))
1393 return -ENXIO;
1394 vcpu_load(vcpu);
1396 set_bit(irq->irq, vcpu->arch.irq_pending);
1397 set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
1399 vcpu_put(vcpu);
1401 return 0;
1404 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
1406 vcpu_load(vcpu);
1407 kvm_inject_nmi(vcpu);
1408 vcpu_put(vcpu);
1410 return 0;
1413 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
1414 struct kvm_tpr_access_ctl *tac)
1416 if (tac->flags)
1417 return -EINVAL;
1418 vcpu->arch.tpr_access_reporting = !!tac->enabled;
1419 return 0;
1422 long kvm_arch_vcpu_ioctl(struct file *filp,
1423 unsigned int ioctl, unsigned long arg)
1425 struct kvm_vcpu *vcpu = filp->private_data;
1426 void __user *argp = (void __user *)arg;
1427 int r;
1428 struct kvm_lapic_state *lapic = NULL;
1430 switch (ioctl) {
1431 case KVM_GET_LAPIC: {
1432 lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1434 r = -ENOMEM;
1435 if (!lapic)
1436 goto out;
1437 r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
1438 if (r)
1439 goto out;
1440 r = -EFAULT;
1441 if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
1442 goto out;
1443 r = 0;
1444 break;
1446 case KVM_SET_LAPIC: {
1447 lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
1448 r = -ENOMEM;
1449 if (!lapic)
1450 goto out;
1451 r = -EFAULT;
1452 if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
1453 goto out;
1454 r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
1455 if (r)
1456 goto out;
1457 r = 0;
1458 break;
1460 case KVM_INTERRUPT: {
1461 struct kvm_interrupt irq;
1463 r = -EFAULT;
1464 if (copy_from_user(&irq, argp, sizeof irq))
1465 goto out;
1466 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1467 if (r)
1468 goto out;
1469 r = 0;
1470 break;
1472 case KVM_NMI: {
1473 r = kvm_vcpu_ioctl_nmi(vcpu);
1474 if (r)
1475 goto out;
1476 r = 0;
1477 break;
1479 case KVM_SET_CPUID: {
1480 struct kvm_cpuid __user *cpuid_arg = argp;
1481 struct kvm_cpuid cpuid;
1483 r = -EFAULT;
1484 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1485 goto out;
1486 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
1487 if (r)
1488 goto out;
1489 break;
1491 case KVM_SET_CPUID2: {
1492 struct kvm_cpuid2 __user *cpuid_arg = argp;
1493 struct kvm_cpuid2 cpuid;
1495 r = -EFAULT;
1496 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1497 goto out;
1498 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
1499 cpuid_arg->entries);
1500 if (r)
1501 goto out;
1502 break;
1504 case KVM_GET_CPUID2: {
1505 struct kvm_cpuid2 __user *cpuid_arg = argp;
1506 struct kvm_cpuid2 cpuid;
1508 r = -EFAULT;
1509 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1510 goto out;
1511 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
1512 cpuid_arg->entries);
1513 if (r)
1514 goto out;
1515 r = -EFAULT;
1516 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1517 goto out;
1518 r = 0;
1519 break;
1521 case KVM_GET_MSRS:
1522 r = msr_io(vcpu, argp, kvm_get_msr, 1);
1523 break;
1524 case KVM_SET_MSRS:
1525 r = msr_io(vcpu, argp, do_set_msr, 0);
1526 break;
1527 case KVM_TPR_ACCESS_REPORTING: {
1528 struct kvm_tpr_access_ctl tac;
1530 r = -EFAULT;
1531 if (copy_from_user(&tac, argp, sizeof tac))
1532 goto out;
1533 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
1534 if (r)
1535 goto out;
1536 r = -EFAULT;
1537 if (copy_to_user(argp, &tac, sizeof tac))
1538 goto out;
1539 r = 0;
1540 break;
1542 case KVM_SET_VAPIC_ADDR: {
1543 struct kvm_vapic_addr va;
1545 r = -EINVAL;
1546 if (!irqchip_in_kernel(vcpu->kvm))
1547 goto out;
1548 r = -EFAULT;
1549 if (copy_from_user(&va, argp, sizeof va))
1550 goto out;
1551 r = 0;
1552 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
1553 break;
1555 default:
1556 r = -EINVAL;
1558 out:
1559 if (lapic)
1560 kfree(lapic);
1561 return r;
1564 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
1566 int ret;
1568 if (addr > (unsigned int)(-3 * PAGE_SIZE))
1569 return -1;
1570 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
1571 return ret;
1574 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
1575 u32 kvm_nr_mmu_pages)
1577 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
1578 return -EINVAL;
1580 down_write(&kvm->slots_lock);
1582 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
1583 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1585 up_write(&kvm->slots_lock);
1586 return 0;
1589 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1591 return kvm->arch.n_alloc_mmu_pages;
1594 gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
1596 int i;
1597 struct kvm_mem_alias *alias;
1599 for (i = 0; i < kvm->arch.naliases; ++i) {
1600 alias = &kvm->arch.aliases[i];
1601 if (gfn >= alias->base_gfn
1602 && gfn < alias->base_gfn + alias->npages)
1603 return alias->target_gfn + gfn - alias->base_gfn;
1605 return gfn;
1609 * Set a new alias region. Aliases map a portion of physical memory into
1610 * another portion. This is useful for memory windows, for example the PC
1611 * VGA region.
1613 static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
1614 struct kvm_memory_alias *alias)
1616 int r, n;
1617 struct kvm_mem_alias *p;
1619 r = -EINVAL;
1620 /* General sanity checks */
1621 if (alias->memory_size & (PAGE_SIZE - 1))
1622 goto out;
1623 if (alias->guest_phys_addr & (PAGE_SIZE - 1))
1624 goto out;
1625 if (alias->slot >= KVM_ALIAS_SLOTS)
1626 goto out;
1627 if (alias->guest_phys_addr + alias->memory_size
1628 < alias->guest_phys_addr)
1629 goto out;
1630 if (alias->target_phys_addr + alias->memory_size
1631 < alias->target_phys_addr)
1632 goto out;
1634 down_write(&kvm->slots_lock);
1635 spin_lock(&kvm->mmu_lock);
1637 p = &kvm->arch.aliases[alias->slot];
1638 p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
1639 p->npages = alias->memory_size >> PAGE_SHIFT;
1640 p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
1642 for (n = KVM_ALIAS_SLOTS; n > 0; --n)
1643 if (kvm->arch.aliases[n - 1].npages)
1644 break;
1645 kvm->arch.naliases = n;
1647 spin_unlock(&kvm->mmu_lock);
1648 kvm_mmu_zap_all(kvm);
1650 up_write(&kvm->slots_lock);
1652 return 0;
1654 out:
1655 return r;
1658 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1660 int r;
1662 r = 0;
1663 switch (chip->chip_id) {
1664 case KVM_IRQCHIP_PIC_MASTER:
1665 memcpy(&chip->chip.pic,
1666 &pic_irqchip(kvm)->pics[0],
1667 sizeof(struct kvm_pic_state));
1668 break;
1669 case KVM_IRQCHIP_PIC_SLAVE:
1670 memcpy(&chip->chip.pic,
1671 &pic_irqchip(kvm)->pics[1],
1672 sizeof(struct kvm_pic_state));
1673 break;
1674 case KVM_IRQCHIP_IOAPIC:
1675 memcpy(&chip->chip.ioapic,
1676 ioapic_irqchip(kvm),
1677 sizeof(struct kvm_ioapic_state));
1678 break;
1679 default:
1680 r = -EINVAL;
1681 break;
1683 return r;
1686 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
1688 int r;
1690 r = 0;
1691 switch (chip->chip_id) {
1692 case KVM_IRQCHIP_PIC_MASTER:
1693 memcpy(&pic_irqchip(kvm)->pics[0],
1694 &chip->chip.pic,
1695 sizeof(struct kvm_pic_state));
1696 break;
1697 case KVM_IRQCHIP_PIC_SLAVE:
1698 memcpy(&pic_irqchip(kvm)->pics[1],
1699 &chip->chip.pic,
1700 sizeof(struct kvm_pic_state));
1701 break;
1702 case KVM_IRQCHIP_IOAPIC:
1703 memcpy(ioapic_irqchip(kvm),
1704 &chip->chip.ioapic,
1705 sizeof(struct kvm_ioapic_state));
1706 break;
1707 default:
1708 r = -EINVAL;
1709 break;
1711 kvm_pic_update_irq(pic_irqchip(kvm));
1712 return r;
1715 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1717 int r = 0;
1719 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
1720 return r;
1723 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
1725 int r = 0;
1727 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
1728 kvm_pit_load_count(kvm, 0, ps->channels[0].count);
1729 return r;
1732 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
1733 struct kvm_reinject_control *control)
1735 if (!kvm->arch.vpit)
1736 return -ENXIO;
1737 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
1738 return 0;
1742 * Get (and clear) the dirty memory log for a memory slot.
1744 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
1745 struct kvm_dirty_log *log)
1747 int r;
1748 int n;
1749 struct kvm_memory_slot *memslot;
1750 int is_dirty = 0;
1752 down_write(&kvm->slots_lock);
1754 r = kvm_get_dirty_log(kvm, log, &is_dirty);
1755 if (r)
1756 goto out;
1758 /* If nothing is dirty, don't bother messing with page tables. */
1759 if (is_dirty) {
1760 kvm_mmu_slot_remove_write_access(kvm, log->slot);
1761 kvm_flush_remote_tlbs(kvm);
1762 memslot = &kvm->memslots[log->slot];
1763 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1764 memset(memslot->dirty_bitmap, 0, n);
1766 r = 0;
1767 out:
1768 up_write(&kvm->slots_lock);
1769 return r;
1772 long kvm_arch_vm_ioctl(struct file *filp,
1773 unsigned int ioctl, unsigned long arg)
1775 struct kvm *kvm = filp->private_data;
1776 void __user *argp = (void __user *)arg;
1777 int r = -EINVAL;
1779 * This union makes it completely explicit to gcc-3.x
1780 * that these two variables' stack usage should be
1781 * combined, not added together.
1783 union {
1784 struct kvm_pit_state ps;
1785 struct kvm_memory_alias alias;
1786 } u;
1788 switch (ioctl) {
1789 case KVM_SET_TSS_ADDR:
1790 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1791 if (r < 0)
1792 goto out;
1793 break;
1794 case KVM_SET_MEMORY_REGION: {
1795 struct kvm_memory_region kvm_mem;
1796 struct kvm_userspace_memory_region kvm_userspace_mem;
1798 r = -EFAULT;
1799 if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
1800 goto out;
1801 kvm_userspace_mem.slot = kvm_mem.slot;
1802 kvm_userspace_mem.flags = kvm_mem.flags;
1803 kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
1804 kvm_userspace_mem.memory_size = kvm_mem.memory_size;
1805 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
1806 if (r)
1807 goto out;
1808 break;
1810 case KVM_SET_NR_MMU_PAGES:
1811 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1812 if (r)
1813 goto out;
1814 break;
1815 case KVM_GET_NR_MMU_PAGES:
1816 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
1817 break;
1818 case KVM_SET_MEMORY_ALIAS:
1819 r = -EFAULT;
1820 if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
1821 goto out;
1822 r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
1823 if (r)
1824 goto out;
1825 break;
1826 case KVM_CREATE_IRQCHIP:
1827 r = -ENOMEM;
1828 kvm->arch.vpic = kvm_create_pic(kvm);
1829 if (kvm->arch.vpic) {
1830 r = kvm_ioapic_init(kvm);
1831 if (r) {
1832 kfree(kvm->arch.vpic);
1833 kvm->arch.vpic = NULL;
1834 goto out;
1836 } else
1837 goto out;
1838 break;
1839 case KVM_CREATE_PIT:
1840 mutex_lock(&kvm->lock);
1841 r = -EEXIST;
1842 if (kvm->arch.vpit)
1843 goto create_pit_unlock;
1844 r = -ENOMEM;
1845 kvm->arch.vpit = kvm_create_pit(kvm);
1846 if (kvm->arch.vpit)
1847 r = 0;
1848 create_pit_unlock:
1849 mutex_unlock(&kvm->lock);
1850 break;
1851 case KVM_IRQ_LINE: {
1852 struct kvm_irq_level irq_event;
1854 r = -EFAULT;
1855 if (copy_from_user(&irq_event, argp, sizeof irq_event))
1856 goto out;
1857 if (irqchip_in_kernel(kvm)) {
1858 mutex_lock(&kvm->lock);
1859 kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1860 irq_event.irq, irq_event.level);
1861 mutex_unlock(&kvm->lock);
1862 r = 0;
1864 break;
1866 case KVM_GET_IRQCHIP: {
1867 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1868 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1870 r = -ENOMEM;
1871 if (!chip)
1872 goto out;
1873 r = -EFAULT;
1874 if (copy_from_user(chip, argp, sizeof *chip))
1875 goto get_irqchip_out;
1876 r = -ENXIO;
1877 if (!irqchip_in_kernel(kvm))
1878 goto get_irqchip_out;
1879 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1880 if (r)
1881 goto get_irqchip_out;
1882 r = -EFAULT;
1883 if (copy_to_user(argp, chip, sizeof *chip))
1884 goto get_irqchip_out;
1885 r = 0;
1886 get_irqchip_out:
1887 kfree(chip);
1888 if (r)
1889 goto out;
1890 break;
1892 case KVM_SET_IRQCHIP: {
1893 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
1894 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
1896 r = -ENOMEM;
1897 if (!chip)
1898 goto out;
1899 r = -EFAULT;
1900 if (copy_from_user(chip, argp, sizeof *chip))
1901 goto set_irqchip_out;
1902 r = -ENXIO;
1903 if (!irqchip_in_kernel(kvm))
1904 goto set_irqchip_out;
1905 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
1906 if (r)
1907 goto set_irqchip_out;
1908 r = 0;
1909 set_irqchip_out:
1910 kfree(chip);
1911 if (r)
1912 goto out;
1913 break;
1915 case KVM_GET_PIT: {
1916 r = -EFAULT;
1917 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
1918 goto out;
1919 r = -ENXIO;
1920 if (!kvm->arch.vpit)
1921 goto out;
1922 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
1923 if (r)
1924 goto out;
1925 r = -EFAULT;
1926 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
1927 goto out;
1928 r = 0;
1929 break;
1931 case KVM_SET_PIT: {
1932 r = -EFAULT;
1933 if (copy_from_user(&u.ps, argp, sizeof u.ps))
1934 goto out;
1935 r = -ENXIO;
1936 if (!kvm->arch.vpit)
1937 goto out;
1938 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
1939 if (r)
1940 goto out;
1941 r = 0;
1942 break;
1944 case KVM_REINJECT_CONTROL: {
1945 struct kvm_reinject_control control;
1946 r = -EFAULT;
1947 if (copy_from_user(&control, argp, sizeof(control)))
1948 goto out;
1949 r = kvm_vm_ioctl_reinject(kvm, &control);
1950 if (r)
1951 goto out;
1952 r = 0;
1953 break;
1955 default:
1958 out:
1959 return r;
1962 static void kvm_init_msr_list(void)
1964 u32 dummy[2];
1965 unsigned i, j;
1967 for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
1968 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
1969 continue;
1970 if (j < i)
1971 msrs_to_save[j] = msrs_to_save[i];
1972 j++;
1974 num_msrs_to_save = j;
1978 * Only apic need an MMIO device hook, so shortcut now..
1980 static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
1981 gpa_t addr, int len,
1982 int is_write)
1984 struct kvm_io_device *dev;
1986 if (vcpu->arch.apic) {
1987 dev = &vcpu->arch.apic->dev;
1988 if (dev->in_range(dev, addr, len, is_write))
1989 return dev;
1991 return NULL;
1995 static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
1996 gpa_t addr, int len,
1997 int is_write)
1999 struct kvm_io_device *dev;
2001 dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write);
2002 if (dev == NULL)
2003 dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len,
2004 is_write);
2005 return dev;
2008 int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
2009 struct kvm_vcpu *vcpu)
2011 void *data = val;
2012 int r = X86EMUL_CONTINUE;
2014 while (bytes) {
2015 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2016 unsigned offset = addr & (PAGE_SIZE-1);
2017 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
2018 int ret;
2020 if (gpa == UNMAPPED_GVA) {
2021 r = X86EMUL_PROPAGATE_FAULT;
2022 goto out;
2024 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
2025 if (ret < 0) {
2026 r = X86EMUL_UNHANDLEABLE;
2027 goto out;
2030 bytes -= toread;
2031 data += toread;
2032 addr += toread;
2034 out:
2035 return r;
2038 int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
2039 struct kvm_vcpu *vcpu)
2041 void *data = val;
2042 int r = X86EMUL_CONTINUE;
2044 while (bytes) {
2045 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2046 unsigned offset = addr & (PAGE_SIZE-1);
2047 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
2048 int ret;
2050 if (gpa == UNMAPPED_GVA) {
2051 r = X86EMUL_PROPAGATE_FAULT;
2052 goto out;
2054 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
2055 if (ret < 0) {
2056 r = X86EMUL_UNHANDLEABLE;
2057 goto out;
2060 bytes -= towrite;
2061 data += towrite;
2062 addr += towrite;
2064 out:
2065 return r;
2069 static int emulator_read_emulated(unsigned long addr,
2070 void *val,
2071 unsigned int bytes,
2072 struct kvm_vcpu *vcpu)
2074 struct kvm_io_device *mmio_dev;
2075 gpa_t gpa;
2077 if (vcpu->mmio_read_completed) {
2078 memcpy(val, vcpu->mmio_data, bytes);
2079 vcpu->mmio_read_completed = 0;
2080 return X86EMUL_CONTINUE;
2083 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2085 /* For APIC access vmexit */
2086 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2087 goto mmio;
2089 if (kvm_read_guest_virt(addr, val, bytes, vcpu)
2090 == X86EMUL_CONTINUE)
2091 return X86EMUL_CONTINUE;
2092 if (gpa == UNMAPPED_GVA)
2093 return X86EMUL_PROPAGATE_FAULT;
2095 mmio:
2097 * Is this MMIO handled locally?
2099 mutex_lock(&vcpu->kvm->lock);
2100 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0);
2101 if (mmio_dev) {
2102 kvm_iodevice_read(mmio_dev, gpa, bytes, val);
2103 mutex_unlock(&vcpu->kvm->lock);
2104 return X86EMUL_CONTINUE;
2106 mutex_unlock(&vcpu->kvm->lock);
2108 vcpu->mmio_needed = 1;
2109 vcpu->mmio_phys_addr = gpa;
2110 vcpu->mmio_size = bytes;
2111 vcpu->mmio_is_write = 0;
2113 return X86EMUL_UNHANDLEABLE;
2116 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
2117 const void *val, int bytes)
2119 int ret;
2121 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
2122 if (ret < 0)
2123 return 0;
2124 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
2125 return 1;
2128 static int emulator_write_emulated_onepage(unsigned long addr,
2129 const void *val,
2130 unsigned int bytes,
2131 struct kvm_vcpu *vcpu)
2133 struct kvm_io_device *mmio_dev;
2134 gpa_t gpa;
2136 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2138 if (gpa == UNMAPPED_GVA) {
2139 kvm_inject_page_fault(vcpu, addr, 2);
2140 return X86EMUL_PROPAGATE_FAULT;
2143 /* For APIC access vmexit */
2144 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2145 goto mmio;
2147 if (emulator_write_phys(vcpu, gpa, val, bytes))
2148 return X86EMUL_CONTINUE;
2150 mmio:
2152 * Is this MMIO handled locally?
2154 mutex_lock(&vcpu->kvm->lock);
2155 mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1);
2156 if (mmio_dev) {
2157 kvm_iodevice_write(mmio_dev, gpa, bytes, val);
2158 mutex_unlock(&vcpu->kvm->lock);
2159 return X86EMUL_CONTINUE;
2161 mutex_unlock(&vcpu->kvm->lock);
2163 vcpu->mmio_needed = 1;
2164 vcpu->mmio_phys_addr = gpa;
2165 vcpu->mmio_size = bytes;
2166 vcpu->mmio_is_write = 1;
2167 memcpy(vcpu->mmio_data, val, bytes);
2169 return X86EMUL_CONTINUE;
2172 int emulator_write_emulated(unsigned long addr,
2173 const void *val,
2174 unsigned int bytes,
2175 struct kvm_vcpu *vcpu)
2177 /* Crossing a page boundary? */
2178 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
2179 int rc, now;
2181 now = -addr & ~PAGE_MASK;
2182 rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
2183 if (rc != X86EMUL_CONTINUE)
2184 return rc;
2185 addr += now;
2186 val += now;
2187 bytes -= now;
2189 return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
2191 EXPORT_SYMBOL_GPL(emulator_write_emulated);
2193 static int emulator_cmpxchg_emulated(unsigned long addr,
2194 const void *old,
2195 const void *new,
2196 unsigned int bytes,
2197 struct kvm_vcpu *vcpu)
2199 static int reported;
2201 if (!reported) {
2202 reported = 1;
2203 printk(KERN_WARNING "kvm: emulating exchange as write\n");
2205 #ifndef CONFIG_X86_64
2206 /* guests cmpxchg8b have to be emulated atomically */
2207 if (bytes == 8) {
2208 gpa_t gpa;
2209 struct page *page;
2210 char *kaddr;
2211 u64 val;
2213 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
2215 if (gpa == UNMAPPED_GVA ||
2216 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
2217 goto emul_write;
2219 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
2220 goto emul_write;
2222 val = *(u64 *)new;
2224 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
2226 kaddr = kmap_atomic(page, KM_USER0);
2227 set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
2228 kunmap_atomic(kaddr, KM_USER0);
2229 kvm_release_page_dirty(page);
2231 emul_write:
2232 #endif
2234 return emulator_write_emulated(addr, new, bytes, vcpu);
2237 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
2239 return kvm_x86_ops->get_segment_base(vcpu, seg);
2242 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
2244 kvm_mmu_invlpg(vcpu, address);
2245 return X86EMUL_CONTINUE;
2248 int emulate_clts(struct kvm_vcpu *vcpu)
2250 KVMTRACE_0D(CLTS, vcpu, handler);
2251 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
2252 return X86EMUL_CONTINUE;
2255 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
2257 struct kvm_vcpu *vcpu = ctxt->vcpu;
2259 switch (dr) {
2260 case 0 ... 3:
2261 *dest = kvm_x86_ops->get_dr(vcpu, dr);
2262 return X86EMUL_CONTINUE;
2263 default:
2264 pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
2265 return X86EMUL_UNHANDLEABLE;
2269 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
2271 unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
2272 int exception;
2274 kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
2275 if (exception) {
2276 /* FIXME: better handling */
2277 return X86EMUL_UNHANDLEABLE;
2279 return X86EMUL_CONTINUE;
2282 void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
2284 u8 opcodes[4];
2285 unsigned long rip = kvm_rip_read(vcpu);
2286 unsigned long rip_linear;
2288 if (!printk_ratelimit())
2289 return;
2291 rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
2293 kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
2295 printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
2296 context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
2298 EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
2300 static struct x86_emulate_ops emulate_ops = {
2301 .read_std = kvm_read_guest_virt,
2302 .read_emulated = emulator_read_emulated,
2303 .write_emulated = emulator_write_emulated,
2304 .cmpxchg_emulated = emulator_cmpxchg_emulated,
2307 static void cache_all_regs(struct kvm_vcpu *vcpu)
2309 kvm_register_read(vcpu, VCPU_REGS_RAX);
2310 kvm_register_read(vcpu, VCPU_REGS_RSP);
2311 kvm_register_read(vcpu, VCPU_REGS_RIP);
2312 vcpu->arch.regs_dirty = ~0;
2315 int emulate_instruction(struct kvm_vcpu *vcpu,
2316 struct kvm_run *run,
2317 unsigned long cr2,
2318 u16 error_code,
2319 int emulation_type)
2321 int r;
2322 struct decode_cache *c;
2324 kvm_clear_exception_queue(vcpu);
2325 vcpu->arch.mmio_fault_cr2 = cr2;
2327 * TODO: fix x86_emulate.c to use guest_read/write_register
2328 * instead of direct ->regs accesses, can save hundred cycles
2329 * on Intel for instructions that don't read/change RSP, for
2330 * for example.
2332 cache_all_regs(vcpu);
2334 vcpu->mmio_is_write = 0;
2335 vcpu->arch.pio.string = 0;
2337 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
2338 int cs_db, cs_l;
2339 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
2341 vcpu->arch.emulate_ctxt.vcpu = vcpu;
2342 vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
2343 vcpu->arch.emulate_ctxt.mode =
2344 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
2345 ? X86EMUL_MODE_REAL : cs_l
2346 ? X86EMUL_MODE_PROT64 : cs_db
2347 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
2349 r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2351 /* Reject the instructions other than VMCALL/VMMCALL when
2352 * try to emulate invalid opcode */
2353 c = &vcpu->arch.emulate_ctxt.decode;
2354 if ((emulation_type & EMULTYPE_TRAP_UD) &&
2355 (!(c->twobyte && c->b == 0x01 &&
2356 (c->modrm_reg == 0 || c->modrm_reg == 3) &&
2357 c->modrm_mod == 3 && c->modrm_rm == 1)))
2358 return EMULATE_FAIL;
2360 ++vcpu->stat.insn_emulation;
2361 if (r) {
2362 ++vcpu->stat.insn_emulation_fail;
2363 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2364 return EMULATE_DONE;
2365 return EMULATE_FAIL;
2369 r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
2371 if (vcpu->arch.pio.string)
2372 return EMULATE_DO_MMIO;
2374 if ((r || vcpu->mmio_is_write) && run) {
2375 run->exit_reason = KVM_EXIT_MMIO;
2376 run->mmio.phys_addr = vcpu->mmio_phys_addr;
2377 memcpy(run->mmio.data, vcpu->mmio_data, 8);
2378 run->mmio.len = vcpu->mmio_size;
2379 run->mmio.is_write = vcpu->mmio_is_write;
2382 if (r) {
2383 if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
2384 return EMULATE_DONE;
2385 if (!vcpu->mmio_needed) {
2386 kvm_report_emulation_failure(vcpu, "mmio");
2387 return EMULATE_FAIL;
2389 return EMULATE_DO_MMIO;
2392 kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
2394 if (vcpu->mmio_is_write) {
2395 vcpu->mmio_needed = 0;
2396 return EMULATE_DO_MMIO;
2399 return EMULATE_DONE;
2401 EXPORT_SYMBOL_GPL(emulate_instruction);
2403 static int pio_copy_data(struct kvm_vcpu *vcpu)
2405 void *p = vcpu->arch.pio_data;
2406 gva_t q = vcpu->arch.pio.guest_gva;
2407 unsigned bytes;
2408 int ret;
2410 bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
2411 if (vcpu->arch.pio.in)
2412 ret = kvm_write_guest_virt(q, p, bytes, vcpu);
2413 else
2414 ret = kvm_read_guest_virt(q, p, bytes, vcpu);
2415 return ret;
2418 int complete_pio(struct kvm_vcpu *vcpu)
2420 struct kvm_pio_request *io = &vcpu->arch.pio;
2421 long delta;
2422 int r;
2423 unsigned long val;
2425 if (!io->string) {
2426 if (io->in) {
2427 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2428 memcpy(&val, vcpu->arch.pio_data, io->size);
2429 kvm_register_write(vcpu, VCPU_REGS_RAX, val);
2431 } else {
2432 if (io->in) {
2433 r = pio_copy_data(vcpu);
2434 if (r)
2435 return r;
2438 delta = 1;
2439 if (io->rep) {
2440 delta *= io->cur_count;
2442 * The size of the register should really depend on
2443 * current address size.
2445 val = kvm_register_read(vcpu, VCPU_REGS_RCX);
2446 val -= delta;
2447 kvm_register_write(vcpu, VCPU_REGS_RCX, val);
2449 if (io->down)
2450 delta = -delta;
2451 delta *= io->size;
2452 if (io->in) {
2453 val = kvm_register_read(vcpu, VCPU_REGS_RDI);
2454 val += delta;
2455 kvm_register_write(vcpu, VCPU_REGS_RDI, val);
2456 } else {
2457 val = kvm_register_read(vcpu, VCPU_REGS_RSI);
2458 val += delta;
2459 kvm_register_write(vcpu, VCPU_REGS_RSI, val);
2463 io->count -= io->cur_count;
2464 io->cur_count = 0;
2466 return 0;
2469 static void kernel_pio(struct kvm_io_device *pio_dev,
2470 struct kvm_vcpu *vcpu,
2471 void *pd)
2473 /* TODO: String I/O for in kernel device */
2475 mutex_lock(&vcpu->kvm->lock);
2476 if (vcpu->arch.pio.in)
2477 kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
2478 vcpu->arch.pio.size,
2479 pd);
2480 else
2481 kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
2482 vcpu->arch.pio.size,
2483 pd);
2484 mutex_unlock(&vcpu->kvm->lock);
2487 static void pio_string_write(struct kvm_io_device *pio_dev,
2488 struct kvm_vcpu *vcpu)
2490 struct kvm_pio_request *io = &vcpu->arch.pio;
2491 void *pd = vcpu->arch.pio_data;
2492 int i;
2494 mutex_lock(&vcpu->kvm->lock);
2495 for (i = 0; i < io->cur_count; i++) {
2496 kvm_iodevice_write(pio_dev, io->port,
2497 io->size,
2498 pd);
2499 pd += io->size;
2501 mutex_unlock(&vcpu->kvm->lock);
2504 static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
2505 gpa_t addr, int len,
2506 int is_write)
2508 return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write);
2511 int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2512 int size, unsigned port)
2514 struct kvm_io_device *pio_dev;
2515 unsigned long val;
2517 vcpu->run->exit_reason = KVM_EXIT_IO;
2518 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2519 vcpu->run->io.size = vcpu->arch.pio.size = size;
2520 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2521 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
2522 vcpu->run->io.port = vcpu->arch.pio.port = port;
2523 vcpu->arch.pio.in = in;
2524 vcpu->arch.pio.string = 0;
2525 vcpu->arch.pio.down = 0;
2526 vcpu->arch.pio.rep = 0;
2528 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2529 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2530 handler);
2531 else
2532 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2533 handler);
2535 val = kvm_register_read(vcpu, VCPU_REGS_RAX);
2536 memcpy(vcpu->arch.pio_data, &val, 4);
2538 pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in);
2539 if (pio_dev) {
2540 kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
2541 complete_pio(vcpu);
2542 return 1;
2544 return 0;
2546 EXPORT_SYMBOL_GPL(kvm_emulate_pio);
2548 int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
2549 int size, unsigned long count, int down,
2550 gva_t address, int rep, unsigned port)
2552 unsigned now, in_page;
2553 int ret = 0;
2554 struct kvm_io_device *pio_dev;
2556 vcpu->run->exit_reason = KVM_EXIT_IO;
2557 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
2558 vcpu->run->io.size = vcpu->arch.pio.size = size;
2559 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
2560 vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
2561 vcpu->run->io.port = vcpu->arch.pio.port = port;
2562 vcpu->arch.pio.in = in;
2563 vcpu->arch.pio.string = 1;
2564 vcpu->arch.pio.down = down;
2565 vcpu->arch.pio.rep = rep;
2567 if (vcpu->run->io.direction == KVM_EXIT_IO_IN)
2568 KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size,
2569 handler);
2570 else
2571 KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size,
2572 handler);
2574 if (!count) {
2575 kvm_x86_ops->skip_emulated_instruction(vcpu);
2576 return 1;
2579 if (!down)
2580 in_page = PAGE_SIZE - offset_in_page(address);
2581 else
2582 in_page = offset_in_page(address) + size;
2583 now = min(count, (unsigned long)in_page / size);
2584 if (!now)
2585 now = 1;
2586 if (down) {
2588 * String I/O in reverse. Yuck. Kill the guest, fix later.
2590 pr_unimpl(vcpu, "guest string pio down\n");
2591 kvm_inject_gp(vcpu, 0);
2592 return 1;
2594 vcpu->run->io.count = now;
2595 vcpu->arch.pio.cur_count = now;
2597 if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
2598 kvm_x86_ops->skip_emulated_instruction(vcpu);
2600 vcpu->arch.pio.guest_gva = address;
2602 pio_dev = vcpu_find_pio_dev(vcpu, port,
2603 vcpu->arch.pio.cur_count,
2604 !vcpu->arch.pio.in);
2605 if (!vcpu->arch.pio.in) {
2606 /* string PIO write */
2607 ret = pio_copy_data(vcpu);
2608 if (ret == X86EMUL_PROPAGATE_FAULT) {
2609 kvm_inject_gp(vcpu, 0);
2610 return 1;
2612 if (ret == 0 && pio_dev) {
2613 pio_string_write(pio_dev, vcpu);
2614 complete_pio(vcpu);
2615 if (vcpu->arch.pio.count == 0)
2616 ret = 1;
2618 } else if (pio_dev)
2619 pr_unimpl(vcpu, "no string pio read support yet, "
2620 "port %x size %d count %ld\n",
2621 port, size, count);
2623 return ret;
2625 EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
2627 int kvm_arch_init(void *opaque)
2629 int r;
2630 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
2632 if (kvm_x86_ops) {
2633 printk(KERN_ERR "kvm: already loaded the other module\n");
2634 r = -EEXIST;
2635 goto out;
2638 if (!ops->cpu_has_kvm_support()) {
2639 printk(KERN_ERR "kvm: no hardware support\n");
2640 r = -EOPNOTSUPP;
2641 goto out;
2643 if (ops->disabled_by_bios()) {
2644 printk(KERN_ERR "kvm: disabled by bios\n");
2645 r = -EOPNOTSUPP;
2646 goto out;
2649 r = kvm_mmu_module_init();
2650 if (r)
2651 goto out;
2653 kvm_init_msr_list();
2655 kvm_x86_ops = ops;
2656 kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
2657 kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
2658 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
2659 PT_DIRTY_MASK, PT64_NX_MASK, 0, 0);
2660 return 0;
2662 out:
2663 return r;
2666 void kvm_arch_exit(void)
2668 kvm_x86_ops = NULL;
2669 kvm_mmu_module_exit();
2672 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
2674 ++vcpu->stat.halt_exits;
2675 KVMTRACE_0D(HLT, vcpu, handler);
2676 if (irqchip_in_kernel(vcpu->kvm)) {
2677 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
2678 return 1;
2679 } else {
2680 vcpu->run->exit_reason = KVM_EXIT_HLT;
2681 return 0;
2684 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
2686 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
2687 unsigned long a1)
2689 if (is_long_mode(vcpu))
2690 return a0;
2691 else
2692 return a0 | ((gpa_t)a1 << 32);
2695 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
2697 unsigned long nr, a0, a1, a2, a3, ret;
2698 int r = 1;
2700 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
2701 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
2702 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
2703 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
2704 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
2706 KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler);
2708 if (!is_long_mode(vcpu)) {
2709 nr &= 0xFFFFFFFF;
2710 a0 &= 0xFFFFFFFF;
2711 a1 &= 0xFFFFFFFF;
2712 a2 &= 0xFFFFFFFF;
2713 a3 &= 0xFFFFFFFF;
2716 switch (nr) {
2717 case KVM_HC_VAPIC_POLL_IRQ:
2718 ret = 0;
2719 break;
2720 case KVM_HC_MMU_OP:
2721 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
2722 break;
2723 default:
2724 ret = -KVM_ENOSYS;
2725 break;
2727 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
2728 ++vcpu->stat.hypercalls;
2729 return r;
2731 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
2733 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
2735 char instruction[3];
2736 int ret = 0;
2737 unsigned long rip = kvm_rip_read(vcpu);
2741 * Blow out the MMU to ensure that no other VCPU has an active mapping
2742 * to ensure that the updated hypercall appears atomically across all
2743 * VCPUs.
2745 kvm_mmu_zap_all(vcpu->kvm);
2747 kvm_x86_ops->patch_hypercall(vcpu, instruction);
2748 if (emulator_write_emulated(rip, instruction, 3, vcpu)
2749 != X86EMUL_CONTINUE)
2750 ret = -EFAULT;
2752 return ret;
2755 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
2757 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
2760 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2762 struct descriptor_table dt = { limit, base };
2764 kvm_x86_ops->set_gdt(vcpu, &dt);
2767 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
2769 struct descriptor_table dt = { limit, base };
2771 kvm_x86_ops->set_idt(vcpu, &dt);
2774 void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
2775 unsigned long *rflags)
2777 kvm_lmsw(vcpu, msw);
2778 *rflags = kvm_x86_ops->get_rflags(vcpu);
2781 unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
2783 unsigned long value;
2785 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
2786 switch (cr) {
2787 case 0:
2788 value = vcpu->arch.cr0;
2789 break;
2790 case 2:
2791 value = vcpu->arch.cr2;
2792 break;
2793 case 3:
2794 value = vcpu->arch.cr3;
2795 break;
2796 case 4:
2797 value = vcpu->arch.cr4;
2798 break;
2799 case 8:
2800 value = kvm_get_cr8(vcpu);
2801 break;
2802 default:
2803 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2804 return 0;
2806 KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value,
2807 (u32)((u64)value >> 32), handler);
2809 return value;
2812 void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
2813 unsigned long *rflags)
2815 KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val,
2816 (u32)((u64)val >> 32), handler);
2818 switch (cr) {
2819 case 0:
2820 kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
2821 *rflags = kvm_x86_ops->get_rflags(vcpu);
2822 break;
2823 case 2:
2824 vcpu->arch.cr2 = val;
2825 break;
2826 case 3:
2827 kvm_set_cr3(vcpu, val);
2828 break;
2829 case 4:
2830 kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
2831 break;
2832 case 8:
2833 kvm_set_cr8(vcpu, val & 0xfUL);
2834 break;
2835 default:
2836 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
2840 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
2842 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
2843 int j, nent = vcpu->arch.cpuid_nent;
2845 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
2846 /* when no next entry is found, the current entry[i] is reselected */
2847 for (j = i + 1; ; j = (j + 1) % nent) {
2848 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
2849 if (ej->function == e->function) {
2850 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2851 return j;
2854 return 0; /* silence gcc, even though control never reaches here */
2857 /* find an entry with matching function, matching index (if needed), and that
2858 * should be read next (if it's stateful) */
2859 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
2860 u32 function, u32 index)
2862 if (e->function != function)
2863 return 0;
2864 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
2865 return 0;
2866 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
2867 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
2868 return 0;
2869 return 1;
2872 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
2873 u32 function, u32 index)
2875 int i;
2876 struct kvm_cpuid_entry2 *best = NULL;
2878 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2879 struct kvm_cpuid_entry2 *e;
2881 e = &vcpu->arch.cpuid_entries[i];
2882 if (is_matching_cpuid_entry(e, function, index)) {
2883 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
2884 move_to_next_stateful_cpuid_entry(vcpu, i);
2885 best = e;
2886 break;
2889 * Both basic or both extended?
2891 if (((e->function ^ function) & 0x80000000) == 0)
2892 if (!best || e->function > best->function)
2893 best = e;
2896 return best;
2899 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
2901 u32 function, index;
2902 struct kvm_cpuid_entry2 *best;
2904 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
2905 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
2906 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
2907 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
2908 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
2909 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
2910 best = kvm_find_cpuid_entry(vcpu, function, index);
2911 if (best) {
2912 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
2913 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
2914 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
2915 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
2917 kvm_x86_ops->skip_emulated_instruction(vcpu);
2918 KVMTRACE_5D(CPUID, vcpu, function,
2919 (u32)kvm_register_read(vcpu, VCPU_REGS_RAX),
2920 (u32)kvm_register_read(vcpu, VCPU_REGS_RBX),
2921 (u32)kvm_register_read(vcpu, VCPU_REGS_RCX),
2922 (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler);
2924 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
2927 * Check if userspace requested an interrupt window, and that the
2928 * interrupt window is open.
2930 * No need to exit to userspace if we already have an interrupt queued.
2932 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
2933 struct kvm_run *kvm_run)
2935 return (!vcpu->arch.irq_summary &&
2936 kvm_run->request_interrupt_window &&
2937 vcpu->arch.interrupt_window_open &&
2938 (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
2941 static void post_kvm_run_save(struct kvm_vcpu *vcpu,
2942 struct kvm_run *kvm_run)
2944 kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
2945 kvm_run->cr8 = kvm_get_cr8(vcpu);
2946 kvm_run->apic_base = kvm_get_apic_base(vcpu);
2947 if (irqchip_in_kernel(vcpu->kvm))
2948 kvm_run->ready_for_interrupt_injection = 1;
2949 else
2950 kvm_run->ready_for_interrupt_injection =
2951 (vcpu->arch.interrupt_window_open &&
2952 vcpu->arch.irq_summary == 0);
2955 static void vapic_enter(struct kvm_vcpu *vcpu)
2957 struct kvm_lapic *apic = vcpu->arch.apic;
2958 struct page *page;
2960 if (!apic || !apic->vapic_addr)
2961 return;
2963 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2965 vcpu->arch.apic->vapic_page = page;
2968 static void vapic_exit(struct kvm_vcpu *vcpu)
2970 struct kvm_lapic *apic = vcpu->arch.apic;
2972 if (!apic || !apic->vapic_addr)
2973 return;
2975 down_read(&vcpu->kvm->slots_lock);
2976 kvm_release_page_dirty(apic->vapic_page);
2977 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
2978 up_read(&vcpu->kvm->slots_lock);
2981 static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2983 int r;
2985 if (vcpu->requests)
2986 if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
2987 kvm_mmu_unload(vcpu);
2989 r = kvm_mmu_reload(vcpu);
2990 if (unlikely(r))
2991 goto out;
2993 if (vcpu->requests) {
2994 if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
2995 __kvm_migrate_timers(vcpu);
2996 if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
2997 kvm_mmu_sync_roots(vcpu);
2998 if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
2999 kvm_x86_ops->tlb_flush(vcpu);
3000 if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
3001 &vcpu->requests)) {
3002 kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
3003 r = 0;
3004 goto out;
3006 if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
3007 kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
3008 r = 0;
3009 goto out;
3013 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
3014 kvm_inject_pending_timer_irqs(vcpu);
3016 preempt_disable();
3018 kvm_x86_ops->prepare_guest_switch(vcpu);
3019 kvm_load_guest_fpu(vcpu);
3021 local_irq_disable();
3023 if (vcpu->requests || need_resched() || signal_pending(current)) {
3024 local_irq_enable();
3025 preempt_enable();
3026 r = 1;
3027 goto out;
3030 vcpu->guest_mode = 1;
3032 * Make sure that guest_mode assignment won't happen after
3033 * testing the pending IRQ vector bitmap.
3035 smp_wmb();
3037 if (vcpu->arch.exception.pending)
3038 __queue_exception(vcpu);
3039 else if (irqchip_in_kernel(vcpu->kvm))
3040 kvm_x86_ops->inject_pending_irq(vcpu);
3041 else
3042 kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
3044 kvm_lapic_sync_to_vapic(vcpu);
3046 up_read(&vcpu->kvm->slots_lock);
3048 kvm_guest_enter();
3050 get_debugreg(vcpu->arch.host_dr6, 6);
3051 get_debugreg(vcpu->arch.host_dr7, 7);
3052 if (unlikely(vcpu->arch.switch_db_regs)) {
3053 get_debugreg(vcpu->arch.host_db[0], 0);
3054 get_debugreg(vcpu->arch.host_db[1], 1);
3055 get_debugreg(vcpu->arch.host_db[2], 2);
3056 get_debugreg(vcpu->arch.host_db[3], 3);
3058 set_debugreg(0, 7);
3059 set_debugreg(vcpu->arch.eff_db[0], 0);
3060 set_debugreg(vcpu->arch.eff_db[1], 1);
3061 set_debugreg(vcpu->arch.eff_db[2], 2);
3062 set_debugreg(vcpu->arch.eff_db[3], 3);
3065 KVMTRACE_0D(VMENTRY, vcpu, entryexit);
3066 kvm_x86_ops->run(vcpu, kvm_run);
3068 if (unlikely(vcpu->arch.switch_db_regs)) {
3069 set_debugreg(0, 7);
3070 set_debugreg(vcpu->arch.host_db[0], 0);
3071 set_debugreg(vcpu->arch.host_db[1], 1);
3072 set_debugreg(vcpu->arch.host_db[2], 2);
3073 set_debugreg(vcpu->arch.host_db[3], 3);
3075 set_debugreg(vcpu->arch.host_dr6, 6);
3076 set_debugreg(vcpu->arch.host_dr7, 7);
3078 vcpu->guest_mode = 0;
3079 local_irq_enable();
3081 ++vcpu->stat.exits;
3084 * We must have an instruction between local_irq_enable() and
3085 * kvm_guest_exit(), so the timer interrupt isn't delayed by
3086 * the interrupt shadow. The stat.exits increment will do nicely.
3087 * But we need to prevent reordering, hence this barrier():
3089 barrier();
3091 kvm_guest_exit();
3093 preempt_enable();
3095 down_read(&vcpu->kvm->slots_lock);
3098 * Profile KVM exit RIPs:
3100 if (unlikely(prof_on == KVM_PROFILING)) {
3101 unsigned long rip = kvm_rip_read(vcpu);
3102 profile_hit(KVM_PROFILING, (void *)rip);
3105 if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
3106 vcpu->arch.exception.pending = false;
3108 kvm_lapic_sync_from_vapic(vcpu);
3110 r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
3111 out:
3112 return r;
3115 static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3117 int r;
3119 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
3120 pr_debug("vcpu %d received sipi with vector # %x\n",
3121 vcpu->vcpu_id, vcpu->arch.sipi_vector);
3122 kvm_lapic_reset(vcpu);
3123 r = kvm_arch_vcpu_reset(vcpu);
3124 if (r)
3125 return r;
3126 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3129 down_read(&vcpu->kvm->slots_lock);
3130 vapic_enter(vcpu);
3132 r = 1;
3133 while (r > 0) {
3134 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
3135 r = vcpu_enter_guest(vcpu, kvm_run);
3136 else {
3137 up_read(&vcpu->kvm->slots_lock);
3138 kvm_vcpu_block(vcpu);
3139 down_read(&vcpu->kvm->slots_lock);
3140 if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
3141 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3142 vcpu->arch.mp_state =
3143 KVM_MP_STATE_RUNNABLE;
3144 if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE)
3145 r = -EINTR;
3148 if (r > 0) {
3149 if (dm_request_for_irq_injection(vcpu, kvm_run)) {
3150 r = -EINTR;
3151 kvm_run->exit_reason = KVM_EXIT_INTR;
3152 ++vcpu->stat.request_irq_exits;
3154 if (signal_pending(current)) {
3155 r = -EINTR;
3156 kvm_run->exit_reason = KVM_EXIT_INTR;
3157 ++vcpu->stat.signal_exits;
3159 if (need_resched()) {
3160 up_read(&vcpu->kvm->slots_lock);
3161 kvm_resched(vcpu);
3162 down_read(&vcpu->kvm->slots_lock);
3167 up_read(&vcpu->kvm->slots_lock);
3168 post_kvm_run_save(vcpu, kvm_run);
3170 vapic_exit(vcpu);
3172 return r;
3175 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3177 int r;
3178 sigset_t sigsaved;
3180 vcpu_load(vcpu);
3182 if (vcpu->sigset_active)
3183 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3185 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
3186 kvm_vcpu_block(vcpu);
3187 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
3188 r = -EAGAIN;
3189 goto out;
3192 /* re-sync apic's tpr */
3193 if (!irqchip_in_kernel(vcpu->kvm))
3194 kvm_set_cr8(vcpu, kvm_run->cr8);
3196 if (vcpu->arch.pio.cur_count) {
3197 r = complete_pio(vcpu);
3198 if (r)
3199 goto out;
3201 #if CONFIG_HAS_IOMEM
3202 if (vcpu->mmio_needed) {
3203 memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
3204 vcpu->mmio_read_completed = 1;
3205 vcpu->mmio_needed = 0;
3207 down_read(&vcpu->kvm->slots_lock);
3208 r = emulate_instruction(vcpu, kvm_run,
3209 vcpu->arch.mmio_fault_cr2, 0,
3210 EMULTYPE_NO_DECODE);
3211 up_read(&vcpu->kvm->slots_lock);
3212 if (r == EMULATE_DO_MMIO) {
3214 * Read-modify-write. Back to userspace.
3216 r = 0;
3217 goto out;
3220 #endif
3221 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
3222 kvm_register_write(vcpu, VCPU_REGS_RAX,
3223 kvm_run->hypercall.ret);
3225 r = __vcpu_run(vcpu, kvm_run);
3227 out:
3228 if (vcpu->sigset_active)
3229 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3231 vcpu_put(vcpu);
3232 return r;
3235 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3237 vcpu_load(vcpu);
3239 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3240 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3241 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3242 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3243 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3244 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3245 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3246 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3247 #ifdef CONFIG_X86_64
3248 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
3249 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
3250 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
3251 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
3252 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
3253 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
3254 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
3255 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
3256 #endif
3258 regs->rip = kvm_rip_read(vcpu);
3259 regs->rflags = kvm_x86_ops->get_rflags(vcpu);
3262 * Don't leak debug flags in case they were set for guest debugging
3264 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3265 regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
3267 vcpu_put(vcpu);
3269 return 0;
3272 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
3274 vcpu_load(vcpu);
3276 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
3277 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
3278 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
3279 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
3280 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
3281 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
3282 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
3283 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
3284 #ifdef CONFIG_X86_64
3285 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
3286 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
3287 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
3288 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
3289 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
3290 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
3291 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
3292 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
3294 #endif
3296 kvm_rip_write(vcpu, regs->rip);
3297 kvm_x86_ops->set_rflags(vcpu, regs->rflags);
3300 vcpu->arch.exception.pending = false;
3302 vcpu_put(vcpu);
3304 return 0;
3307 void kvm_get_segment(struct kvm_vcpu *vcpu,
3308 struct kvm_segment *var, int seg)
3310 kvm_x86_ops->get_segment(vcpu, var, seg);
3313 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3315 struct kvm_segment cs;
3317 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
3318 *db = cs.db;
3319 *l = cs.l;
3321 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
3323 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
3324 struct kvm_sregs *sregs)
3326 struct descriptor_table dt;
3327 int pending_vec;
3329 vcpu_load(vcpu);
3331 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3332 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3333 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3334 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3335 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3336 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3338 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3339 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3341 kvm_x86_ops->get_idt(vcpu, &dt);
3342 sregs->idt.limit = dt.limit;
3343 sregs->idt.base = dt.base;
3344 kvm_x86_ops->get_gdt(vcpu, &dt);
3345 sregs->gdt.limit = dt.limit;
3346 sregs->gdt.base = dt.base;
3348 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3349 sregs->cr0 = vcpu->arch.cr0;
3350 sregs->cr2 = vcpu->arch.cr2;
3351 sregs->cr3 = vcpu->arch.cr3;
3352 sregs->cr4 = vcpu->arch.cr4;
3353 sregs->cr8 = kvm_get_cr8(vcpu);
3354 sregs->efer = vcpu->arch.shadow_efer;
3355 sregs->apic_base = kvm_get_apic_base(vcpu);
3357 if (irqchip_in_kernel(vcpu->kvm)) {
3358 memset(sregs->interrupt_bitmap, 0,
3359 sizeof sregs->interrupt_bitmap);
3360 pending_vec = kvm_x86_ops->get_irq(vcpu);
3361 if (pending_vec >= 0)
3362 set_bit(pending_vec,
3363 (unsigned long *)sregs->interrupt_bitmap);
3364 } else
3365 memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
3366 sizeof sregs->interrupt_bitmap);
3368 vcpu_put(vcpu);
3370 return 0;
3373 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
3374 struct kvm_mp_state *mp_state)
3376 vcpu_load(vcpu);
3377 mp_state->mp_state = vcpu->arch.mp_state;
3378 vcpu_put(vcpu);
3379 return 0;
3382 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
3383 struct kvm_mp_state *mp_state)
3385 vcpu_load(vcpu);
3386 vcpu->arch.mp_state = mp_state->mp_state;
3387 vcpu_put(vcpu);
3388 return 0;
3391 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3392 struct kvm_segment *var, int seg)
3394 kvm_x86_ops->set_segment(vcpu, var, seg);
3397 static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
3398 struct kvm_segment *kvm_desct)
3400 kvm_desct->base = seg_desc->base0;
3401 kvm_desct->base |= seg_desc->base1 << 16;
3402 kvm_desct->base |= seg_desc->base2 << 24;
3403 kvm_desct->limit = seg_desc->limit0;
3404 kvm_desct->limit |= seg_desc->limit << 16;
3405 if (seg_desc->g) {
3406 kvm_desct->limit <<= 12;
3407 kvm_desct->limit |= 0xfff;
3409 kvm_desct->selector = selector;
3410 kvm_desct->type = seg_desc->type;
3411 kvm_desct->present = seg_desc->p;
3412 kvm_desct->dpl = seg_desc->dpl;
3413 kvm_desct->db = seg_desc->d;
3414 kvm_desct->s = seg_desc->s;
3415 kvm_desct->l = seg_desc->l;
3416 kvm_desct->g = seg_desc->g;
3417 kvm_desct->avl = seg_desc->avl;
3418 if (!selector)
3419 kvm_desct->unusable = 1;
3420 else
3421 kvm_desct->unusable = 0;
3422 kvm_desct->padding = 0;
3425 static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
3426 u16 selector,
3427 struct descriptor_table *dtable)
3429 if (selector & 1 << 2) {
3430 struct kvm_segment kvm_seg;
3432 kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
3434 if (kvm_seg.unusable)
3435 dtable->limit = 0;
3436 else
3437 dtable->limit = kvm_seg.limit;
3438 dtable->base = kvm_seg.base;
3440 else
3441 kvm_x86_ops->get_gdt(vcpu, dtable);
3444 /* allowed just for 8 bytes segments */
3445 static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3446 struct desc_struct *seg_desc)
3448 gpa_t gpa;
3449 struct descriptor_table dtable;
3450 u16 index = selector >> 3;
3452 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3454 if (dtable.limit < index * 8 + 7) {
3455 kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
3456 return 1;
3458 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3459 gpa += index * 8;
3460 return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8);
3463 /* allowed just for 8 bytes segments */
3464 static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3465 struct desc_struct *seg_desc)
3467 gpa_t gpa;
3468 struct descriptor_table dtable;
3469 u16 index = selector >> 3;
3471 get_segment_descriptor_dtable(vcpu, selector, &dtable);
3473 if (dtable.limit < index * 8 + 7)
3474 return 1;
3475 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base);
3476 gpa += index * 8;
3477 return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8);
3480 static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
3481 struct desc_struct *seg_desc)
3483 u32 base_addr;
3485 base_addr = seg_desc->base0;
3486 base_addr |= (seg_desc->base1 << 16);
3487 base_addr |= (seg_desc->base2 << 24);
3489 return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
3492 static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
3494 struct kvm_segment kvm_seg;
3496 kvm_get_segment(vcpu, &kvm_seg, seg);
3497 return kvm_seg.selector;
3500 static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
3501 u16 selector,
3502 struct kvm_segment *kvm_seg)
3504 struct desc_struct seg_desc;
3506 if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
3507 return 1;
3508 seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
3509 return 0;
3512 static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
3514 struct kvm_segment segvar = {
3515 .base = selector << 4,
3516 .limit = 0xffff,
3517 .selector = selector,
3518 .type = 3,
3519 .present = 1,
3520 .dpl = 3,
3521 .db = 0,
3522 .s = 1,
3523 .l = 0,
3524 .g = 0,
3525 .avl = 0,
3526 .unusable = 0,
3528 kvm_x86_ops->set_segment(vcpu, &segvar, seg);
3529 return 0;
3532 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
3533 int type_bits, int seg)
3535 struct kvm_segment kvm_seg;
3537 if (!(vcpu->arch.cr0 & X86_CR0_PE))
3538 return kvm_load_realmode_segment(vcpu, selector, seg);
3539 if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
3540 return 1;
3541 kvm_seg.type |= type_bits;
3543 if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
3544 seg != VCPU_SREG_LDTR)
3545 if (!kvm_seg.s)
3546 kvm_seg.unusable = 1;
3548 kvm_set_segment(vcpu, &kvm_seg, seg);
3549 return 0;
3552 static void save_state_to_tss32(struct kvm_vcpu *vcpu,
3553 struct tss_segment_32 *tss)
3555 tss->cr3 = vcpu->arch.cr3;
3556 tss->eip = kvm_rip_read(vcpu);
3557 tss->eflags = kvm_x86_ops->get_rflags(vcpu);
3558 tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3559 tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3560 tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3561 tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3562 tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3563 tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3564 tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
3565 tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
3566 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3567 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3568 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3569 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3570 tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
3571 tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
3572 tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3573 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3576 static int load_state_from_tss32(struct kvm_vcpu *vcpu,
3577 struct tss_segment_32 *tss)
3579 kvm_set_cr3(vcpu, tss->cr3);
3581 kvm_rip_write(vcpu, tss->eip);
3582 kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
3584 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
3585 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
3586 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
3587 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
3588 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
3589 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
3590 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
3591 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
3593 if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
3594 return 1;
3596 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3597 return 1;
3599 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3600 return 1;
3602 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3603 return 1;
3605 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3606 return 1;
3608 if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
3609 return 1;
3611 if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
3612 return 1;
3613 return 0;
3616 static void save_state_to_tss16(struct kvm_vcpu *vcpu,
3617 struct tss_segment_16 *tss)
3619 tss->ip = kvm_rip_read(vcpu);
3620 tss->flag = kvm_x86_ops->get_rflags(vcpu);
3621 tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
3622 tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
3623 tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
3624 tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
3625 tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3626 tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
3627 tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
3628 tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
3630 tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
3631 tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
3632 tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
3633 tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
3634 tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
3635 tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
3638 static int load_state_from_tss16(struct kvm_vcpu *vcpu,
3639 struct tss_segment_16 *tss)
3641 kvm_rip_write(vcpu, tss->ip);
3642 kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
3643 kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
3644 kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
3645 kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
3646 kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
3647 kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
3648 kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
3649 kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
3650 kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
3652 if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
3653 return 1;
3655 if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
3656 return 1;
3658 if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
3659 return 1;
3661 if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
3662 return 1;
3664 if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
3665 return 1;
3666 return 0;
3669 static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
3670 u32 old_tss_base,
3671 struct desc_struct *nseg_desc)
3673 struct tss_segment_16 tss_segment_16;
3674 int ret = 0;
3676 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3677 sizeof tss_segment_16))
3678 goto out;
3680 save_state_to_tss16(vcpu, &tss_segment_16);
3682 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
3683 sizeof tss_segment_16))
3684 goto out;
3686 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3687 &tss_segment_16, sizeof tss_segment_16))
3688 goto out;
3690 if (load_state_from_tss16(vcpu, &tss_segment_16))
3691 goto out;
3693 ret = 1;
3694 out:
3695 return ret;
3698 static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
3699 u32 old_tss_base,
3700 struct desc_struct *nseg_desc)
3702 struct tss_segment_32 tss_segment_32;
3703 int ret = 0;
3705 if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3706 sizeof tss_segment_32))
3707 goto out;
3709 save_state_to_tss32(vcpu, &tss_segment_32);
3711 if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
3712 sizeof tss_segment_32))
3713 goto out;
3715 if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
3716 &tss_segment_32, sizeof tss_segment_32))
3717 goto out;
3719 if (load_state_from_tss32(vcpu, &tss_segment_32))
3720 goto out;
3722 ret = 1;
3723 out:
3724 return ret;
3727 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
3729 struct kvm_segment tr_seg;
3730 struct desc_struct cseg_desc;
3731 struct desc_struct nseg_desc;
3732 int ret = 0;
3733 u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
3734 u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
3736 old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
3738 /* FIXME: Handle errors. Failure to read either TSS or their
3739 * descriptors should generate a pagefault.
3741 if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
3742 goto out;
3744 if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
3745 goto out;
3747 if (reason != TASK_SWITCH_IRET) {
3748 int cpl;
3750 cpl = kvm_x86_ops->get_cpl(vcpu);
3751 if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
3752 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
3753 return 1;
3757 if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
3758 kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
3759 return 1;
3762 if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
3763 cseg_desc.type &= ~(1 << 1); //clear the B flag
3764 save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
3767 if (reason == TASK_SWITCH_IRET) {
3768 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3769 kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
3772 kvm_x86_ops->skip_emulated_instruction(vcpu);
3774 if (nseg_desc.type & 8)
3775 ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base,
3776 &nseg_desc);
3777 else
3778 ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base,
3779 &nseg_desc);
3781 if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
3782 u32 eflags = kvm_x86_ops->get_rflags(vcpu);
3783 kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
3786 if (reason != TASK_SWITCH_IRET) {
3787 nseg_desc.type |= (1 << 1);
3788 save_guest_segment_descriptor(vcpu, tss_selector,
3789 &nseg_desc);
3792 kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
3793 seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
3794 tr_seg.type = 11;
3795 kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
3796 out:
3797 return ret;
3799 EXPORT_SYMBOL_GPL(kvm_task_switch);
3801 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
3802 struct kvm_sregs *sregs)
3804 int mmu_reset_needed = 0;
3805 int i, pending_vec, max_bits;
3806 struct descriptor_table dt;
3808 vcpu_load(vcpu);
3810 dt.limit = sregs->idt.limit;
3811 dt.base = sregs->idt.base;
3812 kvm_x86_ops->set_idt(vcpu, &dt);
3813 dt.limit = sregs->gdt.limit;
3814 dt.base = sregs->gdt.base;
3815 kvm_x86_ops->set_gdt(vcpu, &dt);
3817 vcpu->arch.cr2 = sregs->cr2;
3818 mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
3819 vcpu->arch.cr3 = sregs->cr3;
3821 kvm_set_cr8(vcpu, sregs->cr8);
3823 mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
3824 kvm_x86_ops->set_efer(vcpu, sregs->efer);
3825 kvm_set_apic_base(vcpu, sregs->apic_base);
3827 kvm_x86_ops->decache_cr4_guest_bits(vcpu);
3829 mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
3830 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
3831 vcpu->arch.cr0 = sregs->cr0;
3833 mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
3834 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
3835 if (!is_long_mode(vcpu) && is_pae(vcpu))
3836 load_pdptrs(vcpu, vcpu->arch.cr3);
3838 if (mmu_reset_needed)
3839 kvm_mmu_reset_context(vcpu);
3841 if (!irqchip_in_kernel(vcpu->kvm)) {
3842 memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
3843 sizeof vcpu->arch.irq_pending);
3844 vcpu->arch.irq_summary = 0;
3845 for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
3846 if (vcpu->arch.irq_pending[i])
3847 __set_bit(i, &vcpu->arch.irq_summary);
3848 } else {
3849 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
3850 pending_vec = find_first_bit(
3851 (const unsigned long *)sregs->interrupt_bitmap,
3852 max_bits);
3853 /* Only pending external irq is handled here */
3854 if (pending_vec < max_bits) {
3855 kvm_x86_ops->set_irq(vcpu, pending_vec);
3856 pr_debug("Set back pending irq %d\n",
3857 pending_vec);
3859 kvm_pic_clear_isr_ack(vcpu->kvm);
3862 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
3863 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
3864 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
3865 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
3866 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
3867 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
3869 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
3870 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
3872 /* Older userspace won't unhalt the vcpu on reset. */
3873 if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 &&
3874 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3875 !(vcpu->arch.cr0 & X86_CR0_PE))
3876 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3878 vcpu_put(vcpu);
3880 return 0;
3883 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
3884 struct kvm_guest_debug *dbg)
3886 int i, r;
3888 vcpu_load(vcpu);
3890 if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
3891 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
3892 for (i = 0; i < KVM_NR_DB_REGS; ++i)
3893 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
3894 vcpu->arch.switch_db_regs =
3895 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
3896 } else {
3897 for (i = 0; i < KVM_NR_DB_REGS; i++)
3898 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
3899 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
3902 r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
3904 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
3905 kvm_queue_exception(vcpu, DB_VECTOR);
3906 else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
3907 kvm_queue_exception(vcpu, BP_VECTOR);
3909 vcpu_put(vcpu);
3911 return r;
3915 * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
3916 * we have asm/x86/processor.h
3918 struct fxsave {
3919 u16 cwd;
3920 u16 swd;
3921 u16 twd;
3922 u16 fop;
3923 u64 rip;
3924 u64 rdp;
3925 u32 mxcsr;
3926 u32 mxcsr_mask;
3927 u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
3928 #ifdef CONFIG_X86_64
3929 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
3930 #else
3931 u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
3932 #endif
3936 * Translate a guest virtual address to a guest physical address.
3938 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
3939 struct kvm_translation *tr)
3941 unsigned long vaddr = tr->linear_address;
3942 gpa_t gpa;
3944 vcpu_load(vcpu);
3945 down_read(&vcpu->kvm->slots_lock);
3946 gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
3947 up_read(&vcpu->kvm->slots_lock);
3948 tr->physical_address = gpa;
3949 tr->valid = gpa != UNMAPPED_GVA;
3950 tr->writeable = 1;
3951 tr->usermode = 0;
3952 vcpu_put(vcpu);
3954 return 0;
3957 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3959 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3961 vcpu_load(vcpu);
3963 memcpy(fpu->fpr, fxsave->st_space, 128);
3964 fpu->fcw = fxsave->cwd;
3965 fpu->fsw = fxsave->swd;
3966 fpu->ftwx = fxsave->twd;
3967 fpu->last_opcode = fxsave->fop;
3968 fpu->last_ip = fxsave->rip;
3969 fpu->last_dp = fxsave->rdp;
3970 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
3972 vcpu_put(vcpu);
3974 return 0;
3977 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
3979 struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
3981 vcpu_load(vcpu);
3983 memcpy(fxsave->st_space, fpu->fpr, 128);
3984 fxsave->cwd = fpu->fcw;
3985 fxsave->swd = fpu->fsw;
3986 fxsave->twd = fpu->ftwx;
3987 fxsave->fop = fpu->last_opcode;
3988 fxsave->rip = fpu->last_ip;
3989 fxsave->rdp = fpu->last_dp;
3990 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
3992 vcpu_put(vcpu);
3994 return 0;
3997 void fx_init(struct kvm_vcpu *vcpu)
3999 unsigned after_mxcsr_mask;
4002 * Touch the fpu the first time in non atomic context as if
4003 * this is the first fpu instruction the exception handler
4004 * will fire before the instruction returns and it'll have to
4005 * allocate ram with GFP_KERNEL.
4007 if (!used_math())
4008 kvm_fx_save(&vcpu->arch.host_fx_image);
4010 /* Initialize guest FPU by resetting ours and saving into guest's */
4011 preempt_disable();
4012 kvm_fx_save(&vcpu->arch.host_fx_image);
4013 kvm_fx_finit();
4014 kvm_fx_save(&vcpu->arch.guest_fx_image);
4015 kvm_fx_restore(&vcpu->arch.host_fx_image);
4016 preempt_enable();
4018 vcpu->arch.cr0 |= X86_CR0_ET;
4019 after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
4020 vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
4021 memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
4022 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
4024 EXPORT_SYMBOL_GPL(fx_init);
4026 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
4028 if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
4029 return;
4031 vcpu->guest_fpu_loaded = 1;
4032 kvm_fx_save(&vcpu->arch.host_fx_image);
4033 kvm_fx_restore(&vcpu->arch.guest_fx_image);
4035 EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
4037 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
4039 if (!vcpu->guest_fpu_loaded)
4040 return;
4042 vcpu->guest_fpu_loaded = 0;
4043 kvm_fx_save(&vcpu->arch.guest_fx_image);
4044 kvm_fx_restore(&vcpu->arch.host_fx_image);
4045 ++vcpu->stat.fpu_reload;
4047 EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
4049 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
4051 kvm_x86_ops->vcpu_free(vcpu);
4054 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
4055 unsigned int id)
4057 return kvm_x86_ops->vcpu_create(kvm, id);
4060 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
4062 int r;
4064 /* We do fxsave: this must be aligned. */
4065 BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
4067 vcpu->arch.mtrr_state.have_fixed = 1;
4068 vcpu_load(vcpu);
4069 r = kvm_arch_vcpu_reset(vcpu);
4070 if (r == 0)
4071 r = kvm_mmu_setup(vcpu);
4072 vcpu_put(vcpu);
4073 if (r < 0)
4074 goto free_vcpu;
4076 return 0;
4077 free_vcpu:
4078 kvm_x86_ops->vcpu_free(vcpu);
4079 return r;
4082 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
4084 vcpu_load(vcpu);
4085 kvm_mmu_unload(vcpu);
4086 vcpu_put(vcpu);
4088 kvm_x86_ops->vcpu_free(vcpu);
4091 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
4093 vcpu->arch.nmi_pending = false;
4094 vcpu->arch.nmi_injected = false;
4096 vcpu->arch.switch_db_regs = 0;
4097 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
4098 vcpu->arch.dr6 = DR6_FIXED_1;
4099 vcpu->arch.dr7 = DR7_FIXED_1;
4101 return kvm_x86_ops->vcpu_reset(vcpu);
4104 void kvm_arch_hardware_enable(void *garbage)
4106 kvm_x86_ops->hardware_enable(garbage);
4109 void kvm_arch_hardware_disable(void *garbage)
4111 kvm_x86_ops->hardware_disable(garbage);
4114 int kvm_arch_hardware_setup(void)
4116 return kvm_x86_ops->hardware_setup();
4119 void kvm_arch_hardware_unsetup(void)
4121 kvm_x86_ops->hardware_unsetup();
4124 void kvm_arch_check_processor_compat(void *rtn)
4126 kvm_x86_ops->check_processor_compatibility(rtn);
4129 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
4131 struct page *page;
4132 struct kvm *kvm;
4133 int r;
4135 BUG_ON(vcpu->kvm == NULL);
4136 kvm = vcpu->kvm;
4138 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4139 if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
4140 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4141 else
4142 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
4144 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
4145 if (!page) {
4146 r = -ENOMEM;
4147 goto fail;
4149 vcpu->arch.pio_data = page_address(page);
4151 r = kvm_mmu_create(vcpu);
4152 if (r < 0)
4153 goto fail_free_pio_data;
4155 if (irqchip_in_kernel(kvm)) {
4156 r = kvm_create_lapic(vcpu);
4157 if (r < 0)
4158 goto fail_mmu_destroy;
4161 return 0;
4163 fail_mmu_destroy:
4164 kvm_mmu_destroy(vcpu);
4165 fail_free_pio_data:
4166 free_page((unsigned long)vcpu->arch.pio_data);
4167 fail:
4168 return r;
4171 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
4173 kvm_free_lapic(vcpu);
4174 down_read(&vcpu->kvm->slots_lock);
4175 kvm_mmu_destroy(vcpu);
4176 up_read(&vcpu->kvm->slots_lock);
4177 free_page((unsigned long)vcpu->arch.pio_data);
4180 struct kvm *kvm_arch_create_vm(void)
4182 struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
4184 if (!kvm)
4185 return ERR_PTR(-ENOMEM);
4187 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
4188 INIT_LIST_HEAD(&kvm->arch.oos_global_pages);
4189 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
4191 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
4192 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
4194 rdtscll(kvm->arch.vm_init_tsc);
4196 return kvm;
4199 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
4201 vcpu_load(vcpu);
4202 kvm_mmu_unload(vcpu);
4203 vcpu_put(vcpu);
4206 static void kvm_free_vcpus(struct kvm *kvm)
4208 unsigned int i;
4211 * Unpin any mmu pages first.
4213 for (i = 0; i < KVM_MAX_VCPUS; ++i)
4214 if (kvm->vcpus[i])
4215 kvm_unload_vcpu_mmu(kvm->vcpus[i]);
4216 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
4217 if (kvm->vcpus[i]) {
4218 kvm_arch_vcpu_free(kvm->vcpus[i]);
4219 kvm->vcpus[i] = NULL;
4225 void kvm_arch_sync_events(struct kvm *kvm)
4227 kvm_free_all_assigned_devices(kvm);
4230 void kvm_arch_destroy_vm(struct kvm *kvm)
4232 kvm_iommu_unmap_guest(kvm);
4233 kvm_free_pit(kvm);
4234 kfree(kvm->arch.vpic);
4235 kfree(kvm->arch.vioapic);
4236 kvm_free_vcpus(kvm);
4237 kvm_free_physmem(kvm);
4238 if (kvm->arch.apic_access_page)
4239 put_page(kvm->arch.apic_access_page);
4240 if (kvm->arch.ept_identity_pagetable)
4241 put_page(kvm->arch.ept_identity_pagetable);
4242 kfree(kvm);
4245 int kvm_arch_set_memory_region(struct kvm *kvm,
4246 struct kvm_userspace_memory_region *mem,
4247 struct kvm_memory_slot old,
4248 int user_alloc)
4250 int npages = mem->memory_size >> PAGE_SHIFT;
4251 struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
4253 /*To keep backward compatibility with older userspace,
4254 *x86 needs to hanlde !user_alloc case.
4256 if (!user_alloc) {
4257 if (npages && !old.rmap) {
4258 unsigned long userspace_addr;
4260 down_write(&current->mm->mmap_sem);
4261 userspace_addr = do_mmap(NULL, 0,
4262 npages * PAGE_SIZE,
4263 PROT_READ | PROT_WRITE,
4264 MAP_PRIVATE | MAP_ANONYMOUS,
4266 up_write(&current->mm->mmap_sem);
4268 if (IS_ERR((void *)userspace_addr))
4269 return PTR_ERR((void *)userspace_addr);
4271 /* set userspace_addr atomically for kvm_hva_to_rmapp */
4272 spin_lock(&kvm->mmu_lock);
4273 memslot->userspace_addr = userspace_addr;
4274 spin_unlock(&kvm->mmu_lock);
4275 } else {
4276 if (!old.user_alloc && old.rmap) {
4277 int ret;
4279 down_write(&current->mm->mmap_sem);
4280 ret = do_munmap(current->mm, old.userspace_addr,
4281 old.npages * PAGE_SIZE);
4282 up_write(&current->mm->mmap_sem);
4283 if (ret < 0)
4284 printk(KERN_WARNING
4285 "kvm_vm_ioctl_set_memory_region: "
4286 "failed to munmap memory\n");
4291 if (!kvm->arch.n_requested_mmu_pages) {
4292 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
4293 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
4296 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
4297 kvm_flush_remote_tlbs(kvm);
4299 return 0;
4302 void kvm_arch_flush_shadow(struct kvm *kvm)
4304 kvm_mmu_zap_all(kvm);
4307 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
4309 return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
4310 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
4311 || vcpu->arch.nmi_pending;
4314 static void vcpu_kick_intr(void *info)
4316 #ifdef DEBUG
4317 struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
4318 printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
4319 #endif
4322 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
4324 int ipi_pcpu = vcpu->cpu;
4325 int cpu = get_cpu();
4327 if (waitqueue_active(&vcpu->wq)) {
4328 wake_up_interruptible(&vcpu->wq);
4329 ++vcpu->stat.halt_wakeup;
4332 * We may be called synchronously with irqs disabled in guest mode,
4333 * So need not to call smp_call_function_single() in that case.
4335 if (vcpu->guest_mode && vcpu->cpu != cpu)
4336 smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0);
4337 put_cpu();