1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targetted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
66 * by default, the selective clear mask is set up to process rx packets.
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/vmalloc.h>
78 #include <linux/ioport.h>
79 #include <linux/pci.h>
81 #include <linux/highmem.h>
82 #include <linux/list.h>
83 #include <linux/dma-mapping.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
88 #include <linux/ethtool.h>
89 #include <linux/crc32.h>
90 #include <linux/random.h>
91 #include <linux/mii.h>
93 #include <linux/tcp.h>
94 #include <linux/mutex.h>
95 #include <linux/firmware.h>
97 #include <net/checksum.h>
99 #include <asm/atomic.h>
100 #include <asm/system.h>
102 #include <asm/byteorder.h>
103 #include <asm/uaccess.h>
105 #define cas_page_map(x) kmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
106 #define cas_page_unmap(x) kunmap_atomic((x), KM_SKB_DATA_SOFTIRQ)
107 #define CAS_NCPUS num_online_cpus()
109 #if defined(CONFIG_CASSINI_NAPI) && defined(HAVE_NETDEV_POLL)
111 #define cas_skb_release(x) netif_receive_skb(x)
113 #define cas_skb_release(x) netif_rx(x)
116 /* select which firmware to use */
117 #define USE_HP_WORKAROUND
118 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
119 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
123 #define USE_TX_COMPWB /* use completion writeback registers */
124 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
125 #define USE_RX_BLANK /* hw interrupt mitigation */
126 #undef USE_ENTROPY_DEV /* don't test for entropy device */
128 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
129 * also, we need to make cp->lock finer-grained.
136 #undef USE_VPD_DEBUG /* debug vpd information if defined */
138 /* rx processing options */
139 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
140 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
141 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
142 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
143 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
145 #define DRV_MODULE_NAME "cassini"
146 #define PFX DRV_MODULE_NAME ": "
147 #define DRV_MODULE_VERSION "1.6"
148 #define DRV_MODULE_RELDATE "21 May 2008"
150 #define CAS_DEF_MSG_ENABLE \
160 /* length of time before we decide the hardware is borked,
161 * and dev->tx_timeout() should be called to fix the problem
163 #define CAS_TX_TIMEOUT (HZ)
164 #define CAS_LINK_TIMEOUT (22*HZ/10)
165 #define CAS_LINK_FAST_TIMEOUT (1)
167 /* timeout values for state changing. these specify the number
168 * of 10us delays to be used before giving up.
170 #define STOP_TRIES_PHY 1000
171 #define STOP_TRIES 5000
173 /* specify a minimum frame size to deal with some fifo issues
174 * max mtu == 2 * page size - ethernet header - 64 - swivel =
175 * 2 * page_size - 0x50
177 #define CAS_MIN_FRAME 97
178 #define CAS_1000MB_MIN_FRAME 255
179 #define CAS_MIN_MTU 60
180 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
184 * Eliminate these and use separate atomic counters for each, to
185 * avoid a race condition.
188 #define CAS_RESET_MTU 1
189 #define CAS_RESET_ALL 2
190 #define CAS_RESET_SPARE 3
193 static char version
[] __devinitdata
=
194 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
196 static int cassini_debug
= -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
197 static int link_mode
;
199 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
200 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
201 MODULE_LICENSE("GPL");
202 MODULE_FIRMWARE("sun/cassini.bin");
203 module_param(cassini_debug
, int, 0);
204 MODULE_PARM_DESC(cassini_debug
, "Cassini bitmapped debugging message enable value");
205 module_param(link_mode
, int, 0);
206 MODULE_PARM_DESC(link_mode
, "default link mode");
209 * Work around for a PCS bug in which the link goes down due to the chip
210 * being confused and never showing a link status of "up."
212 #define DEFAULT_LINKDOWN_TIMEOUT 5
214 * Value in seconds, for user input.
216 static int linkdown_timeout
= DEFAULT_LINKDOWN_TIMEOUT
;
217 module_param(linkdown_timeout
, int, 0);
218 MODULE_PARM_DESC(linkdown_timeout
,
219 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
222 * value in 'ticks' (units used by jiffies). Set when we init the
223 * module because 'HZ' in actually a function call on some flavors of
224 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
226 static int link_transition_timeout
;
230 static u16 link_modes
[] __devinitdata
= {
231 BMCR_ANENABLE
, /* 0 : autoneg */
232 0, /* 1 : 10bt half duplex */
233 BMCR_SPEED100
, /* 2 : 100bt half duplex */
234 BMCR_FULLDPLX
, /* 3 : 10bt full duplex */
235 BMCR_SPEED100
|BMCR_FULLDPLX
, /* 4 : 100bt full duplex */
236 CAS_BMCR_SPEED1000
|BMCR_FULLDPLX
/* 5 : 1000bt full duplex */
239 static struct pci_device_id cas_pci_tbl
[] __devinitdata
= {
240 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_CASSINI
,
241 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
242 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_SATURN
,
243 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
247 MODULE_DEVICE_TABLE(pci
, cas_pci_tbl
);
249 static void cas_set_link_modes(struct cas
*cp
);
251 static inline void cas_lock_tx(struct cas
*cp
)
255 for (i
= 0; i
< N_TX_RINGS
; i
++)
256 spin_lock(&cp
->tx_lock
[i
]);
259 static inline void cas_lock_all(struct cas
*cp
)
261 spin_lock_irq(&cp
->lock
);
265 /* WTZ: QA was finding deadlock problems with the previous
266 * versions after long test runs with multiple cards per machine.
267 * See if replacing cas_lock_all with safer versions helps. The
268 * symptoms QA is reporting match those we'd expect if interrupts
269 * aren't being properly restored, and we fixed a previous deadlock
270 * with similar symptoms by using save/restore versions in other
273 #define cas_lock_all_save(cp, flags) \
275 struct cas *xxxcp = (cp); \
276 spin_lock_irqsave(&xxxcp->lock, flags); \
277 cas_lock_tx(xxxcp); \
280 static inline void cas_unlock_tx(struct cas
*cp
)
284 for (i
= N_TX_RINGS
; i
> 0; i
--)
285 spin_unlock(&cp
->tx_lock
[i
- 1]);
288 static inline void cas_unlock_all(struct cas
*cp
)
291 spin_unlock_irq(&cp
->lock
);
294 #define cas_unlock_all_restore(cp, flags) \
296 struct cas *xxxcp = (cp); \
297 cas_unlock_tx(xxxcp); \
298 spin_unlock_irqrestore(&xxxcp->lock, flags); \
301 static void cas_disable_irq(struct cas
*cp
, const int ring
)
303 /* Make sure we won't get any more interrupts */
305 writel(0xFFFFFFFF, cp
->regs
+ REG_INTR_MASK
);
309 /* disable completion interrupts and selectively mask */
310 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
312 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
322 writel(INTRN_MASK_CLEAR_ALL
| INTRN_MASK_RX_EN
,
323 cp
->regs
+ REG_PLUS_INTRN_MASK(ring
));
327 writel(INTRN_MASK_CLEAR_ALL
, cp
->regs
+
328 REG_PLUS_INTRN_MASK(ring
));
334 static inline void cas_mask_intr(struct cas
*cp
)
338 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
339 cas_disable_irq(cp
, i
);
342 static void cas_enable_irq(struct cas
*cp
, const int ring
)
344 if (ring
== 0) { /* all but TX_DONE */
345 writel(INTR_TX_DONE
, cp
->regs
+ REG_INTR_MASK
);
349 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
351 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
361 writel(INTRN_MASK_RX_EN
, cp
->regs
+
362 REG_PLUS_INTRN_MASK(ring
));
371 static inline void cas_unmask_intr(struct cas
*cp
)
375 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
376 cas_enable_irq(cp
, i
);
379 static inline void cas_entropy_gather(struct cas
*cp
)
381 #ifdef USE_ENTROPY_DEV
382 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
385 batch_entropy_store(readl(cp
->regs
+ REG_ENTROPY_IV
),
386 readl(cp
->regs
+ REG_ENTROPY_IV
),
391 static inline void cas_entropy_reset(struct cas
*cp
)
393 #ifdef USE_ENTROPY_DEV
394 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
397 writel(BIM_LOCAL_DEV_PAD
| BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_EXT
,
398 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
399 writeb(ENTROPY_RESET_STC_MODE
, cp
->regs
+ REG_ENTROPY_RESET
);
400 writeb(0x55, cp
->regs
+ REG_ENTROPY_RAND_REG
);
402 /* if we read back 0x0, we don't have an entropy device */
403 if (readb(cp
->regs
+ REG_ENTROPY_RAND_REG
) == 0)
404 cp
->cas_flags
&= ~CAS_FLAG_ENTROPY_DEV
;
408 /* access to the phy. the following assumes that we've initialized the MIF to
409 * be in frame rather than bit-bang mode
411 static u16
cas_phy_read(struct cas
*cp
, int reg
)
414 int limit
= STOP_TRIES_PHY
;
416 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_READ
;
417 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
418 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
419 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
420 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
422 /* poll for completion */
423 while (limit
-- > 0) {
425 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
426 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
427 return (cmd
& MIF_FRAME_DATA_MASK
);
429 return 0xFFFF; /* -1 */
432 static int cas_phy_write(struct cas
*cp
, int reg
, u16 val
)
434 int limit
= STOP_TRIES_PHY
;
437 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_WRITE
;
438 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
439 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
440 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
441 cmd
|= val
& MIF_FRAME_DATA_MASK
;
442 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
444 /* poll for completion */
445 while (limit
-- > 0) {
447 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
448 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
454 static void cas_phy_powerup(struct cas
*cp
)
456 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
458 if ((ctl
& BMCR_PDOWN
) == 0)
461 cas_phy_write(cp
, MII_BMCR
, ctl
);
464 static void cas_phy_powerdown(struct cas
*cp
)
466 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
468 if (ctl
& BMCR_PDOWN
)
471 cas_phy_write(cp
, MII_BMCR
, ctl
);
474 /* cp->lock held. note: the last put_page will free the buffer */
475 static int cas_page_free(struct cas
*cp
, cas_page_t
*page
)
477 pci_unmap_page(cp
->pdev
, page
->dma_addr
, cp
->page_size
,
479 __free_pages(page
->buffer
, cp
->page_order
);
484 #ifdef RX_COUNT_BUFFERS
485 #define RX_USED_ADD(x, y) ((x)->used += (y))
486 #define RX_USED_SET(x, y) ((x)->used = (y))
488 #define RX_USED_ADD(x, y)
489 #define RX_USED_SET(x, y)
492 /* local page allocation routines for the receive buffers. jumbo pages
493 * require at least 8K contiguous and 8K aligned buffers.
495 static cas_page_t
*cas_page_alloc(struct cas
*cp
, const gfp_t flags
)
499 page
= kmalloc(sizeof(cas_page_t
), flags
);
503 INIT_LIST_HEAD(&page
->list
);
504 RX_USED_SET(page
, 0);
505 page
->buffer
= alloc_pages(flags
, cp
->page_order
);
508 page
->dma_addr
= pci_map_page(cp
->pdev
, page
->buffer
, 0,
509 cp
->page_size
, PCI_DMA_FROMDEVICE
);
517 /* initialize spare pool of rx buffers, but allocate during the open */
518 static void cas_spare_init(struct cas
*cp
)
520 spin_lock(&cp
->rx_inuse_lock
);
521 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
522 spin_unlock(&cp
->rx_inuse_lock
);
524 spin_lock(&cp
->rx_spare_lock
);
525 INIT_LIST_HEAD(&cp
->rx_spare_list
);
526 cp
->rx_spares_needed
= RX_SPARE_COUNT
;
527 spin_unlock(&cp
->rx_spare_lock
);
530 /* used on close. free all the spare buffers. */
531 static void cas_spare_free(struct cas
*cp
)
533 struct list_head list
, *elem
, *tmp
;
535 /* free spare buffers */
536 INIT_LIST_HEAD(&list
);
537 spin_lock(&cp
->rx_spare_lock
);
538 list_splice_init(&cp
->rx_spare_list
, &list
);
539 spin_unlock(&cp
->rx_spare_lock
);
540 list_for_each_safe(elem
, tmp
, &list
) {
541 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
544 INIT_LIST_HEAD(&list
);
547 * Looks like Adrian had protected this with a different
548 * lock than used everywhere else to manipulate this list.
550 spin_lock(&cp
->rx_inuse_lock
);
551 list_splice_init(&cp
->rx_inuse_list
, &list
);
552 spin_unlock(&cp
->rx_inuse_lock
);
554 spin_lock(&cp
->rx_spare_lock
);
555 list_splice_init(&cp
->rx_inuse_list
, &list
);
556 spin_unlock(&cp
->rx_spare_lock
);
558 list_for_each_safe(elem
, tmp
, &list
) {
559 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
563 /* replenish spares if needed */
564 static void cas_spare_recover(struct cas
*cp
, const gfp_t flags
)
566 struct list_head list
, *elem
, *tmp
;
569 /* check inuse list. if we don't need any more free buffers,
573 /* make a local copy of the list */
574 INIT_LIST_HEAD(&list
);
575 spin_lock(&cp
->rx_inuse_lock
);
576 list_splice_init(&cp
->rx_inuse_list
, &list
);
577 spin_unlock(&cp
->rx_inuse_lock
);
579 list_for_each_safe(elem
, tmp
, &list
) {
580 cas_page_t
*page
= list_entry(elem
, cas_page_t
, list
);
583 * With the lockless pagecache, cassini buffering scheme gets
584 * slightly less accurate: we might find that a page has an
585 * elevated reference count here, due to a speculative ref,
586 * and skip it as in-use. Ideally we would be able to reclaim
587 * it. However this would be such a rare case, it doesn't
588 * matter too much as we should pick it up the next time round.
590 * Importantly, if we find that the page has a refcount of 1
591 * here (our refcount), then we know it is definitely not inuse
592 * so we can reuse it.
594 if (page_count(page
->buffer
) > 1)
598 spin_lock(&cp
->rx_spare_lock
);
599 if (cp
->rx_spares_needed
> 0) {
600 list_add(elem
, &cp
->rx_spare_list
);
601 cp
->rx_spares_needed
--;
602 spin_unlock(&cp
->rx_spare_lock
);
604 spin_unlock(&cp
->rx_spare_lock
);
605 cas_page_free(cp
, page
);
609 /* put any inuse buffers back on the list */
610 if (!list_empty(&list
)) {
611 spin_lock(&cp
->rx_inuse_lock
);
612 list_splice(&list
, &cp
->rx_inuse_list
);
613 spin_unlock(&cp
->rx_inuse_lock
);
616 spin_lock(&cp
->rx_spare_lock
);
617 needed
= cp
->rx_spares_needed
;
618 spin_unlock(&cp
->rx_spare_lock
);
622 /* we still need spares, so try to allocate some */
623 INIT_LIST_HEAD(&list
);
626 cas_page_t
*spare
= cas_page_alloc(cp
, flags
);
629 list_add(&spare
->list
, &list
);
633 spin_lock(&cp
->rx_spare_lock
);
634 list_splice(&list
, &cp
->rx_spare_list
);
635 cp
->rx_spares_needed
-= i
;
636 spin_unlock(&cp
->rx_spare_lock
);
639 /* pull a page from the list. */
640 static cas_page_t
*cas_page_dequeue(struct cas
*cp
)
642 struct list_head
*entry
;
645 spin_lock(&cp
->rx_spare_lock
);
646 if (list_empty(&cp
->rx_spare_list
)) {
647 /* try to do a quick recovery */
648 spin_unlock(&cp
->rx_spare_lock
);
649 cas_spare_recover(cp
, GFP_ATOMIC
);
650 spin_lock(&cp
->rx_spare_lock
);
651 if (list_empty(&cp
->rx_spare_list
)) {
652 if (netif_msg_rx_err(cp
))
653 printk(KERN_ERR
"%s: no spare buffers "
654 "available.\n", cp
->dev
->name
);
655 spin_unlock(&cp
->rx_spare_lock
);
660 entry
= cp
->rx_spare_list
.next
;
662 recover
= ++cp
->rx_spares_needed
;
663 spin_unlock(&cp
->rx_spare_lock
);
665 /* trigger the timer to do the recovery */
666 if ((recover
& (RX_SPARE_RECOVER_VAL
- 1)) == 0) {
668 atomic_inc(&cp
->reset_task_pending
);
669 atomic_inc(&cp
->reset_task_pending_spare
);
670 schedule_work(&cp
->reset_task
);
672 atomic_set(&cp
->reset_task_pending
, CAS_RESET_SPARE
);
673 schedule_work(&cp
->reset_task
);
676 return list_entry(entry
, cas_page_t
, list
);
680 static void cas_mif_poll(struct cas
*cp
, const int enable
)
684 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
685 cfg
&= (MIF_CFG_MDIO_0
| MIF_CFG_MDIO_1
);
687 if (cp
->phy_type
& CAS_PHY_MII_MDIO1
)
688 cfg
|= MIF_CFG_PHY_SELECT
;
690 /* poll and interrupt on link status change. */
692 cfg
|= MIF_CFG_POLL_EN
;
693 cfg
|= CAS_BASE(MIF_CFG_POLL_REG
, MII_BMSR
);
694 cfg
|= CAS_BASE(MIF_CFG_POLL_PHY
, cp
->phy_addr
);
696 writel((enable
) ? ~(BMSR_LSTATUS
| BMSR_ANEGCOMPLETE
) : 0xFFFF,
697 cp
->regs
+ REG_MIF_MASK
);
698 writel(cfg
, cp
->regs
+ REG_MIF_CFG
);
701 /* Must be invoked under cp->lock */
702 static void cas_begin_auto_negotiation(struct cas
*cp
, struct ethtool_cmd
*ep
)
708 int oldstate
= cp
->lstate
;
709 int link_was_not_down
= !(oldstate
== link_down
);
711 /* Setup link parameters */
714 lcntl
= cp
->link_cntl
;
715 if (ep
->autoneg
== AUTONEG_ENABLE
)
716 cp
->link_cntl
= BMCR_ANENABLE
;
719 if (ep
->speed
== SPEED_100
)
720 cp
->link_cntl
|= BMCR_SPEED100
;
721 else if (ep
->speed
== SPEED_1000
)
722 cp
->link_cntl
|= CAS_BMCR_SPEED1000
;
723 if (ep
->duplex
== DUPLEX_FULL
)
724 cp
->link_cntl
|= BMCR_FULLDPLX
;
727 changed
= (lcntl
!= cp
->link_cntl
);
730 if (cp
->lstate
== link_up
) {
731 printk(KERN_INFO
"%s: PCS link down.\n",
735 printk(KERN_INFO
"%s: link configuration changed\n",
739 cp
->lstate
= link_down
;
740 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
745 * WTZ: If the old state was link_up, we turn off the carrier
746 * to replicate everything we do elsewhere on a link-down
747 * event when we were already in a link-up state..
749 if (oldstate
== link_up
)
750 netif_carrier_off(cp
->dev
);
751 if (changed
&& link_was_not_down
) {
753 * WTZ: This branch will simply schedule a full reset after
754 * we explicitly changed link modes in an ioctl. See if this
755 * fixes the link-problems we were having for forced mode.
757 atomic_inc(&cp
->reset_task_pending
);
758 atomic_inc(&cp
->reset_task_pending_all
);
759 schedule_work(&cp
->reset_task
);
761 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
765 if (cp
->phy_type
& CAS_PHY_SERDES
) {
766 u32 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
768 if (cp
->link_cntl
& BMCR_ANENABLE
) {
769 val
|= (PCS_MII_RESTART_AUTONEG
| PCS_MII_AUTONEG_EN
);
770 cp
->lstate
= link_aneg
;
772 if (cp
->link_cntl
& BMCR_FULLDPLX
)
773 val
|= PCS_MII_CTRL_DUPLEX
;
774 val
&= ~PCS_MII_AUTONEG_EN
;
775 cp
->lstate
= link_force_ok
;
777 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
778 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
782 ctl
= cas_phy_read(cp
, MII_BMCR
);
783 ctl
&= ~(BMCR_FULLDPLX
| BMCR_SPEED100
|
784 CAS_BMCR_SPEED1000
| BMCR_ANENABLE
);
785 ctl
|= cp
->link_cntl
;
786 if (ctl
& BMCR_ANENABLE
) {
787 ctl
|= BMCR_ANRESTART
;
788 cp
->lstate
= link_aneg
;
790 cp
->lstate
= link_force_ok
;
792 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
793 cas_phy_write(cp
, MII_BMCR
, ctl
);
798 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
801 /* Must be invoked under cp->lock. */
802 static int cas_reset_mii_phy(struct cas
*cp
)
804 int limit
= STOP_TRIES_PHY
;
807 cas_phy_write(cp
, MII_BMCR
, BMCR_RESET
);
810 val
= cas_phy_read(cp
, MII_BMCR
);
811 if ((val
& BMCR_RESET
) == 0)
818 static int cas_saturn_firmware_init(struct cas
*cp
)
820 const struct firmware
*fw
;
821 const char fw_name
[] = "sun/cassini.bin";
824 if (PHY_NS_DP83065
!= cp
->phy_id
)
827 err
= request_firmware(&fw
, fw_name
, &cp
->pdev
->dev
);
829 printk(KERN_ERR
"cassini: Failed to load firmware \"%s\"\n",
834 printk(KERN_ERR
"cassini: bogus length %zu in \"%s\"\n",
839 cp
->fw_load_addr
= fw
->data
[1] << 8 | fw
->data
[0];
840 cp
->fw_size
= fw
->size
- 2;
841 cp
->fw_data
= vmalloc(cp
->fw_size
);
844 printk(KERN_ERR
"cassini: \"%s\" Failed %d\n", fw_name
, err
);
847 memcpy(cp
->fw_data
, &fw
->data
[2], cp
->fw_size
);
849 release_firmware(fw
);
853 static void cas_saturn_firmware_load(struct cas
*cp
)
857 cas_phy_powerdown(cp
);
859 /* expanded memory access mode */
860 cas_phy_write(cp
, DP83065_MII_MEM
, 0x0);
862 /* pointer configuration for new firmware */
863 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff9);
864 cas_phy_write(cp
, DP83065_MII_REGD
, 0xbd);
865 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffa);
866 cas_phy_write(cp
, DP83065_MII_REGD
, 0x82);
867 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffb);
868 cas_phy_write(cp
, DP83065_MII_REGD
, 0x0);
869 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffc);
870 cas_phy_write(cp
, DP83065_MII_REGD
, 0x39);
872 /* download new firmware */
873 cas_phy_write(cp
, DP83065_MII_MEM
, 0x1);
874 cas_phy_write(cp
, DP83065_MII_REGE
, cp
->fw_load_addr
);
875 for (i
= 0; i
< cp
->fw_size
; i
++)
876 cas_phy_write(cp
, DP83065_MII_REGD
, cp
->fw_data
[i
]);
878 /* enable firmware */
879 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff8);
880 cas_phy_write(cp
, DP83065_MII_REGD
, 0x1);
884 /* phy initialization */
885 static void cas_phy_init(struct cas
*cp
)
889 /* if we're in MII/GMII mode, set up phy */
890 if (CAS_PHY_MII(cp
->phy_type
)) {
891 writel(PCS_DATAPATH_MODE_MII
,
892 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
895 cas_reset_mii_phy(cp
); /* take out of isolate mode */
897 if (PHY_LUCENT_B0
== cp
->phy_id
) {
898 /* workaround link up/down issue with lucent */
899 cas_phy_write(cp
, LUCENT_MII_REG
, 0x8000);
900 cas_phy_write(cp
, MII_BMCR
, 0x00f1);
901 cas_phy_write(cp
, LUCENT_MII_REG
, 0x0);
903 } else if (PHY_BROADCOM_B0
== (cp
->phy_id
& 0xFFFFFFFC)) {
904 /* workarounds for broadcom phy */
905 cas_phy_write(cp
, BROADCOM_MII_REG8
, 0x0C20);
906 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0012);
907 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1804);
908 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0013);
909 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1204);
910 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
911 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0132);
912 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
913 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0232);
914 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x201F);
915 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0A20);
917 } else if (PHY_BROADCOM_5411
== cp
->phy_id
) {
918 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
919 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
921 /* link workaround */
922 cas_phy_write(cp
, BROADCOM_MII_REG4
,
926 } else if (cp
->cas_flags
& CAS_FLAG_SATURN
) {
927 writel((cp
->phy_type
& CAS_PHY_MII_MDIO0
) ?
928 SATURN_PCFG_FSI
: 0x0,
929 cp
->regs
+ REG_SATURN_PCFG
);
931 /* load firmware to address 10Mbps auto-negotiation
932 * issue. NOTE: this will need to be changed if the
933 * default firmware gets fixed.
935 if (PHY_NS_DP83065
== cp
->phy_id
) {
936 cas_saturn_firmware_load(cp
);
941 /* advertise capabilities */
942 val
= cas_phy_read(cp
, MII_BMCR
);
943 val
&= ~BMCR_ANENABLE
;
944 cas_phy_write(cp
, MII_BMCR
, val
);
947 cas_phy_write(cp
, MII_ADVERTISE
,
948 cas_phy_read(cp
, MII_ADVERTISE
) |
949 (ADVERTISE_10HALF
| ADVERTISE_10FULL
|
950 ADVERTISE_100HALF
| ADVERTISE_100FULL
|
951 CAS_ADVERTISE_PAUSE
|
952 CAS_ADVERTISE_ASYM_PAUSE
));
954 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
955 /* make sure that we don't advertise half
956 * duplex to avoid a chip issue
958 val
= cas_phy_read(cp
, CAS_MII_1000_CTRL
);
959 val
&= ~CAS_ADVERTISE_1000HALF
;
960 val
|= CAS_ADVERTISE_1000FULL
;
961 cas_phy_write(cp
, CAS_MII_1000_CTRL
, val
);
965 /* reset pcs for serdes */
969 writel(PCS_DATAPATH_MODE_SERDES
,
970 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
972 /* enable serdes pins on saturn */
973 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
974 writel(0, cp
->regs
+ REG_SATURN_PCFG
);
976 /* Reset PCS unit. */
977 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
978 val
|= PCS_MII_RESET
;
979 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
982 while (limit
-- > 0) {
984 if ((readl(cp
->regs
+ REG_PCS_MII_CTRL
) &
989 printk(KERN_WARNING
"%s: PCS reset bit would not "
990 "clear [%08x].\n", cp
->dev
->name
,
991 readl(cp
->regs
+ REG_PCS_STATE_MACHINE
));
993 /* Make sure PCS is disabled while changing advertisement
996 writel(0x0, cp
->regs
+ REG_PCS_CFG
);
998 /* Advertise all capabilities except half-duplex. */
999 val
= readl(cp
->regs
+ REG_PCS_MII_ADVERT
);
1000 val
&= ~PCS_MII_ADVERT_HD
;
1001 val
|= (PCS_MII_ADVERT_FD
| PCS_MII_ADVERT_SYM_PAUSE
|
1002 PCS_MII_ADVERT_ASYM_PAUSE
);
1003 writel(val
, cp
->regs
+ REG_PCS_MII_ADVERT
);
1006 writel(PCS_CFG_EN
, cp
->regs
+ REG_PCS_CFG
);
1008 /* pcs workaround: enable sync detect */
1009 writel(PCS_SERDES_CTRL_SYNCD_EN
,
1010 cp
->regs
+ REG_PCS_SERDES_CTRL
);
1015 static int cas_pcs_link_check(struct cas
*cp
)
1017 u32 stat
, state_machine
;
1020 /* The link status bit latches on zero, so you must
1021 * read it twice in such a case to see a transition
1022 * to the link being up.
1024 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1025 if ((stat
& PCS_MII_STATUS_LINK_STATUS
) == 0)
1026 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1028 /* The remote-fault indication is only valid
1029 * when autoneg has completed.
1031 if ((stat
& (PCS_MII_STATUS_AUTONEG_COMP
|
1032 PCS_MII_STATUS_REMOTE_FAULT
)) ==
1033 (PCS_MII_STATUS_AUTONEG_COMP
| PCS_MII_STATUS_REMOTE_FAULT
)) {
1034 if (netif_msg_link(cp
))
1035 printk(KERN_INFO
"%s: PCS RemoteFault\n",
1039 /* work around link detection issue by querying the PCS state
1042 state_machine
= readl(cp
->regs
+ REG_PCS_STATE_MACHINE
);
1043 if ((state_machine
& PCS_SM_LINK_STATE_MASK
) != SM_LINK_STATE_UP
) {
1044 stat
&= ~PCS_MII_STATUS_LINK_STATUS
;
1045 } else if (state_machine
& PCS_SM_WORD_SYNC_STATE_MASK
) {
1046 stat
|= PCS_MII_STATUS_LINK_STATUS
;
1049 if (stat
& PCS_MII_STATUS_LINK_STATUS
) {
1050 if (cp
->lstate
!= link_up
) {
1052 cp
->lstate
= link_up
;
1053 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1055 cas_set_link_modes(cp
);
1056 netif_carrier_on(cp
->dev
);
1059 } else if (cp
->lstate
== link_up
) {
1060 cp
->lstate
= link_down
;
1061 if (link_transition_timeout
!= 0 &&
1062 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1063 !cp
->link_transition_jiffies_valid
) {
1065 * force a reset, as a workaround for the
1066 * link-failure problem. May want to move this to a
1067 * point a bit earlier in the sequence. If we had
1068 * generated a reset a short time ago, we'll wait for
1069 * the link timer to check the status until a
1070 * timer expires (link_transistion_jiffies_valid is
1071 * true when the timer is running.) Instead of using
1072 * a system timer, we just do a check whenever the
1073 * link timer is running - this clears the flag after
1077 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1078 cp
->link_transition_jiffies
= jiffies
;
1079 cp
->link_transition_jiffies_valid
= 1;
1081 cp
->link_transition
= LINK_TRANSITION_ON_FAILURE
;
1083 netif_carrier_off(cp
->dev
);
1084 if (cp
->opened
&& netif_msg_link(cp
)) {
1085 printk(KERN_INFO
"%s: PCS link down.\n",
1089 /* Cassini only: if you force a mode, there can be
1090 * sync problems on link down. to fix that, the following
1091 * things need to be checked:
1092 * 1) read serialink state register
1093 * 2) read pcs status register to verify link down.
1094 * 3) if link down and serial link == 0x03, then you need
1095 * to global reset the chip.
1097 if ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0) {
1098 /* should check to see if we're in a forced mode */
1099 stat
= readl(cp
->regs
+ REG_PCS_SERDES_STATE
);
1103 } else if (cp
->lstate
== link_down
) {
1104 if (link_transition_timeout
!= 0 &&
1105 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1106 !cp
->link_transition_jiffies_valid
) {
1107 /* force a reset, as a workaround for the
1108 * link-failure problem. May want to move
1109 * this to a point a bit earlier in the
1113 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1114 cp
->link_transition_jiffies
= jiffies
;
1115 cp
->link_transition_jiffies_valid
= 1;
1117 cp
->link_transition
= LINK_TRANSITION_STILL_FAILED
;
1124 static int cas_pcs_interrupt(struct net_device
*dev
,
1125 struct cas
*cp
, u32 status
)
1127 u32 stat
= readl(cp
->regs
+ REG_PCS_INTR_STATUS
);
1129 if ((stat
& PCS_INTR_STATUS_LINK_CHANGE
) == 0)
1131 return cas_pcs_link_check(cp
);
1134 static int cas_txmac_interrupt(struct net_device
*dev
,
1135 struct cas
*cp
, u32 status
)
1137 u32 txmac_stat
= readl(cp
->regs
+ REG_MAC_TX_STATUS
);
1142 if (netif_msg_intr(cp
))
1143 printk(KERN_DEBUG
"%s: txmac interrupt, txmac_stat: 0x%x\n",
1144 cp
->dev
->name
, txmac_stat
);
1146 /* Defer timer expiration is quite normal,
1147 * don't even log the event.
1149 if ((txmac_stat
& MAC_TX_DEFER_TIMER
) &&
1150 !(txmac_stat
& ~MAC_TX_DEFER_TIMER
))
1153 spin_lock(&cp
->stat_lock
[0]);
1154 if (txmac_stat
& MAC_TX_UNDERRUN
) {
1155 printk(KERN_ERR
"%s: TX MAC xmit underrun.\n",
1157 cp
->net_stats
[0].tx_fifo_errors
++;
1160 if (txmac_stat
& MAC_TX_MAX_PACKET_ERR
) {
1161 printk(KERN_ERR
"%s: TX MAC max packet size error.\n",
1163 cp
->net_stats
[0].tx_errors
++;
1166 /* The rest are all cases of one of the 16-bit TX
1167 * counters expiring.
1169 if (txmac_stat
& MAC_TX_COLL_NORMAL
)
1170 cp
->net_stats
[0].collisions
+= 0x10000;
1172 if (txmac_stat
& MAC_TX_COLL_EXCESS
) {
1173 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1174 cp
->net_stats
[0].collisions
+= 0x10000;
1177 if (txmac_stat
& MAC_TX_COLL_LATE
) {
1178 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1179 cp
->net_stats
[0].collisions
+= 0x10000;
1181 spin_unlock(&cp
->stat_lock
[0]);
1183 /* We do not keep track of MAC_TX_COLL_FIRST and
1184 * MAC_TX_PEAK_ATTEMPTS events.
1189 static void cas_load_firmware(struct cas
*cp
, cas_hp_inst_t
*firmware
)
1191 cas_hp_inst_t
*inst
;
1196 while ((inst
= firmware
) && inst
->note
) {
1197 writel(i
, cp
->regs
+ REG_HP_INSTR_RAM_ADDR
);
1199 val
= CAS_BASE(HP_INSTR_RAM_HI_VAL
, inst
->val
);
1200 val
|= CAS_BASE(HP_INSTR_RAM_HI_MASK
, inst
->mask
);
1201 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_HI
);
1203 val
= CAS_BASE(HP_INSTR_RAM_MID_OUTARG
, inst
->outarg
>> 10);
1204 val
|= CAS_BASE(HP_INSTR_RAM_MID_OUTOP
, inst
->outop
);
1205 val
|= CAS_BASE(HP_INSTR_RAM_MID_FNEXT
, inst
->fnext
);
1206 val
|= CAS_BASE(HP_INSTR_RAM_MID_FOFF
, inst
->foff
);
1207 val
|= CAS_BASE(HP_INSTR_RAM_MID_SNEXT
, inst
->snext
);
1208 val
|= CAS_BASE(HP_INSTR_RAM_MID_SOFF
, inst
->soff
);
1209 val
|= CAS_BASE(HP_INSTR_RAM_MID_OP
, inst
->op
);
1210 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_MID
);
1212 val
= CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK
, inst
->outmask
);
1213 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT
, inst
->outshift
);
1214 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN
, inst
->outenab
);
1215 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG
, inst
->outarg
);
1216 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_LOW
);
1222 static void cas_init_rx_dma(struct cas
*cp
)
1224 u64 desc_dma
= cp
->block_dvma
;
1228 /* rx free descriptors */
1229 val
= CAS_BASE(RX_CFG_SWIVEL
, RX_SWIVEL_OFF_VAL
);
1230 val
|= CAS_BASE(RX_CFG_DESC_RING
, RX_DESC_RINGN_INDEX(0));
1231 val
|= CAS_BASE(RX_CFG_COMP_RING
, RX_COMP_RINGN_INDEX(0));
1232 if ((N_RX_DESC_RINGS
> 1) &&
1233 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)) /* do desc 2 */
1234 val
|= CAS_BASE(RX_CFG_DESC_RING1
, RX_DESC_RINGN_INDEX(1));
1235 writel(val
, cp
->regs
+ REG_RX_CFG
);
1237 val
= (unsigned long) cp
->init_rxds
[0] -
1238 (unsigned long) cp
->init_block
;
1239 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_DB_HI
);
1240 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_DB_LOW
);
1241 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
1243 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1244 /* rx desc 2 is for IPSEC packets. however,
1245 * we don't it that for that purpose.
1247 val
= (unsigned long) cp
->init_rxds
[1] -
1248 (unsigned long) cp
->init_block
;
1249 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_PLUS_RX_DB1_HI
);
1250 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1251 REG_PLUS_RX_DB1_LOW
);
1252 writel(RX_DESC_RINGN_SIZE(1) - 4, cp
->regs
+
1256 /* rx completion registers */
1257 val
= (unsigned long) cp
->init_rxcs
[0] -
1258 (unsigned long) cp
->init_block
;
1259 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_CB_HI
);
1260 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_CB_LOW
);
1262 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1264 for (i
= 1; i
< MAX_RX_COMP_RINGS
; i
++) {
1265 val
= (unsigned long) cp
->init_rxcs
[i
] -
1266 (unsigned long) cp
->init_block
;
1267 writel((desc_dma
+ val
) >> 32, cp
->regs
+
1268 REG_PLUS_RX_CBN_HI(i
));
1269 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1270 REG_PLUS_RX_CBN_LOW(i
));
1274 /* read selective clear regs to prevent spurious interrupts
1275 * on reset because complete == kick.
1276 * selective clear set up to prevent interrupts on resets
1278 readl(cp
->regs
+ REG_INTR_STATUS_ALIAS
);
1279 writel(INTR_RX_DONE
| INTR_RX_BUF_UNAVAIL
, cp
->regs
+ REG_ALIAS_CLEAR
);
1280 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1281 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
1282 readl(cp
->regs
+ REG_PLUS_INTRN_STATUS_ALIAS(i
));
1284 /* 2 is different from 3 and 4 */
1285 if (N_RX_COMP_RINGS
> 1)
1286 writel(INTR_RX_DONE_ALT
| INTR_RX_BUF_UNAVAIL_1
,
1287 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(1));
1289 for (i
= 2; i
< N_RX_COMP_RINGS
; i
++)
1290 writel(INTR_RX_DONE_ALT
,
1291 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(i
));
1294 /* set up pause thresholds */
1295 val
= CAS_BASE(RX_PAUSE_THRESH_OFF
,
1296 cp
->rx_pause_off
/ RX_PAUSE_THRESH_QUANTUM
);
1297 val
|= CAS_BASE(RX_PAUSE_THRESH_ON
,
1298 cp
->rx_pause_on
/ RX_PAUSE_THRESH_QUANTUM
);
1299 writel(val
, cp
->regs
+ REG_RX_PAUSE_THRESH
);
1301 /* zero out dma reassembly buffers */
1302 for (i
= 0; i
< 64; i
++) {
1303 writel(i
, cp
->regs
+ REG_RX_TABLE_ADDR
);
1304 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_LOW
);
1305 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_MID
);
1306 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_HI
);
1309 /* make sure address register is 0 for normal operation */
1310 writel(0x0, cp
->regs
+ REG_RX_CTRL_FIFO_ADDR
);
1311 writel(0x0, cp
->regs
+ REG_RX_IPP_FIFO_ADDR
);
1313 /* interrupt mitigation */
1315 val
= CAS_BASE(RX_BLANK_INTR_TIME
, RX_BLANK_INTR_TIME_VAL
);
1316 val
|= CAS_BASE(RX_BLANK_INTR_PKT
, RX_BLANK_INTR_PKT_VAL
);
1317 writel(val
, cp
->regs
+ REG_RX_BLANK
);
1319 writel(0x0, cp
->regs
+ REG_RX_BLANK
);
1322 /* interrupt generation as a function of low water marks for
1323 * free desc and completion entries. these are used to trigger
1324 * housekeeping for rx descs. we don't use the free interrupt
1325 * as it's not very useful
1327 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1328 val
= CAS_BASE(RX_AE_THRESH_COMP
, RX_AE_COMP_VAL
);
1329 writel(val
, cp
->regs
+ REG_RX_AE_THRESH
);
1330 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1331 val
= CAS_BASE(RX_AE1_THRESH_FREE
, RX_AE_FREEN_VAL(1));
1332 writel(val
, cp
->regs
+ REG_PLUS_RX_AE1_THRESH
);
1335 /* Random early detect registers. useful for congestion avoidance.
1336 * this should be tunable.
1338 writel(0x0, cp
->regs
+ REG_RX_RED
);
1340 /* receive page sizes. default == 2K (0x800) */
1342 if (cp
->page_size
== 0x1000)
1344 else if (cp
->page_size
== 0x2000)
1346 else if (cp
->page_size
== 0x4000)
1349 /* round mtu + offset. constrain to page size. */
1350 size
= cp
->dev
->mtu
+ 64;
1351 if (size
> cp
->page_size
)
1352 size
= cp
->page_size
;
1356 else if (size
<= 0x800)
1358 else if (size
<= 0x1000)
1363 cp
->mtu_stride
= 1 << (i
+ 10);
1364 val
= CAS_BASE(RX_PAGE_SIZE
, val
);
1365 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE
, i
);
1366 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT
, cp
->page_size
>> (i
+ 10));
1367 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_OFF
, 0x1);
1368 writel(val
, cp
->regs
+ REG_RX_PAGE_SIZE
);
1370 /* enable the header parser if desired */
1371 if (CAS_HP_FIRMWARE
== cas_prog_null
)
1374 val
= CAS_BASE(HP_CFG_NUM_CPU
, CAS_NCPUS
> 63 ? 0 : CAS_NCPUS
);
1375 val
|= HP_CFG_PARSE_EN
| HP_CFG_SYN_INC_MASK
;
1376 val
|= CAS_BASE(HP_CFG_TCP_THRESH
, HP_TCP_THRESH_VAL
);
1377 writel(val
, cp
->regs
+ REG_HP_CFG
);
1380 static inline void cas_rxc_init(struct cas_rx_comp
*rxc
)
1382 memset(rxc
, 0, sizeof(*rxc
));
1383 rxc
->word4
= cpu_to_le64(RX_COMP4_ZERO
);
1386 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1387 * flipping is protected by the fact that the chip will not
1388 * hand back the same page index while it's being processed.
1390 static inline cas_page_t
*cas_page_spare(struct cas
*cp
, const int index
)
1392 cas_page_t
*page
= cp
->rx_pages
[1][index
];
1395 if (page_count(page
->buffer
) == 1)
1398 new = cas_page_dequeue(cp
);
1400 spin_lock(&cp
->rx_inuse_lock
);
1401 list_add(&page
->list
, &cp
->rx_inuse_list
);
1402 spin_unlock(&cp
->rx_inuse_lock
);
1407 /* this needs to be changed if we actually use the ENC RX DESC ring */
1408 static cas_page_t
*cas_page_swap(struct cas
*cp
, const int ring
,
1411 cas_page_t
**page0
= cp
->rx_pages
[0];
1412 cas_page_t
**page1
= cp
->rx_pages
[1];
1414 /* swap if buffer is in use */
1415 if (page_count(page0
[index
]->buffer
) > 1) {
1416 cas_page_t
*new = cas_page_spare(cp
, index
);
1418 page1
[index
] = page0
[index
];
1422 RX_USED_SET(page0
[index
], 0);
1423 return page0
[index
];
1426 static void cas_clean_rxds(struct cas
*cp
)
1428 /* only clean ring 0 as ring 1 is used for spare buffers */
1429 struct cas_rx_desc
*rxd
= cp
->init_rxds
[0];
1432 /* release all rx flows */
1433 for (i
= 0; i
< N_RX_FLOWS
; i
++) {
1434 struct sk_buff
*skb
;
1435 while ((skb
= __skb_dequeue(&cp
->rx_flows
[i
]))) {
1436 cas_skb_release(skb
);
1440 /* initialize descriptors */
1441 size
= RX_DESC_RINGN_SIZE(0);
1442 for (i
= 0; i
< size
; i
++) {
1443 cas_page_t
*page
= cas_page_swap(cp
, 0, i
);
1444 rxd
[i
].buffer
= cpu_to_le64(page
->dma_addr
);
1445 rxd
[i
].index
= cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, i
) |
1446 CAS_BASE(RX_INDEX_RING
, 0));
1449 cp
->rx_old
[0] = RX_DESC_RINGN_SIZE(0) - 4;
1451 cp
->cas_flags
&= ~CAS_FLAG_RXD_POST(0);
1454 static void cas_clean_rxcs(struct cas
*cp
)
1458 /* take ownership of rx comp descriptors */
1459 memset(cp
->rx_cur
, 0, sizeof(*cp
->rx_cur
)*N_RX_COMP_RINGS
);
1460 memset(cp
->rx_new
, 0, sizeof(*cp
->rx_new
)*N_RX_COMP_RINGS
);
1461 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
1462 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[i
];
1463 for (j
= 0; j
< RX_COMP_RINGN_SIZE(i
); j
++) {
1464 cas_rxc_init(rxc
+ j
);
1470 /* When we get a RX fifo overflow, the RX unit is probably hung
1471 * so we do the following.
1473 * If any part of the reset goes wrong, we return 1 and that causes the
1474 * whole chip to be reset.
1476 static int cas_rxmac_reset(struct cas
*cp
)
1478 struct net_device
*dev
= cp
->dev
;
1482 /* First, reset MAC RX. */
1483 writel(cp
->mac_rx_cfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1484 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1485 if (!(readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
))
1489 if (limit
== STOP_TRIES
) {
1490 printk(KERN_ERR
"%s: RX MAC will not disable, resetting whole "
1491 "chip.\n", dev
->name
);
1495 /* Second, disable RX DMA. */
1496 writel(0, cp
->regs
+ REG_RX_CFG
);
1497 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1498 if (!(readl(cp
->regs
+ REG_RX_CFG
) & RX_CFG_DMA_EN
))
1502 if (limit
== STOP_TRIES
) {
1503 printk(KERN_ERR
"%s: RX DMA will not disable, resetting whole "
1504 "chip.\n", dev
->name
);
1510 /* Execute RX reset command. */
1511 writel(SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
1512 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1513 if (!(readl(cp
->regs
+ REG_SW_RESET
) & SW_RESET_RX
))
1517 if (limit
== STOP_TRIES
) {
1518 printk(KERN_ERR
"%s: RX reset command will not execute, "
1519 "resetting whole chip.\n", dev
->name
);
1523 /* reset driver rx state */
1527 /* Now, reprogram the rest of RX unit. */
1528 cas_init_rx_dma(cp
);
1531 val
= readl(cp
->regs
+ REG_RX_CFG
);
1532 writel(val
| RX_CFG_DMA_EN
, cp
->regs
+ REG_RX_CFG
);
1533 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
1534 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
1535 writel(val
| MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1540 static int cas_rxmac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1543 u32 stat
= readl(cp
->regs
+ REG_MAC_RX_STATUS
);
1548 if (netif_msg_intr(cp
))
1549 printk(KERN_DEBUG
"%s: rxmac interrupt, stat: 0x%x\n",
1550 cp
->dev
->name
, stat
);
1552 /* these are all rollovers */
1553 spin_lock(&cp
->stat_lock
[0]);
1554 if (stat
& MAC_RX_ALIGN_ERR
)
1555 cp
->net_stats
[0].rx_frame_errors
+= 0x10000;
1557 if (stat
& MAC_RX_CRC_ERR
)
1558 cp
->net_stats
[0].rx_crc_errors
+= 0x10000;
1560 if (stat
& MAC_RX_LEN_ERR
)
1561 cp
->net_stats
[0].rx_length_errors
+= 0x10000;
1563 if (stat
& MAC_RX_OVERFLOW
) {
1564 cp
->net_stats
[0].rx_over_errors
++;
1565 cp
->net_stats
[0].rx_fifo_errors
++;
1568 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1571 spin_unlock(&cp
->stat_lock
[0]);
1575 static int cas_mac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1578 u32 stat
= readl(cp
->regs
+ REG_MAC_CTRL_STATUS
);
1583 if (netif_msg_intr(cp
))
1584 printk(KERN_DEBUG
"%s: mac interrupt, stat: 0x%x\n",
1585 cp
->dev
->name
, stat
);
1587 /* This interrupt is just for pause frame and pause
1588 * tracking. It is useful for diagnostics and debug
1589 * but probably by default we will mask these events.
1591 if (stat
& MAC_CTRL_PAUSE_STATE
)
1592 cp
->pause_entered
++;
1594 if (stat
& MAC_CTRL_PAUSE_RECEIVED
)
1595 cp
->pause_last_time_recvd
= (stat
>> 16);
1601 /* Must be invoked under cp->lock. */
1602 static inline int cas_mdio_link_not_up(struct cas
*cp
)
1606 switch (cp
->lstate
) {
1607 case link_force_ret
:
1608 if (netif_msg_link(cp
))
1609 printk(KERN_INFO
"%s: Autoneg failed again, keeping"
1610 " forced mode\n", cp
->dev
->name
);
1611 cas_phy_write(cp
, MII_BMCR
, cp
->link_fcntl
);
1612 cp
->timer_ticks
= 5;
1613 cp
->lstate
= link_force_ok
;
1614 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1618 val
= cas_phy_read(cp
, MII_BMCR
);
1620 /* Try forced modes. we try things in the following order:
1621 * 1000 full -> 100 full/half -> 10 half
1623 val
&= ~(BMCR_ANRESTART
| BMCR_ANENABLE
);
1624 val
|= BMCR_FULLDPLX
;
1625 val
|= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
1626 CAS_BMCR_SPEED1000
: BMCR_SPEED100
;
1627 cas_phy_write(cp
, MII_BMCR
, val
);
1628 cp
->timer_ticks
= 5;
1629 cp
->lstate
= link_force_try
;
1630 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1633 case link_force_try
:
1634 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1635 val
= cas_phy_read(cp
, MII_BMCR
);
1636 cp
->timer_ticks
= 5;
1637 if (val
& CAS_BMCR_SPEED1000
) { /* gigabit */
1638 val
&= ~CAS_BMCR_SPEED1000
;
1639 val
|= (BMCR_SPEED100
| BMCR_FULLDPLX
);
1640 cas_phy_write(cp
, MII_BMCR
, val
);
1644 if (val
& BMCR_SPEED100
) {
1645 if (val
& BMCR_FULLDPLX
) /* fd failed */
1646 val
&= ~BMCR_FULLDPLX
;
1647 else { /* 100Mbps failed */
1648 val
&= ~BMCR_SPEED100
;
1650 cas_phy_write(cp
, MII_BMCR
, val
);
1660 /* must be invoked with cp->lock held */
1661 static int cas_mii_link_check(struct cas
*cp
, const u16 bmsr
)
1665 if (bmsr
& BMSR_LSTATUS
) {
1666 /* Ok, here we got a link. If we had it due to a forced
1667 * fallback, and we were configured for autoneg, we
1668 * retry a short autoneg pass. If you know your hub is
1669 * broken, use ethtool ;)
1671 if ((cp
->lstate
== link_force_try
) &&
1672 (cp
->link_cntl
& BMCR_ANENABLE
)) {
1673 cp
->lstate
= link_force_ret
;
1674 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1675 cas_mif_poll(cp
, 0);
1676 cp
->link_fcntl
= cas_phy_read(cp
, MII_BMCR
);
1677 cp
->timer_ticks
= 5;
1678 if (cp
->opened
&& netif_msg_link(cp
))
1679 printk(KERN_INFO
"%s: Got link after fallback, retrying"
1680 " autoneg once...\n", cp
->dev
->name
);
1681 cas_phy_write(cp
, MII_BMCR
,
1682 cp
->link_fcntl
| BMCR_ANENABLE
|
1684 cas_mif_poll(cp
, 1);
1686 } else if (cp
->lstate
!= link_up
) {
1687 cp
->lstate
= link_up
;
1688 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1691 cas_set_link_modes(cp
);
1692 netif_carrier_on(cp
->dev
);
1698 /* link not up. if the link was previously up, we restart the
1702 if (cp
->lstate
== link_up
) {
1703 cp
->lstate
= link_down
;
1704 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
1706 netif_carrier_off(cp
->dev
);
1707 if (cp
->opened
&& netif_msg_link(cp
))
1708 printk(KERN_INFO
"%s: Link down\n",
1712 } else if (++cp
->timer_ticks
> 10)
1713 cas_mdio_link_not_up(cp
);
1718 static int cas_mif_interrupt(struct net_device
*dev
, struct cas
*cp
,
1721 u32 stat
= readl(cp
->regs
+ REG_MIF_STATUS
);
1724 /* check for a link change */
1725 if (CAS_VAL(MIF_STATUS_POLL_STATUS
, stat
) == 0)
1728 bmsr
= CAS_VAL(MIF_STATUS_POLL_DATA
, stat
);
1729 return cas_mii_link_check(cp
, bmsr
);
1732 static int cas_pci_interrupt(struct net_device
*dev
, struct cas
*cp
,
1735 u32 stat
= readl(cp
->regs
+ REG_PCI_ERR_STATUS
);
1740 printk(KERN_ERR
"%s: PCI error [%04x:%04x] ", dev
->name
, stat
,
1741 readl(cp
->regs
+ REG_BIM_DIAG
));
1743 /* cassini+ has this reserved */
1744 if ((stat
& PCI_ERR_BADACK
) &&
1745 ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0))
1746 printk("<No ACK64# during ABS64 cycle> ");
1748 if (stat
& PCI_ERR_DTRTO
)
1749 printk("<Delayed transaction timeout> ");
1750 if (stat
& PCI_ERR_OTHER
)
1752 if (stat
& PCI_ERR_BIM_DMA_WRITE
)
1753 printk("<BIM DMA 0 write req> ");
1754 if (stat
& PCI_ERR_BIM_DMA_READ
)
1755 printk("<BIM DMA 0 read req> ");
1758 if (stat
& PCI_ERR_OTHER
) {
1761 /* Interrogate PCI config space for the
1764 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &cfg
);
1765 printk(KERN_ERR
"%s: Read PCI cfg space status [%04x]\n",
1767 if (cfg
& PCI_STATUS_PARITY
)
1768 printk(KERN_ERR
"%s: PCI parity error detected.\n",
1770 if (cfg
& PCI_STATUS_SIG_TARGET_ABORT
)
1771 printk(KERN_ERR
"%s: PCI target abort.\n",
1773 if (cfg
& PCI_STATUS_REC_TARGET_ABORT
)
1774 printk(KERN_ERR
"%s: PCI master acks target abort.\n",
1776 if (cfg
& PCI_STATUS_REC_MASTER_ABORT
)
1777 printk(KERN_ERR
"%s: PCI master abort.\n", dev
->name
);
1778 if (cfg
& PCI_STATUS_SIG_SYSTEM_ERROR
)
1779 printk(KERN_ERR
"%s: PCI system error SERR#.\n",
1781 if (cfg
& PCI_STATUS_DETECTED_PARITY
)
1782 printk(KERN_ERR
"%s: PCI parity error.\n",
1785 /* Write the error bits back to clear them. */
1786 cfg
&= (PCI_STATUS_PARITY
|
1787 PCI_STATUS_SIG_TARGET_ABORT
|
1788 PCI_STATUS_REC_TARGET_ABORT
|
1789 PCI_STATUS_REC_MASTER_ABORT
|
1790 PCI_STATUS_SIG_SYSTEM_ERROR
|
1791 PCI_STATUS_DETECTED_PARITY
);
1792 pci_write_config_word(cp
->pdev
, PCI_STATUS
, cfg
);
1795 /* For all PCI errors, we should reset the chip. */
1799 /* All non-normal interrupt conditions get serviced here.
1800 * Returns non-zero if we should just exit the interrupt
1801 * handler right now (ie. if we reset the card which invalidates
1802 * all of the other original irq status bits).
1804 static int cas_abnormal_irq(struct net_device
*dev
, struct cas
*cp
,
1807 if (status
& INTR_RX_TAG_ERROR
) {
1808 /* corrupt RX tag framing */
1809 if (netif_msg_rx_err(cp
))
1810 printk(KERN_DEBUG
"%s: corrupt rx tag framing\n",
1812 spin_lock(&cp
->stat_lock
[0]);
1813 cp
->net_stats
[0].rx_errors
++;
1814 spin_unlock(&cp
->stat_lock
[0]);
1818 if (status
& INTR_RX_LEN_MISMATCH
) {
1819 /* length mismatch. */
1820 if (netif_msg_rx_err(cp
))
1821 printk(KERN_DEBUG
"%s: length mismatch for rx frame\n",
1823 spin_lock(&cp
->stat_lock
[0]);
1824 cp
->net_stats
[0].rx_errors
++;
1825 spin_unlock(&cp
->stat_lock
[0]);
1829 if (status
& INTR_PCS_STATUS
) {
1830 if (cas_pcs_interrupt(dev
, cp
, status
))
1834 if (status
& INTR_TX_MAC_STATUS
) {
1835 if (cas_txmac_interrupt(dev
, cp
, status
))
1839 if (status
& INTR_RX_MAC_STATUS
) {
1840 if (cas_rxmac_interrupt(dev
, cp
, status
))
1844 if (status
& INTR_MAC_CTRL_STATUS
) {
1845 if (cas_mac_interrupt(dev
, cp
, status
))
1849 if (status
& INTR_MIF_STATUS
) {
1850 if (cas_mif_interrupt(dev
, cp
, status
))
1854 if (status
& INTR_PCI_ERROR_STATUS
) {
1855 if (cas_pci_interrupt(dev
, cp
, status
))
1862 atomic_inc(&cp
->reset_task_pending
);
1863 atomic_inc(&cp
->reset_task_pending_all
);
1864 printk(KERN_ERR
"%s:reset called in cas_abnormal_irq [0x%x]\n",
1866 schedule_work(&cp
->reset_task
);
1868 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
1869 printk(KERN_ERR
"reset called in cas_abnormal_irq\n");
1870 schedule_work(&cp
->reset_task
);
1875 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1876 * determining whether to do a netif_stop/wakeup
1878 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1879 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1880 static inline int cas_calc_tabort(struct cas
*cp
, const unsigned long addr
,
1883 unsigned long off
= addr
+ len
;
1885 if (CAS_TABORT(cp
) == 1)
1887 if ((CAS_ROUND_PAGE(off
) - off
) > TX_TARGET_ABORT_LEN
)
1889 return TX_TARGET_ABORT_LEN
;
1892 static inline void cas_tx_ringN(struct cas
*cp
, int ring
, int limit
)
1894 struct cas_tx_desc
*txds
;
1895 struct sk_buff
**skbs
;
1896 struct net_device
*dev
= cp
->dev
;
1899 spin_lock(&cp
->tx_lock
[ring
]);
1900 txds
= cp
->init_txds
[ring
];
1901 skbs
= cp
->tx_skbs
[ring
];
1902 entry
= cp
->tx_old
[ring
];
1904 count
= TX_BUFF_COUNT(ring
, entry
, limit
);
1905 while (entry
!= limit
) {
1906 struct sk_buff
*skb
= skbs
[entry
];
1912 /* this should never occur */
1913 entry
= TX_DESC_NEXT(ring
, entry
);
1917 /* however, we might get only a partial skb release. */
1918 count
-= skb_shinfo(skb
)->nr_frags
+
1919 + cp
->tx_tiny_use
[ring
][entry
].nbufs
+ 1;
1923 if (netif_msg_tx_done(cp
))
1924 printk(KERN_DEBUG
"%s: tx[%d] done, slot %d\n",
1925 cp
->dev
->name
, ring
, entry
);
1928 cp
->tx_tiny_use
[ring
][entry
].nbufs
= 0;
1930 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1931 struct cas_tx_desc
*txd
= txds
+ entry
;
1933 daddr
= le64_to_cpu(txd
->buffer
);
1934 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
1935 le64_to_cpu(txd
->control
));
1936 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
1938 entry
= TX_DESC_NEXT(ring
, entry
);
1940 /* tiny buffer may follow */
1941 if (cp
->tx_tiny_use
[ring
][entry
].used
) {
1942 cp
->tx_tiny_use
[ring
][entry
].used
= 0;
1943 entry
= TX_DESC_NEXT(ring
, entry
);
1947 spin_lock(&cp
->stat_lock
[ring
]);
1948 cp
->net_stats
[ring
].tx_packets
++;
1949 cp
->net_stats
[ring
].tx_bytes
+= skb
->len
;
1950 spin_unlock(&cp
->stat_lock
[ring
]);
1951 dev_kfree_skb_irq(skb
);
1953 cp
->tx_old
[ring
] = entry
;
1955 /* this is wrong for multiple tx rings. the net device needs
1956 * multiple queues for this to do the right thing. we wait
1957 * for 2*packets to be available when using tiny buffers
1959 if (netif_queue_stopped(dev
) &&
1960 (TX_BUFFS_AVAIL(cp
, ring
) > CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1)))
1961 netif_wake_queue(dev
);
1962 spin_unlock(&cp
->tx_lock
[ring
]);
1965 static void cas_tx(struct net_device
*dev
, struct cas
*cp
,
1969 #ifdef USE_TX_COMPWB
1970 u64 compwb
= le64_to_cpu(cp
->init_block
->tx_compwb
);
1972 if (netif_msg_intr(cp
))
1973 printk(KERN_DEBUG
"%s: tx interrupt, status: 0x%x, %llx\n",
1974 cp
->dev
->name
, status
, (unsigned long long)compwb
);
1975 /* process all the rings */
1976 for (ring
= 0; ring
< N_TX_RINGS
; ring
++) {
1977 #ifdef USE_TX_COMPWB
1978 /* use the completion writeback registers */
1979 limit
= (CAS_VAL(TX_COMPWB_MSB
, compwb
) << 8) |
1980 CAS_VAL(TX_COMPWB_LSB
, compwb
);
1981 compwb
= TX_COMPWB_NEXT(compwb
);
1983 limit
= readl(cp
->regs
+ REG_TX_COMPN(ring
));
1985 if (cp
->tx_old
[ring
] != limit
)
1986 cas_tx_ringN(cp
, ring
, limit
);
1991 static int cas_rx_process_pkt(struct cas
*cp
, struct cas_rx_comp
*rxc
,
1992 int entry
, const u64
*words
,
1993 struct sk_buff
**skbref
)
1995 int dlen
, hlen
, len
, i
, alloclen
;
1996 int off
, swivel
= RX_SWIVEL_OFF_VAL
;
1997 struct cas_page
*page
;
1998 struct sk_buff
*skb
;
1999 void *addr
, *crcaddr
;
2003 hlen
= CAS_VAL(RX_COMP2_HDR_SIZE
, words
[1]);
2004 dlen
= CAS_VAL(RX_COMP1_DATA_SIZE
, words
[0]);
2007 if (RX_COPY_ALWAYS
|| (words
[2] & RX_COMP3_SMALL_PKT
))
2010 alloclen
= max(hlen
, RX_COPY_MIN
);
2012 skb
= dev_alloc_skb(alloclen
+ swivel
+ cp
->crc_size
);
2017 skb_reserve(skb
, swivel
);
2020 addr
= crcaddr
= NULL
;
2021 if (hlen
) { /* always copy header pages */
2022 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2023 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2024 off
= CAS_VAL(RX_COMP2_HDR_OFF
, words
[1]) * 0x100 +
2028 if (!dlen
) /* attach FCS */
2030 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2031 PCI_DMA_FROMDEVICE
);
2032 addr
= cas_page_map(page
->buffer
);
2033 memcpy(p
, addr
+ off
, i
);
2034 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2035 PCI_DMA_FROMDEVICE
);
2036 cas_page_unmap(addr
);
2037 RX_USED_ADD(page
, 0x100);
2043 if (alloclen
< (hlen
+ dlen
)) {
2044 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
;
2046 /* normal or jumbo packets. we use frags */
2047 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2048 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2049 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2051 hlen
= min(cp
->page_size
- off
, dlen
);
2053 if (netif_msg_rx_err(cp
)) {
2054 printk(KERN_DEBUG
"%s: rx page overflow: "
2055 "%d\n", cp
->dev
->name
, hlen
);
2057 dev_kfree_skb_irq(skb
);
2061 if (i
== dlen
) /* attach FCS */
2063 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2064 PCI_DMA_FROMDEVICE
);
2066 /* make sure we always copy a header */
2068 if (p
== (char *) skb
->data
) { /* not split */
2069 addr
= cas_page_map(page
->buffer
);
2070 memcpy(p
, addr
+ off
, RX_COPY_MIN
);
2071 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2072 PCI_DMA_FROMDEVICE
);
2073 cas_page_unmap(addr
);
2075 swivel
= RX_COPY_MIN
;
2076 RX_USED_ADD(page
, cp
->mtu_stride
);
2078 RX_USED_ADD(page
, hlen
);
2080 skb_put(skb
, alloclen
);
2082 skb_shinfo(skb
)->nr_frags
++;
2083 skb
->data_len
+= hlen
- swivel
;
2084 skb
->truesize
+= hlen
- swivel
;
2085 skb
->len
+= hlen
- swivel
;
2087 get_page(page
->buffer
);
2088 frag
->page
= page
->buffer
;
2089 frag
->page_offset
= off
;
2090 frag
->size
= hlen
- swivel
;
2092 /* any more data? */
2093 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2097 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2098 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2099 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2100 hlen
+ cp
->crc_size
,
2101 PCI_DMA_FROMDEVICE
);
2102 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2103 hlen
+ cp
->crc_size
,
2104 PCI_DMA_FROMDEVICE
);
2106 skb_shinfo(skb
)->nr_frags
++;
2107 skb
->data_len
+= hlen
;
2111 get_page(page
->buffer
);
2112 frag
->page
= page
->buffer
;
2113 frag
->page_offset
= 0;
2115 RX_USED_ADD(page
, hlen
+ cp
->crc_size
);
2119 addr
= cas_page_map(page
->buffer
);
2120 crcaddr
= addr
+ off
+ hlen
;
2124 /* copying packet */
2128 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2129 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2130 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2131 hlen
= min(cp
->page_size
- off
, dlen
);
2133 if (netif_msg_rx_err(cp
)) {
2134 printk(KERN_DEBUG
"%s: rx page overflow: "
2135 "%d\n", cp
->dev
->name
, hlen
);
2137 dev_kfree_skb_irq(skb
);
2141 if (i
== dlen
) /* attach FCS */
2143 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2144 PCI_DMA_FROMDEVICE
);
2145 addr
= cas_page_map(page
->buffer
);
2146 memcpy(p
, addr
+ off
, i
);
2147 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2148 PCI_DMA_FROMDEVICE
);
2149 cas_page_unmap(addr
);
2150 if (p
== (char *) skb
->data
) /* not split */
2151 RX_USED_ADD(page
, cp
->mtu_stride
);
2153 RX_USED_ADD(page
, i
);
2155 /* any more data? */
2156 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2158 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2159 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2160 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2161 dlen
+ cp
->crc_size
,
2162 PCI_DMA_FROMDEVICE
);
2163 addr
= cas_page_map(page
->buffer
);
2164 memcpy(p
, addr
, dlen
+ cp
->crc_size
);
2165 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2166 dlen
+ cp
->crc_size
,
2167 PCI_DMA_FROMDEVICE
);
2168 cas_page_unmap(addr
);
2169 RX_USED_ADD(page
, dlen
+ cp
->crc_size
);
2174 crcaddr
= skb
->data
+ alloclen
;
2176 skb_put(skb
, alloclen
);
2179 csum
= (__force __sum16
)htons(CAS_VAL(RX_COMP4_TCP_CSUM
, words
[3]));
2181 /* checksum includes FCS. strip it out. */
2182 csum
= csum_fold(csum_partial(crcaddr
, cp
->crc_size
,
2183 csum_unfold(csum
)));
2185 cas_page_unmap(addr
);
2187 skb
->protocol
= eth_type_trans(skb
, cp
->dev
);
2188 if (skb
->protocol
== htons(ETH_P_IP
)) {
2189 skb
->csum
= csum_unfold(~csum
);
2190 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2192 skb
->ip_summed
= CHECKSUM_NONE
;
2197 /* we can handle up to 64 rx flows at a time. we do the same thing
2198 * as nonreassm except that we batch up the buffers.
2199 * NOTE: we currently just treat each flow as a bunch of packets that
2200 * we pass up. a better way would be to coalesce the packets
2201 * into a jumbo packet. to do that, we need to do the following:
2202 * 1) the first packet will have a clean split between header and
2204 * 2) each time the next flow packet comes in, extend the
2205 * data length and merge the checksums.
2206 * 3) on flow release, fix up the header.
2207 * 4) make sure the higher layer doesn't care.
2208 * because packets get coalesced, we shouldn't run into fragment count
2211 static inline void cas_rx_flow_pkt(struct cas
*cp
, const u64
*words
,
2212 struct sk_buff
*skb
)
2214 int flowid
= CAS_VAL(RX_COMP3_FLOWID
, words
[2]) & (N_RX_FLOWS
- 1);
2215 struct sk_buff_head
*flow
= &cp
->rx_flows
[flowid
];
2217 /* this is protected at a higher layer, so no need to
2218 * do any additional locking here. stick the buffer
2221 __skb_queue_tail(flow
, skb
);
2222 if (words
[0] & RX_COMP1_RELEASE_FLOW
) {
2223 while ((skb
= __skb_dequeue(flow
))) {
2224 cas_skb_release(skb
);
2229 /* put rx descriptor back on ring. if a buffer is in use by a higher
2230 * layer, this will need to put in a replacement.
2232 static void cas_post_page(struct cas
*cp
, const int ring
, const int index
)
2237 entry
= cp
->rx_old
[ring
];
2239 new = cas_page_swap(cp
, ring
, index
);
2240 cp
->init_rxds
[ring
][entry
].buffer
= cpu_to_le64(new->dma_addr
);
2241 cp
->init_rxds
[ring
][entry
].index
=
2242 cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, index
) |
2243 CAS_BASE(RX_INDEX_RING
, ring
));
2245 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2246 cp
->rx_old
[ring
] = entry
;
2252 writel(entry
, cp
->regs
+ REG_RX_KICK
);
2253 else if ((N_RX_DESC_RINGS
> 1) &&
2254 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2255 writel(entry
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2259 /* only when things are bad */
2260 static int cas_post_rxds_ringN(struct cas
*cp
, int ring
, int num
)
2262 unsigned int entry
, last
, count
, released
;
2264 cas_page_t
**page
= cp
->rx_pages
[ring
];
2266 entry
= cp
->rx_old
[ring
];
2268 if (netif_msg_intr(cp
))
2269 printk(KERN_DEBUG
"%s: rxd[%d] interrupt, done: %d\n",
2270 cp
->dev
->name
, ring
, entry
);
2273 count
= entry
& 0x3;
2274 last
= RX_DESC_ENTRY(ring
, num
? entry
+ num
- 4: entry
- 4);
2276 while (entry
!= last
) {
2277 /* make a new buffer if it's still in use */
2278 if (page_count(page
[entry
]->buffer
) > 1) {
2279 cas_page_t
*new = cas_page_dequeue(cp
);
2281 /* let the timer know that we need to
2284 cp
->cas_flags
|= CAS_FLAG_RXD_POST(ring
);
2285 if (!timer_pending(&cp
->link_timer
))
2286 mod_timer(&cp
->link_timer
, jiffies
+
2287 CAS_LINK_FAST_TIMEOUT
);
2288 cp
->rx_old
[ring
] = entry
;
2289 cp
->rx_last
[ring
] = num
? num
- released
: 0;
2292 spin_lock(&cp
->rx_inuse_lock
);
2293 list_add(&page
[entry
]->list
, &cp
->rx_inuse_list
);
2294 spin_unlock(&cp
->rx_inuse_lock
);
2295 cp
->init_rxds
[ring
][entry
].buffer
=
2296 cpu_to_le64(new->dma_addr
);
2306 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2308 cp
->rx_old
[ring
] = entry
;
2314 writel(cluster
, cp
->regs
+ REG_RX_KICK
);
2315 else if ((N_RX_DESC_RINGS
> 1) &&
2316 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2317 writel(cluster
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2322 /* process a completion ring. packets are set up in three basic ways:
2323 * small packets: should be copied header + data in single buffer.
2324 * large packets: header and data in a single buffer.
2325 * split packets: header in a separate buffer from data.
2326 * data may be in multiple pages. data may be > 256
2327 * bytes but in a single page.
2329 * NOTE: RX page posting is done in this routine as well. while there's
2330 * the capability of using multiple RX completion rings, it isn't
2331 * really worthwhile due to the fact that the page posting will
2332 * force serialization on the single descriptor ring.
2334 static int cas_rx_ringN(struct cas
*cp
, int ring
, int budget
)
2336 struct cas_rx_comp
*rxcs
= cp
->init_rxcs
[ring
];
2340 if (netif_msg_intr(cp
))
2341 printk(KERN_DEBUG
"%s: rx[%d] interrupt, done: %d/%d\n",
2342 cp
->dev
->name
, ring
,
2343 readl(cp
->regs
+ REG_RX_COMP_HEAD
),
2346 entry
= cp
->rx_new
[ring
];
2349 struct cas_rx_comp
*rxc
= rxcs
+ entry
;
2350 struct sk_buff
*uninitialized_var(skb
);
2355 words
[0] = le64_to_cpu(rxc
->word1
);
2356 words
[1] = le64_to_cpu(rxc
->word2
);
2357 words
[2] = le64_to_cpu(rxc
->word3
);
2358 words
[3] = le64_to_cpu(rxc
->word4
);
2360 /* don't touch if still owned by hw */
2361 type
= CAS_VAL(RX_COMP1_TYPE
, words
[0]);
2365 /* hw hasn't cleared the zero bit yet */
2366 if (words
[3] & RX_COMP4_ZERO
) {
2370 /* get info on the packet */
2371 if (words
[3] & (RX_COMP4_LEN_MISMATCH
| RX_COMP4_BAD
)) {
2372 spin_lock(&cp
->stat_lock
[ring
]);
2373 cp
->net_stats
[ring
].rx_errors
++;
2374 if (words
[3] & RX_COMP4_LEN_MISMATCH
)
2375 cp
->net_stats
[ring
].rx_length_errors
++;
2376 if (words
[3] & RX_COMP4_BAD
)
2377 cp
->net_stats
[ring
].rx_crc_errors
++;
2378 spin_unlock(&cp
->stat_lock
[ring
]);
2380 /* We'll just return it to Cassini. */
2382 spin_lock(&cp
->stat_lock
[ring
]);
2383 ++cp
->net_stats
[ring
].rx_dropped
;
2384 spin_unlock(&cp
->stat_lock
[ring
]);
2388 len
= cas_rx_process_pkt(cp
, rxc
, entry
, words
, &skb
);
2394 /* see if it's a flow re-assembly or not. the driver
2395 * itself handles release back up.
2397 if (RX_DONT_BATCH
|| (type
== 0x2)) {
2398 /* non-reassm: these always get released */
2399 cas_skb_release(skb
);
2401 cas_rx_flow_pkt(cp
, words
, skb
);
2404 spin_lock(&cp
->stat_lock
[ring
]);
2405 cp
->net_stats
[ring
].rx_packets
++;
2406 cp
->net_stats
[ring
].rx_bytes
+= len
;
2407 spin_unlock(&cp
->stat_lock
[ring
]);
2412 /* should it be released? */
2413 if (words
[0] & RX_COMP1_RELEASE_HDR
) {
2414 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2415 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2416 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2417 cas_post_page(cp
, dring
, i
);
2420 if (words
[0] & RX_COMP1_RELEASE_DATA
) {
2421 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2422 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2423 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2424 cas_post_page(cp
, dring
, i
);
2427 if (words
[0] & RX_COMP1_RELEASE_NEXT
) {
2428 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2429 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2430 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2431 cas_post_page(cp
, dring
, i
);
2434 /* skip to the next entry */
2435 entry
= RX_COMP_ENTRY(ring
, entry
+ 1 +
2436 CAS_VAL(RX_COMP1_SKIP
, words
[0]));
2438 if (budget
&& (npackets
>= budget
))
2442 cp
->rx_new
[ring
] = entry
;
2445 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n",
2451 /* put completion entries back on the ring */
2452 static void cas_post_rxcs_ringN(struct net_device
*dev
,
2453 struct cas
*cp
, int ring
)
2455 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[ring
];
2458 last
= cp
->rx_cur
[ring
];
2459 entry
= cp
->rx_new
[ring
];
2460 if (netif_msg_intr(cp
))
2461 printk(KERN_DEBUG
"%s: rxc[%d] interrupt, done: %d/%d\n",
2462 dev
->name
, ring
, readl(cp
->regs
+ REG_RX_COMP_HEAD
),
2465 /* zero and re-mark descriptors */
2466 while (last
!= entry
) {
2467 cas_rxc_init(rxc
+ last
);
2468 last
= RX_COMP_ENTRY(ring
, last
+ 1);
2470 cp
->rx_cur
[ring
] = last
;
2473 writel(last
, cp
->regs
+ REG_RX_COMP_TAIL
);
2474 else if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)
2475 writel(last
, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(ring
));
2480 /* cassini can use all four PCI interrupts for the completion ring.
2481 * rings 3 and 4 are identical
2483 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2484 static inline void cas_handle_irqN(struct net_device
*dev
,
2485 struct cas
*cp
, const u32 status
,
2488 if (status
& (INTR_RX_COMP_FULL_ALT
| INTR_RX_COMP_AF_ALT
))
2489 cas_post_rxcs_ringN(dev
, cp
, ring
);
2492 static irqreturn_t
cas_interruptN(int irq
, void *dev_id
)
2494 struct net_device
*dev
= dev_id
;
2495 struct cas
*cp
= netdev_priv(dev
);
2496 unsigned long flags
;
2498 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(ring
));
2500 /* check for shared irq */
2504 ring
= (irq
== cp
->pci_irq_INTC
) ? 2 : 3;
2505 spin_lock_irqsave(&cp
->lock
, flags
);
2506 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2509 netif_rx_schedule(&cp
->napi
);
2511 cas_rx_ringN(cp
, ring
, 0);
2513 status
&= ~INTR_RX_DONE_ALT
;
2517 cas_handle_irqN(dev
, cp
, status
, ring
);
2518 spin_unlock_irqrestore(&cp
->lock
, flags
);
2524 /* everything but rx packets */
2525 static inline void cas_handle_irq1(struct cas
*cp
, const u32 status
)
2527 if (status
& INTR_RX_BUF_UNAVAIL_1
) {
2528 /* Frame arrived, no free RX buffers available.
2529 * NOTE: we can get this on a link transition. */
2530 cas_post_rxds_ringN(cp
, 1, 0);
2531 spin_lock(&cp
->stat_lock
[1]);
2532 cp
->net_stats
[1].rx_dropped
++;
2533 spin_unlock(&cp
->stat_lock
[1]);
2536 if (status
& INTR_RX_BUF_AE_1
)
2537 cas_post_rxds_ringN(cp
, 1, RX_DESC_RINGN_SIZE(1) -
2538 RX_AE_FREEN_VAL(1));
2540 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2541 cas_post_rxcs_ringN(cp
, 1);
2544 /* ring 2 handles a few more events than 3 and 4 */
2545 static irqreturn_t
cas_interrupt1(int irq
, void *dev_id
)
2547 struct net_device
*dev
= dev_id
;
2548 struct cas
*cp
= netdev_priv(dev
);
2549 unsigned long flags
;
2550 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2552 /* check for shared interrupt */
2556 spin_lock_irqsave(&cp
->lock
, flags
);
2557 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2560 netif_rx_schedule(&cp
->napi
);
2562 cas_rx_ringN(cp
, 1, 0);
2564 status
&= ~INTR_RX_DONE_ALT
;
2567 cas_handle_irq1(cp
, status
);
2568 spin_unlock_irqrestore(&cp
->lock
, flags
);
2573 static inline void cas_handle_irq(struct net_device
*dev
,
2574 struct cas
*cp
, const u32 status
)
2576 /* housekeeping interrupts */
2577 if (status
& INTR_ERROR_MASK
)
2578 cas_abnormal_irq(dev
, cp
, status
);
2580 if (status
& INTR_RX_BUF_UNAVAIL
) {
2581 /* Frame arrived, no free RX buffers available.
2582 * NOTE: we can get this on a link transition.
2584 cas_post_rxds_ringN(cp
, 0, 0);
2585 spin_lock(&cp
->stat_lock
[0]);
2586 cp
->net_stats
[0].rx_dropped
++;
2587 spin_unlock(&cp
->stat_lock
[0]);
2588 } else if (status
& INTR_RX_BUF_AE
) {
2589 cas_post_rxds_ringN(cp
, 0, RX_DESC_RINGN_SIZE(0) -
2590 RX_AE_FREEN_VAL(0));
2593 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2594 cas_post_rxcs_ringN(dev
, cp
, 0);
2597 static irqreturn_t
cas_interrupt(int irq
, void *dev_id
)
2599 struct net_device
*dev
= dev_id
;
2600 struct cas
*cp
= netdev_priv(dev
);
2601 unsigned long flags
;
2602 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2607 spin_lock_irqsave(&cp
->lock
, flags
);
2608 if (status
& (INTR_TX_ALL
| INTR_TX_INTME
)) {
2609 cas_tx(dev
, cp
, status
);
2610 status
&= ~(INTR_TX_ALL
| INTR_TX_INTME
);
2613 if (status
& INTR_RX_DONE
) {
2616 netif_rx_schedule(&cp
->napi
);
2618 cas_rx_ringN(cp
, 0, 0);
2620 status
&= ~INTR_RX_DONE
;
2624 cas_handle_irq(dev
, cp
, status
);
2625 spin_unlock_irqrestore(&cp
->lock
, flags
);
2631 static int cas_poll(struct napi_struct
*napi
, int budget
)
2633 struct cas
*cp
= container_of(napi
, struct cas
, napi
);
2634 struct net_device
*dev
= cp
->dev
;
2635 int i
, enable_intr
, credits
;
2636 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2637 unsigned long flags
;
2639 spin_lock_irqsave(&cp
->lock
, flags
);
2640 cas_tx(dev
, cp
, status
);
2641 spin_unlock_irqrestore(&cp
->lock
, flags
);
2643 /* NAPI rx packets. we spread the credits across all of the
2646 * to make sure we're fair with the work we loop through each
2647 * ring N_RX_COMP_RING times with a request of
2648 * budget / N_RX_COMP_RINGS
2652 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
2654 for (j
= 0; j
< N_RX_COMP_RINGS
; j
++) {
2655 credits
+= cas_rx_ringN(cp
, j
, budget
/ N_RX_COMP_RINGS
);
2656 if (credits
>= budget
) {
2664 /* final rx completion */
2665 spin_lock_irqsave(&cp
->lock
, flags
);
2667 cas_handle_irq(dev
, cp
, status
);
2670 if (N_RX_COMP_RINGS
> 1) {
2671 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2673 cas_handle_irq1(dev
, cp
, status
);
2678 if (N_RX_COMP_RINGS
> 2) {
2679 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(2));
2681 cas_handle_irqN(dev
, cp
, status
, 2);
2686 if (N_RX_COMP_RINGS
> 3) {
2687 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(3));
2689 cas_handle_irqN(dev
, cp
, status
, 3);
2692 spin_unlock_irqrestore(&cp
->lock
, flags
);
2694 netif_rx_complete(napi
);
2695 cas_unmask_intr(cp
);
2701 #ifdef CONFIG_NET_POLL_CONTROLLER
2702 static void cas_netpoll(struct net_device
*dev
)
2704 struct cas
*cp
= netdev_priv(dev
);
2706 cas_disable_irq(cp
, 0);
2707 cas_interrupt(cp
->pdev
->irq
, dev
);
2708 cas_enable_irq(cp
, 0);
2711 if (N_RX_COMP_RINGS
> 1) {
2712 /* cas_interrupt1(); */
2716 if (N_RX_COMP_RINGS
> 2) {
2717 /* cas_interruptN(); */
2721 if (N_RX_COMP_RINGS
> 3) {
2722 /* cas_interruptN(); */
2728 static void cas_tx_timeout(struct net_device
*dev
)
2730 struct cas
*cp
= netdev_priv(dev
);
2732 printk(KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
2733 if (!cp
->hw_running
) {
2734 printk("%s: hrm.. hw not running!\n", dev
->name
);
2738 printk(KERN_ERR
"%s: MIF_STATE[%08x]\n",
2739 dev
->name
, readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
2741 printk(KERN_ERR
"%s: MAC_STATE[%08x]\n",
2742 dev
->name
, readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
2744 printk(KERN_ERR
"%s: TX_STATE[%08x:%08x:%08x] "
2745 "FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2747 readl(cp
->regs
+ REG_TX_CFG
),
2748 readl(cp
->regs
+ REG_MAC_TX_STATUS
),
2749 readl(cp
->regs
+ REG_MAC_TX_CFG
),
2750 readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
),
2751 readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
),
2752 readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
),
2753 readl(cp
->regs
+ REG_TX_SM_1
),
2754 readl(cp
->regs
+ REG_TX_SM_2
));
2756 printk(KERN_ERR
"%s: RX_STATE[%08x:%08x:%08x]\n",
2758 readl(cp
->regs
+ REG_RX_CFG
),
2759 readl(cp
->regs
+ REG_MAC_RX_STATUS
),
2760 readl(cp
->regs
+ REG_MAC_RX_CFG
));
2762 printk(KERN_ERR
"%s: HP_STATE[%08x:%08x:%08x:%08x]\n",
2764 readl(cp
->regs
+ REG_HP_STATE_MACHINE
),
2765 readl(cp
->regs
+ REG_HP_STATUS0
),
2766 readl(cp
->regs
+ REG_HP_STATUS1
),
2767 readl(cp
->regs
+ REG_HP_STATUS2
));
2770 atomic_inc(&cp
->reset_task_pending
);
2771 atomic_inc(&cp
->reset_task_pending_all
);
2772 schedule_work(&cp
->reset_task
);
2774 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
2775 schedule_work(&cp
->reset_task
);
2779 static inline int cas_intme(int ring
, int entry
)
2781 /* Algorithm: IRQ every 1/2 of descriptors. */
2782 if (!(entry
& ((TX_DESC_RINGN_SIZE(ring
) >> 1) - 1)))
2788 static void cas_write_txd(struct cas
*cp
, int ring
, int entry
,
2789 dma_addr_t mapping
, int len
, u64 ctrl
, int last
)
2791 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
] + entry
;
2793 ctrl
|= CAS_BASE(TX_DESC_BUFLEN
, len
);
2794 if (cas_intme(ring
, entry
))
2795 ctrl
|= TX_DESC_INTME
;
2797 ctrl
|= TX_DESC_EOF
;
2798 txd
->control
= cpu_to_le64(ctrl
);
2799 txd
->buffer
= cpu_to_le64(mapping
);
2802 static inline void *tx_tiny_buf(struct cas
*cp
, const int ring
,
2805 return cp
->tx_tiny_bufs
[ring
] + TX_TINY_BUF_LEN
*entry
;
2808 static inline dma_addr_t
tx_tiny_map(struct cas
*cp
, const int ring
,
2809 const int entry
, const int tentry
)
2811 cp
->tx_tiny_use
[ring
][tentry
].nbufs
++;
2812 cp
->tx_tiny_use
[ring
][entry
].used
= 1;
2813 return cp
->tx_tiny_dvma
[ring
] + TX_TINY_BUF_LEN
*entry
;
2816 static inline int cas_xmit_tx_ringN(struct cas
*cp
, int ring
,
2817 struct sk_buff
*skb
)
2819 struct net_device
*dev
= cp
->dev
;
2820 int entry
, nr_frags
, frag
, tabort
, tentry
;
2822 unsigned long flags
;
2826 spin_lock_irqsave(&cp
->tx_lock
[ring
], flags
);
2828 /* This is a hard error, log it. */
2829 if (TX_BUFFS_AVAIL(cp
, ring
) <=
2830 CAS_TABORT(cp
)*(skb_shinfo(skb
)->nr_frags
+ 1)) {
2831 netif_stop_queue(dev
);
2832 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2833 printk(KERN_ERR PFX
"%s: BUG! Tx Ring full when "
2834 "queue awake!\n", dev
->name
);
2839 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2840 const u64 csum_start_off
= skb_transport_offset(skb
);
2841 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2843 ctrl
= TX_DESC_CSUM_EN
|
2844 CAS_BASE(TX_DESC_CSUM_START
, csum_start_off
) |
2845 CAS_BASE(TX_DESC_CSUM_STUFF
, csum_stuff_off
);
2848 entry
= cp
->tx_new
[ring
];
2849 cp
->tx_skbs
[ring
][entry
] = skb
;
2851 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2852 len
= skb_headlen(skb
);
2853 mapping
= pci_map_page(cp
->pdev
, virt_to_page(skb
->data
),
2854 offset_in_page(skb
->data
), len
,
2858 tabort
= cas_calc_tabort(cp
, (unsigned long) skb
->data
, len
);
2859 if (unlikely(tabort
)) {
2860 /* NOTE: len is always > tabort */
2861 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2862 ctrl
| TX_DESC_SOF
, 0);
2863 entry
= TX_DESC_NEXT(ring
, entry
);
2865 skb_copy_from_linear_data_offset(skb
, len
- tabort
,
2866 tx_tiny_buf(cp
, ring
, entry
), tabort
);
2867 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2868 cas_write_txd(cp
, ring
, entry
, mapping
, tabort
, ctrl
,
2871 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
|
2872 TX_DESC_SOF
, (nr_frags
== 0));
2874 entry
= TX_DESC_NEXT(ring
, entry
);
2876 for (frag
= 0; frag
< nr_frags
; frag
++) {
2877 skb_frag_t
*fragp
= &skb_shinfo(skb
)->frags
[frag
];
2880 mapping
= pci_map_page(cp
->pdev
, fragp
->page
,
2881 fragp
->page_offset
, len
,
2884 tabort
= cas_calc_tabort(cp
, fragp
->page_offset
, len
);
2885 if (unlikely(tabort
)) {
2888 /* NOTE: len is always > tabort */
2889 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2891 entry
= TX_DESC_NEXT(ring
, entry
);
2893 addr
= cas_page_map(fragp
->page
);
2894 memcpy(tx_tiny_buf(cp
, ring
, entry
),
2895 addr
+ fragp
->page_offset
+ len
- tabort
,
2897 cas_page_unmap(addr
);
2898 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2902 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
,
2903 (frag
+ 1 == nr_frags
));
2904 entry
= TX_DESC_NEXT(ring
, entry
);
2907 cp
->tx_new
[ring
] = entry
;
2908 if (TX_BUFFS_AVAIL(cp
, ring
) <= CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1))
2909 netif_stop_queue(dev
);
2911 if (netif_msg_tx_queued(cp
))
2912 printk(KERN_DEBUG
"%s: tx[%d] queued, slot %d, skblen %d, "
2914 dev
->name
, ring
, entry
, skb
->len
,
2915 TX_BUFFS_AVAIL(cp
, ring
));
2916 writel(entry
, cp
->regs
+ REG_TX_KICKN(ring
));
2917 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2921 static int cas_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2923 struct cas
*cp
= netdev_priv(dev
);
2925 /* this is only used as a load-balancing hint, so it doesn't
2926 * need to be SMP safe
2930 if (skb_padto(skb
, cp
->min_frame_size
))
2933 /* XXX: we need some higher-level QoS hooks to steer packets to
2934 * individual queues.
2936 if (cas_xmit_tx_ringN(cp
, ring
++ & N_TX_RINGS_MASK
, skb
))
2938 dev
->trans_start
= jiffies
;
2942 static void cas_init_tx_dma(struct cas
*cp
)
2944 u64 desc_dma
= cp
->block_dvma
;
2949 /* set up tx completion writeback registers. must be 8-byte aligned */
2950 #ifdef USE_TX_COMPWB
2951 off
= offsetof(struct cas_init_block
, tx_compwb
);
2952 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_COMPWB_DB_HI
);
2953 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+ REG_TX_COMPWB_DB_LOW
);
2956 /* enable completion writebacks, enable paced mode,
2957 * disable read pipe, and disable pre-interrupt compwbs
2959 val
= TX_CFG_COMPWB_Q1
| TX_CFG_COMPWB_Q2
|
2960 TX_CFG_COMPWB_Q3
| TX_CFG_COMPWB_Q4
|
2961 TX_CFG_DMA_RDPIPE_DIS
| TX_CFG_PACED_MODE
|
2962 TX_CFG_INTR_COMPWB_DIS
;
2964 /* write out tx ring info and tx desc bases */
2965 for (i
= 0; i
< MAX_TX_RINGS
; i
++) {
2966 off
= (unsigned long) cp
->init_txds
[i
] -
2967 (unsigned long) cp
->init_block
;
2969 val
|= CAS_TX_RINGN_BASE(i
);
2970 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_DBN_HI(i
));
2971 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+
2973 /* don't zero out the kick register here as the system
2977 writel(val
, cp
->regs
+ REG_TX_CFG
);
2979 /* program max burst sizes. these numbers should be different
2983 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2984 writel(0x1600, cp
->regs
+ REG_TX_MAXBURST_1
);
2985 writel(0x2400, cp
->regs
+ REG_TX_MAXBURST_2
);
2986 writel(0x4800, cp
->regs
+ REG_TX_MAXBURST_3
);
2988 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2989 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_1
);
2990 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_2
);
2991 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_3
);
2995 /* Must be invoked under cp->lock. */
2996 static inline void cas_init_dma(struct cas
*cp
)
2998 cas_init_tx_dma(cp
);
2999 cas_init_rx_dma(cp
);
3002 /* Must be invoked under cp->lock. */
3003 static u32
cas_setup_multicast(struct cas
*cp
)
3008 if (cp
->dev
->flags
& IFF_PROMISC
) {
3009 rxcfg
|= MAC_RX_CFG_PROMISC_EN
;
3011 } else if (cp
->dev
->flags
& IFF_ALLMULTI
) {
3012 for (i
=0; i
< 16; i
++)
3013 writel(0xFFFF, cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
3014 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3019 struct dev_mc_list
*dmi
= cp
->dev
->mc_list
;
3022 /* use the alternate mac address registers for the
3023 * first 15 multicast addresses
3025 for (i
= 1; i
<= CAS_MC_EXACT_MATCH_SIZE
; i
++) {
3027 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
3028 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
3029 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
3032 writel((dmi
->dmi_addr
[4] << 8) | dmi
->dmi_addr
[5],
3033 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
3034 writel((dmi
->dmi_addr
[2] << 8) | dmi
->dmi_addr
[3],
3035 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
3036 writel((dmi
->dmi_addr
[0] << 8) | dmi
->dmi_addr
[1],
3037 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
3041 /* use hw hash table for the next series of
3042 * multicast addresses
3044 memset(hash_table
, 0, sizeof(hash_table
));
3046 crc
= ether_crc_le(ETH_ALEN
, dmi
->dmi_addr
);
3048 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
3051 for (i
=0; i
< 16; i
++)
3052 writel(hash_table
[i
], cp
->regs
+
3053 REG_MAC_HASH_TABLEN(i
));
3054 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3060 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3061 static void cas_clear_mac_err(struct cas
*cp
)
3063 writel(0, cp
->regs
+ REG_MAC_COLL_NORMAL
);
3064 writel(0, cp
->regs
+ REG_MAC_COLL_FIRST
);
3065 writel(0, cp
->regs
+ REG_MAC_COLL_EXCESS
);
3066 writel(0, cp
->regs
+ REG_MAC_COLL_LATE
);
3067 writel(0, cp
->regs
+ REG_MAC_TIMER_DEFER
);
3068 writel(0, cp
->regs
+ REG_MAC_ATTEMPTS_PEAK
);
3069 writel(0, cp
->regs
+ REG_MAC_RECV_FRAME
);
3070 writel(0, cp
->regs
+ REG_MAC_LEN_ERR
);
3071 writel(0, cp
->regs
+ REG_MAC_ALIGN_ERR
);
3072 writel(0, cp
->regs
+ REG_MAC_FCS_ERR
);
3073 writel(0, cp
->regs
+ REG_MAC_RX_CODE_ERR
);
3077 static void cas_mac_reset(struct cas
*cp
)
3081 /* do both TX and RX reset */
3082 writel(0x1, cp
->regs
+ REG_MAC_TX_RESET
);
3083 writel(0x1, cp
->regs
+ REG_MAC_RX_RESET
);
3088 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) == 0)
3096 if (readl(cp
->regs
+ REG_MAC_RX_RESET
) == 0)
3101 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) |
3102 readl(cp
->regs
+ REG_MAC_RX_RESET
))
3103 printk(KERN_ERR
"%s: mac tx[%d]/rx[%d] reset failed [%08x]\n",
3104 cp
->dev
->name
, readl(cp
->regs
+ REG_MAC_TX_RESET
),
3105 readl(cp
->regs
+ REG_MAC_RX_RESET
),
3106 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3110 /* Must be invoked under cp->lock. */
3111 static void cas_init_mac(struct cas
*cp
)
3113 unsigned char *e
= &cp
->dev
->dev_addr
[0];
3115 #ifdef CONFIG_CASSINI_MULTICAST_REG_WRITE
3120 /* setup core arbitration weight register */
3121 writel(CAWR_RR_DIS
, cp
->regs
+ REG_CAWR
);
3123 /* XXX Use pci_dma_burst_advice() */
3124 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3125 /* set the infinite burst register for chips that don't have
3128 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) == 0)
3129 writel(INF_BURST_EN
, cp
->regs
+ REG_INF_BURST
);
3132 writel(0x1BF0, cp
->regs
+ REG_MAC_SEND_PAUSE
);
3134 writel(0x00, cp
->regs
+ REG_MAC_IPG0
);
3135 writel(0x08, cp
->regs
+ REG_MAC_IPG1
);
3136 writel(0x04, cp
->regs
+ REG_MAC_IPG2
);
3138 /* change later for 802.3z */
3139 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3141 /* min frame + FCS */
3142 writel(ETH_ZLEN
+ 4, cp
->regs
+ REG_MAC_FRAMESIZE_MIN
);
3144 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3145 * specify the maximum frame size to prevent RX tag errors on
3148 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST
, 0x2000) |
3149 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME
,
3150 (CAS_MAX_MTU
+ ETH_HLEN
+ 4 + 4)),
3151 cp
->regs
+ REG_MAC_FRAMESIZE_MAX
);
3153 /* NOTE: crc_size is used as a surrogate for half-duplex.
3154 * workaround saturn half-duplex issue by increasing preamble
3157 if ((cp
->cas_flags
& CAS_FLAG_SATURN
) && cp
->crc_size
)
3158 writel(0x41, cp
->regs
+ REG_MAC_PA_SIZE
);
3160 writel(0x07, cp
->regs
+ REG_MAC_PA_SIZE
);
3161 writel(0x04, cp
->regs
+ REG_MAC_JAM_SIZE
);
3162 writel(0x10, cp
->regs
+ REG_MAC_ATTEMPT_LIMIT
);
3163 writel(0x8808, cp
->regs
+ REG_MAC_CTRL_TYPE
);
3165 writel((e
[5] | (e
[4] << 8)) & 0x3ff, cp
->regs
+ REG_MAC_RANDOM_SEED
);
3167 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0
);
3168 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER1
);
3169 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2
);
3170 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2_1_MASK
);
3171 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0_MASK
);
3173 /* setup mac address in perfect filter array */
3174 for (i
= 0; i
< 45; i
++)
3175 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
));
3177 writel((e
[4] << 8) | e
[5], cp
->regs
+ REG_MAC_ADDRN(0));
3178 writel((e
[2] << 8) | e
[3], cp
->regs
+ REG_MAC_ADDRN(1));
3179 writel((e
[0] << 8) | e
[1], cp
->regs
+ REG_MAC_ADDRN(2));
3181 writel(0x0001, cp
->regs
+ REG_MAC_ADDRN(42));
3182 writel(0xc200, cp
->regs
+ REG_MAC_ADDRN(43));
3183 writel(0x0180, cp
->regs
+ REG_MAC_ADDRN(44));
3185 #ifndef CONFIG_CASSINI_MULTICAST_REG_WRITE
3186 cp
->mac_rx_cfg
= cas_setup_multicast(cp
);
3188 /* WTZ: Do what Adrian did in cas_set_multicast. Doing
3189 * a writel does not seem to be necessary because Cassini
3190 * seems to preserve the configuration when we do the reset.
3191 * If the chip is in trouble, though, it is not clear if we
3192 * can really count on this behavior. cas_set_multicast uses
3193 * spin_lock_irqsave, but we are called only in cas_init_hw and
3194 * cas_init_hw is protected by cas_lock_all, which calls
3195 * spin_lock_irq (so it doesn't need to save the flags, and
3196 * we should be OK for the writel, as that is the only
3199 cp
->mac_rx_cfg
= rxcfg
= cas_setup_multicast(cp
);
3200 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
3202 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3203 cas_clear_mac_err(cp
);
3204 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3206 /* Setup MAC interrupts. We want to get all of the interesting
3207 * counter expiration events, but we do not want to hear about
3208 * normal rx/tx as the DMA engine tells us that.
3210 writel(MAC_TX_FRAME_XMIT
, cp
->regs
+ REG_MAC_TX_MASK
);
3211 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
3213 /* Don't enable even the PAUSE interrupts for now, we
3214 * make no use of those events other than to record them.
3216 writel(0xffffffff, cp
->regs
+ REG_MAC_CTRL_MASK
);
3219 /* Must be invoked under cp->lock. */
3220 static void cas_init_pause_thresholds(struct cas
*cp
)
3222 /* Calculate pause thresholds. Setting the OFF threshold to the
3223 * full RX fifo size effectively disables PAUSE generation
3225 if (cp
->rx_fifo_size
<= (2 * 1024)) {
3226 cp
->rx_pause_off
= cp
->rx_pause_on
= cp
->rx_fifo_size
;
3228 int max_frame
= (cp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
3229 if (max_frame
* 3 > cp
->rx_fifo_size
) {
3230 cp
->rx_pause_off
= 7104;
3231 cp
->rx_pause_on
= 960;
3233 int off
= (cp
->rx_fifo_size
- (max_frame
* 2));
3234 int on
= off
- max_frame
;
3235 cp
->rx_pause_off
= off
;
3236 cp
->rx_pause_on
= on
;
3241 static int cas_vpd_match(const void __iomem
*p
, const char *str
)
3243 int len
= strlen(str
) + 1;
3246 for (i
= 0; i
< len
; i
++) {
3247 if (readb(p
+ i
) != str
[i
])
3254 /* get the mac address by reading the vpd information in the rom.
3255 * also get the phy type and determine if there's an entropy generator.
3256 * NOTE: this is a bit convoluted for the following reasons:
3257 * 1) vpd info has order-dependent mac addresses for multinic cards
3258 * 2) the only way to determine the nic order is to use the slot
3260 * 3) fiber cards don't have bridges, so their slot numbers don't
3262 * 4) we don't actually know we have a fiber card until after
3263 * the mac addresses are parsed.
3265 static int cas_get_vpd_info(struct cas
*cp
, unsigned char *dev_addr
,
3268 void __iomem
*p
= cp
->regs
+ REG_EXPANSION_ROM_RUN_START
;
3269 void __iomem
*base
, *kstart
;
3272 #define VPD_FOUND_MAC 0x01
3273 #define VPD_FOUND_PHY 0x02
3275 int phy_type
= CAS_PHY_MII_MDIO0
; /* default phy type */
3278 /* give us access to the PROM */
3279 writel(BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_PAD
,
3280 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3282 /* check for an expansion rom */
3283 if (readb(p
) != 0x55 || readb(p
+ 1) != 0xaa)
3284 goto use_random_mac_addr
;
3286 /* search for beginning of vpd */
3288 for (i
= 2; i
< EXPANSION_ROM_SIZE
; i
++) {
3289 /* check for PCIR */
3290 if ((readb(p
+ i
+ 0) == 0x50) &&
3291 (readb(p
+ i
+ 1) == 0x43) &&
3292 (readb(p
+ i
+ 2) == 0x49) &&
3293 (readb(p
+ i
+ 3) == 0x52)) {
3294 base
= p
+ (readb(p
+ i
+ 8) |
3295 (readb(p
+ i
+ 9) << 8));
3300 if (!base
|| (readb(base
) != 0x82))
3301 goto use_random_mac_addr
;
3303 i
= (readb(base
+ 1) | (readb(base
+ 2) << 8)) + 3;
3304 while (i
< EXPANSION_ROM_SIZE
) {
3305 if (readb(base
+ i
) != 0x90) /* no vpd found */
3306 goto use_random_mac_addr
;
3308 /* found a vpd field */
3309 len
= readb(base
+ i
+ 1) | (readb(base
+ i
+ 2) << 8);
3311 /* extract keywords */
3312 kstart
= base
+ i
+ 3;
3314 while ((p
- kstart
) < len
) {
3315 int klen
= readb(p
+ 2);
3321 /* look for the following things:
3322 * -- correct length == 29
3323 * 3 (type) + 2 (size) +
3324 * 18 (strlen("local-mac-address") + 1) +
3326 * -- VPD Instance 'I'
3327 * -- VPD Type Bytes 'B'
3328 * -- VPD data length == 6
3329 * -- property string == local-mac-address
3331 * -- correct length == 24
3332 * 3 (type) + 2 (size) +
3333 * 12 (strlen("entropy-dev") + 1) +
3334 * 7 (strlen("vms110") + 1)
3335 * -- VPD Instance 'I'
3336 * -- VPD Type String 'B'
3337 * -- VPD data length == 7
3338 * -- property string == entropy-dev
3340 * -- correct length == 18
3341 * 3 (type) + 2 (size) +
3342 * 9 (strlen("phy-type") + 1) +
3343 * 4 (strlen("pcs") + 1)
3344 * -- VPD Instance 'I'
3345 * -- VPD Type String 'S'
3346 * -- VPD data length == 4
3347 * -- property string == phy-type
3349 * -- correct length == 23
3350 * 3 (type) + 2 (size) +
3351 * 14 (strlen("phy-interface") + 1) +
3352 * 4 (strlen("pcs") + 1)
3353 * -- VPD Instance 'I'
3354 * -- VPD Type String 'S'
3355 * -- VPD data length == 4
3356 * -- property string == phy-interface
3358 if (readb(p
) != 'I')
3361 /* finally, check string and length */
3362 type
= readb(p
+ 3);
3364 if ((klen
== 29) && readb(p
+ 4) == 6 &&
3365 cas_vpd_match(p
+ 5,
3366 "local-mac-address")) {
3367 if (mac_off
++ > offset
)
3370 /* set mac address */
3371 for (j
= 0; j
< 6; j
++)
3381 #ifdef USE_ENTROPY_DEV
3383 cas_vpd_match(p
+ 5, "entropy-dev") &&
3384 cas_vpd_match(p
+ 17, "vms110")) {
3385 cp
->cas_flags
|= CAS_FLAG_ENTROPY_DEV
;
3390 if (found
& VPD_FOUND_PHY
)
3393 if ((klen
== 18) && readb(p
+ 4) == 4 &&
3394 cas_vpd_match(p
+ 5, "phy-type")) {
3395 if (cas_vpd_match(p
+ 14, "pcs")) {
3396 phy_type
= CAS_PHY_SERDES
;
3401 if ((klen
== 23) && readb(p
+ 4) == 4 &&
3402 cas_vpd_match(p
+ 5, "phy-interface")) {
3403 if (cas_vpd_match(p
+ 19, "pcs")) {
3404 phy_type
= CAS_PHY_SERDES
;
3409 found
|= VPD_FOUND_MAC
;
3413 found
|= VPD_FOUND_PHY
;
3421 use_random_mac_addr
:
3422 if (found
& VPD_FOUND_MAC
)
3425 /* Sun MAC prefix then 3 random bytes. */
3426 printk(PFX
"MAC address not found in ROM VPD\n");
3430 get_random_bytes(dev_addr
+ 3, 3);
3433 writel(0, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3437 /* check pci invariants */
3438 static void cas_check_pci_invariants(struct cas
*cp
)
3440 struct pci_dev
*pdev
= cp
->pdev
;
3443 if ((pdev
->vendor
== PCI_VENDOR_ID_SUN
) &&
3444 (pdev
->device
== PCI_DEVICE_ID_SUN_CASSINI
)) {
3445 if (pdev
->revision
>= CAS_ID_REVPLUS
)
3446 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3447 if (pdev
->revision
< CAS_ID_REVPLUS02u
)
3448 cp
->cas_flags
|= CAS_FLAG_TARGET_ABORT
;
3450 /* Original Cassini supports HW CSUM, but it's not
3451 * enabled by default as it can trigger TX hangs.
3453 if (pdev
->revision
< CAS_ID_REV2
)
3454 cp
->cas_flags
|= CAS_FLAG_NO_HW_CSUM
;
3456 /* Only sun has original cassini chips. */
3457 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3459 /* We use a flag because the same phy might be externally
3462 if ((pdev
->vendor
== PCI_VENDOR_ID_NS
) &&
3463 (pdev
->device
== PCI_DEVICE_ID_NS_SATURN
))
3464 cp
->cas_flags
|= CAS_FLAG_SATURN
;
3469 static int cas_check_invariants(struct cas
*cp
)
3471 struct pci_dev
*pdev
= cp
->pdev
;
3475 /* get page size for rx buffers. */
3477 #ifdef USE_PAGE_ORDER
3478 if (PAGE_SHIFT
< CAS_JUMBO_PAGE_SHIFT
) {
3479 /* see if we can allocate larger pages */
3480 struct page
*page
= alloc_pages(GFP_ATOMIC
,
3481 CAS_JUMBO_PAGE_SHIFT
-
3484 __free_pages(page
, CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
);
3485 cp
->page_order
= CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
;
3487 printk(PFX
"MTU limited to %d bytes\n", CAS_MAX_MTU
);
3491 cp
->page_size
= (PAGE_SIZE
<< cp
->page_order
);
3493 /* Fetch the FIFO configurations. */
3494 cp
->tx_fifo_size
= readl(cp
->regs
+ REG_TX_FIFO_SIZE
) * 64;
3495 cp
->rx_fifo_size
= RX_FIFO_SIZE
;
3497 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3498 * they're both connected.
3500 cp
->phy_type
= cas_get_vpd_info(cp
, cp
->dev
->dev_addr
,
3501 PCI_SLOT(pdev
->devfn
));
3502 if (cp
->phy_type
& CAS_PHY_SERDES
) {
3503 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3504 return 0; /* no more checking needed */
3508 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
3509 if (cfg
& MIF_CFG_MDIO_1
) {
3510 cp
->phy_type
= CAS_PHY_MII_MDIO1
;
3511 } else if (cfg
& MIF_CFG_MDIO_0
) {
3512 cp
->phy_type
= CAS_PHY_MII_MDIO0
;
3515 cas_mif_poll(cp
, 0);
3516 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3518 for (i
= 0; i
< 32; i
++) {
3522 for (j
= 0; j
< 3; j
++) {
3524 phy_id
= cas_phy_read(cp
, MII_PHYSID1
) << 16;
3525 phy_id
|= cas_phy_read(cp
, MII_PHYSID2
);
3526 if (phy_id
&& (phy_id
!= 0xFFFFFFFF)) {
3527 cp
->phy_id
= phy_id
;
3532 printk(KERN_ERR PFX
"MII phy did not respond [%08x]\n",
3533 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
3537 /* see if we can do gigabit */
3538 cfg
= cas_phy_read(cp
, MII_BMSR
);
3539 if ((cfg
& CAS_BMSR_1000_EXTEND
) &&
3540 cas_phy_read(cp
, CAS_MII_1000_EXTEND
))
3541 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3545 /* Must be invoked under cp->lock. */
3546 static inline void cas_start_dma(struct cas
*cp
)
3553 val
= readl(cp
->regs
+ REG_TX_CFG
) | TX_CFG_DMA_EN
;
3554 writel(val
, cp
->regs
+ REG_TX_CFG
);
3555 val
= readl(cp
->regs
+ REG_RX_CFG
) | RX_CFG_DMA_EN
;
3556 writel(val
, cp
->regs
+ REG_RX_CFG
);
3558 /* enable the mac */
3559 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
) | MAC_TX_CFG_EN
;
3560 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3561 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
) | MAC_RX_CFG_EN
;
3562 writel(val
, cp
->regs
+ REG_MAC_RX_CFG
);
3566 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
);
3567 if ((val
& MAC_TX_CFG_EN
))
3571 if (i
< 0) txfailed
= 1;
3574 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3575 if ((val
& MAC_RX_CFG_EN
)) {
3578 "%s: enabling mac failed [tx:%08x:%08x].\n",
3580 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3581 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3583 goto enable_rx_done
;
3587 printk(KERN_ERR
"%s: enabling mac failed [%s:%08x:%08x].\n",
3589 (txfailed
? "tx,rx":"rx"),
3590 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3591 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3594 cas_unmask_intr(cp
); /* enable interrupts */
3595 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
3596 writel(0, cp
->regs
+ REG_RX_COMP_TAIL
);
3598 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
3599 if (N_RX_DESC_RINGS
> 1)
3600 writel(RX_DESC_RINGN_SIZE(1) - 4,
3601 cp
->regs
+ REG_PLUS_RX_KICK1
);
3603 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
3604 writel(0, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(i
));
3608 /* Must be invoked under cp->lock. */
3609 static void cas_read_pcs_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3612 u32 val
= readl(cp
->regs
+ REG_PCS_MII_LPA
);
3613 *fd
= (val
& PCS_MII_LPA_FD
) ? 1 : 0;
3614 *pause
= (val
& PCS_MII_LPA_SYM_PAUSE
) ? 0x01 : 0x00;
3615 if (val
& PCS_MII_LPA_ASYM_PAUSE
)
3620 /* Must be invoked under cp->lock. */
3621 static void cas_read_mii_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3630 /* use GMII registers */
3631 val
= cas_phy_read(cp
, MII_LPA
);
3632 if (val
& CAS_LPA_PAUSE
)
3635 if (val
& CAS_LPA_ASYM_PAUSE
)
3638 if (val
& LPA_DUPLEX
)
3643 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
3644 val
= cas_phy_read(cp
, CAS_MII_1000_STATUS
);
3645 if (val
& (CAS_LPA_1000FULL
| CAS_LPA_1000HALF
))
3647 if (val
& CAS_LPA_1000FULL
)
3652 /* A link-up condition has occurred, initialize and enable the
3655 * Must be invoked under cp->lock.
3657 static void cas_set_link_modes(struct cas
*cp
)
3660 int full_duplex
, speed
, pause
;
3666 if (CAS_PHY_MII(cp
->phy_type
)) {
3667 cas_mif_poll(cp
, 0);
3668 val
= cas_phy_read(cp
, MII_BMCR
);
3669 if (val
& BMCR_ANENABLE
) {
3670 cas_read_mii_link_mode(cp
, &full_duplex
, &speed
,
3673 if (val
& BMCR_FULLDPLX
)
3676 if (val
& BMCR_SPEED100
)
3678 else if (val
& CAS_BMCR_SPEED1000
)
3679 speed
= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
3682 cas_mif_poll(cp
, 1);
3685 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
3686 cas_read_pcs_link_mode(cp
, &full_duplex
, &speed
, &pause
);
3687 if ((val
& PCS_MII_AUTONEG_EN
) == 0) {
3688 if (val
& PCS_MII_CTRL_DUPLEX
)
3693 if (netif_msg_link(cp
))
3694 printk(KERN_INFO
"%s: Link up at %d Mbps, %s-duplex.\n",
3695 cp
->dev
->name
, speed
, (full_duplex
? "full" : "half"));
3697 val
= MAC_XIF_TX_MII_OUTPUT_EN
| MAC_XIF_LINK_LED
;
3698 if (CAS_PHY_MII(cp
->phy_type
)) {
3699 val
|= MAC_XIF_MII_BUFFER_OUTPUT_EN
;
3701 val
|= MAC_XIF_DISABLE_ECHO
;
3704 val
|= MAC_XIF_FDPLX_LED
;
3706 val
|= MAC_XIF_GMII_MODE
;
3707 writel(val
, cp
->regs
+ REG_MAC_XIF_CFG
);
3709 /* deal with carrier and collision detect. */
3710 val
= MAC_TX_CFG_IPG_EN
;
3712 val
|= MAC_TX_CFG_IGNORE_CARRIER
;
3713 val
|= MAC_TX_CFG_IGNORE_COLL
;
3715 #ifndef USE_CSMA_CD_PROTO
3716 val
|= MAC_TX_CFG_NEVER_GIVE_UP_EN
;
3717 val
|= MAC_TX_CFG_NEVER_GIVE_UP_LIM
;
3720 /* val now set up for REG_MAC_TX_CFG */
3722 /* If gigabit and half-duplex, enable carrier extension
3723 * mode. increase slot time to 512 bytes as well.
3724 * else, disable it and make sure slot time is 64 bytes.
3725 * also activate checksum bug workaround
3727 if ((speed
== 1000) && !full_duplex
) {
3728 writel(val
| MAC_TX_CFG_CARRIER_EXTEND
,
3729 cp
->regs
+ REG_MAC_TX_CFG
);
3731 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3732 val
&= ~MAC_RX_CFG_STRIP_FCS
; /* checksum workaround */
3733 writel(val
| MAC_RX_CFG_CARRIER_EXTEND
,
3734 cp
->regs
+ REG_MAC_RX_CFG
);
3736 writel(0x200, cp
->regs
+ REG_MAC_SLOT_TIME
);
3739 /* minimum size gigabit frame at half duplex */
3740 cp
->min_frame_size
= CAS_1000MB_MIN_FRAME
;
3743 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3745 /* checksum bug workaround. don't strip FCS when in
3748 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3750 val
|= MAC_RX_CFG_STRIP_FCS
;
3752 cp
->min_frame_size
= CAS_MIN_MTU
;
3754 val
&= ~MAC_RX_CFG_STRIP_FCS
;
3756 cp
->min_frame_size
= CAS_MIN_FRAME
;
3758 writel(val
& ~MAC_RX_CFG_CARRIER_EXTEND
,
3759 cp
->regs
+ REG_MAC_RX_CFG
);
3760 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3763 if (netif_msg_link(cp
)) {
3765 printk(KERN_INFO
"%s: Pause is enabled "
3766 "(rxfifo: %d off: %d on: %d)\n",
3771 } else if (pause
& 0x10) {
3772 printk(KERN_INFO
"%s: TX pause enabled\n",
3775 printk(KERN_INFO
"%s: Pause is disabled\n",
3780 val
= readl(cp
->regs
+ REG_MAC_CTRL_CFG
);
3781 val
&= ~(MAC_CTRL_CFG_SEND_PAUSE_EN
| MAC_CTRL_CFG_RECV_PAUSE_EN
);
3782 if (pause
) { /* symmetric or asymmetric pause */
3783 val
|= MAC_CTRL_CFG_SEND_PAUSE_EN
;
3784 if (pause
& 0x01) { /* symmetric pause */
3785 val
|= MAC_CTRL_CFG_RECV_PAUSE_EN
;
3788 writel(val
, cp
->regs
+ REG_MAC_CTRL_CFG
);
3792 /* Must be invoked under cp->lock. */
3793 static void cas_init_hw(struct cas
*cp
, int restart_link
)
3798 cas_init_pause_thresholds(cp
);
3803 /* Default aneg parameters */
3804 cp
->timer_ticks
= 0;
3805 cas_begin_auto_negotiation(cp
, NULL
);
3806 } else if (cp
->lstate
== link_up
) {
3807 cas_set_link_modes(cp
);
3808 netif_carrier_on(cp
->dev
);
3812 /* Must be invoked under cp->lock. on earlier cassini boards,
3813 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3814 * let it settle out, and then restore pci state.
3816 static void cas_hard_reset(struct cas
*cp
)
3818 writel(BIM_LOCAL_DEV_SOFT_0
, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3820 pci_restore_state(cp
->pdev
);
3824 static void cas_global_reset(struct cas
*cp
, int blkflag
)
3828 /* issue a global reset. don't use RSTOUT. */
3829 if (blkflag
&& !CAS_PHY_MII(cp
->phy_type
)) {
3830 /* For PCS, when the blkflag is set, we should set the
3831 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3832 * the last autonegotiation from being cleared. We'll
3833 * need some special handling if the chip is set into a
3836 writel((SW_RESET_TX
| SW_RESET_RX
| SW_RESET_BLOCK_PCS_SLINK
),
3837 cp
->regs
+ REG_SW_RESET
);
3839 writel(SW_RESET_TX
| SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
3842 /* need to wait at least 3ms before polling register */
3846 while (limit
-- > 0) {
3847 u32 val
= readl(cp
->regs
+ REG_SW_RESET
);
3848 if ((val
& (SW_RESET_TX
| SW_RESET_RX
)) == 0)
3852 printk(KERN_ERR
"%s: sw reset failed.\n", cp
->dev
->name
);
3855 /* enable various BIM interrupts */
3856 writel(BIM_CFG_DPAR_INTR_ENABLE
| BIM_CFG_RMA_INTR_ENABLE
|
3857 BIM_CFG_RTA_INTR_ENABLE
, cp
->regs
+ REG_BIM_CFG
);
3859 /* clear out pci error status mask for handled errors.
3860 * we don't deal with DMA counter overflows as they happen
3863 writel(0xFFFFFFFFU
& ~(PCI_ERR_BADACK
| PCI_ERR_DTRTO
|
3864 PCI_ERR_OTHER
| PCI_ERR_BIM_DMA_WRITE
|
3865 PCI_ERR_BIM_DMA_READ
), cp
->regs
+
3866 REG_PCI_ERR_STATUS_MASK
);
3868 /* set up for MII by default to address mac rx reset timeout
3871 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3874 static void cas_reset(struct cas
*cp
, int blkflag
)
3879 cas_global_reset(cp
, blkflag
);
3881 cas_entropy_reset(cp
);
3883 /* disable dma engines. */
3884 val
= readl(cp
->regs
+ REG_TX_CFG
);
3885 val
&= ~TX_CFG_DMA_EN
;
3886 writel(val
, cp
->regs
+ REG_TX_CFG
);
3888 val
= readl(cp
->regs
+ REG_RX_CFG
);
3889 val
&= ~RX_CFG_DMA_EN
;
3890 writel(val
, cp
->regs
+ REG_RX_CFG
);
3892 /* program header parser */
3893 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) ||
3894 (CAS_HP_ALT_FIRMWARE
== cas_prog_null
)) {
3895 cas_load_firmware(cp
, CAS_HP_FIRMWARE
);
3897 cas_load_firmware(cp
, CAS_HP_ALT_FIRMWARE
);
3900 /* clear out error registers */
3901 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3902 cas_clear_mac_err(cp
);
3903 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3906 /* Shut down the chip, must be called with pm_mutex held. */
3907 static void cas_shutdown(struct cas
*cp
)
3909 unsigned long flags
;
3911 /* Make us not-running to avoid timers respawning */
3914 del_timer_sync(&cp
->link_timer
);
3916 /* Stop the reset task */
3918 while (atomic_read(&cp
->reset_task_pending_mtu
) ||
3919 atomic_read(&cp
->reset_task_pending_spare
) ||
3920 atomic_read(&cp
->reset_task_pending_all
))
3924 while (atomic_read(&cp
->reset_task_pending
))
3927 /* Actually stop the chip */
3928 cas_lock_all_save(cp
, flags
);
3930 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
3931 cas_phy_powerdown(cp
);
3932 cas_unlock_all_restore(cp
, flags
);
3935 static int cas_change_mtu(struct net_device
*dev
, int new_mtu
)
3937 struct cas
*cp
= netdev_priv(dev
);
3939 if (new_mtu
< CAS_MIN_MTU
|| new_mtu
> CAS_MAX_MTU
)
3943 if (!netif_running(dev
) || !netif_device_present(dev
))
3946 /* let the reset task handle it */
3948 atomic_inc(&cp
->reset_task_pending
);
3949 if ((cp
->phy_type
& CAS_PHY_SERDES
)) {
3950 atomic_inc(&cp
->reset_task_pending_all
);
3952 atomic_inc(&cp
->reset_task_pending_mtu
);
3954 schedule_work(&cp
->reset_task
);
3956 atomic_set(&cp
->reset_task_pending
, (cp
->phy_type
& CAS_PHY_SERDES
) ?
3957 CAS_RESET_ALL
: CAS_RESET_MTU
);
3958 printk(KERN_ERR
"reset called in cas_change_mtu\n");
3959 schedule_work(&cp
->reset_task
);
3962 flush_scheduled_work();
3966 static void cas_clean_txd(struct cas
*cp
, int ring
)
3968 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
];
3969 struct sk_buff
*skb
, **skbs
= cp
->tx_skbs
[ring
];
3973 size
= TX_DESC_RINGN_SIZE(ring
);
3974 for (i
= 0; i
< size
; i
++) {
3977 if (skbs
[i
] == NULL
)
3983 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
3984 int ent
= i
& (size
- 1);
3986 /* first buffer is never a tiny buffer and so
3987 * needs to be unmapped.
3989 daddr
= le64_to_cpu(txd
[ent
].buffer
);
3990 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
3991 le64_to_cpu(txd
[ent
].control
));
3992 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
3995 if (frag
!= skb_shinfo(skb
)->nr_frags
) {
3998 /* next buffer might by a tiny buffer.
4001 ent
= i
& (size
- 1);
4002 if (cp
->tx_tiny_use
[ring
][ent
].used
)
4006 dev_kfree_skb_any(skb
);
4009 /* zero out tiny buf usage */
4010 memset(cp
->tx_tiny_use
[ring
], 0, size
*sizeof(*cp
->tx_tiny_use
[ring
]));
4013 /* freed on close */
4014 static inline void cas_free_rx_desc(struct cas
*cp
, int ring
)
4016 cas_page_t
**page
= cp
->rx_pages
[ring
];
4019 size
= RX_DESC_RINGN_SIZE(ring
);
4020 for (i
= 0; i
< size
; i
++) {
4022 cas_page_free(cp
, page
[i
]);
4028 static void cas_free_rxds(struct cas
*cp
)
4032 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
4033 cas_free_rx_desc(cp
, i
);
4036 /* Must be invoked under cp->lock. */
4037 static void cas_clean_rings(struct cas
*cp
)
4041 /* need to clean all tx rings */
4042 memset(cp
->tx_old
, 0, sizeof(*cp
->tx_old
)*N_TX_RINGS
);
4043 memset(cp
->tx_new
, 0, sizeof(*cp
->tx_new
)*N_TX_RINGS
);
4044 for (i
= 0; i
< N_TX_RINGS
; i
++)
4045 cas_clean_txd(cp
, i
);
4047 /* zero out init block */
4048 memset(cp
->init_block
, 0, sizeof(struct cas_init_block
));
4053 /* allocated on open */
4054 static inline int cas_alloc_rx_desc(struct cas
*cp
, int ring
)
4056 cas_page_t
**page
= cp
->rx_pages
[ring
];
4059 size
= RX_DESC_RINGN_SIZE(ring
);
4060 for (i
= 0; i
< size
; i
++) {
4061 if ((page
[i
] = cas_page_alloc(cp
, GFP_KERNEL
)) == NULL
)
4067 static int cas_alloc_rxds(struct cas
*cp
)
4071 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++) {
4072 if (cas_alloc_rx_desc(cp
, i
) < 0) {
4080 static void cas_reset_task(struct work_struct
*work
)
4082 struct cas
*cp
= container_of(work
, struct cas
, reset_task
);
4084 int pending
= atomic_read(&cp
->reset_task_pending
);
4086 int pending_all
= atomic_read(&cp
->reset_task_pending_all
);
4087 int pending_spare
= atomic_read(&cp
->reset_task_pending_spare
);
4088 int pending_mtu
= atomic_read(&cp
->reset_task_pending_mtu
);
4090 if (pending_all
== 0 && pending_spare
== 0 && pending_mtu
== 0) {
4091 /* We can have more tasks scheduled than actually
4094 atomic_dec(&cp
->reset_task_pending
);
4098 /* The link went down, we reset the ring, but keep
4099 * DMA stopped. Use this function for reset
4102 if (cp
->hw_running
) {
4103 unsigned long flags
;
4105 /* Make sure we don't get interrupts or tx packets */
4106 netif_device_detach(cp
->dev
);
4107 cas_lock_all_save(cp
, flags
);
4110 /* We call cas_spare_recover when we call cas_open.
4111 * but we do not initialize the lists cas_spare_recover
4112 * uses until cas_open is called.
4114 cas_spare_recover(cp
, GFP_ATOMIC
);
4117 /* test => only pending_spare set */
4118 if (!pending_all
&& !pending_mtu
)
4121 if (pending
== CAS_RESET_SPARE
)
4124 /* when pending == CAS_RESET_ALL, the following
4125 * call to cas_init_hw will restart auto negotiation.
4126 * Setting the second argument of cas_reset to
4127 * !(pending == CAS_RESET_ALL) will set this argument
4128 * to 1 (avoiding reinitializing the PHY for the normal
4129 * PCS case) when auto negotiation is not restarted.
4132 cas_reset(cp
, !(pending_all
> 0));
4134 cas_clean_rings(cp
);
4135 cas_init_hw(cp
, (pending_all
> 0));
4137 cas_reset(cp
, !(pending
== CAS_RESET_ALL
));
4139 cas_clean_rings(cp
);
4140 cas_init_hw(cp
, pending
== CAS_RESET_ALL
);
4144 cas_unlock_all_restore(cp
, flags
);
4145 netif_device_attach(cp
->dev
);
4148 atomic_sub(pending_all
, &cp
->reset_task_pending_all
);
4149 atomic_sub(pending_spare
, &cp
->reset_task_pending_spare
);
4150 atomic_sub(pending_mtu
, &cp
->reset_task_pending_mtu
);
4151 atomic_dec(&cp
->reset_task_pending
);
4153 atomic_set(&cp
->reset_task_pending
, 0);
4157 static void cas_link_timer(unsigned long data
)
4159 struct cas
*cp
= (struct cas
*) data
;
4160 int mask
, pending
= 0, reset
= 0;
4161 unsigned long flags
;
4163 if (link_transition_timeout
!= 0 &&
4164 cp
->link_transition_jiffies_valid
&&
4165 ((jiffies
- cp
->link_transition_jiffies
) >
4166 (link_transition_timeout
))) {
4167 /* One-second counter so link-down workaround doesn't
4168 * cause resets to occur so fast as to fool the switch
4169 * into thinking the link is down.
4171 cp
->link_transition_jiffies_valid
= 0;
4174 if (!cp
->hw_running
)
4177 spin_lock_irqsave(&cp
->lock
, flags
);
4179 cas_entropy_gather(cp
);
4181 /* If the link task is still pending, we just
4182 * reschedule the link timer
4185 if (atomic_read(&cp
->reset_task_pending_all
) ||
4186 atomic_read(&cp
->reset_task_pending_spare
) ||
4187 atomic_read(&cp
->reset_task_pending_mtu
))
4190 if (atomic_read(&cp
->reset_task_pending
))
4194 /* check for rx cleaning */
4195 if ((mask
= (cp
->cas_flags
& CAS_FLAG_RXD_POST_MASK
))) {
4198 for (i
= 0; i
< MAX_RX_DESC_RINGS
; i
++) {
4199 rmask
= CAS_FLAG_RXD_POST(i
);
4200 if ((mask
& rmask
) == 0)
4203 /* post_rxds will do a mod_timer */
4204 if (cas_post_rxds_ringN(cp
, i
, cp
->rx_last
[i
]) < 0) {
4208 cp
->cas_flags
&= ~rmask
;
4212 if (CAS_PHY_MII(cp
->phy_type
)) {
4214 cas_mif_poll(cp
, 0);
4215 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4216 /* WTZ: Solaris driver reads this twice, but that
4217 * may be due to the PCS case and the use of a
4218 * common implementation. Read it twice here to be
4221 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4222 cas_mif_poll(cp
, 1);
4223 readl(cp
->regs
+ REG_MIF_STATUS
); /* avoid dups */
4224 reset
= cas_mii_link_check(cp
, bmsr
);
4226 reset
= cas_pcs_link_check(cp
);
4232 /* check for tx state machine confusion */
4233 if ((readl(cp
->regs
+ REG_MAC_TX_STATUS
) & MAC_TX_FRAME_XMIT
) == 0) {
4234 u32 val
= readl(cp
->regs
+ REG_MAC_STATE_MACHINE
);
4236 int tlm
= CAS_VAL(MAC_SM_TLM
, val
);
4238 if (((tlm
== 0x5) || (tlm
== 0x3)) &&
4239 (CAS_VAL(MAC_SM_ENCAP_SM
, val
) == 0)) {
4240 if (netif_msg_tx_err(cp
))
4241 printk(KERN_DEBUG
"%s: tx err: "
4242 "MAC_STATE[%08x]\n",
4243 cp
->dev
->name
, val
);
4248 val
= readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
);
4249 wptr
= readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
);
4250 rptr
= readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
);
4251 if ((val
== 0) && (wptr
!= rptr
)) {
4252 if (netif_msg_tx_err(cp
))
4253 printk(KERN_DEBUG
"%s: tx err: "
4254 "TX_FIFO[%08x:%08x:%08x]\n",
4255 cp
->dev
->name
, val
, wptr
, rptr
);
4266 atomic_inc(&cp
->reset_task_pending
);
4267 atomic_inc(&cp
->reset_task_pending_all
);
4268 schedule_work(&cp
->reset_task
);
4270 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
4271 printk(KERN_ERR
"reset called in cas_link_timer\n");
4272 schedule_work(&cp
->reset_task
);
4277 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
4279 spin_unlock_irqrestore(&cp
->lock
, flags
);
4282 /* tiny buffers are used to avoid target abort issues with
4285 static void cas_tx_tiny_free(struct cas
*cp
)
4287 struct pci_dev
*pdev
= cp
->pdev
;
4290 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4291 if (!cp
->tx_tiny_bufs
[i
])
4294 pci_free_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4295 cp
->tx_tiny_bufs
[i
],
4296 cp
->tx_tiny_dvma
[i
]);
4297 cp
->tx_tiny_bufs
[i
] = NULL
;
4301 static int cas_tx_tiny_alloc(struct cas
*cp
)
4303 struct pci_dev
*pdev
= cp
->pdev
;
4306 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4307 cp
->tx_tiny_bufs
[i
] =
4308 pci_alloc_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4309 &cp
->tx_tiny_dvma
[i
]);
4310 if (!cp
->tx_tiny_bufs
[i
]) {
4311 cas_tx_tiny_free(cp
);
4319 static int cas_open(struct net_device
*dev
)
4321 struct cas
*cp
= netdev_priv(dev
);
4323 unsigned long flags
;
4325 mutex_lock(&cp
->pm_mutex
);
4327 hw_was_up
= cp
->hw_running
;
4329 /* The power-management mutex protects the hw_running
4330 * etc. state so it is safe to do this bit without cp->lock
4332 if (!cp
->hw_running
) {
4333 /* Reset the chip */
4334 cas_lock_all_save(cp
, flags
);
4335 /* We set the second arg to cas_reset to zero
4336 * because cas_init_hw below will have its second
4337 * argument set to non-zero, which will force
4338 * autonegotiation to start.
4342 cas_unlock_all_restore(cp
, flags
);
4345 if (cas_tx_tiny_alloc(cp
) < 0)
4348 /* alloc rx descriptors */
4350 if (cas_alloc_rxds(cp
) < 0)
4353 /* allocate spares */
4355 cas_spare_recover(cp
, GFP_KERNEL
);
4357 /* We can now request the interrupt as we know it's masked
4358 * on the controller. cassini+ has up to 4 interrupts
4359 * that can be used, but you need to do explicit pci interrupt
4360 * mapping to expose them
4362 if (request_irq(cp
->pdev
->irq
, cas_interrupt
,
4363 IRQF_SHARED
, dev
->name
, (void *) dev
)) {
4364 printk(KERN_ERR
"%s: failed to request irq !\n",
4371 napi_enable(&cp
->napi
);
4374 cas_lock_all_save(cp
, flags
);
4375 cas_clean_rings(cp
);
4376 cas_init_hw(cp
, !hw_was_up
);
4378 cas_unlock_all_restore(cp
, flags
);
4380 netif_start_queue(dev
);
4381 mutex_unlock(&cp
->pm_mutex
);
4388 cas_tx_tiny_free(cp
);
4389 mutex_unlock(&cp
->pm_mutex
);
4393 static int cas_close(struct net_device
*dev
)
4395 unsigned long flags
;
4396 struct cas
*cp
= netdev_priv(dev
);
4399 napi_disable(&cp
->napi
);
4401 /* Make sure we don't get distracted by suspend/resume */
4402 mutex_lock(&cp
->pm_mutex
);
4404 netif_stop_queue(dev
);
4406 /* Stop traffic, mark us closed */
4407 cas_lock_all_save(cp
, flags
);
4411 cas_begin_auto_negotiation(cp
, NULL
);
4412 cas_clean_rings(cp
);
4413 cas_unlock_all_restore(cp
, flags
);
4415 free_irq(cp
->pdev
->irq
, (void *) dev
);
4418 cas_tx_tiny_free(cp
);
4419 mutex_unlock(&cp
->pm_mutex
);
4424 const char name
[ETH_GSTRING_LEN
];
4425 } ethtool_cassini_statnames
[] = {
4432 {"rx_frame_errors"},
4433 {"rx_length_errors"},
4436 {"tx_aborted_errors"},
4443 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4446 const int offsets
; /* neg. values for 2nd arg to cas_read_phy */
4447 } ethtool_register_table
[] = {
4462 {REG_PCS_MII_STATUS
},
4463 {REG_PCS_STATE_MACHINE
},
4464 {REG_MAC_COLL_EXCESS
},
4467 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4468 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4470 static void cas_read_regs(struct cas
*cp
, u8
*ptr
, int len
)
4474 unsigned long flags
;
4476 spin_lock_irqsave(&cp
->lock
, flags
);
4477 for (i
= 0, p
= ptr
; i
< len
; i
++, p
+= sizeof(u32
)) {
4480 if (ethtool_register_table
[i
].offsets
< 0) {
4481 hval
= cas_phy_read(cp
,
4482 -ethtool_register_table
[i
].offsets
);
4485 val
= readl(cp
->regs
+ethtool_register_table
[i
].offsets
);
4487 memcpy(p
, (u8
*)&val
, sizeof(u32
));
4489 spin_unlock_irqrestore(&cp
->lock
, flags
);
4492 static struct net_device_stats
*cas_get_stats(struct net_device
*dev
)
4494 struct cas
*cp
= netdev_priv(dev
);
4495 struct net_device_stats
*stats
= cp
->net_stats
;
4496 unsigned long flags
;
4500 /* we collate all of the stats into net_stats[N_TX_RING] */
4501 if (!cp
->hw_running
)
4502 return stats
+ N_TX_RINGS
;
4504 /* collect outstanding stats */
4505 /* WTZ: the Cassini spec gives these as 16 bit counters but
4506 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4507 * in case the chip somehow puts any garbage in the other bits.
4508 * Also, counter usage didn't seem to mach what Adrian did
4509 * in the parts of the code that set these quantities. Made
4512 spin_lock_irqsave(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4513 stats
[N_TX_RINGS
].rx_crc_errors
+=
4514 readl(cp
->regs
+ REG_MAC_FCS_ERR
) & 0xffff;
4515 stats
[N_TX_RINGS
].rx_frame_errors
+=
4516 readl(cp
->regs
+ REG_MAC_ALIGN_ERR
) &0xffff;
4517 stats
[N_TX_RINGS
].rx_length_errors
+=
4518 readl(cp
->regs
+ REG_MAC_LEN_ERR
) & 0xffff;
4520 tmp
= (readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) & 0xffff) +
4521 (readl(cp
->regs
+ REG_MAC_COLL_LATE
) & 0xffff);
4522 stats
[N_TX_RINGS
].tx_aborted_errors
+= tmp
;
4523 stats
[N_TX_RINGS
].collisions
+=
4524 tmp
+ (readl(cp
->regs
+ REG_MAC_COLL_NORMAL
) & 0xffff);
4526 stats
[N_TX_RINGS
].tx_aborted_errors
+=
4527 readl(cp
->regs
+ REG_MAC_COLL_EXCESS
);
4528 stats
[N_TX_RINGS
].collisions
+= readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) +
4529 readl(cp
->regs
+ REG_MAC_COLL_LATE
);
4531 cas_clear_mac_err(cp
);
4533 /* saved bits that are unique to ring 0 */
4534 spin_lock(&cp
->stat_lock
[0]);
4535 stats
[N_TX_RINGS
].collisions
+= stats
[0].collisions
;
4536 stats
[N_TX_RINGS
].rx_over_errors
+= stats
[0].rx_over_errors
;
4537 stats
[N_TX_RINGS
].rx_frame_errors
+= stats
[0].rx_frame_errors
;
4538 stats
[N_TX_RINGS
].rx_fifo_errors
+= stats
[0].rx_fifo_errors
;
4539 stats
[N_TX_RINGS
].tx_aborted_errors
+= stats
[0].tx_aborted_errors
;
4540 stats
[N_TX_RINGS
].tx_fifo_errors
+= stats
[0].tx_fifo_errors
;
4541 spin_unlock(&cp
->stat_lock
[0]);
4543 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4544 spin_lock(&cp
->stat_lock
[i
]);
4545 stats
[N_TX_RINGS
].rx_length_errors
+=
4546 stats
[i
].rx_length_errors
;
4547 stats
[N_TX_RINGS
].rx_crc_errors
+= stats
[i
].rx_crc_errors
;
4548 stats
[N_TX_RINGS
].rx_packets
+= stats
[i
].rx_packets
;
4549 stats
[N_TX_RINGS
].tx_packets
+= stats
[i
].tx_packets
;
4550 stats
[N_TX_RINGS
].rx_bytes
+= stats
[i
].rx_bytes
;
4551 stats
[N_TX_RINGS
].tx_bytes
+= stats
[i
].tx_bytes
;
4552 stats
[N_TX_RINGS
].rx_errors
+= stats
[i
].rx_errors
;
4553 stats
[N_TX_RINGS
].tx_errors
+= stats
[i
].tx_errors
;
4554 stats
[N_TX_RINGS
].rx_dropped
+= stats
[i
].rx_dropped
;
4555 stats
[N_TX_RINGS
].tx_dropped
+= stats
[i
].tx_dropped
;
4556 memset(stats
+ i
, 0, sizeof(struct net_device_stats
));
4557 spin_unlock(&cp
->stat_lock
[i
]);
4559 spin_unlock_irqrestore(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4560 return stats
+ N_TX_RINGS
;
4564 static void cas_set_multicast(struct net_device
*dev
)
4566 struct cas
*cp
= netdev_priv(dev
);
4567 u32 rxcfg
, rxcfg_new
;
4568 unsigned long flags
;
4569 int limit
= STOP_TRIES
;
4571 if (!cp
->hw_running
)
4574 spin_lock_irqsave(&cp
->lock
, flags
);
4575 rxcfg
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
4577 /* disable RX MAC and wait for completion */
4578 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4579 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
) {
4585 /* disable hash filter and wait for completion */
4587 rxcfg
&= ~(MAC_RX_CFG_PROMISC_EN
| MAC_RX_CFG_HASH_FILTER_EN
);
4588 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4589 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_HASH_FILTER_EN
) {
4595 /* program hash filters */
4596 cp
->mac_rx_cfg
= rxcfg_new
= cas_setup_multicast(cp
);
4598 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
4599 spin_unlock_irqrestore(&cp
->lock
, flags
);
4602 static void cas_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4604 struct cas
*cp
= netdev_priv(dev
);
4605 strncpy(info
->driver
, DRV_MODULE_NAME
, ETHTOOL_BUSINFO_LEN
);
4606 strncpy(info
->version
, DRV_MODULE_VERSION
, ETHTOOL_BUSINFO_LEN
);
4607 info
->fw_version
[0] = '\0';
4608 strncpy(info
->bus_info
, pci_name(cp
->pdev
), ETHTOOL_BUSINFO_LEN
);
4609 info
->regdump_len
= cp
->casreg_len
< CAS_MAX_REGS
?
4610 cp
->casreg_len
: CAS_MAX_REGS
;
4611 info
->n_stats
= CAS_NUM_STAT_KEYS
;
4614 static int cas_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4616 struct cas
*cp
= netdev_priv(dev
);
4618 int full_duplex
, speed
, pause
;
4619 unsigned long flags
;
4620 enum link_state linkstate
= link_up
;
4622 cmd
->advertising
= 0;
4623 cmd
->supported
= SUPPORTED_Autoneg
;
4624 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
4625 cmd
->supported
|= SUPPORTED_1000baseT_Full
;
4626 cmd
->advertising
|= ADVERTISED_1000baseT_Full
;
4629 /* Record PHY settings if HW is on. */
4630 spin_lock_irqsave(&cp
->lock
, flags
);
4632 linkstate
= cp
->lstate
;
4633 if (CAS_PHY_MII(cp
->phy_type
)) {
4634 cmd
->port
= PORT_MII
;
4635 cmd
->transceiver
= (cp
->cas_flags
& CAS_FLAG_SATURN
) ?
4636 XCVR_INTERNAL
: XCVR_EXTERNAL
;
4637 cmd
->phy_address
= cp
->phy_addr
;
4638 cmd
->advertising
|= ADVERTISED_TP
| ADVERTISED_MII
|
4639 ADVERTISED_10baseT_Half
|
4640 ADVERTISED_10baseT_Full
|
4641 ADVERTISED_100baseT_Half
|
4642 ADVERTISED_100baseT_Full
;
4645 (SUPPORTED_10baseT_Half
|
4646 SUPPORTED_10baseT_Full
|
4647 SUPPORTED_100baseT_Half
|
4648 SUPPORTED_100baseT_Full
|
4649 SUPPORTED_TP
| SUPPORTED_MII
);
4651 if (cp
->hw_running
) {
4652 cas_mif_poll(cp
, 0);
4653 bmcr
= cas_phy_read(cp
, MII_BMCR
);
4654 cas_read_mii_link_mode(cp
, &full_duplex
,
4656 cas_mif_poll(cp
, 1);
4660 cmd
->port
= PORT_FIBRE
;
4661 cmd
->transceiver
= XCVR_INTERNAL
;
4662 cmd
->phy_address
= 0;
4663 cmd
->supported
|= SUPPORTED_FIBRE
;
4664 cmd
->advertising
|= ADVERTISED_FIBRE
;
4666 if (cp
->hw_running
) {
4667 /* pcs uses the same bits as mii */
4668 bmcr
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
4669 cas_read_pcs_link_mode(cp
, &full_duplex
,
4673 spin_unlock_irqrestore(&cp
->lock
, flags
);
4675 if (bmcr
& BMCR_ANENABLE
) {
4676 cmd
->advertising
|= ADVERTISED_Autoneg
;
4677 cmd
->autoneg
= AUTONEG_ENABLE
;
4678 cmd
->speed
= ((speed
== 10) ?
4681 SPEED_1000
: SPEED_100
));
4682 cmd
->duplex
= full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
4684 cmd
->autoneg
= AUTONEG_DISABLE
;
4686 (bmcr
& CAS_BMCR_SPEED1000
) ?
4688 ((bmcr
& BMCR_SPEED100
) ? SPEED_100
:
4691 (bmcr
& BMCR_FULLDPLX
) ?
4692 DUPLEX_FULL
: DUPLEX_HALF
;
4694 if (linkstate
!= link_up
) {
4695 /* Force these to "unknown" if the link is not up and
4696 * autonogotiation in enabled. We can set the link
4697 * speed to 0, but not cmd->duplex,
4698 * because its legal values are 0 and 1. Ethtool will
4699 * print the value reported in parentheses after the
4700 * word "Unknown" for unrecognized values.
4702 * If in forced mode, we report the speed and duplex
4703 * settings that we configured.
4705 if (cp
->link_cntl
& BMCR_ANENABLE
) {
4709 cmd
->speed
= SPEED_10
;
4710 if (cp
->link_cntl
& BMCR_SPEED100
) {
4711 cmd
->speed
= SPEED_100
;
4712 } else if (cp
->link_cntl
& CAS_BMCR_SPEED1000
) {
4713 cmd
->speed
= SPEED_1000
;
4715 cmd
->duplex
= (cp
->link_cntl
& BMCR_FULLDPLX
)?
4716 DUPLEX_FULL
: DUPLEX_HALF
;
4722 static int cas_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4724 struct cas
*cp
= netdev_priv(dev
);
4725 unsigned long flags
;
4727 /* Verify the settings we care about. */
4728 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
4729 cmd
->autoneg
!= AUTONEG_DISABLE
)
4732 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
4733 ((cmd
->speed
!= SPEED_1000
&&
4734 cmd
->speed
!= SPEED_100
&&
4735 cmd
->speed
!= SPEED_10
) ||
4736 (cmd
->duplex
!= DUPLEX_HALF
&&
4737 cmd
->duplex
!= DUPLEX_FULL
)))
4740 /* Apply settings and restart link process. */
4741 spin_lock_irqsave(&cp
->lock
, flags
);
4742 cas_begin_auto_negotiation(cp
, cmd
);
4743 spin_unlock_irqrestore(&cp
->lock
, flags
);
4747 static int cas_nway_reset(struct net_device
*dev
)
4749 struct cas
*cp
= netdev_priv(dev
);
4750 unsigned long flags
;
4752 if ((cp
->link_cntl
& BMCR_ANENABLE
) == 0)
4755 /* Restart link process. */
4756 spin_lock_irqsave(&cp
->lock
, flags
);
4757 cas_begin_auto_negotiation(cp
, NULL
);
4758 spin_unlock_irqrestore(&cp
->lock
, flags
);
4763 static u32
cas_get_link(struct net_device
*dev
)
4765 struct cas
*cp
= netdev_priv(dev
);
4766 return cp
->lstate
== link_up
;
4769 static u32
cas_get_msglevel(struct net_device
*dev
)
4771 struct cas
*cp
= netdev_priv(dev
);
4772 return cp
->msg_enable
;
4775 static void cas_set_msglevel(struct net_device
*dev
, u32 value
)
4777 struct cas
*cp
= netdev_priv(dev
);
4778 cp
->msg_enable
= value
;
4781 static int cas_get_regs_len(struct net_device
*dev
)
4783 struct cas
*cp
= netdev_priv(dev
);
4784 return cp
->casreg_len
< CAS_MAX_REGS
? cp
->casreg_len
: CAS_MAX_REGS
;
4787 static void cas_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
4790 struct cas
*cp
= netdev_priv(dev
);
4792 /* cas_read_regs handles locks (cp->lock). */
4793 cas_read_regs(cp
, p
, regs
->len
/ sizeof(u32
));
4796 static int cas_get_sset_count(struct net_device
*dev
, int sset
)
4800 return CAS_NUM_STAT_KEYS
;
4806 static void cas_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
4808 memcpy(data
, ðtool_cassini_statnames
,
4809 CAS_NUM_STAT_KEYS
* ETH_GSTRING_LEN
);
4812 static void cas_get_ethtool_stats(struct net_device
*dev
,
4813 struct ethtool_stats
*estats
, u64
*data
)
4815 struct cas
*cp
= netdev_priv(dev
);
4816 struct net_device_stats
*stats
= cas_get_stats(cp
->dev
);
4818 data
[i
++] = stats
->collisions
;
4819 data
[i
++] = stats
->rx_bytes
;
4820 data
[i
++] = stats
->rx_crc_errors
;
4821 data
[i
++] = stats
->rx_dropped
;
4822 data
[i
++] = stats
->rx_errors
;
4823 data
[i
++] = stats
->rx_fifo_errors
;
4824 data
[i
++] = stats
->rx_frame_errors
;
4825 data
[i
++] = stats
->rx_length_errors
;
4826 data
[i
++] = stats
->rx_over_errors
;
4827 data
[i
++] = stats
->rx_packets
;
4828 data
[i
++] = stats
->tx_aborted_errors
;
4829 data
[i
++] = stats
->tx_bytes
;
4830 data
[i
++] = stats
->tx_dropped
;
4831 data
[i
++] = stats
->tx_errors
;
4832 data
[i
++] = stats
->tx_fifo_errors
;
4833 data
[i
++] = stats
->tx_packets
;
4834 BUG_ON(i
!= CAS_NUM_STAT_KEYS
);
4837 static const struct ethtool_ops cas_ethtool_ops
= {
4838 .get_drvinfo
= cas_get_drvinfo
,
4839 .get_settings
= cas_get_settings
,
4840 .set_settings
= cas_set_settings
,
4841 .nway_reset
= cas_nway_reset
,
4842 .get_link
= cas_get_link
,
4843 .get_msglevel
= cas_get_msglevel
,
4844 .set_msglevel
= cas_set_msglevel
,
4845 .get_regs_len
= cas_get_regs_len
,
4846 .get_regs
= cas_get_regs
,
4847 .get_sset_count
= cas_get_sset_count
,
4848 .get_strings
= cas_get_strings
,
4849 .get_ethtool_stats
= cas_get_ethtool_stats
,
4852 static int cas_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
4854 struct cas
*cp
= netdev_priv(dev
);
4855 struct mii_ioctl_data
*data
= if_mii(ifr
);
4856 unsigned long flags
;
4857 int rc
= -EOPNOTSUPP
;
4859 /* Hold the PM mutex while doing ioctl's or we may collide
4860 * with open/close and power management and oops.
4862 mutex_lock(&cp
->pm_mutex
);
4864 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
4865 data
->phy_id
= cp
->phy_addr
;
4866 /* Fallthrough... */
4868 case SIOCGMIIREG
: /* Read MII PHY register. */
4869 spin_lock_irqsave(&cp
->lock
, flags
);
4870 cas_mif_poll(cp
, 0);
4871 data
->val_out
= cas_phy_read(cp
, data
->reg_num
& 0x1f);
4872 cas_mif_poll(cp
, 1);
4873 spin_unlock_irqrestore(&cp
->lock
, flags
);
4877 case SIOCSMIIREG
: /* Write MII PHY register. */
4878 if (!capable(CAP_NET_ADMIN
)) {
4882 spin_lock_irqsave(&cp
->lock
, flags
);
4883 cas_mif_poll(cp
, 0);
4884 rc
= cas_phy_write(cp
, data
->reg_num
& 0x1f, data
->val_in
);
4885 cas_mif_poll(cp
, 1);
4886 spin_unlock_irqrestore(&cp
->lock
, flags
);
4892 mutex_unlock(&cp
->pm_mutex
);
4896 /* When this chip sits underneath an Intel 31154 bridge, it is the
4897 * only subordinate device and we can tweak the bridge settings to
4898 * reflect that fact.
4900 static void __devinit
cas_program_bridge(struct pci_dev
*cas_pdev
)
4902 struct pci_dev
*pdev
= cas_pdev
->bus
->self
;
4908 if (pdev
->vendor
!= 0x8086 || pdev
->device
!= 0x537c)
4911 /* Clear bit 10 (Bus Parking Control) in the Secondary
4912 * Arbiter Control/Status Register which lives at offset
4913 * 0x41. Using a 32-bit word read/modify/write at 0x40
4914 * is much simpler so that's how we do this.
4916 pci_read_config_dword(pdev
, 0x40, &val
);
4918 pci_write_config_dword(pdev
, 0x40, val
);
4920 /* Max out the Multi-Transaction Timer settings since
4921 * Cassini is the only device present.
4923 * The register is 16-bit and lives at 0x50. When the
4924 * settings are enabled, it extends the GRANT# signal
4925 * for a requestor after a transaction is complete. This
4926 * allows the next request to run without first needing
4927 * to negotiate the GRANT# signal back.
4929 * Bits 12:10 define the grant duration:
4937 * All other values are illegal.
4939 * Bits 09:00 define which REQ/GNT signal pairs get the
4940 * GRANT# signal treatment. We set them all.
4942 pci_write_config_word(pdev
, 0x50, (5 << 10) | 0x3ff);
4944 /* The Read Prefecth Policy register is 16-bit and sits at
4945 * offset 0x52. It enables a "smart" pre-fetch policy. We
4946 * enable it and max out all of the settings since only one
4947 * device is sitting underneath and thus bandwidth sharing is
4950 * The register has several 3 bit fields, which indicates a
4951 * multiplier applied to the base amount of prefetching the
4952 * chip would do. These fields are at:
4954 * 15:13 --- ReRead Primary Bus
4955 * 12:10 --- FirstRead Primary Bus
4956 * 09:07 --- ReRead Secondary Bus
4957 * 06:04 --- FirstRead Secondary Bus
4959 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4960 * get enabled on. Bit 3 is a grouped enabler which controls
4961 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4962 * the individual REQ/GNT pairs [2:0].
4964 pci_write_config_word(pdev
, 0x52,
4971 /* Force cacheline size to 0x8 */
4972 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, 0x08);
4974 /* Force latency timer to maximum setting so Cassini can
4975 * sit on the bus as long as it likes.
4977 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xff);
4980 static int __devinit
cas_init_one(struct pci_dev
*pdev
,
4981 const struct pci_device_id
*ent
)
4983 static int cas_version_printed
= 0;
4984 unsigned long casreg_len
;
4985 struct net_device
*dev
;
4987 int i
, err
, pci_using_dac
;
4989 u8 orig_cacheline_size
= 0, cas_cacheline_size
= 0;
4991 if (cas_version_printed
++ == 0)
4992 printk(KERN_INFO
"%s", version
);
4994 err
= pci_enable_device(pdev
);
4996 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting.\n");
5000 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
5001 dev_err(&pdev
->dev
, "Cannot find proper PCI device "
5002 "base address, aborting.\n");
5004 goto err_out_disable_pdev
;
5007 dev
= alloc_etherdev(sizeof(*cp
));
5009 dev_err(&pdev
->dev
, "Etherdev alloc failed, aborting.\n");
5011 goto err_out_disable_pdev
;
5013 SET_NETDEV_DEV(dev
, &pdev
->dev
);
5015 err
= pci_request_regions(pdev
, dev
->name
);
5017 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting.\n");
5018 goto err_out_free_netdev
;
5020 pci_set_master(pdev
);
5022 /* we must always turn on parity response or else parity
5023 * doesn't get generated properly. disable SERR/PERR as well.
5024 * in addition, we want to turn MWI on.
5026 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
5027 pci_cmd
&= ~PCI_COMMAND_SERR
;
5028 pci_cmd
|= PCI_COMMAND_PARITY
;
5029 pci_write_config_word(pdev
, PCI_COMMAND
, pci_cmd
);
5030 if (pci_try_set_mwi(pdev
))
5031 printk(KERN_WARNING PFX
"Could not enable MWI for %s\n",
5034 cas_program_bridge(pdev
);
5037 * On some architectures, the default cache line size set
5038 * by pci_try_set_mwi reduces perforamnce. We have to increase
5039 * it for this case. To start, we'll print some configuration
5043 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5044 &orig_cacheline_size
);
5045 if (orig_cacheline_size
< CAS_PREF_CACHELINE_SIZE
) {
5046 cas_cacheline_size
=
5047 (CAS_PREF_CACHELINE_SIZE
< SMP_CACHE_BYTES
) ?
5048 CAS_PREF_CACHELINE_SIZE
: SMP_CACHE_BYTES
;
5049 if (pci_write_config_byte(pdev
,
5050 PCI_CACHE_LINE_SIZE
,
5051 cas_cacheline_size
)) {
5052 dev_err(&pdev
->dev
, "Could not set PCI cache "
5054 goto err_write_cacheline
;
5060 /* Configure DMA attributes. */
5061 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
5063 err
= pci_set_consistent_dma_mask(pdev
,
5066 dev_err(&pdev
->dev
, "Unable to obtain 64-bit DMA "
5067 "for consistent allocations\n");
5068 goto err_out_free_res
;
5072 err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
5074 dev_err(&pdev
->dev
, "No usable DMA configuration, "
5076 goto err_out_free_res
;
5081 casreg_len
= pci_resource_len(pdev
, 0);
5083 cp
= netdev_priv(dev
);
5086 /* A value of 0 indicates we never explicitly set it */
5087 cp
->orig_cacheline_size
= cas_cacheline_size
? orig_cacheline_size
: 0;
5090 cp
->msg_enable
= (cassini_debug
< 0) ? CAS_DEF_MSG_ENABLE
:
5093 cp
->link_transition
= LINK_TRANSITION_UNKNOWN
;
5094 cp
->link_transition_jiffies_valid
= 0;
5096 spin_lock_init(&cp
->lock
);
5097 spin_lock_init(&cp
->rx_inuse_lock
);
5098 spin_lock_init(&cp
->rx_spare_lock
);
5099 for (i
= 0; i
< N_TX_RINGS
; i
++) {
5100 spin_lock_init(&cp
->stat_lock
[i
]);
5101 spin_lock_init(&cp
->tx_lock
[i
]);
5103 spin_lock_init(&cp
->stat_lock
[N_TX_RINGS
]);
5104 mutex_init(&cp
->pm_mutex
);
5106 init_timer(&cp
->link_timer
);
5107 cp
->link_timer
.function
= cas_link_timer
;
5108 cp
->link_timer
.data
= (unsigned long) cp
;
5111 /* Just in case the implementation of atomic operations
5112 * change so that an explicit initialization is necessary.
5114 atomic_set(&cp
->reset_task_pending
, 0);
5115 atomic_set(&cp
->reset_task_pending_all
, 0);
5116 atomic_set(&cp
->reset_task_pending_spare
, 0);
5117 atomic_set(&cp
->reset_task_pending_mtu
, 0);
5119 INIT_WORK(&cp
->reset_task
, cas_reset_task
);
5121 /* Default link parameters */
5122 if (link_mode
>= 0 && link_mode
<= 6)
5123 cp
->link_cntl
= link_modes
[link_mode
];
5125 cp
->link_cntl
= BMCR_ANENABLE
;
5126 cp
->lstate
= link_down
;
5127 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
5128 netif_carrier_off(cp
->dev
);
5129 cp
->timer_ticks
= 0;
5131 /* give us access to cassini registers */
5132 cp
->regs
= pci_iomap(pdev
, 0, casreg_len
);
5134 dev_err(&pdev
->dev
, "Cannot map device registers, aborting.\n");
5135 goto err_out_free_res
;
5137 cp
->casreg_len
= casreg_len
;
5139 pci_save_state(pdev
);
5140 cas_check_pci_invariants(cp
);
5143 if (cas_check_invariants(cp
))
5144 goto err_out_iounmap
;
5145 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
5146 if (cas_saturn_firmware_init(cp
))
5147 goto err_out_iounmap
;
5149 cp
->init_block
= (struct cas_init_block
*)
5150 pci_alloc_consistent(pdev
, sizeof(struct cas_init_block
),
5152 if (!cp
->init_block
) {
5153 dev_err(&pdev
->dev
, "Cannot allocate init block, aborting.\n");
5154 goto err_out_iounmap
;
5157 for (i
= 0; i
< N_TX_RINGS
; i
++)
5158 cp
->init_txds
[i
] = cp
->init_block
->txds
[i
];
5160 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
5161 cp
->init_rxds
[i
] = cp
->init_block
->rxds
[i
];
5163 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
5164 cp
->init_rxcs
[i
] = cp
->init_block
->rxcs
[i
];
5166 for (i
= 0; i
< N_RX_FLOWS
; i
++)
5167 skb_queue_head_init(&cp
->rx_flows
[i
]);
5169 dev
->open
= cas_open
;
5170 dev
->stop
= cas_close
;
5171 dev
->hard_start_xmit
= cas_start_xmit
;
5172 dev
->get_stats
= cas_get_stats
;
5173 dev
->set_multicast_list
= cas_set_multicast
;
5174 dev
->do_ioctl
= cas_ioctl
;
5175 dev
->ethtool_ops
= &cas_ethtool_ops
;
5176 dev
->tx_timeout
= cas_tx_timeout
;
5177 dev
->watchdog_timeo
= CAS_TX_TIMEOUT
;
5178 dev
->change_mtu
= cas_change_mtu
;
5180 netif_napi_add(dev
, &cp
->napi
, cas_poll
, 64);
5182 #ifdef CONFIG_NET_POLL_CONTROLLER
5183 dev
->poll_controller
= cas_netpoll
;
5185 dev
->irq
= pdev
->irq
;
5188 /* Cassini features. */
5189 if ((cp
->cas_flags
& CAS_FLAG_NO_HW_CSUM
) == 0)
5190 dev
->features
|= NETIF_F_HW_CSUM
| NETIF_F_SG
;
5193 dev
->features
|= NETIF_F_HIGHDMA
;
5195 if (register_netdev(dev
)) {
5196 dev_err(&pdev
->dev
, "Cannot register net device, aborting.\n");
5197 goto err_out_free_consistent
;
5200 i
= readl(cp
->regs
+ REG_BIM_CFG
);
5201 printk(KERN_INFO
"%s: Sun Cassini%s (%sbit/%sMHz PCI/%s) "
5202 "Ethernet[%d] %pM\n", dev
->name
,
5203 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) ? "+" : "",
5204 (i
& BIM_CFG_32BIT
) ? "32" : "64",
5205 (i
& BIM_CFG_66MHZ
) ? "66" : "33",
5206 (cp
->phy_type
== CAS_PHY_SERDES
) ? "Fi" : "Cu", pdev
->irq
,
5209 pci_set_drvdata(pdev
, dev
);
5211 cas_entropy_reset(cp
);
5213 cas_begin_auto_negotiation(cp
, NULL
);
5216 err_out_free_consistent
:
5217 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5218 cp
->init_block
, cp
->block_dvma
);
5221 mutex_lock(&cp
->pm_mutex
);
5224 mutex_unlock(&cp
->pm_mutex
);
5226 pci_iounmap(pdev
, cp
->regs
);
5230 pci_release_regions(pdev
);
5232 err_write_cacheline
:
5233 /* Try to restore it in case the error occured after we
5236 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, orig_cacheline_size
);
5238 err_out_free_netdev
:
5241 err_out_disable_pdev
:
5242 pci_disable_device(pdev
);
5243 pci_set_drvdata(pdev
, NULL
);
5247 static void __devexit
cas_remove_one(struct pci_dev
*pdev
)
5249 struct net_device
*dev
= pci_get_drvdata(pdev
);
5254 cp
= netdev_priv(dev
);
5255 unregister_netdev(dev
);
5260 mutex_lock(&cp
->pm_mutex
);
5261 flush_scheduled_work();
5264 mutex_unlock(&cp
->pm_mutex
);
5267 if (cp
->orig_cacheline_size
) {
5268 /* Restore the cache line size if we had modified
5271 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5272 cp
->orig_cacheline_size
);
5275 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5276 cp
->init_block
, cp
->block_dvma
);
5277 pci_iounmap(pdev
, cp
->regs
);
5279 pci_release_regions(pdev
);
5280 pci_disable_device(pdev
);
5281 pci_set_drvdata(pdev
, NULL
);
5285 static int cas_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5287 struct net_device
*dev
= pci_get_drvdata(pdev
);
5288 struct cas
*cp
= netdev_priv(dev
);
5289 unsigned long flags
;
5291 mutex_lock(&cp
->pm_mutex
);
5293 /* If the driver is opened, we stop the DMA */
5295 netif_device_detach(dev
);
5297 cas_lock_all_save(cp
, flags
);
5299 /* We can set the second arg of cas_reset to 0
5300 * because on resume, we'll call cas_init_hw with
5301 * its second arg set so that autonegotiation is
5305 cas_clean_rings(cp
);
5306 cas_unlock_all_restore(cp
, flags
);
5311 mutex_unlock(&cp
->pm_mutex
);
5316 static int cas_resume(struct pci_dev
*pdev
)
5318 struct net_device
*dev
= pci_get_drvdata(pdev
);
5319 struct cas
*cp
= netdev_priv(dev
);
5321 printk(KERN_INFO
"%s: resuming\n", dev
->name
);
5323 mutex_lock(&cp
->pm_mutex
);
5326 unsigned long flags
;
5327 cas_lock_all_save(cp
, flags
);
5330 cas_clean_rings(cp
);
5332 cas_unlock_all_restore(cp
, flags
);
5334 netif_device_attach(dev
);
5336 mutex_unlock(&cp
->pm_mutex
);
5339 #endif /* CONFIG_PM */
5341 static struct pci_driver cas_driver
= {
5342 .name
= DRV_MODULE_NAME
,
5343 .id_table
= cas_pci_tbl
,
5344 .probe
= cas_init_one
,
5345 .remove
= __devexit_p(cas_remove_one
),
5347 .suspend
= cas_suspend
,
5348 .resume
= cas_resume
5352 static int __init
cas_init(void)
5354 if (linkdown_timeout
> 0)
5355 link_transition_timeout
= linkdown_timeout
* HZ
;
5357 link_transition_timeout
= 0;
5359 return pci_register_driver(&cas_driver
);
5362 static void __exit
cas_cleanup(void)
5364 pci_unregister_driver(&cas_driver
);
5367 module_init(cas_init
);
5368 module_exit(cas_cleanup
);