4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
39 * FIXME: remove all knowledge of the buffer layer from the core VM
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
46 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
47 loff_t offset
, unsigned long nr_segs
);
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
64 * ->i_mmap_lock (vmtruncate)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
70 * ->i_mmap_lock (truncate->unmap_mapping_range)
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_file_buffered_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * ->i_alloc_sem (various)
87 * ->sb_lock (fs/fs-writeback.c)
88 * ->mapping->tree_lock (__sync_single_inode)
91 * ->anon_vma.lock (vma_adjust)
94 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
96 * ->page_table_lock or pte_lock
97 * ->swap_lock (try_to_unmap_one)
98 * ->private_lock (try_to_unmap_one)
99 * ->tree_lock (try_to_unmap_one)
100 * ->zone.lru_lock (follow_page->mark_page_accessed)
101 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
102 * ->private_lock (page_remove_rmap->set_page_dirty)
103 * ->tree_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (page_remove_rmap->set_page_dirty)
105 * ->inode_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 * ->dcache_lock (proc_pid_lookup)
113 * Remove a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
117 void __remove_from_page_cache(struct page
*page
)
119 struct address_space
*mapping
= page
->mapping
;
121 mem_cgroup_uncharge_page(page
);
122 radix_tree_delete(&mapping
->page_tree
, page
->index
);
123 page
->mapping
= NULL
;
125 __dec_zone_page_state(page
, NR_FILE_PAGES
);
126 BUG_ON(page_mapped(page
));
129 * Some filesystems seem to re-dirty the page even after
130 * the VM has canceled the dirty bit (eg ext3 journaling).
132 * Fix it up by doing a final dirty accounting check after
133 * having removed the page entirely.
135 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
136 dec_zone_page_state(page
, NR_FILE_DIRTY
);
137 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
141 void remove_from_page_cache(struct page
*page
)
143 struct address_space
*mapping
= page
->mapping
;
145 BUG_ON(!PageLocked(page
));
147 write_lock_irq(&mapping
->tree_lock
);
148 __remove_from_page_cache(page
);
149 write_unlock_irq(&mapping
->tree_lock
);
152 static int sync_page(void *word
)
154 struct address_space
*mapping
;
157 page
= container_of((unsigned long *)word
, struct page
, flags
);
160 * page_mapping() is being called without PG_locked held.
161 * Some knowledge of the state and use of the page is used to
162 * reduce the requirements down to a memory barrier.
163 * The danger here is of a stale page_mapping() return value
164 * indicating a struct address_space different from the one it's
165 * associated with when it is associated with one.
166 * After smp_mb(), it's either the correct page_mapping() for
167 * the page, or an old page_mapping() and the page's own
168 * page_mapping() has gone NULL.
169 * The ->sync_page() address_space operation must tolerate
170 * page_mapping() going NULL. By an amazing coincidence,
171 * this comes about because none of the users of the page
172 * in the ->sync_page() methods make essential use of the
173 * page_mapping(), merely passing the page down to the backing
174 * device's unplug functions when it's non-NULL, which in turn
175 * ignore it for all cases but swap, where only page_private(page) is
176 * of interest. When page_mapping() does go NULL, the entire
177 * call stack gracefully ignores the page and returns.
181 mapping
= page_mapping(page
);
182 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
183 mapping
->a_ops
->sync_page(page
);
188 static int sync_page_killable(void *word
)
191 return fatal_signal_pending(current
) ? -EINTR
: 0;
195 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
196 * @mapping: address space structure to write
197 * @start: offset in bytes where the range starts
198 * @end: offset in bytes where the range ends (inclusive)
199 * @sync_mode: enable synchronous operation
201 * Start writeback against all of a mapping's dirty pages that lie
202 * within the byte offsets <start, end> inclusive.
204 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
205 * opposed to a regular memory cleansing writeback. The difference between
206 * these two operations is that if a dirty page/buffer is encountered, it must
207 * be waited upon, and not just skipped over.
209 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
210 loff_t end
, int sync_mode
)
213 struct writeback_control wbc
= {
214 .sync_mode
= sync_mode
,
215 .nr_to_write
= mapping
->nrpages
* 2,
216 .range_start
= start
,
220 if (!mapping_cap_writeback_dirty(mapping
))
223 ret
= do_writepages(mapping
, &wbc
);
227 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
230 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
233 int filemap_fdatawrite(struct address_space
*mapping
)
235 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
237 EXPORT_SYMBOL(filemap_fdatawrite
);
239 static int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
242 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
246 * filemap_flush - mostly a non-blocking flush
247 * @mapping: target address_space
249 * This is a mostly non-blocking flush. Not suitable for data-integrity
250 * purposes - I/O may not be started against all dirty pages.
252 int filemap_flush(struct address_space
*mapping
)
254 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
256 EXPORT_SYMBOL(filemap_flush
);
259 * wait_on_page_writeback_range - wait for writeback to complete
260 * @mapping: target address_space
261 * @start: beginning page index
262 * @end: ending page index
264 * Wait for writeback to complete against pages indexed by start->end
267 int wait_on_page_writeback_range(struct address_space
*mapping
,
268 pgoff_t start
, pgoff_t end
)
278 pagevec_init(&pvec
, 0);
280 while ((index
<= end
) &&
281 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
282 PAGECACHE_TAG_WRITEBACK
,
283 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
286 for (i
= 0; i
< nr_pages
; i
++) {
287 struct page
*page
= pvec
.pages
[i
];
289 /* until radix tree lookup accepts end_index */
290 if (page
->index
> end
)
293 wait_on_page_writeback(page
);
297 pagevec_release(&pvec
);
301 /* Check for outstanding write errors */
302 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
304 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
311 * sync_page_range - write and wait on all pages in the passed range
312 * @inode: target inode
313 * @mapping: target address_space
314 * @pos: beginning offset in pages to write
315 * @count: number of bytes to write
317 * Write and wait upon all the pages in the passed range. This is a "data
318 * integrity" operation. It waits upon in-flight writeout before starting and
319 * waiting upon new writeout. If there was an IO error, return it.
321 * We need to re-take i_mutex during the generic_osync_inode list walk because
322 * it is otherwise livelockable.
324 int sync_page_range(struct inode
*inode
, struct address_space
*mapping
,
325 loff_t pos
, loff_t count
)
327 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
328 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
331 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
333 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
335 mutex_lock(&inode
->i_mutex
);
336 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
337 mutex_unlock(&inode
->i_mutex
);
340 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
343 EXPORT_SYMBOL(sync_page_range
);
346 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
347 * @inode: target inode
348 * @mapping: target address_space
349 * @pos: beginning offset in pages to write
350 * @count: number of bytes to write
352 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
353 * as it forces O_SYNC writers to different parts of the same file
354 * to be serialised right until io completion.
356 int sync_page_range_nolock(struct inode
*inode
, struct address_space
*mapping
,
357 loff_t pos
, loff_t count
)
359 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
360 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
363 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
365 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
367 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
369 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
372 EXPORT_SYMBOL(sync_page_range_nolock
);
375 * filemap_fdatawait - wait for all under-writeback pages to complete
376 * @mapping: address space structure to wait for
378 * Walk the list of under-writeback pages of the given address space
379 * and wait for all of them.
381 int filemap_fdatawait(struct address_space
*mapping
)
383 loff_t i_size
= i_size_read(mapping
->host
);
388 return wait_on_page_writeback_range(mapping
, 0,
389 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
391 EXPORT_SYMBOL(filemap_fdatawait
);
393 int filemap_write_and_wait(struct address_space
*mapping
)
397 if (mapping
->nrpages
) {
398 err
= filemap_fdatawrite(mapping
);
400 * Even if the above returned error, the pages may be
401 * written partially (e.g. -ENOSPC), so we wait for it.
402 * But the -EIO is special case, it may indicate the worst
403 * thing (e.g. bug) happened, so we avoid waiting for it.
406 int err2
= filemap_fdatawait(mapping
);
413 EXPORT_SYMBOL(filemap_write_and_wait
);
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
421 * Write out and wait upon file offsets lstart->lend, inclusive.
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
426 int filemap_write_and_wait_range(struct address_space
*mapping
,
427 loff_t lstart
, loff_t lend
)
431 if (mapping
->nrpages
) {
432 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
434 /* See comment of filemap_write_and_wait() */
436 int err2
= wait_on_page_writeback_range(mapping
,
437 lstart
>> PAGE_CACHE_SHIFT
,
438 lend
>> PAGE_CACHE_SHIFT
);
447 * add_to_page_cache - add newly allocated pagecache pages
449 * @mapping: the page's address_space
450 * @offset: page index
451 * @gfp_mask: page allocation mode
453 * This function is used to add newly allocated pagecache pages;
454 * the page is new, so we can just run SetPageLocked() against it.
455 * The other page state flags were set by rmqueue().
457 * This function does not add the page to the LRU. The caller must do that.
459 int add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
460 pgoff_t offset
, gfp_t gfp_mask
)
462 int error
= mem_cgroup_cache_charge(page
, current
->mm
,
463 gfp_mask
& ~__GFP_HIGHMEM
);
467 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
469 write_lock_irq(&mapping
->tree_lock
);
470 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
472 page_cache_get(page
);
474 page
->mapping
= mapping
;
475 page
->index
= offset
;
477 __inc_zone_page_state(page
, NR_FILE_PAGES
);
479 mem_cgroup_uncharge_page(page
);
481 write_unlock_irq(&mapping
->tree_lock
);
482 radix_tree_preload_end();
484 mem_cgroup_uncharge_page(page
);
488 EXPORT_SYMBOL(add_to_page_cache
);
490 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
491 pgoff_t offset
, gfp_t gfp_mask
)
493 int ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
500 struct page
*__page_cache_alloc(gfp_t gfp
)
502 if (cpuset_do_page_mem_spread()) {
503 int n
= cpuset_mem_spread_node();
504 return alloc_pages_node(n
, gfp
, 0);
506 return alloc_pages(gfp
, 0);
508 EXPORT_SYMBOL(__page_cache_alloc
);
511 static int __sleep_on_page_lock(void *word
)
518 * In order to wait for pages to become available there must be
519 * waitqueues associated with pages. By using a hash table of
520 * waitqueues where the bucket discipline is to maintain all
521 * waiters on the same queue and wake all when any of the pages
522 * become available, and for the woken contexts to check to be
523 * sure the appropriate page became available, this saves space
524 * at a cost of "thundering herd" phenomena during rare hash
527 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
529 const struct zone
*zone
= page_zone(page
);
531 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
534 static inline void wake_up_page(struct page
*page
, int bit
)
536 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
539 void wait_on_page_bit(struct page
*page
, int bit_nr
)
541 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
543 if (test_bit(bit_nr
, &page
->flags
))
544 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
545 TASK_UNINTERRUPTIBLE
);
547 EXPORT_SYMBOL(wait_on_page_bit
);
550 * unlock_page - unlock a locked page
553 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
554 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
555 * mechananism between PageLocked pages and PageWriteback pages is shared.
556 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
558 * The first mb is necessary to safely close the critical section opened by the
559 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
560 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
561 * parallel wait_on_page_locked()).
563 void unlock_page(struct page
*page
)
565 smp_mb__before_clear_bit();
566 if (!TestClearPageLocked(page
))
568 smp_mb__after_clear_bit();
569 wake_up_page(page
, PG_locked
);
571 EXPORT_SYMBOL(unlock_page
);
574 * end_page_writeback - end writeback against a page
577 void end_page_writeback(struct page
*page
)
579 if (TestClearPageReclaim(page
))
580 rotate_reclaimable_page(page
);
582 if (!test_clear_page_writeback(page
))
585 smp_mb__after_clear_bit();
586 wake_up_page(page
, PG_writeback
);
588 EXPORT_SYMBOL(end_page_writeback
);
591 * __lock_page - get a lock on the page, assuming we need to sleep to get it
592 * @page: the page to lock
594 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
595 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
596 * chances are that on the second loop, the block layer's plug list is empty,
597 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
599 void __lock_page(struct page
*page
)
601 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
603 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
604 TASK_UNINTERRUPTIBLE
);
606 EXPORT_SYMBOL(__lock_page
);
608 int __lock_page_killable(struct page
*page
)
610 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
612 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
613 sync_page_killable
, TASK_KILLABLE
);
617 * __lock_page_nosync - get a lock on the page, without calling sync_page()
618 * @page: the page to lock
620 * Variant of lock_page that does not require the caller to hold a reference
621 * on the page's mapping.
623 void __lock_page_nosync(struct page
*page
)
625 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
626 __wait_on_bit_lock(page_waitqueue(page
), &wait
, __sleep_on_page_lock
,
627 TASK_UNINTERRUPTIBLE
);
631 * find_get_page - find and get a page reference
632 * @mapping: the address_space to search
633 * @offset: the page index
635 * Is there a pagecache struct page at the given (mapping, offset) tuple?
636 * If yes, increment its refcount and return it; if no, return NULL.
638 struct page
* find_get_page(struct address_space
*mapping
, pgoff_t offset
)
642 read_lock_irq(&mapping
->tree_lock
);
643 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
645 page_cache_get(page
);
646 read_unlock_irq(&mapping
->tree_lock
);
649 EXPORT_SYMBOL(find_get_page
);
652 * find_lock_page - locate, pin and lock a pagecache page
653 * @mapping: the address_space to search
654 * @offset: the page index
656 * Locates the desired pagecache page, locks it, increments its reference
657 * count and returns its address.
659 * Returns zero if the page was not present. find_lock_page() may sleep.
661 struct page
*find_lock_page(struct address_space
*mapping
,
667 read_lock_irq(&mapping
->tree_lock
);
668 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
670 page_cache_get(page
);
671 if (TestSetPageLocked(page
)) {
672 read_unlock_irq(&mapping
->tree_lock
);
675 /* Has the page been truncated while we slept? */
676 if (unlikely(page
->mapping
!= mapping
)) {
678 page_cache_release(page
);
681 VM_BUG_ON(page
->index
!= offset
);
685 read_unlock_irq(&mapping
->tree_lock
);
689 EXPORT_SYMBOL(find_lock_page
);
692 * find_or_create_page - locate or add a pagecache page
693 * @mapping: the page's address_space
694 * @index: the page's index into the mapping
695 * @gfp_mask: page allocation mode
697 * Locates a page in the pagecache. If the page is not present, a new page
698 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
699 * LRU list. The returned page is locked and has its reference count
702 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
705 * find_or_create_page() returns the desired page's address, or zero on
708 struct page
*find_or_create_page(struct address_space
*mapping
,
709 pgoff_t index
, gfp_t gfp_mask
)
714 page
= find_lock_page(mapping
, index
);
716 page
= __page_cache_alloc(gfp_mask
);
719 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp_mask
);
721 page_cache_release(page
);
729 EXPORT_SYMBOL(find_or_create_page
);
732 * find_get_pages - gang pagecache lookup
733 * @mapping: The address_space to search
734 * @start: The starting page index
735 * @nr_pages: The maximum number of pages
736 * @pages: Where the resulting pages are placed
738 * find_get_pages() will search for and return a group of up to
739 * @nr_pages pages in the mapping. The pages are placed at @pages.
740 * find_get_pages() takes a reference against the returned pages.
742 * The search returns a group of mapping-contiguous pages with ascending
743 * indexes. There may be holes in the indices due to not-present pages.
745 * find_get_pages() returns the number of pages which were found.
747 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
748 unsigned int nr_pages
, struct page
**pages
)
753 read_lock_irq(&mapping
->tree_lock
);
754 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
755 (void **)pages
, start
, nr_pages
);
756 for (i
= 0; i
< ret
; i
++)
757 page_cache_get(pages
[i
]);
758 read_unlock_irq(&mapping
->tree_lock
);
763 * find_get_pages_contig - gang contiguous pagecache lookup
764 * @mapping: The address_space to search
765 * @index: The starting page index
766 * @nr_pages: The maximum number of pages
767 * @pages: Where the resulting pages are placed
769 * find_get_pages_contig() works exactly like find_get_pages(), except
770 * that the returned number of pages are guaranteed to be contiguous.
772 * find_get_pages_contig() returns the number of pages which were found.
774 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
775 unsigned int nr_pages
, struct page
**pages
)
780 read_lock_irq(&mapping
->tree_lock
);
781 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
782 (void **)pages
, index
, nr_pages
);
783 for (i
= 0; i
< ret
; i
++) {
784 if (pages
[i
]->mapping
== NULL
|| pages
[i
]->index
!= index
)
787 page_cache_get(pages
[i
]);
790 read_unlock_irq(&mapping
->tree_lock
);
793 EXPORT_SYMBOL(find_get_pages_contig
);
796 * find_get_pages_tag - find and return pages that match @tag
797 * @mapping: the address_space to search
798 * @index: the starting page index
799 * @tag: the tag index
800 * @nr_pages: the maximum number of pages
801 * @pages: where the resulting pages are placed
803 * Like find_get_pages, except we only return pages which are tagged with
804 * @tag. We update @index to index the next page for the traversal.
806 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
807 int tag
, unsigned int nr_pages
, struct page
**pages
)
812 read_lock_irq(&mapping
->tree_lock
);
813 ret
= radix_tree_gang_lookup_tag(&mapping
->page_tree
,
814 (void **)pages
, *index
, nr_pages
, tag
);
815 for (i
= 0; i
< ret
; i
++)
816 page_cache_get(pages
[i
]);
818 *index
= pages
[ret
- 1]->index
+ 1;
819 read_unlock_irq(&mapping
->tree_lock
);
822 EXPORT_SYMBOL(find_get_pages_tag
);
825 * grab_cache_page_nowait - returns locked page at given index in given cache
826 * @mapping: target address_space
827 * @index: the page index
829 * Same as grab_cache_page(), but do not wait if the page is unavailable.
830 * This is intended for speculative data generators, where the data can
831 * be regenerated if the page couldn't be grabbed. This routine should
832 * be safe to call while holding the lock for another page.
834 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
835 * and deadlock against the caller's locked page.
838 grab_cache_page_nowait(struct address_space
*mapping
, pgoff_t index
)
840 struct page
*page
= find_get_page(mapping
, index
);
843 if (!TestSetPageLocked(page
))
845 page_cache_release(page
);
848 page
= __page_cache_alloc(mapping_gfp_mask(mapping
) & ~__GFP_FS
);
849 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
)) {
850 page_cache_release(page
);
855 EXPORT_SYMBOL(grab_cache_page_nowait
);
858 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
859 * a _large_ part of the i/o request. Imagine the worst scenario:
861 * ---R__________________________________________B__________
862 * ^ reading here ^ bad block(assume 4k)
864 * read(R) => miss => readahead(R...B) => media error => frustrating retries
865 * => failing the whole request => read(R) => read(R+1) =>
866 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
867 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
868 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
870 * It is going insane. Fix it by quickly scaling down the readahead size.
872 static void shrink_readahead_size_eio(struct file
*filp
,
873 struct file_ra_state
*ra
)
882 * do_generic_file_read - generic file read routine
883 * @filp: the file to read
884 * @ppos: current file position
885 * @desc: read_descriptor
886 * @actor: read method
888 * This is a generic file read routine, and uses the
889 * mapping->a_ops->readpage() function for the actual low-level stuff.
891 * This is really ugly. But the goto's actually try to clarify some
892 * of the logic when it comes to error handling etc.
894 static void do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
895 read_descriptor_t
*desc
, read_actor_t actor
)
897 struct address_space
*mapping
= filp
->f_mapping
;
898 struct inode
*inode
= mapping
->host
;
899 struct file_ra_state
*ra
= &filp
->f_ra
;
903 unsigned long offset
; /* offset into pagecache page */
904 unsigned int prev_offset
;
907 index
= *ppos
>> PAGE_CACHE_SHIFT
;
908 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
909 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
910 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
911 offset
= *ppos
& ~PAGE_CACHE_MASK
;
917 unsigned long nr
, ret
;
921 page
= find_get_page(mapping
, index
);
923 page_cache_sync_readahead(mapping
,
925 index
, last_index
- index
);
926 page
= find_get_page(mapping
, index
);
927 if (unlikely(page
== NULL
))
930 if (PageReadahead(page
)) {
931 page_cache_async_readahead(mapping
,
933 index
, last_index
- index
);
935 if (!PageUptodate(page
))
936 goto page_not_up_to_date
;
939 * i_size must be checked after we know the page is Uptodate.
941 * Checking i_size after the check allows us to calculate
942 * the correct value for "nr", which means the zero-filled
943 * part of the page is not copied back to userspace (unless
944 * another truncate extends the file - this is desired though).
947 isize
= i_size_read(inode
);
948 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
949 if (unlikely(!isize
|| index
> end_index
)) {
950 page_cache_release(page
);
954 /* nr is the maximum number of bytes to copy from this page */
955 nr
= PAGE_CACHE_SIZE
;
956 if (index
== end_index
) {
957 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
959 page_cache_release(page
);
965 /* If users can be writing to this page using arbitrary
966 * virtual addresses, take care about potential aliasing
967 * before reading the page on the kernel side.
969 if (mapping_writably_mapped(mapping
))
970 flush_dcache_page(page
);
973 * When a sequential read accesses a page several times,
974 * only mark it as accessed the first time.
976 if (prev_index
!= index
|| offset
!= prev_offset
)
977 mark_page_accessed(page
);
981 * Ok, we have the page, and it's up-to-date, so
982 * now we can copy it to user space...
984 * The actor routine returns how many bytes were actually used..
985 * NOTE! This may not be the same as how much of a user buffer
986 * we filled up (we may be padding etc), so we can only update
987 * "pos" here (the actor routine has to update the user buffer
988 * pointers and the remaining count).
990 ret
= actor(desc
, page
, offset
, nr
);
992 index
+= offset
>> PAGE_CACHE_SHIFT
;
993 offset
&= ~PAGE_CACHE_MASK
;
994 prev_offset
= offset
;
996 page_cache_release(page
);
997 if (ret
== nr
&& desc
->count
)
1001 page_not_up_to_date
:
1002 /* Get exclusive access to the page ... */
1003 if (lock_page_killable(page
))
1006 /* Did it get truncated before we got the lock? */
1007 if (!page
->mapping
) {
1009 page_cache_release(page
);
1013 /* Did somebody else fill it already? */
1014 if (PageUptodate(page
)) {
1020 /* Start the actual read. The read will unlock the page. */
1021 error
= mapping
->a_ops
->readpage(filp
, page
);
1023 if (unlikely(error
)) {
1024 if (error
== AOP_TRUNCATED_PAGE
) {
1025 page_cache_release(page
);
1028 goto readpage_error
;
1031 if (!PageUptodate(page
)) {
1032 if (lock_page_killable(page
))
1034 if (!PageUptodate(page
)) {
1035 if (page
->mapping
== NULL
) {
1037 * invalidate_inode_pages got it
1040 page_cache_release(page
);
1044 shrink_readahead_size_eio(filp
, ra
);
1055 /* UHHUH! A synchronous read error occurred. Report it */
1056 desc
->error
= error
;
1057 page_cache_release(page
);
1062 * Ok, it wasn't cached, so we need to create a new
1065 page
= page_cache_alloc_cold(mapping
);
1067 desc
->error
= -ENOMEM
;
1070 error
= add_to_page_cache_lru(page
, mapping
,
1073 page_cache_release(page
);
1074 if (error
== -EEXIST
)
1076 desc
->error
= error
;
1083 ra
->prev_pos
= prev_index
;
1084 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1085 ra
->prev_pos
|= prev_offset
;
1087 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1089 file_accessed(filp
);
1092 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
1093 unsigned long offset
, unsigned long size
)
1096 unsigned long left
, count
= desc
->count
;
1102 * Faults on the destination of a read are common, so do it before
1105 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
1106 kaddr
= kmap_atomic(page
, KM_USER0
);
1107 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
1108 kaddr
+ offset
, size
);
1109 kunmap_atomic(kaddr
, KM_USER0
);
1114 /* Do it the slow way */
1116 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
1121 desc
->error
= -EFAULT
;
1124 desc
->count
= count
- size
;
1125 desc
->written
+= size
;
1126 desc
->arg
.buf
+= size
;
1131 * Performs necessary checks before doing a write
1132 * @iov: io vector request
1133 * @nr_segs: number of segments in the iovec
1134 * @count: number of bytes to write
1135 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1137 * Adjust number of segments and amount of bytes to write (nr_segs should be
1138 * properly initialized first). Returns appropriate error code that caller
1139 * should return or zero in case that write should be allowed.
1141 int generic_segment_checks(const struct iovec
*iov
,
1142 unsigned long *nr_segs
, size_t *count
, int access_flags
)
1146 for (seg
= 0; seg
< *nr_segs
; seg
++) {
1147 const struct iovec
*iv
= &iov
[seg
];
1150 * If any segment has a negative length, or the cumulative
1151 * length ever wraps negative then return -EINVAL.
1154 if (unlikely((ssize_t
)(cnt
|iv
->iov_len
) < 0))
1156 if (access_ok(access_flags
, iv
->iov_base
, iv
->iov_len
))
1161 cnt
-= iv
->iov_len
; /* This segment is no good */
1167 EXPORT_SYMBOL(generic_segment_checks
);
1170 * generic_file_aio_read - generic filesystem read routine
1171 * @iocb: kernel I/O control block
1172 * @iov: io vector request
1173 * @nr_segs: number of segments in the iovec
1174 * @pos: current file position
1176 * This is the "read()" routine for all filesystems
1177 * that can use the page cache directly.
1180 generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
1181 unsigned long nr_segs
, loff_t pos
)
1183 struct file
*filp
= iocb
->ki_filp
;
1187 loff_t
*ppos
= &iocb
->ki_pos
;
1190 retval
= generic_segment_checks(iov
, &nr_segs
, &count
, VERIFY_WRITE
);
1194 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1195 if (filp
->f_flags
& O_DIRECT
) {
1197 struct address_space
*mapping
;
1198 struct inode
*inode
;
1200 mapping
= filp
->f_mapping
;
1201 inode
= mapping
->host
;
1204 goto out
; /* skip atime */
1205 size
= i_size_read(inode
);
1207 retval
= generic_file_direct_IO(READ
, iocb
,
1210 *ppos
= pos
+ retval
;
1212 if (likely(retval
!= 0)) {
1213 file_accessed(filp
);
1220 for (seg
= 0; seg
< nr_segs
; seg
++) {
1221 read_descriptor_t desc
;
1224 desc
.arg
.buf
= iov
[seg
].iov_base
;
1225 desc
.count
= iov
[seg
].iov_len
;
1226 if (desc
.count
== 0)
1229 do_generic_file_read(filp
,ppos
,&desc
,file_read_actor
);
1230 retval
+= desc
.written
;
1232 retval
= retval
?: desc
.error
;
1242 EXPORT_SYMBOL(generic_file_aio_read
);
1245 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1246 pgoff_t index
, unsigned long nr
)
1248 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1251 force_page_cache_readahead(mapping
, filp
, index
,
1252 max_sane_readahead(nr
));
1256 asmlinkage ssize_t
sys_readahead(int fd
, loff_t offset
, size_t count
)
1264 if (file
->f_mode
& FMODE_READ
) {
1265 struct address_space
*mapping
= file
->f_mapping
;
1266 pgoff_t start
= offset
>> PAGE_CACHE_SHIFT
;
1267 pgoff_t end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1268 unsigned long len
= end
- start
+ 1;
1269 ret
= do_readahead(mapping
, file
, start
, len
);
1278 * page_cache_read - adds requested page to the page cache if not already there
1279 * @file: file to read
1280 * @offset: page index
1282 * This adds the requested page to the page cache if it isn't already there,
1283 * and schedules an I/O to read in its contents from disk.
1285 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1287 struct address_space
*mapping
= file
->f_mapping
;
1292 page
= page_cache_alloc_cold(mapping
);
1296 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1298 ret
= mapping
->a_ops
->readpage(file
, page
);
1299 else if (ret
== -EEXIST
)
1300 ret
= 0; /* losing race to add is OK */
1302 page_cache_release(page
);
1304 } while (ret
== AOP_TRUNCATED_PAGE
);
1309 #define MMAP_LOTSAMISS (100)
1312 * filemap_fault - read in file data for page fault handling
1313 * @vma: vma in which the fault was taken
1314 * @vmf: struct vm_fault containing details of the fault
1316 * filemap_fault() is invoked via the vma operations vector for a
1317 * mapped memory region to read in file data during a page fault.
1319 * The goto's are kind of ugly, but this streamlines the normal case of having
1320 * it in the page cache, and handles the special cases reasonably without
1321 * having a lot of duplicated code.
1323 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1326 struct file
*file
= vma
->vm_file
;
1327 struct address_space
*mapping
= file
->f_mapping
;
1328 struct file_ra_state
*ra
= &file
->f_ra
;
1329 struct inode
*inode
= mapping
->host
;
1332 int did_readaround
= 0;
1335 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1336 if (vmf
->pgoff
>= size
)
1337 return VM_FAULT_SIGBUS
;
1339 /* If we don't want any read-ahead, don't bother */
1340 if (VM_RandomReadHint(vma
))
1341 goto no_cached_page
;
1344 * Do we have something in the page cache already?
1347 page
= find_lock_page(mapping
, vmf
->pgoff
);
1349 * For sequential accesses, we use the generic readahead logic.
1351 if (VM_SequentialReadHint(vma
)) {
1353 page_cache_sync_readahead(mapping
, ra
, file
,
1355 page
= find_lock_page(mapping
, vmf
->pgoff
);
1357 goto no_cached_page
;
1359 if (PageReadahead(page
)) {
1360 page_cache_async_readahead(mapping
, ra
, file
, page
,
1366 unsigned long ra_pages
;
1371 * Do we miss much more than hit in this file? If so,
1372 * stop bothering with read-ahead. It will only hurt.
1374 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1375 goto no_cached_page
;
1378 * To keep the pgmajfault counter straight, we need to
1379 * check did_readaround, as this is an inner loop.
1381 if (!did_readaround
) {
1382 ret
= VM_FAULT_MAJOR
;
1383 count_vm_event(PGMAJFAULT
);
1386 ra_pages
= max_sane_readahead(file
->f_ra
.ra_pages
);
1390 if (vmf
->pgoff
> ra_pages
/ 2)
1391 start
= vmf
->pgoff
- ra_pages
/ 2;
1392 do_page_cache_readahead(mapping
, file
, start
, ra_pages
);
1394 page
= find_lock_page(mapping
, vmf
->pgoff
);
1396 goto no_cached_page
;
1399 if (!did_readaround
)
1403 * We have a locked page in the page cache, now we need to check
1404 * that it's up-to-date. If not, it is going to be due to an error.
1406 if (unlikely(!PageUptodate(page
)))
1407 goto page_not_uptodate
;
1409 /* Must recheck i_size under page lock */
1410 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1411 if (unlikely(vmf
->pgoff
>= size
)) {
1413 page_cache_release(page
);
1414 return VM_FAULT_SIGBUS
;
1418 * Found the page and have a reference on it.
1420 mark_page_accessed(page
);
1421 ra
->prev_pos
= (loff_t
)page
->index
<< PAGE_CACHE_SHIFT
;
1423 return ret
| VM_FAULT_LOCKED
;
1427 * We're only likely to ever get here if MADV_RANDOM is in
1430 error
= page_cache_read(file
, vmf
->pgoff
);
1433 * The page we want has now been added to the page cache.
1434 * In the unlikely event that someone removed it in the
1435 * meantime, we'll just come back here and read it again.
1441 * An error return from page_cache_read can result if the
1442 * system is low on memory, or a problem occurs while trying
1445 if (error
== -ENOMEM
)
1446 return VM_FAULT_OOM
;
1447 return VM_FAULT_SIGBUS
;
1451 if (!did_readaround
) {
1452 ret
= VM_FAULT_MAJOR
;
1453 count_vm_event(PGMAJFAULT
);
1457 * Umm, take care of errors if the page isn't up-to-date.
1458 * Try to re-read it _once_. We do this synchronously,
1459 * because there really aren't any performance issues here
1460 * and we need to check for errors.
1462 ClearPageError(page
);
1463 error
= mapping
->a_ops
->readpage(file
, page
);
1465 wait_on_page_locked(page
);
1466 if (!PageUptodate(page
))
1469 page_cache_release(page
);
1471 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1474 /* Things didn't work out. Return zero to tell the mm layer so. */
1475 shrink_readahead_size_eio(file
, ra
);
1476 return VM_FAULT_SIGBUS
;
1478 EXPORT_SYMBOL(filemap_fault
);
1480 struct vm_operations_struct generic_file_vm_ops
= {
1481 .fault
= filemap_fault
,
1484 /* This is used for a general mmap of a disk file */
1486 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1488 struct address_space
*mapping
= file
->f_mapping
;
1490 if (!mapping
->a_ops
->readpage
)
1492 file_accessed(file
);
1493 vma
->vm_ops
= &generic_file_vm_ops
;
1494 vma
->vm_flags
|= VM_CAN_NONLINEAR
;
1499 * This is for filesystems which do not implement ->writepage.
1501 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1503 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1505 return generic_file_mmap(file
, vma
);
1508 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1512 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1516 #endif /* CONFIG_MMU */
1518 EXPORT_SYMBOL(generic_file_mmap
);
1519 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1521 static struct page
*__read_cache_page(struct address_space
*mapping
,
1523 int (*filler
)(void *,struct page
*),
1529 page
= find_get_page(mapping
, index
);
1531 page
= page_cache_alloc_cold(mapping
);
1533 return ERR_PTR(-ENOMEM
);
1534 err
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
1535 if (unlikely(err
)) {
1536 page_cache_release(page
);
1539 /* Presumably ENOMEM for radix tree node */
1540 return ERR_PTR(err
);
1542 err
= filler(data
, page
);
1544 page_cache_release(page
);
1545 page
= ERR_PTR(err
);
1552 * read_cache_page_async - read into page cache, fill it if needed
1553 * @mapping: the page's address_space
1554 * @index: the page index
1555 * @filler: function to perform the read
1556 * @data: destination for read data
1558 * Same as read_cache_page, but don't wait for page to become unlocked
1559 * after submitting it to the filler.
1561 * Read into the page cache. If a page already exists, and PageUptodate() is
1562 * not set, try to fill the page but don't wait for it to become unlocked.
1564 * If the page does not get brought uptodate, return -EIO.
1566 struct page
*read_cache_page_async(struct address_space
*mapping
,
1568 int (*filler
)(void *,struct page
*),
1575 page
= __read_cache_page(mapping
, index
, filler
, data
);
1578 if (PageUptodate(page
))
1582 if (!page
->mapping
) {
1584 page_cache_release(page
);
1587 if (PageUptodate(page
)) {
1591 err
= filler(data
, page
);
1593 page_cache_release(page
);
1594 return ERR_PTR(err
);
1597 mark_page_accessed(page
);
1600 EXPORT_SYMBOL(read_cache_page_async
);
1603 * read_cache_page - read into page cache, fill it if needed
1604 * @mapping: the page's address_space
1605 * @index: the page index
1606 * @filler: function to perform the read
1607 * @data: destination for read data
1609 * Read into the page cache. If a page already exists, and PageUptodate() is
1610 * not set, try to fill the page then wait for it to become unlocked.
1612 * If the page does not get brought uptodate, return -EIO.
1614 struct page
*read_cache_page(struct address_space
*mapping
,
1616 int (*filler
)(void *,struct page
*),
1621 page
= read_cache_page_async(mapping
, index
, filler
, data
);
1624 wait_on_page_locked(page
);
1625 if (!PageUptodate(page
)) {
1626 page_cache_release(page
);
1627 page
= ERR_PTR(-EIO
);
1632 EXPORT_SYMBOL(read_cache_page
);
1635 * The logic we want is
1637 * if suid or (sgid and xgrp)
1640 int should_remove_suid(struct dentry
*dentry
)
1642 mode_t mode
= dentry
->d_inode
->i_mode
;
1645 /* suid always must be killed */
1646 if (unlikely(mode
& S_ISUID
))
1647 kill
= ATTR_KILL_SUID
;
1650 * sgid without any exec bits is just a mandatory locking mark; leave
1651 * it alone. If some exec bits are set, it's a real sgid; kill it.
1653 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1654 kill
|= ATTR_KILL_SGID
;
1656 if (unlikely(kill
&& !capable(CAP_FSETID
)))
1661 EXPORT_SYMBOL(should_remove_suid
);
1663 static int __remove_suid(struct dentry
*dentry
, int kill
)
1665 struct iattr newattrs
;
1667 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1668 return notify_change(dentry
, &newattrs
);
1671 int remove_suid(struct dentry
*dentry
)
1673 int killsuid
= should_remove_suid(dentry
);
1674 int killpriv
= security_inode_need_killpriv(dentry
);
1680 error
= security_inode_killpriv(dentry
);
1681 if (!error
&& killsuid
)
1682 error
= __remove_suid(dentry
, killsuid
);
1686 EXPORT_SYMBOL(remove_suid
);
1688 static size_t __iovec_copy_from_user_inatomic(char *vaddr
,
1689 const struct iovec
*iov
, size_t base
, size_t bytes
)
1691 size_t copied
= 0, left
= 0;
1694 char __user
*buf
= iov
->iov_base
+ base
;
1695 int copy
= min(bytes
, iov
->iov_len
- base
);
1698 left
= __copy_from_user_inatomic_nocache(vaddr
, buf
, copy
);
1707 return copied
- left
;
1711 * Copy as much as we can into the page and return the number of bytes which
1712 * were sucessfully copied. If a fault is encountered then return the number of
1713 * bytes which were copied.
1715 size_t iov_iter_copy_from_user_atomic(struct page
*page
,
1716 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1721 BUG_ON(!in_atomic());
1722 kaddr
= kmap_atomic(page
, KM_USER0
);
1723 if (likely(i
->nr_segs
== 1)) {
1725 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1726 left
= __copy_from_user_inatomic_nocache(kaddr
+ offset
,
1728 copied
= bytes
- left
;
1730 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1731 i
->iov
, i
->iov_offset
, bytes
);
1733 kunmap_atomic(kaddr
, KM_USER0
);
1737 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic
);
1740 * This has the same sideeffects and return value as
1741 * iov_iter_copy_from_user_atomic().
1742 * The difference is that it attempts to resolve faults.
1743 * Page must not be locked.
1745 size_t iov_iter_copy_from_user(struct page
*page
,
1746 struct iov_iter
*i
, unsigned long offset
, size_t bytes
)
1752 if (likely(i
->nr_segs
== 1)) {
1754 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1755 left
= __copy_from_user_nocache(kaddr
+ offset
, buf
, bytes
);
1756 copied
= bytes
- left
;
1758 copied
= __iovec_copy_from_user_inatomic(kaddr
+ offset
,
1759 i
->iov
, i
->iov_offset
, bytes
);
1764 EXPORT_SYMBOL(iov_iter_copy_from_user
);
1766 void iov_iter_advance(struct iov_iter
*i
, size_t bytes
)
1768 BUG_ON(i
->count
< bytes
);
1770 if (likely(i
->nr_segs
== 1)) {
1771 i
->iov_offset
+= bytes
;
1774 const struct iovec
*iov
= i
->iov
;
1775 size_t base
= i
->iov_offset
;
1778 * The !iov->iov_len check ensures we skip over unlikely
1779 * zero-length segments (without overruning the iovec).
1781 while (bytes
|| unlikely(!iov
->iov_len
&& i
->count
)) {
1784 copy
= min(bytes
, iov
->iov_len
- base
);
1785 BUG_ON(!i
->count
|| i
->count
< copy
);
1789 if (iov
->iov_len
== base
) {
1795 i
->iov_offset
= base
;
1798 EXPORT_SYMBOL(iov_iter_advance
);
1801 * Fault in the first iovec of the given iov_iter, to a maximum length
1802 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1803 * accessed (ie. because it is an invalid address).
1805 * writev-intensive code may want this to prefault several iovecs -- that
1806 * would be possible (callers must not rely on the fact that _only_ the
1807 * first iovec will be faulted with the current implementation).
1809 int iov_iter_fault_in_readable(struct iov_iter
*i
, size_t bytes
)
1811 char __user
*buf
= i
->iov
->iov_base
+ i
->iov_offset
;
1812 bytes
= min(bytes
, i
->iov
->iov_len
- i
->iov_offset
);
1813 return fault_in_pages_readable(buf
, bytes
);
1815 EXPORT_SYMBOL(iov_iter_fault_in_readable
);
1818 * Return the count of just the current iov_iter segment.
1820 size_t iov_iter_single_seg_count(struct iov_iter
*i
)
1822 const struct iovec
*iov
= i
->iov
;
1823 if (i
->nr_segs
== 1)
1826 return min(i
->count
, iov
->iov_len
- i
->iov_offset
);
1828 EXPORT_SYMBOL(iov_iter_single_seg_count
);
1831 * Performs necessary checks before doing a write
1833 * Can adjust writing position or amount of bytes to write.
1834 * Returns appropriate error code that caller should return or
1835 * zero in case that write should be allowed.
1837 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1839 struct inode
*inode
= file
->f_mapping
->host
;
1840 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1842 if (unlikely(*pos
< 0))
1846 /* FIXME: this is for backwards compatibility with 2.4 */
1847 if (file
->f_flags
& O_APPEND
)
1848 *pos
= i_size_read(inode
);
1850 if (limit
!= RLIM_INFINITY
) {
1851 if (*pos
>= limit
) {
1852 send_sig(SIGXFSZ
, current
, 0);
1855 if (*count
> limit
- (typeof(limit
))*pos
) {
1856 *count
= limit
- (typeof(limit
))*pos
;
1864 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1865 !(file
->f_flags
& O_LARGEFILE
))) {
1866 if (*pos
>= MAX_NON_LFS
) {
1869 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1870 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
1875 * Are we about to exceed the fs block limit ?
1877 * If we have written data it becomes a short write. If we have
1878 * exceeded without writing data we send a signal and return EFBIG.
1879 * Linus frestrict idea will clean these up nicely..
1881 if (likely(!isblk
)) {
1882 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
1883 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
1886 /* zero-length writes at ->s_maxbytes are OK */
1889 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
1890 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
1894 if (bdev_read_only(I_BDEV(inode
)))
1896 isize
= i_size_read(inode
);
1897 if (*pos
>= isize
) {
1898 if (*count
|| *pos
> isize
)
1902 if (*pos
+ *count
> isize
)
1903 *count
= isize
- *pos
;
1910 EXPORT_SYMBOL(generic_write_checks
);
1912 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
1913 loff_t pos
, unsigned len
, unsigned flags
,
1914 struct page
**pagep
, void **fsdata
)
1916 const struct address_space_operations
*aops
= mapping
->a_ops
;
1918 if (aops
->write_begin
) {
1919 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
1923 pgoff_t index
= pos
>> PAGE_CACHE_SHIFT
;
1924 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1925 struct inode
*inode
= mapping
->host
;
1928 page
= __grab_cache_page(mapping
, index
);
1933 if (flags
& AOP_FLAG_UNINTERRUPTIBLE
&& !PageUptodate(page
)) {
1935 * There is no way to resolve a short write situation
1936 * for a !Uptodate page (except by double copying in
1937 * the caller done by generic_perform_write_2copy).
1939 * Instead, we have to bring it uptodate here.
1941 ret
= aops
->readpage(file
, page
);
1942 page_cache_release(page
);
1944 if (ret
== AOP_TRUNCATED_PAGE
)
1951 ret
= aops
->prepare_write(file
, page
, offset
, offset
+len
);
1954 page_cache_release(page
);
1955 if (pos
+ len
> inode
->i_size
)
1956 vmtruncate(inode
, inode
->i_size
);
1961 EXPORT_SYMBOL(pagecache_write_begin
);
1963 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
1964 loff_t pos
, unsigned len
, unsigned copied
,
1965 struct page
*page
, void *fsdata
)
1967 const struct address_space_operations
*aops
= mapping
->a_ops
;
1970 if (aops
->write_end
) {
1971 mark_page_accessed(page
);
1972 ret
= aops
->write_end(file
, mapping
, pos
, len
, copied
,
1975 unsigned offset
= pos
& (PAGE_CACHE_SIZE
- 1);
1976 struct inode
*inode
= mapping
->host
;
1978 flush_dcache_page(page
);
1979 ret
= aops
->commit_write(file
, page
, offset
, offset
+len
);
1981 mark_page_accessed(page
);
1982 page_cache_release(page
);
1985 if (pos
+ len
> inode
->i_size
)
1986 vmtruncate(inode
, inode
->i_size
);
1988 ret
= min_t(size_t, copied
, ret
);
1995 EXPORT_SYMBOL(pagecache_write_end
);
1998 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
1999 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
2000 size_t count
, size_t ocount
)
2002 struct file
*file
= iocb
->ki_filp
;
2003 struct address_space
*mapping
= file
->f_mapping
;
2004 struct inode
*inode
= mapping
->host
;
2007 if (count
!= ocount
)
2008 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
2010 written
= generic_file_direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
2012 loff_t end
= pos
+ written
;
2013 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2014 i_size_write(inode
, end
);
2015 mark_inode_dirty(inode
);
2021 * Sync the fs metadata but not the minor inode changes and
2022 * of course not the data as we did direct DMA for the IO.
2023 * i_mutex is held, which protects generic_osync_inode() from
2024 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2026 if ((written
>= 0 || written
== -EIOCBQUEUED
) &&
2027 ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2028 int err
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
2034 EXPORT_SYMBOL(generic_file_direct_write
);
2037 * Find or create a page at the given pagecache position. Return the locked
2038 * page. This function is specifically for buffered writes.
2040 struct page
*__grab_cache_page(struct address_space
*mapping
, pgoff_t index
)
2045 page
= find_lock_page(mapping
, index
);
2049 page
= page_cache_alloc(mapping
);
2052 status
= add_to_page_cache_lru(page
, mapping
, index
, GFP_KERNEL
);
2053 if (unlikely(status
)) {
2054 page_cache_release(page
);
2055 if (status
== -EEXIST
)
2061 EXPORT_SYMBOL(__grab_cache_page
);
2063 static ssize_t
generic_perform_write_2copy(struct file
*file
,
2064 struct iov_iter
*i
, loff_t pos
)
2066 struct address_space
*mapping
= file
->f_mapping
;
2067 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2068 struct inode
*inode
= mapping
->host
;
2070 ssize_t written
= 0;
2073 struct page
*src_page
;
2075 pgoff_t index
; /* Pagecache index for current page */
2076 unsigned long offset
; /* Offset into pagecache page */
2077 unsigned long bytes
; /* Bytes to write to page */
2078 size_t copied
; /* Bytes copied from user */
2080 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2081 index
= pos
>> PAGE_CACHE_SHIFT
;
2082 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2086 * a non-NULL src_page indicates that we're doing the
2087 * copy via get_user_pages and kmap.
2092 * Bring in the user page that we will copy from _first_.
2093 * Otherwise there's a nasty deadlock on copying from the
2094 * same page as we're writing to, without it being marked
2097 * Not only is this an optimisation, but it is also required
2098 * to check that the address is actually valid, when atomic
2099 * usercopies are used, below.
2101 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2106 page
= __grab_cache_page(mapping
, index
);
2113 * non-uptodate pages cannot cope with short copies, and we
2114 * cannot take a pagefault with the destination page locked.
2115 * So pin the source page to copy it.
2117 if (!PageUptodate(page
) && !segment_eq(get_fs(), KERNEL_DS
)) {
2120 src_page
= alloc_page(GFP_KERNEL
);
2122 page_cache_release(page
);
2128 * Cannot get_user_pages with a page locked for the
2129 * same reason as we can't take a page fault with a
2130 * page locked (as explained below).
2132 copied
= iov_iter_copy_from_user(src_page
, i
,
2134 if (unlikely(copied
== 0)) {
2136 page_cache_release(page
);
2137 page_cache_release(src_page
);
2144 * Can't handle the page going uptodate here, because
2145 * that means we would use non-atomic usercopies, which
2146 * zero out the tail of the page, which can cause
2147 * zeroes to become transiently visible. We could just
2148 * use a non-zeroing copy, but the APIs aren't too
2151 if (unlikely(!page
->mapping
|| PageUptodate(page
))) {
2153 page_cache_release(page
);
2154 page_cache_release(src_page
);
2159 status
= a_ops
->prepare_write(file
, page
, offset
, offset
+bytes
);
2160 if (unlikely(status
))
2161 goto fs_write_aop_error
;
2165 * Must not enter the pagefault handler here, because
2166 * we hold the page lock, so we might recursively
2167 * deadlock on the same lock, or get an ABBA deadlock
2168 * against a different lock, or against the mmap_sem
2169 * (which nests outside the page lock). So increment
2170 * preempt count, and use _atomic usercopies.
2172 * The page is uptodate so we are OK to encounter a
2173 * short copy: if unmodified parts of the page are
2174 * marked dirty and written out to disk, it doesn't
2177 pagefault_disable();
2178 copied
= iov_iter_copy_from_user_atomic(page
, i
,
2183 src
= kmap_atomic(src_page
, KM_USER0
);
2184 dst
= kmap_atomic(page
, KM_USER1
);
2185 memcpy(dst
+ offset
, src
+ offset
, bytes
);
2186 kunmap_atomic(dst
, KM_USER1
);
2187 kunmap_atomic(src
, KM_USER0
);
2190 flush_dcache_page(page
);
2192 status
= a_ops
->commit_write(file
, page
, offset
, offset
+bytes
);
2193 if (unlikely(status
< 0))
2194 goto fs_write_aop_error
;
2195 if (unlikely(status
> 0)) /* filesystem did partial write */
2196 copied
= min_t(size_t, copied
, status
);
2199 mark_page_accessed(page
);
2200 page_cache_release(page
);
2202 page_cache_release(src_page
);
2204 iov_iter_advance(i
, copied
);
2208 balance_dirty_pages_ratelimited(mapping
);
2214 page_cache_release(page
);
2216 page_cache_release(src_page
);
2219 * prepare_write() may have instantiated a few blocks
2220 * outside i_size. Trim these off again. Don't need
2221 * i_size_read because we hold i_mutex.
2223 if (pos
+ bytes
> inode
->i_size
)
2224 vmtruncate(inode
, inode
->i_size
);
2226 } while (iov_iter_count(i
));
2228 return written
? written
: status
;
2231 static ssize_t
generic_perform_write(struct file
*file
,
2232 struct iov_iter
*i
, loff_t pos
)
2234 struct address_space
*mapping
= file
->f_mapping
;
2235 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2237 ssize_t written
= 0;
2238 unsigned int flags
= 0;
2241 * Copies from kernel address space cannot fail (NFSD is a big user).
2243 if (segment_eq(get_fs(), KERNEL_DS
))
2244 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2248 pgoff_t index
; /* Pagecache index for current page */
2249 unsigned long offset
; /* Offset into pagecache page */
2250 unsigned long bytes
; /* Bytes to write to page */
2251 size_t copied
; /* Bytes copied from user */
2254 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2255 index
= pos
>> PAGE_CACHE_SHIFT
;
2256 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2262 * Bring in the user page that we will copy from _first_.
2263 * Otherwise there's a nasty deadlock on copying from the
2264 * same page as we're writing to, without it being marked
2267 * Not only is this an optimisation, but it is also required
2268 * to check that the address is actually valid, when atomic
2269 * usercopies are used, below.
2271 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2276 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2278 if (unlikely(status
))
2281 pagefault_disable();
2282 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2284 flush_dcache_page(page
);
2286 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2288 if (unlikely(status
< 0))
2294 iov_iter_advance(i
, copied
);
2295 if (unlikely(copied
== 0)) {
2297 * If we were unable to copy any data at all, we must
2298 * fall back to a single segment length write.
2300 * If we didn't fallback here, we could livelock
2301 * because not all segments in the iov can be copied at
2302 * once without a pagefault.
2304 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2305 iov_iter_single_seg_count(i
));
2311 balance_dirty_pages_ratelimited(mapping
);
2313 } while (iov_iter_count(i
));
2315 return written
? written
: status
;
2319 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2320 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
2321 size_t count
, ssize_t written
)
2323 struct file
*file
= iocb
->ki_filp
;
2324 struct address_space
*mapping
= file
->f_mapping
;
2325 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2326 struct inode
*inode
= mapping
->host
;
2330 iov_iter_init(&i
, iov
, nr_segs
, count
, written
);
2331 if (a_ops
->write_begin
)
2332 status
= generic_perform_write(file
, &i
, pos
);
2334 status
= generic_perform_write_2copy(file
, &i
, pos
);
2336 if (likely(status
>= 0)) {
2338 *ppos
= pos
+ status
;
2341 * For now, when the user asks for O_SYNC, we'll actually give
2344 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2345 if (!a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2346 status
= generic_osync_inode(inode
, mapping
,
2347 OSYNC_METADATA
|OSYNC_DATA
);
2352 * If we get here for O_DIRECT writes then we must have fallen through
2353 * to buffered writes (block instantiation inside i_size). So we sync
2354 * the file data here, to try to honour O_DIRECT expectations.
2356 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2357 status
= filemap_write_and_wait(mapping
);
2359 return written
? written
: status
;
2361 EXPORT_SYMBOL(generic_file_buffered_write
);
2364 __generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2365 unsigned long nr_segs
, loff_t
*ppos
)
2367 struct file
*file
= iocb
->ki_filp
;
2368 struct address_space
* mapping
= file
->f_mapping
;
2369 size_t ocount
; /* original count */
2370 size_t count
; /* after file limit checks */
2371 struct inode
*inode
= mapping
->host
;
2377 err
= generic_segment_checks(iov
, &nr_segs
, &ocount
, VERIFY_READ
);
2384 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2386 /* We can write back this queue in page reclaim */
2387 current
->backing_dev_info
= mapping
->backing_dev_info
;
2390 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2397 err
= remove_suid(file
->f_path
.dentry
);
2401 file_update_time(file
);
2403 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2404 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2406 ssize_t written_buffered
;
2408 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, pos
,
2409 ppos
, count
, ocount
);
2410 if (written
< 0 || written
== count
)
2413 * direct-io write to a hole: fall through to buffered I/O
2414 * for completing the rest of the request.
2418 written_buffered
= generic_file_buffered_write(iocb
, iov
,
2419 nr_segs
, pos
, ppos
, count
,
2422 * If generic_file_buffered_write() retuned a synchronous error
2423 * then we want to return the number of bytes which were
2424 * direct-written, or the error code if that was zero. Note
2425 * that this differs from normal direct-io semantics, which
2426 * will return -EFOO even if some bytes were written.
2428 if (written_buffered
< 0) {
2429 err
= written_buffered
;
2434 * We need to ensure that the page cache pages are written to
2435 * disk and invalidated to preserve the expected O_DIRECT
2438 endbyte
= pos
+ written_buffered
- written
- 1;
2439 err
= do_sync_mapping_range(file
->f_mapping
, pos
, endbyte
,
2440 SYNC_FILE_RANGE_WAIT_BEFORE
|
2441 SYNC_FILE_RANGE_WRITE
|
2442 SYNC_FILE_RANGE_WAIT_AFTER
);
2444 written
= written_buffered
;
2445 invalidate_mapping_pages(mapping
,
2446 pos
>> PAGE_CACHE_SHIFT
,
2447 endbyte
>> PAGE_CACHE_SHIFT
);
2450 * We don't know how much we wrote, so just return
2451 * the number of bytes which were direct-written
2455 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2456 pos
, ppos
, count
, written
);
2459 current
->backing_dev_info
= NULL
;
2460 return written
? written
: err
;
2463 ssize_t
generic_file_aio_write_nolock(struct kiocb
*iocb
,
2464 const struct iovec
*iov
, unsigned long nr_segs
, loff_t pos
)
2466 struct file
*file
= iocb
->ki_filp
;
2467 struct address_space
*mapping
= file
->f_mapping
;
2468 struct inode
*inode
= mapping
->host
;
2471 BUG_ON(iocb
->ki_pos
!= pos
);
2473 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2476 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2479 err
= sync_page_range_nolock(inode
, mapping
, pos
, ret
);
2485 EXPORT_SYMBOL(generic_file_aio_write_nolock
);
2487 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const struct iovec
*iov
,
2488 unsigned long nr_segs
, loff_t pos
)
2490 struct file
*file
= iocb
->ki_filp
;
2491 struct address_space
*mapping
= file
->f_mapping
;
2492 struct inode
*inode
= mapping
->host
;
2495 BUG_ON(iocb
->ki_pos
!= pos
);
2497 mutex_lock(&inode
->i_mutex
);
2498 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2500 mutex_unlock(&inode
->i_mutex
);
2502 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2505 err
= sync_page_range(inode
, mapping
, pos
, ret
);
2511 EXPORT_SYMBOL(generic_file_aio_write
);
2514 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2515 * went wrong during pagecache shootdown.
2518 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
2519 loff_t offset
, unsigned long nr_segs
)
2521 struct file
*file
= iocb
->ki_filp
;
2522 struct address_space
*mapping
= file
->f_mapping
;
2525 pgoff_t end
= 0; /* silence gcc */
2528 * If it's a write, unmap all mmappings of the file up-front. This
2529 * will cause any pte dirty bits to be propagated into the pageframes
2530 * for the subsequent filemap_write_and_wait().
2533 write_len
= iov_length(iov
, nr_segs
);
2534 end
= (offset
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2535 if (mapping_mapped(mapping
))
2536 unmap_mapping_range(mapping
, offset
, write_len
, 0);
2539 retval
= filemap_write_and_wait(mapping
);
2544 * After a write we want buffered reads to be sure to go to disk to get
2545 * the new data. We invalidate clean cached page from the region we're
2546 * about to write. We do this *before* the write so that we can return
2547 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2549 if (rw
== WRITE
&& mapping
->nrpages
) {
2550 retval
= invalidate_inode_pages2_range(mapping
,
2551 offset
>> PAGE_CACHE_SHIFT
, end
);
2556 retval
= mapping
->a_ops
->direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
2559 * Finally, try again to invalidate clean pages which might have been
2560 * cached by non-direct readahead, or faulted in by get_user_pages()
2561 * if the source of the write was an mmap'ed region of the file
2562 * we're writing. Either one is a pretty crazy thing to do,
2563 * so we don't support it 100%. If this invalidation
2564 * fails, tough, the write still worked...
2566 if (rw
== WRITE
&& mapping
->nrpages
) {
2567 invalidate_inode_pages2_range(mapping
, offset
>> PAGE_CACHE_SHIFT
, end
);
2574 * try_to_release_page() - release old fs-specific metadata on a page
2576 * @page: the page which the kernel is trying to free
2577 * @gfp_mask: memory allocation flags (and I/O mode)
2579 * The address_space is to try to release any data against the page
2580 * (presumably at page->private). If the release was successful, return `1'.
2581 * Otherwise return zero.
2583 * The @gfp_mask argument specifies whether I/O may be performed to release
2584 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2586 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2588 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2590 struct address_space
* const mapping
= page
->mapping
;
2592 BUG_ON(!PageLocked(page
));
2593 if (PageWriteback(page
))
2596 if (mapping
&& mapping
->a_ops
->releasepage
)
2597 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2598 return try_to_free_buffers(page
);
2601 EXPORT_SYMBOL(try_to_release_page
);