Implement new suspend and hibernation callbacks for platform busses
[linux-2.6/mini2440.git] / mm / filemap.c
blob1e6a7d34874fd31f3e9549c7540a4ce28c2402c6
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 #include <asm/mman.h>
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 loff_t offset, unsigned long nr_segs);
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * Lock ordering:
64 * ->i_mmap_lock (vmtruncate)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
69 * ->i_mutex
70 * ->i_mmap_lock (truncate->unmap_mapping_range)
72 * ->mmap_sem
73 * ->i_mmap_lock
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_file_buffered_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 * ->i_mutex
84 * ->i_alloc_sem (various)
86 * ->inode_lock
87 * ->sb_lock (fs/fs-writeback.c)
88 * ->mapping->tree_lock (__sync_single_inode)
90 * ->i_mmap_lock
91 * ->anon_vma.lock (vma_adjust)
93 * ->anon_vma.lock
94 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
96 * ->page_table_lock or pte_lock
97 * ->swap_lock (try_to_unmap_one)
98 * ->private_lock (try_to_unmap_one)
99 * ->tree_lock (try_to_unmap_one)
100 * ->zone.lru_lock (follow_page->mark_page_accessed)
101 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
102 * ->private_lock (page_remove_rmap->set_page_dirty)
103 * ->tree_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (page_remove_rmap->set_page_dirty)
105 * ->inode_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * ->task->proc_lock
109 * ->dcache_lock (proc_pid_lookup)
113 * Remove a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
117 void __remove_from_page_cache(struct page *page)
119 struct address_space *mapping = page->mapping;
121 mem_cgroup_uncharge_page(page);
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
125 __dec_zone_page_state(page, NR_FILE_PAGES);
126 BUG_ON(page_mapped(page));
129 * Some filesystems seem to re-dirty the page even after
130 * the VM has canceled the dirty bit (eg ext3 journaling).
132 * Fix it up by doing a final dirty accounting check after
133 * having removed the page entirely.
135 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136 dec_zone_page_state(page, NR_FILE_DIRTY);
137 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
141 void remove_from_page_cache(struct page *page)
143 struct address_space *mapping = page->mapping;
145 BUG_ON(!PageLocked(page));
147 write_lock_irq(&mapping->tree_lock);
148 __remove_from_page_cache(page);
149 write_unlock_irq(&mapping->tree_lock);
152 static int sync_page(void *word)
154 struct address_space *mapping;
155 struct page *page;
157 page = container_of((unsigned long *)word, struct page, flags);
160 * page_mapping() is being called without PG_locked held.
161 * Some knowledge of the state and use of the page is used to
162 * reduce the requirements down to a memory barrier.
163 * The danger here is of a stale page_mapping() return value
164 * indicating a struct address_space different from the one it's
165 * associated with when it is associated with one.
166 * After smp_mb(), it's either the correct page_mapping() for
167 * the page, or an old page_mapping() and the page's own
168 * page_mapping() has gone NULL.
169 * The ->sync_page() address_space operation must tolerate
170 * page_mapping() going NULL. By an amazing coincidence,
171 * this comes about because none of the users of the page
172 * in the ->sync_page() methods make essential use of the
173 * page_mapping(), merely passing the page down to the backing
174 * device's unplug functions when it's non-NULL, which in turn
175 * ignore it for all cases but swap, where only page_private(page) is
176 * of interest. When page_mapping() does go NULL, the entire
177 * call stack gracefully ignores the page and returns.
178 * -- wli
180 smp_mb();
181 mapping = page_mapping(page);
182 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183 mapping->a_ops->sync_page(page);
184 io_schedule();
185 return 0;
188 static int sync_page_killable(void *word)
190 sync_page(word);
191 return fatal_signal_pending(current) ? -EINTR : 0;
195 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
196 * @mapping: address space structure to write
197 * @start: offset in bytes where the range starts
198 * @end: offset in bytes where the range ends (inclusive)
199 * @sync_mode: enable synchronous operation
201 * Start writeback against all of a mapping's dirty pages that lie
202 * within the byte offsets <start, end> inclusive.
204 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
205 * opposed to a regular memory cleansing writeback. The difference between
206 * these two operations is that if a dirty page/buffer is encountered, it must
207 * be waited upon, and not just skipped over.
209 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
210 loff_t end, int sync_mode)
212 int ret;
213 struct writeback_control wbc = {
214 .sync_mode = sync_mode,
215 .nr_to_write = mapping->nrpages * 2,
216 .range_start = start,
217 .range_end = end,
220 if (!mapping_cap_writeback_dirty(mapping))
221 return 0;
223 ret = do_writepages(mapping, &wbc);
224 return ret;
227 static inline int __filemap_fdatawrite(struct address_space *mapping,
228 int sync_mode)
230 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
233 int filemap_fdatawrite(struct address_space *mapping)
235 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
237 EXPORT_SYMBOL(filemap_fdatawrite);
239 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240 loff_t end)
242 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
246 * filemap_flush - mostly a non-blocking flush
247 * @mapping: target address_space
249 * This is a mostly non-blocking flush. Not suitable for data-integrity
250 * purposes - I/O may not be started against all dirty pages.
252 int filemap_flush(struct address_space *mapping)
254 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
256 EXPORT_SYMBOL(filemap_flush);
259 * wait_on_page_writeback_range - wait for writeback to complete
260 * @mapping: target address_space
261 * @start: beginning page index
262 * @end: ending page index
264 * Wait for writeback to complete against pages indexed by start->end
265 * inclusive
267 int wait_on_page_writeback_range(struct address_space *mapping,
268 pgoff_t start, pgoff_t end)
270 struct pagevec pvec;
271 int nr_pages;
272 int ret = 0;
273 pgoff_t index;
275 if (end < start)
276 return 0;
278 pagevec_init(&pvec, 0);
279 index = start;
280 while ((index <= end) &&
281 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282 PAGECACHE_TAG_WRITEBACK,
283 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284 unsigned i;
286 for (i = 0; i < nr_pages; i++) {
287 struct page *page = pvec.pages[i];
289 /* until radix tree lookup accepts end_index */
290 if (page->index > end)
291 continue;
293 wait_on_page_writeback(page);
294 if (PageError(page))
295 ret = -EIO;
297 pagevec_release(&pvec);
298 cond_resched();
301 /* Check for outstanding write errors */
302 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 ret = -ENOSPC;
304 if (test_and_clear_bit(AS_EIO, &mapping->flags))
305 ret = -EIO;
307 return ret;
311 * sync_page_range - write and wait on all pages in the passed range
312 * @inode: target inode
313 * @mapping: target address_space
314 * @pos: beginning offset in pages to write
315 * @count: number of bytes to write
317 * Write and wait upon all the pages in the passed range. This is a "data
318 * integrity" operation. It waits upon in-flight writeout before starting and
319 * waiting upon new writeout. If there was an IO error, return it.
321 * We need to re-take i_mutex during the generic_osync_inode list walk because
322 * it is otherwise livelockable.
324 int sync_page_range(struct inode *inode, struct address_space *mapping,
325 loff_t pos, loff_t count)
327 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
328 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
329 int ret;
331 if (!mapping_cap_writeback_dirty(mapping) || !count)
332 return 0;
333 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
334 if (ret == 0) {
335 mutex_lock(&inode->i_mutex);
336 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
337 mutex_unlock(&inode->i_mutex);
339 if (ret == 0)
340 ret = wait_on_page_writeback_range(mapping, start, end);
341 return ret;
343 EXPORT_SYMBOL(sync_page_range);
346 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
347 * @inode: target inode
348 * @mapping: target address_space
349 * @pos: beginning offset in pages to write
350 * @count: number of bytes to write
352 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
353 * as it forces O_SYNC writers to different parts of the same file
354 * to be serialised right until io completion.
356 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
357 loff_t pos, loff_t count)
359 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
360 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
361 int ret;
363 if (!mapping_cap_writeback_dirty(mapping) || !count)
364 return 0;
365 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
366 if (ret == 0)
367 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
368 if (ret == 0)
369 ret = wait_on_page_writeback_range(mapping, start, end);
370 return ret;
372 EXPORT_SYMBOL(sync_page_range_nolock);
375 * filemap_fdatawait - wait for all under-writeback pages to complete
376 * @mapping: address space structure to wait for
378 * Walk the list of under-writeback pages of the given address space
379 * and wait for all of them.
381 int filemap_fdatawait(struct address_space *mapping)
383 loff_t i_size = i_size_read(mapping->host);
385 if (i_size == 0)
386 return 0;
388 return wait_on_page_writeback_range(mapping, 0,
389 (i_size - 1) >> PAGE_CACHE_SHIFT);
391 EXPORT_SYMBOL(filemap_fdatawait);
393 int filemap_write_and_wait(struct address_space *mapping)
395 int err = 0;
397 if (mapping->nrpages) {
398 err = filemap_fdatawrite(mapping);
400 * Even if the above returned error, the pages may be
401 * written partially (e.g. -ENOSPC), so we wait for it.
402 * But the -EIO is special case, it may indicate the worst
403 * thing (e.g. bug) happened, so we avoid waiting for it.
405 if (err != -EIO) {
406 int err2 = filemap_fdatawait(mapping);
407 if (!err)
408 err = err2;
411 return err;
413 EXPORT_SYMBOL(filemap_write_and_wait);
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
421 * Write out and wait upon file offsets lstart->lend, inclusive.
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 loff_t lstart, loff_t lend)
429 int err = 0;
431 if (mapping->nrpages) {
432 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 WB_SYNC_ALL);
434 /* See comment of filemap_write_and_wait() */
435 if (err != -EIO) {
436 int err2 = wait_on_page_writeback_range(mapping,
437 lstart >> PAGE_CACHE_SHIFT,
438 lend >> PAGE_CACHE_SHIFT);
439 if (!err)
440 err = err2;
443 return err;
447 * add_to_page_cache - add newly allocated pagecache pages
448 * @page: page to add
449 * @mapping: the page's address_space
450 * @offset: page index
451 * @gfp_mask: page allocation mode
453 * This function is used to add newly allocated pagecache pages;
454 * the page is new, so we can just run SetPageLocked() against it.
455 * The other page state flags were set by rmqueue().
457 * This function does not add the page to the LRU. The caller must do that.
459 int add_to_page_cache(struct page *page, struct address_space *mapping,
460 pgoff_t offset, gfp_t gfp_mask)
462 int error = mem_cgroup_cache_charge(page, current->mm,
463 gfp_mask & ~__GFP_HIGHMEM);
464 if (error)
465 goto out;
467 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
468 if (error == 0) {
469 write_lock_irq(&mapping->tree_lock);
470 error = radix_tree_insert(&mapping->page_tree, offset, page);
471 if (!error) {
472 page_cache_get(page);
473 SetPageLocked(page);
474 page->mapping = mapping;
475 page->index = offset;
476 mapping->nrpages++;
477 __inc_zone_page_state(page, NR_FILE_PAGES);
478 } else
479 mem_cgroup_uncharge_page(page);
481 write_unlock_irq(&mapping->tree_lock);
482 radix_tree_preload_end();
483 } else
484 mem_cgroup_uncharge_page(page);
485 out:
486 return error;
488 EXPORT_SYMBOL(add_to_page_cache);
490 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
491 pgoff_t offset, gfp_t gfp_mask)
493 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
494 if (ret == 0)
495 lru_cache_add(page);
496 return ret;
499 #ifdef CONFIG_NUMA
500 struct page *__page_cache_alloc(gfp_t gfp)
502 if (cpuset_do_page_mem_spread()) {
503 int n = cpuset_mem_spread_node();
504 return alloc_pages_node(n, gfp, 0);
506 return alloc_pages(gfp, 0);
508 EXPORT_SYMBOL(__page_cache_alloc);
509 #endif
511 static int __sleep_on_page_lock(void *word)
513 io_schedule();
514 return 0;
518 * In order to wait for pages to become available there must be
519 * waitqueues associated with pages. By using a hash table of
520 * waitqueues where the bucket discipline is to maintain all
521 * waiters on the same queue and wake all when any of the pages
522 * become available, and for the woken contexts to check to be
523 * sure the appropriate page became available, this saves space
524 * at a cost of "thundering herd" phenomena during rare hash
525 * collisions.
527 static wait_queue_head_t *page_waitqueue(struct page *page)
529 const struct zone *zone = page_zone(page);
531 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
534 static inline void wake_up_page(struct page *page, int bit)
536 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
539 void wait_on_page_bit(struct page *page, int bit_nr)
541 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
543 if (test_bit(bit_nr, &page->flags))
544 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
545 TASK_UNINTERRUPTIBLE);
547 EXPORT_SYMBOL(wait_on_page_bit);
550 * unlock_page - unlock a locked page
551 * @page: the page
553 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
554 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
555 * mechananism between PageLocked pages and PageWriteback pages is shared.
556 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
558 * The first mb is necessary to safely close the critical section opened by the
559 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
560 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
561 * parallel wait_on_page_locked()).
563 void unlock_page(struct page *page)
565 smp_mb__before_clear_bit();
566 if (!TestClearPageLocked(page))
567 BUG();
568 smp_mb__after_clear_bit();
569 wake_up_page(page, PG_locked);
571 EXPORT_SYMBOL(unlock_page);
574 * end_page_writeback - end writeback against a page
575 * @page: the page
577 void end_page_writeback(struct page *page)
579 if (TestClearPageReclaim(page))
580 rotate_reclaimable_page(page);
582 if (!test_clear_page_writeback(page))
583 BUG();
585 smp_mb__after_clear_bit();
586 wake_up_page(page, PG_writeback);
588 EXPORT_SYMBOL(end_page_writeback);
591 * __lock_page - get a lock on the page, assuming we need to sleep to get it
592 * @page: the page to lock
594 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
595 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
596 * chances are that on the second loop, the block layer's plug list is empty,
597 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
599 void __lock_page(struct page *page)
601 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
603 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
604 TASK_UNINTERRUPTIBLE);
606 EXPORT_SYMBOL(__lock_page);
608 int __lock_page_killable(struct page *page)
610 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
612 return __wait_on_bit_lock(page_waitqueue(page), &wait,
613 sync_page_killable, TASK_KILLABLE);
617 * __lock_page_nosync - get a lock on the page, without calling sync_page()
618 * @page: the page to lock
620 * Variant of lock_page that does not require the caller to hold a reference
621 * on the page's mapping.
623 void __lock_page_nosync(struct page *page)
625 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
626 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
627 TASK_UNINTERRUPTIBLE);
631 * find_get_page - find and get a page reference
632 * @mapping: the address_space to search
633 * @offset: the page index
635 * Is there a pagecache struct page at the given (mapping, offset) tuple?
636 * If yes, increment its refcount and return it; if no, return NULL.
638 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
640 struct page *page;
642 read_lock_irq(&mapping->tree_lock);
643 page = radix_tree_lookup(&mapping->page_tree, offset);
644 if (page)
645 page_cache_get(page);
646 read_unlock_irq(&mapping->tree_lock);
647 return page;
649 EXPORT_SYMBOL(find_get_page);
652 * find_lock_page - locate, pin and lock a pagecache page
653 * @mapping: the address_space to search
654 * @offset: the page index
656 * Locates the desired pagecache page, locks it, increments its reference
657 * count and returns its address.
659 * Returns zero if the page was not present. find_lock_page() may sleep.
661 struct page *find_lock_page(struct address_space *mapping,
662 pgoff_t offset)
664 struct page *page;
666 repeat:
667 read_lock_irq(&mapping->tree_lock);
668 page = radix_tree_lookup(&mapping->page_tree, offset);
669 if (page) {
670 page_cache_get(page);
671 if (TestSetPageLocked(page)) {
672 read_unlock_irq(&mapping->tree_lock);
673 __lock_page(page);
675 /* Has the page been truncated while we slept? */
676 if (unlikely(page->mapping != mapping)) {
677 unlock_page(page);
678 page_cache_release(page);
679 goto repeat;
681 VM_BUG_ON(page->index != offset);
682 goto out;
685 read_unlock_irq(&mapping->tree_lock);
686 out:
687 return page;
689 EXPORT_SYMBOL(find_lock_page);
692 * find_or_create_page - locate or add a pagecache page
693 * @mapping: the page's address_space
694 * @index: the page's index into the mapping
695 * @gfp_mask: page allocation mode
697 * Locates a page in the pagecache. If the page is not present, a new page
698 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
699 * LRU list. The returned page is locked and has its reference count
700 * incremented.
702 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
703 * allocation!
705 * find_or_create_page() returns the desired page's address, or zero on
706 * memory exhaustion.
708 struct page *find_or_create_page(struct address_space *mapping,
709 pgoff_t index, gfp_t gfp_mask)
711 struct page *page;
712 int err;
713 repeat:
714 page = find_lock_page(mapping, index);
715 if (!page) {
716 page = __page_cache_alloc(gfp_mask);
717 if (!page)
718 return NULL;
719 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
720 if (unlikely(err)) {
721 page_cache_release(page);
722 page = NULL;
723 if (err == -EEXIST)
724 goto repeat;
727 return page;
729 EXPORT_SYMBOL(find_or_create_page);
732 * find_get_pages - gang pagecache lookup
733 * @mapping: The address_space to search
734 * @start: The starting page index
735 * @nr_pages: The maximum number of pages
736 * @pages: Where the resulting pages are placed
738 * find_get_pages() will search for and return a group of up to
739 * @nr_pages pages in the mapping. The pages are placed at @pages.
740 * find_get_pages() takes a reference against the returned pages.
742 * The search returns a group of mapping-contiguous pages with ascending
743 * indexes. There may be holes in the indices due to not-present pages.
745 * find_get_pages() returns the number of pages which were found.
747 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
748 unsigned int nr_pages, struct page **pages)
750 unsigned int i;
751 unsigned int ret;
753 read_lock_irq(&mapping->tree_lock);
754 ret = radix_tree_gang_lookup(&mapping->page_tree,
755 (void **)pages, start, nr_pages);
756 for (i = 0; i < ret; i++)
757 page_cache_get(pages[i]);
758 read_unlock_irq(&mapping->tree_lock);
759 return ret;
763 * find_get_pages_contig - gang contiguous pagecache lookup
764 * @mapping: The address_space to search
765 * @index: The starting page index
766 * @nr_pages: The maximum number of pages
767 * @pages: Where the resulting pages are placed
769 * find_get_pages_contig() works exactly like find_get_pages(), except
770 * that the returned number of pages are guaranteed to be contiguous.
772 * find_get_pages_contig() returns the number of pages which were found.
774 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
775 unsigned int nr_pages, struct page **pages)
777 unsigned int i;
778 unsigned int ret;
780 read_lock_irq(&mapping->tree_lock);
781 ret = radix_tree_gang_lookup(&mapping->page_tree,
782 (void **)pages, index, nr_pages);
783 for (i = 0; i < ret; i++) {
784 if (pages[i]->mapping == NULL || pages[i]->index != index)
785 break;
787 page_cache_get(pages[i]);
788 index++;
790 read_unlock_irq(&mapping->tree_lock);
791 return i;
793 EXPORT_SYMBOL(find_get_pages_contig);
796 * find_get_pages_tag - find and return pages that match @tag
797 * @mapping: the address_space to search
798 * @index: the starting page index
799 * @tag: the tag index
800 * @nr_pages: the maximum number of pages
801 * @pages: where the resulting pages are placed
803 * Like find_get_pages, except we only return pages which are tagged with
804 * @tag. We update @index to index the next page for the traversal.
806 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
807 int tag, unsigned int nr_pages, struct page **pages)
809 unsigned int i;
810 unsigned int ret;
812 read_lock_irq(&mapping->tree_lock);
813 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
814 (void **)pages, *index, nr_pages, tag);
815 for (i = 0; i < ret; i++)
816 page_cache_get(pages[i]);
817 if (ret)
818 *index = pages[ret - 1]->index + 1;
819 read_unlock_irq(&mapping->tree_lock);
820 return ret;
822 EXPORT_SYMBOL(find_get_pages_tag);
825 * grab_cache_page_nowait - returns locked page at given index in given cache
826 * @mapping: target address_space
827 * @index: the page index
829 * Same as grab_cache_page(), but do not wait if the page is unavailable.
830 * This is intended for speculative data generators, where the data can
831 * be regenerated if the page couldn't be grabbed. This routine should
832 * be safe to call while holding the lock for another page.
834 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
835 * and deadlock against the caller's locked page.
837 struct page *
838 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
840 struct page *page = find_get_page(mapping, index);
842 if (page) {
843 if (!TestSetPageLocked(page))
844 return page;
845 page_cache_release(page);
846 return NULL;
848 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
849 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
850 page_cache_release(page);
851 page = NULL;
853 return page;
855 EXPORT_SYMBOL(grab_cache_page_nowait);
858 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
859 * a _large_ part of the i/o request. Imagine the worst scenario:
861 * ---R__________________________________________B__________
862 * ^ reading here ^ bad block(assume 4k)
864 * read(R) => miss => readahead(R...B) => media error => frustrating retries
865 * => failing the whole request => read(R) => read(R+1) =>
866 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
867 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
868 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
870 * It is going insane. Fix it by quickly scaling down the readahead size.
872 static void shrink_readahead_size_eio(struct file *filp,
873 struct file_ra_state *ra)
875 if (!ra->ra_pages)
876 return;
878 ra->ra_pages /= 4;
882 * do_generic_file_read - generic file read routine
883 * @filp: the file to read
884 * @ppos: current file position
885 * @desc: read_descriptor
886 * @actor: read method
888 * This is a generic file read routine, and uses the
889 * mapping->a_ops->readpage() function for the actual low-level stuff.
891 * This is really ugly. But the goto's actually try to clarify some
892 * of the logic when it comes to error handling etc.
894 static void do_generic_file_read(struct file *filp, loff_t *ppos,
895 read_descriptor_t *desc, read_actor_t actor)
897 struct address_space *mapping = filp->f_mapping;
898 struct inode *inode = mapping->host;
899 struct file_ra_state *ra = &filp->f_ra;
900 pgoff_t index;
901 pgoff_t last_index;
902 pgoff_t prev_index;
903 unsigned long offset; /* offset into pagecache page */
904 unsigned int prev_offset;
905 int error;
907 index = *ppos >> PAGE_CACHE_SHIFT;
908 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
909 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
910 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
911 offset = *ppos & ~PAGE_CACHE_MASK;
913 for (;;) {
914 struct page *page;
915 pgoff_t end_index;
916 loff_t isize;
917 unsigned long nr, ret;
919 cond_resched();
920 find_page:
921 page = find_get_page(mapping, index);
922 if (!page) {
923 page_cache_sync_readahead(mapping,
924 ra, filp,
925 index, last_index - index);
926 page = find_get_page(mapping, index);
927 if (unlikely(page == NULL))
928 goto no_cached_page;
930 if (PageReadahead(page)) {
931 page_cache_async_readahead(mapping,
932 ra, filp, page,
933 index, last_index - index);
935 if (!PageUptodate(page))
936 goto page_not_up_to_date;
937 page_ok:
939 * i_size must be checked after we know the page is Uptodate.
941 * Checking i_size after the check allows us to calculate
942 * the correct value for "nr", which means the zero-filled
943 * part of the page is not copied back to userspace (unless
944 * another truncate extends the file - this is desired though).
947 isize = i_size_read(inode);
948 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
949 if (unlikely(!isize || index > end_index)) {
950 page_cache_release(page);
951 goto out;
954 /* nr is the maximum number of bytes to copy from this page */
955 nr = PAGE_CACHE_SIZE;
956 if (index == end_index) {
957 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
958 if (nr <= offset) {
959 page_cache_release(page);
960 goto out;
963 nr = nr - offset;
965 /* If users can be writing to this page using arbitrary
966 * virtual addresses, take care about potential aliasing
967 * before reading the page on the kernel side.
969 if (mapping_writably_mapped(mapping))
970 flush_dcache_page(page);
973 * When a sequential read accesses a page several times,
974 * only mark it as accessed the first time.
976 if (prev_index != index || offset != prev_offset)
977 mark_page_accessed(page);
978 prev_index = index;
981 * Ok, we have the page, and it's up-to-date, so
982 * now we can copy it to user space...
984 * The actor routine returns how many bytes were actually used..
985 * NOTE! This may not be the same as how much of a user buffer
986 * we filled up (we may be padding etc), so we can only update
987 * "pos" here (the actor routine has to update the user buffer
988 * pointers and the remaining count).
990 ret = actor(desc, page, offset, nr);
991 offset += ret;
992 index += offset >> PAGE_CACHE_SHIFT;
993 offset &= ~PAGE_CACHE_MASK;
994 prev_offset = offset;
996 page_cache_release(page);
997 if (ret == nr && desc->count)
998 continue;
999 goto out;
1001 page_not_up_to_date:
1002 /* Get exclusive access to the page ... */
1003 if (lock_page_killable(page))
1004 goto readpage_eio;
1006 /* Did it get truncated before we got the lock? */
1007 if (!page->mapping) {
1008 unlock_page(page);
1009 page_cache_release(page);
1010 continue;
1013 /* Did somebody else fill it already? */
1014 if (PageUptodate(page)) {
1015 unlock_page(page);
1016 goto page_ok;
1019 readpage:
1020 /* Start the actual read. The read will unlock the page. */
1021 error = mapping->a_ops->readpage(filp, page);
1023 if (unlikely(error)) {
1024 if (error == AOP_TRUNCATED_PAGE) {
1025 page_cache_release(page);
1026 goto find_page;
1028 goto readpage_error;
1031 if (!PageUptodate(page)) {
1032 if (lock_page_killable(page))
1033 goto readpage_eio;
1034 if (!PageUptodate(page)) {
1035 if (page->mapping == NULL) {
1037 * invalidate_inode_pages got it
1039 unlock_page(page);
1040 page_cache_release(page);
1041 goto find_page;
1043 unlock_page(page);
1044 shrink_readahead_size_eio(filp, ra);
1045 goto readpage_eio;
1047 unlock_page(page);
1050 goto page_ok;
1052 readpage_eio:
1053 error = -EIO;
1054 readpage_error:
1055 /* UHHUH! A synchronous read error occurred. Report it */
1056 desc->error = error;
1057 page_cache_release(page);
1058 goto out;
1060 no_cached_page:
1062 * Ok, it wasn't cached, so we need to create a new
1063 * page..
1065 page = page_cache_alloc_cold(mapping);
1066 if (!page) {
1067 desc->error = -ENOMEM;
1068 goto out;
1070 error = add_to_page_cache_lru(page, mapping,
1071 index, GFP_KERNEL);
1072 if (error) {
1073 page_cache_release(page);
1074 if (error == -EEXIST)
1075 goto find_page;
1076 desc->error = error;
1077 goto out;
1079 goto readpage;
1082 out:
1083 ra->prev_pos = prev_index;
1084 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1085 ra->prev_pos |= prev_offset;
1087 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1088 if (filp)
1089 file_accessed(filp);
1092 int file_read_actor(read_descriptor_t *desc, struct page *page,
1093 unsigned long offset, unsigned long size)
1095 char *kaddr;
1096 unsigned long left, count = desc->count;
1098 if (size > count)
1099 size = count;
1102 * Faults on the destination of a read are common, so do it before
1103 * taking the kmap.
1105 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1106 kaddr = kmap_atomic(page, KM_USER0);
1107 left = __copy_to_user_inatomic(desc->arg.buf,
1108 kaddr + offset, size);
1109 kunmap_atomic(kaddr, KM_USER0);
1110 if (left == 0)
1111 goto success;
1114 /* Do it the slow way */
1115 kaddr = kmap(page);
1116 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1117 kunmap(page);
1119 if (left) {
1120 size -= left;
1121 desc->error = -EFAULT;
1123 success:
1124 desc->count = count - size;
1125 desc->written += size;
1126 desc->arg.buf += size;
1127 return size;
1131 * Performs necessary checks before doing a write
1132 * @iov: io vector request
1133 * @nr_segs: number of segments in the iovec
1134 * @count: number of bytes to write
1135 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1137 * Adjust number of segments and amount of bytes to write (nr_segs should be
1138 * properly initialized first). Returns appropriate error code that caller
1139 * should return or zero in case that write should be allowed.
1141 int generic_segment_checks(const struct iovec *iov,
1142 unsigned long *nr_segs, size_t *count, int access_flags)
1144 unsigned long seg;
1145 size_t cnt = 0;
1146 for (seg = 0; seg < *nr_segs; seg++) {
1147 const struct iovec *iv = &iov[seg];
1150 * If any segment has a negative length, or the cumulative
1151 * length ever wraps negative then return -EINVAL.
1153 cnt += iv->iov_len;
1154 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1155 return -EINVAL;
1156 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1157 continue;
1158 if (seg == 0)
1159 return -EFAULT;
1160 *nr_segs = seg;
1161 cnt -= iv->iov_len; /* This segment is no good */
1162 break;
1164 *count = cnt;
1165 return 0;
1167 EXPORT_SYMBOL(generic_segment_checks);
1170 * generic_file_aio_read - generic filesystem read routine
1171 * @iocb: kernel I/O control block
1172 * @iov: io vector request
1173 * @nr_segs: number of segments in the iovec
1174 * @pos: current file position
1176 * This is the "read()" routine for all filesystems
1177 * that can use the page cache directly.
1179 ssize_t
1180 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1181 unsigned long nr_segs, loff_t pos)
1183 struct file *filp = iocb->ki_filp;
1184 ssize_t retval;
1185 unsigned long seg;
1186 size_t count;
1187 loff_t *ppos = &iocb->ki_pos;
1189 count = 0;
1190 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1191 if (retval)
1192 return retval;
1194 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1195 if (filp->f_flags & O_DIRECT) {
1196 loff_t size;
1197 struct address_space *mapping;
1198 struct inode *inode;
1200 mapping = filp->f_mapping;
1201 inode = mapping->host;
1202 retval = 0;
1203 if (!count)
1204 goto out; /* skip atime */
1205 size = i_size_read(inode);
1206 if (pos < size) {
1207 retval = generic_file_direct_IO(READ, iocb,
1208 iov, pos, nr_segs);
1209 if (retval > 0)
1210 *ppos = pos + retval;
1212 if (likely(retval != 0)) {
1213 file_accessed(filp);
1214 goto out;
1218 retval = 0;
1219 if (count) {
1220 for (seg = 0; seg < nr_segs; seg++) {
1221 read_descriptor_t desc;
1223 desc.written = 0;
1224 desc.arg.buf = iov[seg].iov_base;
1225 desc.count = iov[seg].iov_len;
1226 if (desc.count == 0)
1227 continue;
1228 desc.error = 0;
1229 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1230 retval += desc.written;
1231 if (desc.error) {
1232 retval = retval ?: desc.error;
1233 break;
1235 if (desc.count > 0)
1236 break;
1239 out:
1240 return retval;
1242 EXPORT_SYMBOL(generic_file_aio_read);
1244 static ssize_t
1245 do_readahead(struct address_space *mapping, struct file *filp,
1246 pgoff_t index, unsigned long nr)
1248 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1249 return -EINVAL;
1251 force_page_cache_readahead(mapping, filp, index,
1252 max_sane_readahead(nr));
1253 return 0;
1256 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1258 ssize_t ret;
1259 struct file *file;
1261 ret = -EBADF;
1262 file = fget(fd);
1263 if (file) {
1264 if (file->f_mode & FMODE_READ) {
1265 struct address_space *mapping = file->f_mapping;
1266 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1267 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1268 unsigned long len = end - start + 1;
1269 ret = do_readahead(mapping, file, start, len);
1271 fput(file);
1273 return ret;
1276 #ifdef CONFIG_MMU
1278 * page_cache_read - adds requested page to the page cache if not already there
1279 * @file: file to read
1280 * @offset: page index
1282 * This adds the requested page to the page cache if it isn't already there,
1283 * and schedules an I/O to read in its contents from disk.
1285 static int page_cache_read(struct file *file, pgoff_t offset)
1287 struct address_space *mapping = file->f_mapping;
1288 struct page *page;
1289 int ret;
1291 do {
1292 page = page_cache_alloc_cold(mapping);
1293 if (!page)
1294 return -ENOMEM;
1296 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1297 if (ret == 0)
1298 ret = mapping->a_ops->readpage(file, page);
1299 else if (ret == -EEXIST)
1300 ret = 0; /* losing race to add is OK */
1302 page_cache_release(page);
1304 } while (ret == AOP_TRUNCATED_PAGE);
1306 return ret;
1309 #define MMAP_LOTSAMISS (100)
1312 * filemap_fault - read in file data for page fault handling
1313 * @vma: vma in which the fault was taken
1314 * @vmf: struct vm_fault containing details of the fault
1316 * filemap_fault() is invoked via the vma operations vector for a
1317 * mapped memory region to read in file data during a page fault.
1319 * The goto's are kind of ugly, but this streamlines the normal case of having
1320 * it in the page cache, and handles the special cases reasonably without
1321 * having a lot of duplicated code.
1323 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 int error;
1326 struct file *file = vma->vm_file;
1327 struct address_space *mapping = file->f_mapping;
1328 struct file_ra_state *ra = &file->f_ra;
1329 struct inode *inode = mapping->host;
1330 struct page *page;
1331 pgoff_t size;
1332 int did_readaround = 0;
1333 int ret = 0;
1335 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1336 if (vmf->pgoff >= size)
1337 return VM_FAULT_SIGBUS;
1339 /* If we don't want any read-ahead, don't bother */
1340 if (VM_RandomReadHint(vma))
1341 goto no_cached_page;
1344 * Do we have something in the page cache already?
1346 retry_find:
1347 page = find_lock_page(mapping, vmf->pgoff);
1349 * For sequential accesses, we use the generic readahead logic.
1351 if (VM_SequentialReadHint(vma)) {
1352 if (!page) {
1353 page_cache_sync_readahead(mapping, ra, file,
1354 vmf->pgoff, 1);
1355 page = find_lock_page(mapping, vmf->pgoff);
1356 if (!page)
1357 goto no_cached_page;
1359 if (PageReadahead(page)) {
1360 page_cache_async_readahead(mapping, ra, file, page,
1361 vmf->pgoff, 1);
1365 if (!page) {
1366 unsigned long ra_pages;
1368 ra->mmap_miss++;
1371 * Do we miss much more than hit in this file? If so,
1372 * stop bothering with read-ahead. It will only hurt.
1374 if (ra->mmap_miss > MMAP_LOTSAMISS)
1375 goto no_cached_page;
1378 * To keep the pgmajfault counter straight, we need to
1379 * check did_readaround, as this is an inner loop.
1381 if (!did_readaround) {
1382 ret = VM_FAULT_MAJOR;
1383 count_vm_event(PGMAJFAULT);
1385 did_readaround = 1;
1386 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1387 if (ra_pages) {
1388 pgoff_t start = 0;
1390 if (vmf->pgoff > ra_pages / 2)
1391 start = vmf->pgoff - ra_pages / 2;
1392 do_page_cache_readahead(mapping, file, start, ra_pages);
1394 page = find_lock_page(mapping, vmf->pgoff);
1395 if (!page)
1396 goto no_cached_page;
1399 if (!did_readaround)
1400 ra->mmap_miss--;
1403 * We have a locked page in the page cache, now we need to check
1404 * that it's up-to-date. If not, it is going to be due to an error.
1406 if (unlikely(!PageUptodate(page)))
1407 goto page_not_uptodate;
1409 /* Must recheck i_size under page lock */
1410 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1411 if (unlikely(vmf->pgoff >= size)) {
1412 unlock_page(page);
1413 page_cache_release(page);
1414 return VM_FAULT_SIGBUS;
1418 * Found the page and have a reference on it.
1420 mark_page_accessed(page);
1421 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1422 vmf->page = page;
1423 return ret | VM_FAULT_LOCKED;
1425 no_cached_page:
1427 * We're only likely to ever get here if MADV_RANDOM is in
1428 * effect.
1430 error = page_cache_read(file, vmf->pgoff);
1433 * The page we want has now been added to the page cache.
1434 * In the unlikely event that someone removed it in the
1435 * meantime, we'll just come back here and read it again.
1437 if (error >= 0)
1438 goto retry_find;
1441 * An error return from page_cache_read can result if the
1442 * system is low on memory, or a problem occurs while trying
1443 * to schedule I/O.
1445 if (error == -ENOMEM)
1446 return VM_FAULT_OOM;
1447 return VM_FAULT_SIGBUS;
1449 page_not_uptodate:
1450 /* IO error path */
1451 if (!did_readaround) {
1452 ret = VM_FAULT_MAJOR;
1453 count_vm_event(PGMAJFAULT);
1457 * Umm, take care of errors if the page isn't up-to-date.
1458 * Try to re-read it _once_. We do this synchronously,
1459 * because there really aren't any performance issues here
1460 * and we need to check for errors.
1462 ClearPageError(page);
1463 error = mapping->a_ops->readpage(file, page);
1464 if (!error) {
1465 wait_on_page_locked(page);
1466 if (!PageUptodate(page))
1467 error = -EIO;
1469 page_cache_release(page);
1471 if (!error || error == AOP_TRUNCATED_PAGE)
1472 goto retry_find;
1474 /* Things didn't work out. Return zero to tell the mm layer so. */
1475 shrink_readahead_size_eio(file, ra);
1476 return VM_FAULT_SIGBUS;
1478 EXPORT_SYMBOL(filemap_fault);
1480 struct vm_operations_struct generic_file_vm_ops = {
1481 .fault = filemap_fault,
1484 /* This is used for a general mmap of a disk file */
1486 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1488 struct address_space *mapping = file->f_mapping;
1490 if (!mapping->a_ops->readpage)
1491 return -ENOEXEC;
1492 file_accessed(file);
1493 vma->vm_ops = &generic_file_vm_ops;
1494 vma->vm_flags |= VM_CAN_NONLINEAR;
1495 return 0;
1499 * This is for filesystems which do not implement ->writepage.
1501 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1503 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1504 return -EINVAL;
1505 return generic_file_mmap(file, vma);
1507 #else
1508 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1510 return -ENOSYS;
1512 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1514 return -ENOSYS;
1516 #endif /* CONFIG_MMU */
1518 EXPORT_SYMBOL(generic_file_mmap);
1519 EXPORT_SYMBOL(generic_file_readonly_mmap);
1521 static struct page *__read_cache_page(struct address_space *mapping,
1522 pgoff_t index,
1523 int (*filler)(void *,struct page*),
1524 void *data)
1526 struct page *page;
1527 int err;
1528 repeat:
1529 page = find_get_page(mapping, index);
1530 if (!page) {
1531 page = page_cache_alloc_cold(mapping);
1532 if (!page)
1533 return ERR_PTR(-ENOMEM);
1534 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1535 if (unlikely(err)) {
1536 page_cache_release(page);
1537 if (err == -EEXIST)
1538 goto repeat;
1539 /* Presumably ENOMEM for radix tree node */
1540 return ERR_PTR(err);
1542 err = filler(data, page);
1543 if (err < 0) {
1544 page_cache_release(page);
1545 page = ERR_PTR(err);
1548 return page;
1552 * read_cache_page_async - read into page cache, fill it if needed
1553 * @mapping: the page's address_space
1554 * @index: the page index
1555 * @filler: function to perform the read
1556 * @data: destination for read data
1558 * Same as read_cache_page, but don't wait for page to become unlocked
1559 * after submitting it to the filler.
1561 * Read into the page cache. If a page already exists, and PageUptodate() is
1562 * not set, try to fill the page but don't wait for it to become unlocked.
1564 * If the page does not get brought uptodate, return -EIO.
1566 struct page *read_cache_page_async(struct address_space *mapping,
1567 pgoff_t index,
1568 int (*filler)(void *,struct page*),
1569 void *data)
1571 struct page *page;
1572 int err;
1574 retry:
1575 page = __read_cache_page(mapping, index, filler, data);
1576 if (IS_ERR(page))
1577 return page;
1578 if (PageUptodate(page))
1579 goto out;
1581 lock_page(page);
1582 if (!page->mapping) {
1583 unlock_page(page);
1584 page_cache_release(page);
1585 goto retry;
1587 if (PageUptodate(page)) {
1588 unlock_page(page);
1589 goto out;
1591 err = filler(data, page);
1592 if (err < 0) {
1593 page_cache_release(page);
1594 return ERR_PTR(err);
1596 out:
1597 mark_page_accessed(page);
1598 return page;
1600 EXPORT_SYMBOL(read_cache_page_async);
1603 * read_cache_page - read into page cache, fill it if needed
1604 * @mapping: the page's address_space
1605 * @index: the page index
1606 * @filler: function to perform the read
1607 * @data: destination for read data
1609 * Read into the page cache. If a page already exists, and PageUptodate() is
1610 * not set, try to fill the page then wait for it to become unlocked.
1612 * If the page does not get brought uptodate, return -EIO.
1614 struct page *read_cache_page(struct address_space *mapping,
1615 pgoff_t index,
1616 int (*filler)(void *,struct page*),
1617 void *data)
1619 struct page *page;
1621 page = read_cache_page_async(mapping, index, filler, data);
1622 if (IS_ERR(page))
1623 goto out;
1624 wait_on_page_locked(page);
1625 if (!PageUptodate(page)) {
1626 page_cache_release(page);
1627 page = ERR_PTR(-EIO);
1629 out:
1630 return page;
1632 EXPORT_SYMBOL(read_cache_page);
1635 * The logic we want is
1637 * if suid or (sgid and xgrp)
1638 * remove privs
1640 int should_remove_suid(struct dentry *dentry)
1642 mode_t mode = dentry->d_inode->i_mode;
1643 int kill = 0;
1645 /* suid always must be killed */
1646 if (unlikely(mode & S_ISUID))
1647 kill = ATTR_KILL_SUID;
1650 * sgid without any exec bits is just a mandatory locking mark; leave
1651 * it alone. If some exec bits are set, it's a real sgid; kill it.
1653 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1654 kill |= ATTR_KILL_SGID;
1656 if (unlikely(kill && !capable(CAP_FSETID)))
1657 return kill;
1659 return 0;
1661 EXPORT_SYMBOL(should_remove_suid);
1663 static int __remove_suid(struct dentry *dentry, int kill)
1665 struct iattr newattrs;
1667 newattrs.ia_valid = ATTR_FORCE | kill;
1668 return notify_change(dentry, &newattrs);
1671 int remove_suid(struct dentry *dentry)
1673 int killsuid = should_remove_suid(dentry);
1674 int killpriv = security_inode_need_killpriv(dentry);
1675 int error = 0;
1677 if (killpriv < 0)
1678 return killpriv;
1679 if (killpriv)
1680 error = security_inode_killpriv(dentry);
1681 if (!error && killsuid)
1682 error = __remove_suid(dentry, killsuid);
1684 return error;
1686 EXPORT_SYMBOL(remove_suid);
1688 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1689 const struct iovec *iov, size_t base, size_t bytes)
1691 size_t copied = 0, left = 0;
1693 while (bytes) {
1694 char __user *buf = iov->iov_base + base;
1695 int copy = min(bytes, iov->iov_len - base);
1697 base = 0;
1698 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1699 copied += copy;
1700 bytes -= copy;
1701 vaddr += copy;
1702 iov++;
1704 if (unlikely(left))
1705 break;
1707 return copied - left;
1711 * Copy as much as we can into the page and return the number of bytes which
1712 * were sucessfully copied. If a fault is encountered then return the number of
1713 * bytes which were copied.
1715 size_t iov_iter_copy_from_user_atomic(struct page *page,
1716 struct iov_iter *i, unsigned long offset, size_t bytes)
1718 char *kaddr;
1719 size_t copied;
1721 BUG_ON(!in_atomic());
1722 kaddr = kmap_atomic(page, KM_USER0);
1723 if (likely(i->nr_segs == 1)) {
1724 int left;
1725 char __user *buf = i->iov->iov_base + i->iov_offset;
1726 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1727 buf, bytes);
1728 copied = bytes - left;
1729 } else {
1730 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1731 i->iov, i->iov_offset, bytes);
1733 kunmap_atomic(kaddr, KM_USER0);
1735 return copied;
1737 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1740 * This has the same sideeffects and return value as
1741 * iov_iter_copy_from_user_atomic().
1742 * The difference is that it attempts to resolve faults.
1743 * Page must not be locked.
1745 size_t iov_iter_copy_from_user(struct page *page,
1746 struct iov_iter *i, unsigned long offset, size_t bytes)
1748 char *kaddr;
1749 size_t copied;
1751 kaddr = kmap(page);
1752 if (likely(i->nr_segs == 1)) {
1753 int left;
1754 char __user *buf = i->iov->iov_base + i->iov_offset;
1755 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1756 copied = bytes - left;
1757 } else {
1758 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1759 i->iov, i->iov_offset, bytes);
1761 kunmap(page);
1762 return copied;
1764 EXPORT_SYMBOL(iov_iter_copy_from_user);
1766 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1768 BUG_ON(i->count < bytes);
1770 if (likely(i->nr_segs == 1)) {
1771 i->iov_offset += bytes;
1772 i->count -= bytes;
1773 } else {
1774 const struct iovec *iov = i->iov;
1775 size_t base = i->iov_offset;
1778 * The !iov->iov_len check ensures we skip over unlikely
1779 * zero-length segments (without overruning the iovec).
1781 while (bytes || unlikely(!iov->iov_len && i->count)) {
1782 int copy;
1784 copy = min(bytes, iov->iov_len - base);
1785 BUG_ON(!i->count || i->count < copy);
1786 i->count -= copy;
1787 bytes -= copy;
1788 base += copy;
1789 if (iov->iov_len == base) {
1790 iov++;
1791 base = 0;
1794 i->iov = iov;
1795 i->iov_offset = base;
1798 EXPORT_SYMBOL(iov_iter_advance);
1801 * Fault in the first iovec of the given iov_iter, to a maximum length
1802 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1803 * accessed (ie. because it is an invalid address).
1805 * writev-intensive code may want this to prefault several iovecs -- that
1806 * would be possible (callers must not rely on the fact that _only_ the
1807 * first iovec will be faulted with the current implementation).
1809 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1811 char __user *buf = i->iov->iov_base + i->iov_offset;
1812 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1813 return fault_in_pages_readable(buf, bytes);
1815 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1818 * Return the count of just the current iov_iter segment.
1820 size_t iov_iter_single_seg_count(struct iov_iter *i)
1822 const struct iovec *iov = i->iov;
1823 if (i->nr_segs == 1)
1824 return i->count;
1825 else
1826 return min(i->count, iov->iov_len - i->iov_offset);
1828 EXPORT_SYMBOL(iov_iter_single_seg_count);
1831 * Performs necessary checks before doing a write
1833 * Can adjust writing position or amount of bytes to write.
1834 * Returns appropriate error code that caller should return or
1835 * zero in case that write should be allowed.
1837 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1839 struct inode *inode = file->f_mapping->host;
1840 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1842 if (unlikely(*pos < 0))
1843 return -EINVAL;
1845 if (!isblk) {
1846 /* FIXME: this is for backwards compatibility with 2.4 */
1847 if (file->f_flags & O_APPEND)
1848 *pos = i_size_read(inode);
1850 if (limit != RLIM_INFINITY) {
1851 if (*pos >= limit) {
1852 send_sig(SIGXFSZ, current, 0);
1853 return -EFBIG;
1855 if (*count > limit - (typeof(limit))*pos) {
1856 *count = limit - (typeof(limit))*pos;
1862 * LFS rule
1864 if (unlikely(*pos + *count > MAX_NON_LFS &&
1865 !(file->f_flags & O_LARGEFILE))) {
1866 if (*pos >= MAX_NON_LFS) {
1867 return -EFBIG;
1869 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1870 *count = MAX_NON_LFS - (unsigned long)*pos;
1875 * Are we about to exceed the fs block limit ?
1877 * If we have written data it becomes a short write. If we have
1878 * exceeded without writing data we send a signal and return EFBIG.
1879 * Linus frestrict idea will clean these up nicely..
1881 if (likely(!isblk)) {
1882 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1883 if (*count || *pos > inode->i_sb->s_maxbytes) {
1884 return -EFBIG;
1886 /* zero-length writes at ->s_maxbytes are OK */
1889 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1890 *count = inode->i_sb->s_maxbytes - *pos;
1891 } else {
1892 #ifdef CONFIG_BLOCK
1893 loff_t isize;
1894 if (bdev_read_only(I_BDEV(inode)))
1895 return -EPERM;
1896 isize = i_size_read(inode);
1897 if (*pos >= isize) {
1898 if (*count || *pos > isize)
1899 return -ENOSPC;
1902 if (*pos + *count > isize)
1903 *count = isize - *pos;
1904 #else
1905 return -EPERM;
1906 #endif
1908 return 0;
1910 EXPORT_SYMBOL(generic_write_checks);
1912 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1913 loff_t pos, unsigned len, unsigned flags,
1914 struct page **pagep, void **fsdata)
1916 const struct address_space_operations *aops = mapping->a_ops;
1918 if (aops->write_begin) {
1919 return aops->write_begin(file, mapping, pos, len, flags,
1920 pagep, fsdata);
1921 } else {
1922 int ret;
1923 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1924 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1925 struct inode *inode = mapping->host;
1926 struct page *page;
1927 again:
1928 page = __grab_cache_page(mapping, index);
1929 *pagep = page;
1930 if (!page)
1931 return -ENOMEM;
1933 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1935 * There is no way to resolve a short write situation
1936 * for a !Uptodate page (except by double copying in
1937 * the caller done by generic_perform_write_2copy).
1939 * Instead, we have to bring it uptodate here.
1941 ret = aops->readpage(file, page);
1942 page_cache_release(page);
1943 if (ret) {
1944 if (ret == AOP_TRUNCATED_PAGE)
1945 goto again;
1946 return ret;
1948 goto again;
1951 ret = aops->prepare_write(file, page, offset, offset+len);
1952 if (ret) {
1953 unlock_page(page);
1954 page_cache_release(page);
1955 if (pos + len > inode->i_size)
1956 vmtruncate(inode, inode->i_size);
1958 return ret;
1961 EXPORT_SYMBOL(pagecache_write_begin);
1963 int pagecache_write_end(struct file *file, struct address_space *mapping,
1964 loff_t pos, unsigned len, unsigned copied,
1965 struct page *page, void *fsdata)
1967 const struct address_space_operations *aops = mapping->a_ops;
1968 int ret;
1970 if (aops->write_end) {
1971 mark_page_accessed(page);
1972 ret = aops->write_end(file, mapping, pos, len, copied,
1973 page, fsdata);
1974 } else {
1975 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1976 struct inode *inode = mapping->host;
1978 flush_dcache_page(page);
1979 ret = aops->commit_write(file, page, offset, offset+len);
1980 unlock_page(page);
1981 mark_page_accessed(page);
1982 page_cache_release(page);
1984 if (ret < 0) {
1985 if (pos + len > inode->i_size)
1986 vmtruncate(inode, inode->i_size);
1987 } else if (ret > 0)
1988 ret = min_t(size_t, copied, ret);
1989 else
1990 ret = copied;
1993 return ret;
1995 EXPORT_SYMBOL(pagecache_write_end);
1997 ssize_t
1998 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1999 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2000 size_t count, size_t ocount)
2002 struct file *file = iocb->ki_filp;
2003 struct address_space *mapping = file->f_mapping;
2004 struct inode *inode = mapping->host;
2005 ssize_t written;
2007 if (count != ocount)
2008 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2010 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2011 if (written > 0) {
2012 loff_t end = pos + written;
2013 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2014 i_size_write(inode, end);
2015 mark_inode_dirty(inode);
2017 *ppos = end;
2021 * Sync the fs metadata but not the minor inode changes and
2022 * of course not the data as we did direct DMA for the IO.
2023 * i_mutex is held, which protects generic_osync_inode() from
2024 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2026 if ((written >= 0 || written == -EIOCBQUEUED) &&
2027 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2028 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2029 if (err < 0)
2030 written = err;
2032 return written;
2034 EXPORT_SYMBOL(generic_file_direct_write);
2037 * Find or create a page at the given pagecache position. Return the locked
2038 * page. This function is specifically for buffered writes.
2040 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2042 int status;
2043 struct page *page;
2044 repeat:
2045 page = find_lock_page(mapping, index);
2046 if (likely(page))
2047 return page;
2049 page = page_cache_alloc(mapping);
2050 if (!page)
2051 return NULL;
2052 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2053 if (unlikely(status)) {
2054 page_cache_release(page);
2055 if (status == -EEXIST)
2056 goto repeat;
2057 return NULL;
2059 return page;
2061 EXPORT_SYMBOL(__grab_cache_page);
2063 static ssize_t generic_perform_write_2copy(struct file *file,
2064 struct iov_iter *i, loff_t pos)
2066 struct address_space *mapping = file->f_mapping;
2067 const struct address_space_operations *a_ops = mapping->a_ops;
2068 struct inode *inode = mapping->host;
2069 long status = 0;
2070 ssize_t written = 0;
2072 do {
2073 struct page *src_page;
2074 struct page *page;
2075 pgoff_t index; /* Pagecache index for current page */
2076 unsigned long offset; /* Offset into pagecache page */
2077 unsigned long bytes; /* Bytes to write to page */
2078 size_t copied; /* Bytes copied from user */
2080 offset = (pos & (PAGE_CACHE_SIZE - 1));
2081 index = pos >> PAGE_CACHE_SHIFT;
2082 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2083 iov_iter_count(i));
2086 * a non-NULL src_page indicates that we're doing the
2087 * copy via get_user_pages and kmap.
2089 src_page = NULL;
2092 * Bring in the user page that we will copy from _first_.
2093 * Otherwise there's a nasty deadlock on copying from the
2094 * same page as we're writing to, without it being marked
2095 * up-to-date.
2097 * Not only is this an optimisation, but it is also required
2098 * to check that the address is actually valid, when atomic
2099 * usercopies are used, below.
2101 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2102 status = -EFAULT;
2103 break;
2106 page = __grab_cache_page(mapping, index);
2107 if (!page) {
2108 status = -ENOMEM;
2109 break;
2113 * non-uptodate pages cannot cope with short copies, and we
2114 * cannot take a pagefault with the destination page locked.
2115 * So pin the source page to copy it.
2117 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2118 unlock_page(page);
2120 src_page = alloc_page(GFP_KERNEL);
2121 if (!src_page) {
2122 page_cache_release(page);
2123 status = -ENOMEM;
2124 break;
2128 * Cannot get_user_pages with a page locked for the
2129 * same reason as we can't take a page fault with a
2130 * page locked (as explained below).
2132 copied = iov_iter_copy_from_user(src_page, i,
2133 offset, bytes);
2134 if (unlikely(copied == 0)) {
2135 status = -EFAULT;
2136 page_cache_release(page);
2137 page_cache_release(src_page);
2138 break;
2140 bytes = copied;
2142 lock_page(page);
2144 * Can't handle the page going uptodate here, because
2145 * that means we would use non-atomic usercopies, which
2146 * zero out the tail of the page, which can cause
2147 * zeroes to become transiently visible. We could just
2148 * use a non-zeroing copy, but the APIs aren't too
2149 * consistent.
2151 if (unlikely(!page->mapping || PageUptodate(page))) {
2152 unlock_page(page);
2153 page_cache_release(page);
2154 page_cache_release(src_page);
2155 continue;
2159 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2160 if (unlikely(status))
2161 goto fs_write_aop_error;
2163 if (!src_page) {
2165 * Must not enter the pagefault handler here, because
2166 * we hold the page lock, so we might recursively
2167 * deadlock on the same lock, or get an ABBA deadlock
2168 * against a different lock, or against the mmap_sem
2169 * (which nests outside the page lock). So increment
2170 * preempt count, and use _atomic usercopies.
2172 * The page is uptodate so we are OK to encounter a
2173 * short copy: if unmodified parts of the page are
2174 * marked dirty and written out to disk, it doesn't
2175 * really matter.
2177 pagefault_disable();
2178 copied = iov_iter_copy_from_user_atomic(page, i,
2179 offset, bytes);
2180 pagefault_enable();
2181 } else {
2182 void *src, *dst;
2183 src = kmap_atomic(src_page, KM_USER0);
2184 dst = kmap_atomic(page, KM_USER1);
2185 memcpy(dst + offset, src + offset, bytes);
2186 kunmap_atomic(dst, KM_USER1);
2187 kunmap_atomic(src, KM_USER0);
2188 copied = bytes;
2190 flush_dcache_page(page);
2192 status = a_ops->commit_write(file, page, offset, offset+bytes);
2193 if (unlikely(status < 0))
2194 goto fs_write_aop_error;
2195 if (unlikely(status > 0)) /* filesystem did partial write */
2196 copied = min_t(size_t, copied, status);
2198 unlock_page(page);
2199 mark_page_accessed(page);
2200 page_cache_release(page);
2201 if (src_page)
2202 page_cache_release(src_page);
2204 iov_iter_advance(i, copied);
2205 pos += copied;
2206 written += copied;
2208 balance_dirty_pages_ratelimited(mapping);
2209 cond_resched();
2210 continue;
2212 fs_write_aop_error:
2213 unlock_page(page);
2214 page_cache_release(page);
2215 if (src_page)
2216 page_cache_release(src_page);
2219 * prepare_write() may have instantiated a few blocks
2220 * outside i_size. Trim these off again. Don't need
2221 * i_size_read because we hold i_mutex.
2223 if (pos + bytes > inode->i_size)
2224 vmtruncate(inode, inode->i_size);
2225 break;
2226 } while (iov_iter_count(i));
2228 return written ? written : status;
2231 static ssize_t generic_perform_write(struct file *file,
2232 struct iov_iter *i, loff_t pos)
2234 struct address_space *mapping = file->f_mapping;
2235 const struct address_space_operations *a_ops = mapping->a_ops;
2236 long status = 0;
2237 ssize_t written = 0;
2238 unsigned int flags = 0;
2241 * Copies from kernel address space cannot fail (NFSD is a big user).
2243 if (segment_eq(get_fs(), KERNEL_DS))
2244 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2246 do {
2247 struct page *page;
2248 pgoff_t index; /* Pagecache index for current page */
2249 unsigned long offset; /* Offset into pagecache page */
2250 unsigned long bytes; /* Bytes to write to page */
2251 size_t copied; /* Bytes copied from user */
2252 void *fsdata;
2254 offset = (pos & (PAGE_CACHE_SIZE - 1));
2255 index = pos >> PAGE_CACHE_SHIFT;
2256 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2257 iov_iter_count(i));
2259 again:
2262 * Bring in the user page that we will copy from _first_.
2263 * Otherwise there's a nasty deadlock on copying from the
2264 * same page as we're writing to, without it being marked
2265 * up-to-date.
2267 * Not only is this an optimisation, but it is also required
2268 * to check that the address is actually valid, when atomic
2269 * usercopies are used, below.
2271 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2272 status = -EFAULT;
2273 break;
2276 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2277 &page, &fsdata);
2278 if (unlikely(status))
2279 break;
2281 pagefault_disable();
2282 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2283 pagefault_enable();
2284 flush_dcache_page(page);
2286 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2287 page, fsdata);
2288 if (unlikely(status < 0))
2289 break;
2290 copied = status;
2292 cond_resched();
2294 iov_iter_advance(i, copied);
2295 if (unlikely(copied == 0)) {
2297 * If we were unable to copy any data at all, we must
2298 * fall back to a single segment length write.
2300 * If we didn't fallback here, we could livelock
2301 * because not all segments in the iov can be copied at
2302 * once without a pagefault.
2304 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2305 iov_iter_single_seg_count(i));
2306 goto again;
2308 pos += copied;
2309 written += copied;
2311 balance_dirty_pages_ratelimited(mapping);
2313 } while (iov_iter_count(i));
2315 return written ? written : status;
2318 ssize_t
2319 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2320 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2321 size_t count, ssize_t written)
2323 struct file *file = iocb->ki_filp;
2324 struct address_space *mapping = file->f_mapping;
2325 const struct address_space_operations *a_ops = mapping->a_ops;
2326 struct inode *inode = mapping->host;
2327 ssize_t status;
2328 struct iov_iter i;
2330 iov_iter_init(&i, iov, nr_segs, count, written);
2331 if (a_ops->write_begin)
2332 status = generic_perform_write(file, &i, pos);
2333 else
2334 status = generic_perform_write_2copy(file, &i, pos);
2336 if (likely(status >= 0)) {
2337 written += status;
2338 *ppos = pos + status;
2341 * For now, when the user asks for O_SYNC, we'll actually give
2342 * O_DSYNC
2344 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2345 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2346 status = generic_osync_inode(inode, mapping,
2347 OSYNC_METADATA|OSYNC_DATA);
2352 * If we get here for O_DIRECT writes then we must have fallen through
2353 * to buffered writes (block instantiation inside i_size). So we sync
2354 * the file data here, to try to honour O_DIRECT expectations.
2356 if (unlikely(file->f_flags & O_DIRECT) && written)
2357 status = filemap_write_and_wait(mapping);
2359 return written ? written : status;
2361 EXPORT_SYMBOL(generic_file_buffered_write);
2363 static ssize_t
2364 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2365 unsigned long nr_segs, loff_t *ppos)
2367 struct file *file = iocb->ki_filp;
2368 struct address_space * mapping = file->f_mapping;
2369 size_t ocount; /* original count */
2370 size_t count; /* after file limit checks */
2371 struct inode *inode = mapping->host;
2372 loff_t pos;
2373 ssize_t written;
2374 ssize_t err;
2376 ocount = 0;
2377 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2378 if (err)
2379 return err;
2381 count = ocount;
2382 pos = *ppos;
2384 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2386 /* We can write back this queue in page reclaim */
2387 current->backing_dev_info = mapping->backing_dev_info;
2388 written = 0;
2390 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2391 if (err)
2392 goto out;
2394 if (count == 0)
2395 goto out;
2397 err = remove_suid(file->f_path.dentry);
2398 if (err)
2399 goto out;
2401 file_update_time(file);
2403 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2404 if (unlikely(file->f_flags & O_DIRECT)) {
2405 loff_t endbyte;
2406 ssize_t written_buffered;
2408 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2409 ppos, count, ocount);
2410 if (written < 0 || written == count)
2411 goto out;
2413 * direct-io write to a hole: fall through to buffered I/O
2414 * for completing the rest of the request.
2416 pos += written;
2417 count -= written;
2418 written_buffered = generic_file_buffered_write(iocb, iov,
2419 nr_segs, pos, ppos, count,
2420 written);
2422 * If generic_file_buffered_write() retuned a synchronous error
2423 * then we want to return the number of bytes which were
2424 * direct-written, or the error code if that was zero. Note
2425 * that this differs from normal direct-io semantics, which
2426 * will return -EFOO even if some bytes were written.
2428 if (written_buffered < 0) {
2429 err = written_buffered;
2430 goto out;
2434 * We need to ensure that the page cache pages are written to
2435 * disk and invalidated to preserve the expected O_DIRECT
2436 * semantics.
2438 endbyte = pos + written_buffered - written - 1;
2439 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2440 SYNC_FILE_RANGE_WAIT_BEFORE|
2441 SYNC_FILE_RANGE_WRITE|
2442 SYNC_FILE_RANGE_WAIT_AFTER);
2443 if (err == 0) {
2444 written = written_buffered;
2445 invalidate_mapping_pages(mapping,
2446 pos >> PAGE_CACHE_SHIFT,
2447 endbyte >> PAGE_CACHE_SHIFT);
2448 } else {
2450 * We don't know how much we wrote, so just return
2451 * the number of bytes which were direct-written
2454 } else {
2455 written = generic_file_buffered_write(iocb, iov, nr_segs,
2456 pos, ppos, count, written);
2458 out:
2459 current->backing_dev_info = NULL;
2460 return written ? written : err;
2463 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2464 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2466 struct file *file = iocb->ki_filp;
2467 struct address_space *mapping = file->f_mapping;
2468 struct inode *inode = mapping->host;
2469 ssize_t ret;
2471 BUG_ON(iocb->ki_pos != pos);
2473 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2474 &iocb->ki_pos);
2476 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2477 ssize_t err;
2479 err = sync_page_range_nolock(inode, mapping, pos, ret);
2480 if (err < 0)
2481 ret = err;
2483 return ret;
2485 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2487 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2488 unsigned long nr_segs, loff_t pos)
2490 struct file *file = iocb->ki_filp;
2491 struct address_space *mapping = file->f_mapping;
2492 struct inode *inode = mapping->host;
2493 ssize_t ret;
2495 BUG_ON(iocb->ki_pos != pos);
2497 mutex_lock(&inode->i_mutex);
2498 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2499 &iocb->ki_pos);
2500 mutex_unlock(&inode->i_mutex);
2502 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2503 ssize_t err;
2505 err = sync_page_range(inode, mapping, pos, ret);
2506 if (err < 0)
2507 ret = err;
2509 return ret;
2511 EXPORT_SYMBOL(generic_file_aio_write);
2514 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2515 * went wrong during pagecache shootdown.
2517 static ssize_t
2518 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2519 loff_t offset, unsigned long nr_segs)
2521 struct file *file = iocb->ki_filp;
2522 struct address_space *mapping = file->f_mapping;
2523 ssize_t retval;
2524 size_t write_len;
2525 pgoff_t end = 0; /* silence gcc */
2528 * If it's a write, unmap all mmappings of the file up-front. This
2529 * will cause any pte dirty bits to be propagated into the pageframes
2530 * for the subsequent filemap_write_and_wait().
2532 if (rw == WRITE) {
2533 write_len = iov_length(iov, nr_segs);
2534 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2535 if (mapping_mapped(mapping))
2536 unmap_mapping_range(mapping, offset, write_len, 0);
2539 retval = filemap_write_and_wait(mapping);
2540 if (retval)
2541 goto out;
2544 * After a write we want buffered reads to be sure to go to disk to get
2545 * the new data. We invalidate clean cached page from the region we're
2546 * about to write. We do this *before* the write so that we can return
2547 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2549 if (rw == WRITE && mapping->nrpages) {
2550 retval = invalidate_inode_pages2_range(mapping,
2551 offset >> PAGE_CACHE_SHIFT, end);
2552 if (retval)
2553 goto out;
2556 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2559 * Finally, try again to invalidate clean pages which might have been
2560 * cached by non-direct readahead, or faulted in by get_user_pages()
2561 * if the source of the write was an mmap'ed region of the file
2562 * we're writing. Either one is a pretty crazy thing to do,
2563 * so we don't support it 100%. If this invalidation
2564 * fails, tough, the write still worked...
2566 if (rw == WRITE && mapping->nrpages) {
2567 invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2569 out:
2570 return retval;
2574 * try_to_release_page() - release old fs-specific metadata on a page
2576 * @page: the page which the kernel is trying to free
2577 * @gfp_mask: memory allocation flags (and I/O mode)
2579 * The address_space is to try to release any data against the page
2580 * (presumably at page->private). If the release was successful, return `1'.
2581 * Otherwise return zero.
2583 * The @gfp_mask argument specifies whether I/O may be performed to release
2584 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2586 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2588 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2590 struct address_space * const mapping = page->mapping;
2592 BUG_ON(!PageLocked(page));
2593 if (PageWriteback(page))
2594 return 0;
2596 if (mapping && mapping->a_ops->releasepage)
2597 return mapping->a_ops->releasepage(page, gfp_mask);
2598 return try_to_free_buffers(page);
2601 EXPORT_SYMBOL(try_to_release_page);