1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * File open, close, extend, truncate
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
26 #include <linux/capability.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/highmem.h>
31 #include <linux/pagemap.h>
32 #include <linux/uio.h>
33 #include <linux/sched.h>
34 #include <linux/splice.h>
35 #include <linux/mount.h>
36 #include <linux/writeback.h>
37 #include <linux/falloc.h>
39 #define MLOG_MASK_PREFIX ML_INODE
40 #include <cluster/masklog.h>
48 #include "extent_map.h"
59 #include "buffer_head_io.h"
61 static int ocfs2_sync_inode(struct inode
*inode
)
63 filemap_fdatawrite(inode
->i_mapping
);
64 return sync_mapping_buffers(inode
->i_mapping
);
67 static int ocfs2_init_file_private(struct inode
*inode
, struct file
*file
)
69 struct ocfs2_file_private
*fp
;
71 fp
= kzalloc(sizeof(struct ocfs2_file_private
), GFP_KERNEL
);
76 mutex_init(&fp
->fp_mutex
);
77 ocfs2_file_lock_res_init(&fp
->fp_flock
, fp
);
78 file
->private_data
= fp
;
83 static void ocfs2_free_file_private(struct inode
*inode
, struct file
*file
)
85 struct ocfs2_file_private
*fp
= file
->private_data
;
86 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
89 ocfs2_simple_drop_lockres(osb
, &fp
->fp_flock
);
90 ocfs2_lock_res_free(&fp
->fp_flock
);
92 file
->private_data
= NULL
;
96 static int ocfs2_file_open(struct inode
*inode
, struct file
*file
)
99 int mode
= file
->f_flags
;
100 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
102 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
103 file
->f_path
.dentry
->d_name
.len
, file
->f_path
.dentry
->d_name
.name
);
105 spin_lock(&oi
->ip_lock
);
107 /* Check that the inode hasn't been wiped from disk by another
108 * node. If it hasn't then we're safe as long as we hold the
109 * spin lock until our increment of open count. */
110 if (OCFS2_I(inode
)->ip_flags
& OCFS2_INODE_DELETED
) {
111 spin_unlock(&oi
->ip_lock
);
118 oi
->ip_flags
|= OCFS2_INODE_OPEN_DIRECT
;
121 spin_unlock(&oi
->ip_lock
);
123 status
= ocfs2_init_file_private(inode
, file
);
126 * We want to set open count back if we're failing the
129 spin_lock(&oi
->ip_lock
);
131 spin_unlock(&oi
->ip_lock
);
139 static int ocfs2_file_release(struct inode
*inode
, struct file
*file
)
141 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
143 mlog_entry("(0x%p, 0x%p, '%.*s')\n", inode
, file
,
144 file
->f_path
.dentry
->d_name
.len
,
145 file
->f_path
.dentry
->d_name
.name
);
147 spin_lock(&oi
->ip_lock
);
148 if (!--oi
->ip_open_count
)
149 oi
->ip_flags
&= ~OCFS2_INODE_OPEN_DIRECT
;
150 spin_unlock(&oi
->ip_lock
);
152 ocfs2_free_file_private(inode
, file
);
159 static int ocfs2_dir_open(struct inode
*inode
, struct file
*file
)
161 return ocfs2_init_file_private(inode
, file
);
164 static int ocfs2_dir_release(struct inode
*inode
, struct file
*file
)
166 ocfs2_free_file_private(inode
, file
);
170 static int ocfs2_sync_file(struct file
*file
,
171 struct dentry
*dentry
,
176 struct inode
*inode
= dentry
->d_inode
;
177 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
179 mlog_entry("(0x%p, 0x%p, %d, '%.*s')\n", file
, dentry
, datasync
,
180 dentry
->d_name
.len
, dentry
->d_name
.name
);
182 err
= ocfs2_sync_inode(dentry
->d_inode
);
186 journal
= osb
->journal
->j_journal
;
187 err
= journal_force_commit(journal
);
192 return (err
< 0) ? -EIO
: 0;
195 int ocfs2_should_update_atime(struct inode
*inode
,
196 struct vfsmount
*vfsmnt
)
199 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
201 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
204 if ((inode
->i_flags
& S_NOATIME
) ||
205 ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
209 * We can be called with no vfsmnt structure - NFSD will
212 * Note that our action here is different than touch_atime() -
213 * if we can't tell whether this is a noatime mount, then we
214 * don't know whether to trust the value of s_atime_quantum.
219 if ((vfsmnt
->mnt_flags
& MNT_NOATIME
) ||
220 ((vfsmnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
)))
223 if (vfsmnt
->mnt_flags
& MNT_RELATIME
) {
224 if ((timespec_compare(&inode
->i_atime
, &inode
->i_mtime
) <= 0) ||
225 (timespec_compare(&inode
->i_atime
, &inode
->i_ctime
) <= 0))
232 if ((now
.tv_sec
- inode
->i_atime
.tv_sec
<= osb
->s_atime_quantum
))
238 int ocfs2_update_inode_atime(struct inode
*inode
,
239 struct buffer_head
*bh
)
242 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
244 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*) bh
->b_data
;
248 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
249 if (handle
== NULL
) {
255 ret
= ocfs2_journal_access(handle
, inode
, bh
,
256 OCFS2_JOURNAL_ACCESS_WRITE
);
263 * Don't use ocfs2_mark_inode_dirty() here as we don't always
264 * have i_mutex to guard against concurrent changes to other
267 inode
->i_atime
= CURRENT_TIME
;
268 di
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
269 di
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
271 ret
= ocfs2_journal_dirty(handle
, bh
);
276 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
282 static int ocfs2_set_inode_size(handle_t
*handle
,
284 struct buffer_head
*fe_bh
,
290 i_size_write(inode
, new_i_size
);
291 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
292 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
294 status
= ocfs2_mark_inode_dirty(handle
, inode
, fe_bh
);
305 static int ocfs2_simple_size_update(struct inode
*inode
,
306 struct buffer_head
*di_bh
,
310 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
311 handle_t
*handle
= NULL
;
313 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
314 if (handle
== NULL
) {
320 ret
= ocfs2_set_inode_size(handle
, inode
, di_bh
,
325 ocfs2_commit_trans(osb
, handle
);
330 static int ocfs2_orphan_for_truncate(struct ocfs2_super
*osb
,
332 struct buffer_head
*fe_bh
,
337 struct ocfs2_dinode
*di
;
342 /* TODO: This needs to actually orphan the inode in this
345 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
346 if (IS_ERR(handle
)) {
347 status
= PTR_ERR(handle
);
352 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
353 OCFS2_JOURNAL_ACCESS_WRITE
);
360 * Do this before setting i_size.
362 cluster_bytes
= ocfs2_align_bytes_to_clusters(inode
->i_sb
, new_i_size
);
363 status
= ocfs2_zero_range_for_truncate(inode
, handle
, new_i_size
,
370 i_size_write(inode
, new_i_size
);
371 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
373 di
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
374 di
->i_size
= cpu_to_le64(new_i_size
);
375 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
376 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
378 status
= ocfs2_journal_dirty(handle
, fe_bh
);
383 ocfs2_commit_trans(osb
, handle
);
390 static int ocfs2_truncate_file(struct inode
*inode
,
391 struct buffer_head
*di_bh
,
395 struct ocfs2_dinode
*fe
= NULL
;
396 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
397 struct ocfs2_truncate_context
*tc
= NULL
;
399 mlog_entry("(inode = %llu, new_i_size = %llu\n",
400 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
401 (unsigned long long)new_i_size
);
403 fe
= (struct ocfs2_dinode
*) di_bh
->b_data
;
404 if (!OCFS2_IS_VALID_DINODE(fe
)) {
405 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
410 mlog_bug_on_msg(le64_to_cpu(fe
->i_size
) != i_size_read(inode
),
411 "Inode %llu, inode i_size = %lld != di "
412 "i_size = %llu, i_flags = 0x%x\n",
413 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
415 (unsigned long long)le64_to_cpu(fe
->i_size
),
416 le32_to_cpu(fe
->i_flags
));
418 if (new_i_size
> le64_to_cpu(fe
->i_size
)) {
419 mlog(0, "asked to truncate file with size (%llu) to size (%llu)!\n",
420 (unsigned long long)le64_to_cpu(fe
->i_size
),
421 (unsigned long long)new_i_size
);
427 mlog(0, "inode %llu, i_size = %llu, new_i_size = %llu\n",
428 (unsigned long long)le64_to_cpu(fe
->i_blkno
),
429 (unsigned long long)le64_to_cpu(fe
->i_size
),
430 (unsigned long long)new_i_size
);
432 /* lets handle the simple truncate cases before doing any more
433 * cluster locking. */
434 if (new_i_size
== le64_to_cpu(fe
->i_size
))
437 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
440 * The inode lock forced other nodes to sync and drop their
441 * pages, which (correctly) happens even if we have a truncate
442 * without allocation change - ocfs2 cluster sizes can be much
443 * greater than page size, so we have to truncate them
446 unmap_mapping_range(inode
->i_mapping
, new_i_size
+ PAGE_SIZE
- 1, 0, 1);
447 truncate_inode_pages(inode
->i_mapping
, new_i_size
);
449 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
450 status
= ocfs2_truncate_inline(inode
, di_bh
, new_i_size
,
451 i_size_read(inode
), 1);
455 goto bail_unlock_sem
;
458 /* alright, we're going to need to do a full blown alloc size
459 * change. Orphan the inode so that recovery can complete the
460 * truncate if necessary. This does the task of marking
462 status
= ocfs2_orphan_for_truncate(osb
, inode
, di_bh
, new_i_size
);
465 goto bail_unlock_sem
;
468 status
= ocfs2_prepare_truncate(osb
, inode
, di_bh
, &tc
);
471 goto bail_unlock_sem
;
474 status
= ocfs2_commit_truncate(osb
, inode
, di_bh
, tc
);
477 goto bail_unlock_sem
;
480 /* TODO: orphan dir cleanup here. */
482 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
491 * extend allocation only here.
492 * we'll update all the disk stuff, and oip->alloc_size
494 * expect stuff to be locked, a transaction started and enough data /
495 * metadata reservations in the contexts.
497 * Will return -EAGAIN, and a reason if a restart is needed.
498 * If passed in, *reason will always be set, even in error.
500 int ocfs2_do_extend_allocation(struct ocfs2_super
*osb
,
505 struct buffer_head
*fe_bh
,
507 struct ocfs2_alloc_context
*data_ac
,
508 struct ocfs2_alloc_context
*meta_ac
,
509 enum ocfs2_alloc_restarted
*reason_ret
)
513 struct ocfs2_dinode
*fe
= (struct ocfs2_dinode
*) fe_bh
->b_data
;
514 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
515 u32 bit_off
, num_bits
;
519 BUG_ON(!clusters_to_add
);
522 flags
= OCFS2_EXT_UNWRITTEN
;
524 free_extents
= ocfs2_num_free_extents(osb
, inode
, fe
);
525 if (free_extents
< 0) {
526 status
= free_extents
;
531 /* there are two cases which could cause us to EAGAIN in the
532 * we-need-more-metadata case:
533 * 1) we haven't reserved *any*
534 * 2) we are so fragmented, we've needed to add metadata too
536 if (!free_extents
&& !meta_ac
) {
537 mlog(0, "we haven't reserved any metadata!\n");
539 reason
= RESTART_META
;
541 } else if ((!free_extents
)
542 && (ocfs2_alloc_context_bits_left(meta_ac
)
543 < ocfs2_extend_meta_needed(fe
))) {
544 mlog(0, "filesystem is really fragmented...\n");
546 reason
= RESTART_META
;
550 status
= __ocfs2_claim_clusters(osb
, handle
, data_ac
, 1,
551 clusters_to_add
, &bit_off
, &num_bits
);
553 if (status
!= -ENOSPC
)
558 BUG_ON(num_bits
> clusters_to_add
);
560 /* reserve our write early -- insert_extent may update the inode */
561 status
= ocfs2_journal_access(handle
, inode
, fe_bh
,
562 OCFS2_JOURNAL_ACCESS_WRITE
);
568 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
569 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
570 num_bits
, bit_off
, (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
571 status
= ocfs2_insert_extent(osb
, handle
, inode
, fe_bh
,
572 *logical_offset
, block
, num_bits
,
579 status
= ocfs2_journal_dirty(handle
, fe_bh
);
585 clusters_to_add
-= num_bits
;
586 *logical_offset
+= num_bits
;
588 if (clusters_to_add
) {
589 mlog(0, "need to alloc once more, clusters = %u, wanted = "
590 "%u\n", fe
->i_clusters
, clusters_to_add
);
592 reason
= RESTART_TRANS
;
598 *reason_ret
= reason
;
603 * For a given allocation, determine which allocators will need to be
604 * accessed, and lock them, reserving the appropriate number of bits.
606 * Sparse file systems call this from ocfs2_write_begin_nolock()
607 * and ocfs2_allocate_unwritten_extents().
609 * File systems which don't support holes call this from
610 * ocfs2_extend_allocation().
612 int ocfs2_lock_allocators(struct inode
*inode
, struct ocfs2_dinode
*di
,
613 u32 clusters_to_add
, u32 extents_to_split
,
614 struct ocfs2_alloc_context
**data_ac
,
615 struct ocfs2_alloc_context
**meta_ac
)
617 int ret
= 0, num_free_extents
;
618 unsigned int max_recs_needed
= clusters_to_add
+ 2 * extents_to_split
;
619 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
625 BUG_ON(clusters_to_add
!= 0 && data_ac
== NULL
);
627 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u, "
628 "clusters_to_add = %u, extents_to_split = %u\n",
629 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, (long long)i_size_read(inode
),
630 le32_to_cpu(di
->i_clusters
), clusters_to_add
, extents_to_split
);
632 num_free_extents
= ocfs2_num_free_extents(osb
, inode
, di
);
633 if (num_free_extents
< 0) {
634 ret
= num_free_extents
;
640 * Sparse allocation file systems need to be more conservative
641 * with reserving room for expansion - the actual allocation
642 * happens while we've got a journal handle open so re-taking
643 * a cluster lock (because we ran out of room for another
644 * extent) will violate ordering rules.
646 * Most of the time we'll only be seeing this 1 cluster at a time
649 * Always lock for any unwritten extents - we might want to
650 * add blocks during a split.
652 if (!num_free_extents
||
653 (ocfs2_sparse_alloc(osb
) && num_free_extents
< max_recs_needed
)) {
654 ret
= ocfs2_reserve_new_metadata(osb
, di
, meta_ac
);
662 if (clusters_to_add
== 0)
665 ret
= ocfs2_reserve_clusters(osb
, clusters_to_add
, data_ac
);
675 ocfs2_free_alloc_context(*meta_ac
);
680 * We cannot have an error and a non null *data_ac.
687 static int __ocfs2_extend_allocation(struct inode
*inode
, u32 logical_start
,
688 u32 clusters_to_add
, int mark_unwritten
)
691 int restart_func
= 0;
694 struct buffer_head
*bh
= NULL
;
695 struct ocfs2_dinode
*fe
= NULL
;
696 handle_t
*handle
= NULL
;
697 struct ocfs2_alloc_context
*data_ac
= NULL
;
698 struct ocfs2_alloc_context
*meta_ac
= NULL
;
699 enum ocfs2_alloc_restarted why
;
700 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
702 mlog_entry("(clusters_to_add = %u)\n", clusters_to_add
);
705 * This function only exists for file systems which don't
708 BUG_ON(mark_unwritten
&& !ocfs2_sparse_alloc(osb
));
710 status
= ocfs2_read_block(osb
, OCFS2_I(inode
)->ip_blkno
, &bh
,
711 OCFS2_BH_CACHED
, inode
);
717 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
718 if (!OCFS2_IS_VALID_DINODE(fe
)) {
719 OCFS2_RO_ON_INVALID_DINODE(inode
->i_sb
, fe
);
725 BUG_ON(le32_to_cpu(fe
->i_clusters
) != OCFS2_I(inode
)->ip_clusters
);
727 status
= ocfs2_lock_allocators(inode
, fe
, clusters_to_add
, 0, &data_ac
,
734 credits
= ocfs2_calc_extend_credits(osb
->sb
, fe
, clusters_to_add
);
735 handle
= ocfs2_start_trans(osb
, credits
);
736 if (IS_ERR(handle
)) {
737 status
= PTR_ERR(handle
);
743 restarted_transaction
:
744 /* reserve a write to the file entry early on - that we if we
745 * run out of credits in the allocation path, we can still
747 status
= ocfs2_journal_access(handle
, inode
, bh
,
748 OCFS2_JOURNAL_ACCESS_WRITE
);
754 prev_clusters
= OCFS2_I(inode
)->ip_clusters
;
756 status
= ocfs2_do_extend_allocation(osb
,
766 if ((status
< 0) && (status
!= -EAGAIN
)) {
767 if (status
!= -ENOSPC
)
772 status
= ocfs2_journal_dirty(handle
, bh
);
778 spin_lock(&OCFS2_I(inode
)->ip_lock
);
779 clusters_to_add
-= (OCFS2_I(inode
)->ip_clusters
- prev_clusters
);
780 spin_unlock(&OCFS2_I(inode
)->ip_lock
);
782 if (why
!= RESTART_NONE
&& clusters_to_add
) {
783 if (why
== RESTART_META
) {
784 mlog(0, "restarting function.\n");
787 BUG_ON(why
!= RESTART_TRANS
);
789 mlog(0, "restarting transaction.\n");
790 /* TODO: This can be more intelligent. */
791 credits
= ocfs2_calc_extend_credits(osb
->sb
,
794 status
= ocfs2_extend_trans(handle
, credits
);
796 /* handle still has to be committed at
802 goto restarted_transaction
;
806 mlog(0, "fe: i_clusters = %u, i_size=%llu\n",
807 le32_to_cpu(fe
->i_clusters
),
808 (unsigned long long)le64_to_cpu(fe
->i_size
));
809 mlog(0, "inode: ip_clusters=%u, i_size=%lld\n",
810 OCFS2_I(inode
)->ip_clusters
, (long long)i_size_read(inode
));
814 ocfs2_commit_trans(osb
, handle
);
818 ocfs2_free_alloc_context(data_ac
);
822 ocfs2_free_alloc_context(meta_ac
);
825 if ((!status
) && restart_func
) {
838 /* Some parts of this taken from generic_cont_expand, which turned out
839 * to be too fragile to do exactly what we need without us having to
840 * worry about recursive locking in ->prepare_write() and
841 * ->commit_write(). */
842 static int ocfs2_write_zero_page(struct inode
*inode
,
845 struct address_space
*mapping
= inode
->i_mapping
;
849 handle_t
*handle
= NULL
;
852 offset
= (size
& (PAGE_CACHE_SIZE
-1)); /* Within page */
853 /* ugh. in prepare/commit_write, if from==to==start of block, we
854 ** skip the prepare. make sure we never send an offset for the start
857 if ((offset
& (inode
->i_sb
->s_blocksize
- 1)) == 0) {
860 index
= size
>> PAGE_CACHE_SHIFT
;
862 page
= grab_cache_page(mapping
, index
);
869 ret
= ocfs2_prepare_write_nolock(inode
, page
, offset
, offset
);
875 if (ocfs2_should_order_data(inode
)) {
876 handle
= ocfs2_start_walk_page_trans(inode
, page
, offset
,
878 if (IS_ERR(handle
)) {
879 ret
= PTR_ERR(handle
);
885 /* must not update i_size! */
886 ret
= block_commit_write(page
, offset
, offset
);
893 ocfs2_commit_trans(OCFS2_SB(inode
->i_sb
), handle
);
896 page_cache_release(page
);
901 static int ocfs2_zero_extend(struct inode
*inode
,
906 struct super_block
*sb
= inode
->i_sb
;
908 start_off
= ocfs2_align_bytes_to_blocks(sb
, i_size_read(inode
));
909 while (start_off
< zero_to_size
) {
910 ret
= ocfs2_write_zero_page(inode
, start_off
);
916 start_off
+= sb
->s_blocksize
;
919 * Very large extends have the potential to lock up
920 * the cpu for extended periods of time.
929 int ocfs2_extend_no_holes(struct inode
*inode
, u64 new_i_size
, u64 zero_to
)
933 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
935 clusters_to_add
= ocfs2_clusters_for_bytes(inode
->i_sb
, new_i_size
);
936 if (clusters_to_add
< oi
->ip_clusters
)
939 clusters_to_add
-= oi
->ip_clusters
;
941 if (clusters_to_add
) {
942 ret
= __ocfs2_extend_allocation(inode
, oi
->ip_clusters
,
951 * Call this even if we don't add any clusters to the tree. We
952 * still need to zero the area between the old i_size and the
955 ret
= ocfs2_zero_extend(inode
, zero_to
);
963 static int ocfs2_extend_file(struct inode
*inode
,
964 struct buffer_head
*di_bh
,
968 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
972 /* setattr sometimes calls us like this. */
976 if (i_size_read(inode
) == new_i_size
)
978 BUG_ON(new_i_size
< i_size_read(inode
));
981 * Fall through for converting inline data, even if the fs
982 * supports sparse files.
984 * The check for inline data here is legal - nobody can add
985 * the feature since we have i_mutex. We must check it again
986 * after acquiring ip_alloc_sem though, as paths like mmap
987 * might have raced us to converting the inode to extents.
989 if (!(oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
)
990 && ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
991 goto out_update_size
;
994 * The alloc sem blocks people in read/write from reading our
995 * allocation until we're done changing it. We depend on
996 * i_mutex to block other extend/truncate calls while we're
999 down_write(&oi
->ip_alloc_sem
);
1001 if (oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1003 * We can optimize small extends by keeping the inodes
1006 if (ocfs2_size_fits_inline_data(di_bh
, new_i_size
)) {
1007 up_write(&oi
->ip_alloc_sem
);
1008 goto out_update_size
;
1011 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1013 up_write(&oi
->ip_alloc_sem
);
1020 if (!ocfs2_sparse_alloc(OCFS2_SB(inode
->i_sb
)))
1021 ret
= ocfs2_extend_no_holes(inode
, new_i_size
, new_i_size
);
1023 up_write(&oi
->ip_alloc_sem
);
1031 ret
= ocfs2_simple_size_update(inode
, di_bh
, new_i_size
);
1039 int ocfs2_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1041 int status
= 0, size_change
;
1042 struct inode
*inode
= dentry
->d_inode
;
1043 struct super_block
*sb
= inode
->i_sb
;
1044 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
1045 struct buffer_head
*bh
= NULL
;
1046 handle_t
*handle
= NULL
;
1048 mlog_entry("(0x%p, '%.*s')\n", dentry
,
1049 dentry
->d_name
.len
, dentry
->d_name
.name
);
1051 /* ensuring we don't even attempt to truncate a symlink */
1052 if (S_ISLNK(inode
->i_mode
))
1053 attr
->ia_valid
&= ~ATTR_SIZE
;
1055 if (attr
->ia_valid
& ATTR_MODE
)
1056 mlog(0, "mode change: %d\n", attr
->ia_mode
);
1057 if (attr
->ia_valid
& ATTR_UID
)
1058 mlog(0, "uid change: %d\n", attr
->ia_uid
);
1059 if (attr
->ia_valid
& ATTR_GID
)
1060 mlog(0, "gid change: %d\n", attr
->ia_gid
);
1061 if (attr
->ia_valid
& ATTR_SIZE
)
1062 mlog(0, "size change...\n");
1063 if (attr
->ia_valid
& (ATTR_ATIME
| ATTR_MTIME
| ATTR_CTIME
))
1064 mlog(0, "time change...\n");
1066 #define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
1067 | ATTR_GID | ATTR_UID | ATTR_MODE)
1068 if (!(attr
->ia_valid
& OCFS2_VALID_ATTRS
)) {
1069 mlog(0, "can't handle attrs: 0x%x\n", attr
->ia_valid
);
1073 status
= inode_change_ok(inode
, attr
);
1077 size_change
= S_ISREG(inode
->i_mode
) && attr
->ia_valid
& ATTR_SIZE
;
1079 status
= ocfs2_rw_lock(inode
, 1);
1086 status
= ocfs2_inode_lock(inode
, &bh
, 1);
1088 if (status
!= -ENOENT
)
1090 goto bail_unlock_rw
;
1093 if (size_change
&& attr
->ia_size
!= i_size_read(inode
)) {
1094 if (attr
->ia_size
> sb
->s_maxbytes
) {
1099 if (i_size_read(inode
) > attr
->ia_size
)
1100 status
= ocfs2_truncate_file(inode
, bh
, attr
->ia_size
);
1102 status
= ocfs2_extend_file(inode
, bh
, attr
->ia_size
);
1104 if (status
!= -ENOSPC
)
1111 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1112 if (IS_ERR(handle
)) {
1113 status
= PTR_ERR(handle
);
1119 * This will intentionally not wind up calling vmtruncate(),
1120 * since all the work for a size change has been done above.
1121 * Otherwise, we could get into problems with truncate as
1122 * ip_alloc_sem is used there to protect against i_size
1125 status
= inode_setattr(inode
, attr
);
1131 status
= ocfs2_mark_inode_dirty(handle
, inode
, bh
);
1136 ocfs2_commit_trans(osb
, handle
);
1138 ocfs2_inode_unlock(inode
, 1);
1141 ocfs2_rw_unlock(inode
, 1);
1150 int ocfs2_getattr(struct vfsmount
*mnt
,
1151 struct dentry
*dentry
,
1154 struct inode
*inode
= dentry
->d_inode
;
1155 struct super_block
*sb
= dentry
->d_inode
->i_sb
;
1156 struct ocfs2_super
*osb
= sb
->s_fs_info
;
1161 err
= ocfs2_inode_revalidate(dentry
);
1168 generic_fillattr(inode
, stat
);
1170 /* We set the blksize from the cluster size for performance */
1171 stat
->blksize
= osb
->s_clustersize
;
1179 int ocfs2_permission(struct inode
*inode
, int mask
, struct nameidata
*nd
)
1185 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
1192 ret
= generic_permission(inode
, mask
, NULL
);
1194 ocfs2_inode_unlock(inode
, 0);
1200 static int __ocfs2_write_remove_suid(struct inode
*inode
,
1201 struct buffer_head
*bh
)
1205 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1206 struct ocfs2_dinode
*di
;
1208 mlog_entry("(Inode %llu, mode 0%o)\n",
1209 (unsigned long long)OCFS2_I(inode
)->ip_blkno
, inode
->i_mode
);
1211 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1212 if (handle
== NULL
) {
1218 ret
= ocfs2_journal_access(handle
, inode
, bh
,
1219 OCFS2_JOURNAL_ACCESS_WRITE
);
1225 inode
->i_mode
&= ~S_ISUID
;
1226 if ((inode
->i_mode
& S_ISGID
) && (inode
->i_mode
& S_IXGRP
))
1227 inode
->i_mode
&= ~S_ISGID
;
1229 di
= (struct ocfs2_dinode
*) bh
->b_data
;
1230 di
->i_mode
= cpu_to_le16(inode
->i_mode
);
1232 ret
= ocfs2_journal_dirty(handle
, bh
);
1237 ocfs2_commit_trans(osb
, handle
);
1244 * Will look for holes and unwritten extents in the range starting at
1245 * pos for count bytes (inclusive).
1247 static int ocfs2_check_range_for_holes(struct inode
*inode
, loff_t pos
,
1251 unsigned int extent_flags
;
1252 u32 cpos
, clusters
, extent_len
, phys_cpos
;
1253 struct super_block
*sb
= inode
->i_sb
;
1255 cpos
= pos
>> OCFS2_SB(sb
)->s_clustersize_bits
;
1256 clusters
= ocfs2_clusters_for_bytes(sb
, pos
+ count
) - cpos
;
1259 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
, &extent_len
,
1266 if (phys_cpos
== 0 || (extent_flags
& OCFS2_EXT_UNWRITTEN
)) {
1271 if (extent_len
> clusters
)
1272 extent_len
= clusters
;
1274 clusters
-= extent_len
;
1281 static int ocfs2_write_remove_suid(struct inode
*inode
)
1284 struct buffer_head
*bh
= NULL
;
1285 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
1287 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
1288 oi
->ip_blkno
, &bh
, OCFS2_BH_CACHED
, inode
);
1294 ret
= __ocfs2_write_remove_suid(inode
, bh
);
1301 * Allocate enough extents to cover the region starting at byte offset
1302 * start for len bytes. Existing extents are skipped, any extents
1303 * added are marked as "unwritten".
1305 static int ocfs2_allocate_unwritten_extents(struct inode
*inode
,
1309 u32 cpos
, phys_cpos
, clusters
, alloc_size
;
1310 u64 end
= start
+ len
;
1311 struct buffer_head
*di_bh
= NULL
;
1313 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1314 ret
= ocfs2_read_block(OCFS2_SB(inode
->i_sb
),
1315 OCFS2_I(inode
)->ip_blkno
, &di_bh
,
1316 OCFS2_BH_CACHED
, inode
);
1323 * Nothing to do if the requested reservation range
1324 * fits within the inode.
1326 if (ocfs2_size_fits_inline_data(di_bh
, end
))
1329 ret
= ocfs2_convert_inline_data_to_extents(inode
, di_bh
);
1337 * We consider both start and len to be inclusive.
1339 cpos
= start
>> OCFS2_SB(inode
->i_sb
)->s_clustersize_bits
;
1340 clusters
= ocfs2_clusters_for_bytes(inode
->i_sb
, start
+ len
);
1344 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1352 * Hole or existing extent len can be arbitrary, so
1353 * cap it to our own allocation request.
1355 if (alloc_size
> clusters
)
1356 alloc_size
= clusters
;
1360 * We already have an allocation at this
1361 * region so we can safely skip it.
1366 ret
= __ocfs2_extend_allocation(inode
, cpos
, alloc_size
, 1);
1375 clusters
-= alloc_size
;
1385 static int __ocfs2_remove_inode_range(struct inode
*inode
,
1386 struct buffer_head
*di_bh
,
1387 u32 cpos
, u32 phys_cpos
, u32 len
,
1388 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
1391 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
1392 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1393 struct inode
*tl_inode
= osb
->osb_tl_inode
;
1395 struct ocfs2_alloc_context
*meta_ac
= NULL
;
1396 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
1398 ret
= ocfs2_lock_allocators(inode
, di
, 0, 1, NULL
, &meta_ac
);
1404 mutex_lock(&tl_inode
->i_mutex
);
1406 if (ocfs2_truncate_log_needs_flush(osb
)) {
1407 ret
= __ocfs2_flush_truncate_log(osb
);
1414 handle
= ocfs2_start_trans(osb
, OCFS2_REMOVE_EXTENT_CREDITS
);
1415 if (handle
== NULL
) {
1421 ret
= ocfs2_journal_access(handle
, inode
, di_bh
,
1422 OCFS2_JOURNAL_ACCESS_WRITE
);
1428 ret
= ocfs2_remove_extent(inode
, di_bh
, cpos
, len
, handle
, meta_ac
,
1435 OCFS2_I(inode
)->ip_clusters
-= len
;
1436 di
->i_clusters
= cpu_to_le32(OCFS2_I(inode
)->ip_clusters
);
1438 ret
= ocfs2_journal_dirty(handle
, di_bh
);
1444 ret
= ocfs2_truncate_log_append(osb
, handle
, phys_blkno
, len
);
1449 ocfs2_commit_trans(osb
, handle
);
1451 mutex_unlock(&tl_inode
->i_mutex
);
1454 ocfs2_free_alloc_context(meta_ac
);
1460 * Truncate a byte range, avoiding pages within partial clusters. This
1461 * preserves those pages for the zeroing code to write to.
1463 static void ocfs2_truncate_cluster_pages(struct inode
*inode
, u64 byte_start
,
1466 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1468 struct address_space
*mapping
= inode
->i_mapping
;
1470 start
= (loff_t
)ocfs2_align_bytes_to_clusters(inode
->i_sb
, byte_start
);
1471 end
= byte_start
+ byte_len
;
1472 end
= end
& ~(osb
->s_clustersize
- 1);
1475 unmap_mapping_range(mapping
, start
, end
- start
, 0);
1476 truncate_inode_pages_range(mapping
, start
, end
- 1);
1480 static int ocfs2_zero_partial_clusters(struct inode
*inode
,
1484 u64 tmpend
, end
= start
+ len
;
1485 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1486 unsigned int csize
= osb
->s_clustersize
;
1490 * The "start" and "end" values are NOT necessarily part of
1491 * the range whose allocation is being deleted. Rather, this
1492 * is what the user passed in with the request. We must zero
1493 * partial clusters here. There's no need to worry about
1494 * physical allocation - the zeroing code knows to skip holes.
1496 mlog(0, "byte start: %llu, end: %llu\n",
1497 (unsigned long long)start
, (unsigned long long)end
);
1500 * If both edges are on a cluster boundary then there's no
1501 * zeroing required as the region is part of the allocation to
1504 if ((start
& (csize
- 1)) == 0 && (end
& (csize
- 1)) == 0)
1507 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1508 if (handle
== NULL
) {
1515 * We want to get the byte offset of the end of the 1st cluster.
1517 tmpend
= (u64
)osb
->s_clustersize
+ (start
& ~(osb
->s_clustersize
- 1));
1521 mlog(0, "1st range: start: %llu, tmpend: %llu\n",
1522 (unsigned long long)start
, (unsigned long long)tmpend
);
1524 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, tmpend
);
1530 * This may make start and end equal, but the zeroing
1531 * code will skip any work in that case so there's no
1532 * need to catch it up here.
1534 start
= end
& ~(osb
->s_clustersize
- 1);
1536 mlog(0, "2nd range: start: %llu, end: %llu\n",
1537 (unsigned long long)start
, (unsigned long long)end
);
1539 ret
= ocfs2_zero_range_for_truncate(inode
, handle
, start
, end
);
1544 ocfs2_commit_trans(osb
, handle
);
1549 static int ocfs2_remove_inode_range(struct inode
*inode
,
1550 struct buffer_head
*di_bh
, u64 byte_start
,
1554 u32 trunc_start
, trunc_len
, cpos
, phys_cpos
, alloc_size
;
1555 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1556 struct ocfs2_cached_dealloc_ctxt dealloc
;
1557 struct address_space
*mapping
= inode
->i_mapping
;
1559 ocfs2_init_dealloc_ctxt(&dealloc
);
1564 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1565 ret
= ocfs2_truncate_inline(inode
, di_bh
, byte_start
,
1566 byte_start
+ byte_len
, 0);
1572 * There's no need to get fancy with the page cache
1573 * truncate of an inline-data inode. We're talking
1574 * about less than a page here, which will be cached
1575 * in the dinode buffer anyway.
1577 unmap_mapping_range(mapping
, 0, 0, 0);
1578 truncate_inode_pages(mapping
, 0);
1582 trunc_start
= ocfs2_clusters_for_bytes(osb
->sb
, byte_start
);
1583 trunc_len
= (byte_start
+ byte_len
) >> osb
->s_clustersize_bits
;
1584 if (trunc_len
>= trunc_start
)
1585 trunc_len
-= trunc_start
;
1589 mlog(0, "Inode: %llu, start: %llu, len: %llu, cstart: %u, clen: %u\n",
1590 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
1591 (unsigned long long)byte_start
,
1592 (unsigned long long)byte_len
, trunc_start
, trunc_len
);
1594 ret
= ocfs2_zero_partial_clusters(inode
, byte_start
, byte_len
);
1602 ret
= ocfs2_get_clusters(inode
, cpos
, &phys_cpos
,
1609 if (alloc_size
> trunc_len
)
1610 alloc_size
= trunc_len
;
1612 /* Only do work for non-holes */
1613 if (phys_cpos
!= 0) {
1614 ret
= __ocfs2_remove_inode_range(inode
, di_bh
, cpos
,
1615 phys_cpos
, alloc_size
,
1624 trunc_len
-= alloc_size
;
1627 ocfs2_truncate_cluster_pages(inode
, byte_start
, byte_len
);
1630 ocfs2_schedule_truncate_log_flush(osb
, 1);
1631 ocfs2_run_deallocs(osb
, &dealloc
);
1637 * Parts of this function taken from xfs_change_file_space()
1639 static int __ocfs2_change_file_space(struct file
*file
, struct inode
*inode
,
1640 loff_t f_pos
, unsigned int cmd
,
1641 struct ocfs2_space_resv
*sr
,
1647 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1648 struct buffer_head
*di_bh
= NULL
;
1650 unsigned long long max_off
= inode
->i_sb
->s_maxbytes
;
1652 if (ocfs2_is_hard_readonly(osb
) || ocfs2_is_soft_readonly(osb
))
1655 mutex_lock(&inode
->i_mutex
);
1658 * This prevents concurrent writes on other nodes
1660 ret
= ocfs2_rw_lock(inode
, 1);
1666 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
1672 if (inode
->i_flags
& (S_IMMUTABLE
|S_APPEND
)) {
1674 goto out_inode_unlock
;
1677 switch (sr
->l_whence
) {
1678 case 0: /*SEEK_SET*/
1680 case 1: /*SEEK_CUR*/
1681 sr
->l_start
+= f_pos
;
1683 case 2: /*SEEK_END*/
1684 sr
->l_start
+= i_size_read(inode
);
1688 goto out_inode_unlock
;
1692 llen
= sr
->l_len
> 0 ? sr
->l_len
- 1 : sr
->l_len
;
1695 || sr
->l_start
> max_off
1696 || (sr
->l_start
+ llen
) < 0
1697 || (sr
->l_start
+ llen
) > max_off
) {
1699 goto out_inode_unlock
;
1701 size
= sr
->l_start
+ sr
->l_len
;
1703 if (cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) {
1704 if (sr
->l_len
<= 0) {
1706 goto out_inode_unlock
;
1710 if (file
&& should_remove_suid(file
->f_path
.dentry
)) {
1711 ret
= __ocfs2_write_remove_suid(inode
, di_bh
);
1714 goto out_inode_unlock
;
1718 down_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1720 case OCFS2_IOC_RESVSP
:
1721 case OCFS2_IOC_RESVSP64
:
1723 * This takes unsigned offsets, but the signed ones we
1724 * pass have been checked against overflow above.
1726 ret
= ocfs2_allocate_unwritten_extents(inode
, sr
->l_start
,
1729 case OCFS2_IOC_UNRESVSP
:
1730 case OCFS2_IOC_UNRESVSP64
:
1731 ret
= ocfs2_remove_inode_range(inode
, di_bh
, sr
->l_start
,
1737 up_write(&OCFS2_I(inode
)->ip_alloc_sem
);
1740 goto out_inode_unlock
;
1744 * We update c/mtime for these changes
1746 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
1747 if (IS_ERR(handle
)) {
1748 ret
= PTR_ERR(handle
);
1750 goto out_inode_unlock
;
1753 if (change_size
&& i_size_read(inode
) < size
)
1754 i_size_write(inode
, size
);
1756 inode
->i_ctime
= inode
->i_mtime
= CURRENT_TIME
;
1757 ret
= ocfs2_mark_inode_dirty(handle
, inode
, di_bh
);
1761 ocfs2_commit_trans(osb
, handle
);
1765 ocfs2_inode_unlock(inode
, 1);
1767 ocfs2_rw_unlock(inode
, 1);
1769 mutex_unlock(&inode
->i_mutex
);
1774 int ocfs2_change_file_space(struct file
*file
, unsigned int cmd
,
1775 struct ocfs2_space_resv
*sr
)
1777 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1778 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);;
1780 if ((cmd
== OCFS2_IOC_RESVSP
|| cmd
== OCFS2_IOC_RESVSP64
) &&
1781 !ocfs2_writes_unwritten_extents(osb
))
1783 else if ((cmd
== OCFS2_IOC_UNRESVSP
|| cmd
== OCFS2_IOC_UNRESVSP64
) &&
1784 !ocfs2_sparse_alloc(osb
))
1787 if (!S_ISREG(inode
->i_mode
))
1790 if (!(file
->f_mode
& FMODE_WRITE
))
1793 return __ocfs2_change_file_space(file
, inode
, file
->f_pos
, cmd
, sr
, 0);
1796 static long ocfs2_fallocate(struct inode
*inode
, int mode
, loff_t offset
,
1799 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1800 struct ocfs2_space_resv sr
;
1801 int change_size
= 1;
1803 if (!ocfs2_writes_unwritten_extents(osb
))
1806 if (S_ISDIR(inode
->i_mode
))
1809 if (mode
& FALLOC_FL_KEEP_SIZE
)
1813 sr
.l_start
= (s64
)offset
;
1814 sr
.l_len
= (s64
)len
;
1816 return __ocfs2_change_file_space(NULL
, inode
, offset
,
1817 OCFS2_IOC_RESVSP64
, &sr
, change_size
);
1820 static int ocfs2_prepare_inode_for_write(struct dentry
*dentry
,
1826 int ret
= 0, meta_level
= 0;
1827 struct inode
*inode
= dentry
->d_inode
;
1828 loff_t saved_pos
, end
;
1831 * We start with a read level meta lock and only jump to an ex
1832 * if we need to make modifications here.
1835 ret
= ocfs2_inode_lock(inode
, NULL
, meta_level
);
1842 /* Clear suid / sgid if necessary. We do this here
1843 * instead of later in the write path because
1844 * remove_suid() calls ->setattr without any hint that
1845 * we may have already done our cluster locking. Since
1846 * ocfs2_setattr() *must* take cluster locks to
1847 * proceeed, this will lead us to recursively lock the
1848 * inode. There's also the dinode i_size state which
1849 * can be lost via setattr during extending writes (we
1850 * set inode->i_size at the end of a write. */
1851 if (should_remove_suid(dentry
)) {
1852 if (meta_level
== 0) {
1853 ocfs2_inode_unlock(inode
, meta_level
);
1858 ret
= ocfs2_write_remove_suid(inode
);
1865 /* work on a copy of ppos until we're sure that we won't have
1866 * to recalculate it due to relocking. */
1868 saved_pos
= i_size_read(inode
);
1869 mlog(0, "O_APPEND: inode->i_size=%llu\n", saved_pos
);
1874 end
= saved_pos
+ count
;
1877 * Skip the O_DIRECT checks if we don't need
1880 if (!direct_io
|| !(*direct_io
))
1884 * There's no sane way to do direct writes to an inode
1887 if (OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) {
1893 * Allowing concurrent direct writes means
1894 * i_size changes wouldn't be synchronized, so
1895 * one node could wind up truncating another
1898 if (end
> i_size_read(inode
)) {
1904 * We don't fill holes during direct io, so
1905 * check for them here. If any are found, the
1906 * caller will have to retake some cluster
1907 * locks and initiate the io as buffered.
1909 ret
= ocfs2_check_range_for_holes(inode
, saved_pos
, count
);
1922 ocfs2_inode_unlock(inode
, meta_level
);
1928 static ssize_t
ocfs2_file_aio_write(struct kiocb
*iocb
,
1929 const struct iovec
*iov
,
1930 unsigned long nr_segs
,
1933 int ret
, direct_io
, appending
, rw_level
, have_alloc_sem
= 0;
1935 ssize_t written
= 0;
1936 size_t ocount
; /* original count */
1937 size_t count
; /* after file limit checks */
1938 loff_t old_size
, *ppos
= &iocb
->ki_pos
;
1940 struct file
*file
= iocb
->ki_filp
;
1941 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
1942 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
1944 mlog_entry("(0x%p, %u, '%.*s')\n", file
,
1945 (unsigned int)nr_segs
,
1946 file
->f_path
.dentry
->d_name
.len
,
1947 file
->f_path
.dentry
->d_name
.name
);
1949 if (iocb
->ki_left
== 0)
1952 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
1954 appending
= file
->f_flags
& O_APPEND
? 1 : 0;
1955 direct_io
= file
->f_flags
& O_DIRECT
? 1 : 0;
1957 mutex_lock(&inode
->i_mutex
);
1960 /* to match setattr's i_mutex -> i_alloc_sem -> rw_lock ordering */
1962 down_read(&inode
->i_alloc_sem
);
1966 /* concurrent O_DIRECT writes are allowed */
1967 rw_level
= !direct_io
;
1968 ret
= ocfs2_rw_lock(inode
, rw_level
);
1974 can_do_direct
= direct_io
;
1975 ret
= ocfs2_prepare_inode_for_write(file
->f_path
.dentry
, ppos
,
1976 iocb
->ki_left
, appending
,
1984 * We can't complete the direct I/O as requested, fall back to
1987 if (direct_io
&& !can_do_direct
) {
1988 ocfs2_rw_unlock(inode
, rw_level
);
1989 up_read(&inode
->i_alloc_sem
);
1999 * To later detect whether a journal commit for sync writes is
2000 * necessary, we sample i_size, and cluster count here.
2002 old_size
= i_size_read(inode
);
2003 old_clusters
= OCFS2_I(inode
)->ip_clusters
;
2005 /* communicate with ocfs2_dio_end_io */
2006 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2009 ret
= generic_segment_checks(iov
, &nr_segs
, &ocount
,
2014 ret
= generic_write_checks(file
, ppos
, &count
,
2015 S_ISBLK(inode
->i_mode
));
2019 written
= generic_file_direct_write(iocb
, iov
, &nr_segs
, *ppos
,
2020 ppos
, count
, ocount
);
2026 written
= generic_file_aio_write_nolock(iocb
, iov
, nr_segs
,
2031 /* buffered aio wouldn't have proper lock coverage today */
2032 BUG_ON(ret
== -EIOCBQUEUED
&& !(file
->f_flags
& O_DIRECT
));
2034 if ((file
->f_flags
& O_SYNC
&& !direct_io
) || IS_SYNC(inode
)) {
2036 * The generic write paths have handled getting data
2037 * to disk, but since we don't make use of the dirty
2038 * inode list, a manual journal commit is necessary
2041 if (old_size
!= i_size_read(inode
) ||
2042 old_clusters
!= OCFS2_I(inode
)->ip_clusters
) {
2043 ret
= journal_force_commit(osb
->journal
->j_journal
);
2050 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
2051 * function pointer which is called when o_direct io completes so that
2052 * it can unlock our rw lock. (it's the clustered equivalent of
2053 * i_alloc_sem; protects truncate from racing with pending ios).
2054 * Unfortunately there are error cases which call end_io and others
2055 * that don't. so we don't have to unlock the rw_lock if either an
2056 * async dio is going to do it in the future or an end_io after an
2057 * error has already done it.
2059 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2066 ocfs2_rw_unlock(inode
, rw_level
);
2070 up_read(&inode
->i_alloc_sem
);
2072 mutex_unlock(&inode
->i_mutex
);
2075 return written
? written
: ret
;
2078 static ssize_t
ocfs2_file_splice_write(struct pipe_inode_info
*pipe
,
2085 struct inode
*inode
= out
->f_path
.dentry
->d_inode
;
2087 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", out
, pipe
,
2089 out
->f_path
.dentry
->d_name
.len
,
2090 out
->f_path
.dentry
->d_name
.name
);
2092 inode_double_lock(inode
, pipe
->inode
);
2094 ret
= ocfs2_rw_lock(inode
, 1);
2100 ret
= ocfs2_prepare_inode_for_write(out
->f_path
.dentry
, ppos
, len
, 0,
2107 ret
= generic_file_splice_write_nolock(pipe
, out
, ppos
, len
, flags
);
2110 ocfs2_rw_unlock(inode
, 1);
2112 inode_double_unlock(inode
, pipe
->inode
);
2118 static ssize_t
ocfs2_file_splice_read(struct file
*in
,
2120 struct pipe_inode_info
*pipe
,
2125 struct inode
*inode
= in
->f_path
.dentry
->d_inode
;
2127 mlog_entry("(0x%p, 0x%p, %u, '%.*s')\n", in
, pipe
,
2129 in
->f_path
.dentry
->d_name
.len
,
2130 in
->f_path
.dentry
->d_name
.name
);
2133 * See the comment in ocfs2_file_aio_read()
2135 ret
= ocfs2_inode_lock(inode
, NULL
, 0);
2140 ocfs2_inode_unlock(inode
, 0);
2142 ret
= generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
2149 static ssize_t
ocfs2_file_aio_read(struct kiocb
*iocb
,
2150 const struct iovec
*iov
,
2151 unsigned long nr_segs
,
2154 int ret
= 0, rw_level
= -1, have_alloc_sem
= 0, lock_level
= 0;
2155 struct file
*filp
= iocb
->ki_filp
;
2156 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2158 mlog_entry("(0x%p, %u, '%.*s')\n", filp
,
2159 (unsigned int)nr_segs
,
2160 filp
->f_path
.dentry
->d_name
.len
,
2161 filp
->f_path
.dentry
->d_name
.name
);
2170 * buffered reads protect themselves in ->readpage(). O_DIRECT reads
2171 * need locks to protect pending reads from racing with truncate.
2173 if (filp
->f_flags
& O_DIRECT
) {
2174 down_read(&inode
->i_alloc_sem
);
2177 ret
= ocfs2_rw_lock(inode
, 0);
2183 /* communicate with ocfs2_dio_end_io */
2184 ocfs2_iocb_set_rw_locked(iocb
, rw_level
);
2188 * We're fine letting folks race truncates and extending
2189 * writes with read across the cluster, just like they can
2190 * locally. Hence no rw_lock during read.
2192 * Take and drop the meta data lock to update inode fields
2193 * like i_size. This allows the checks down below
2194 * generic_file_aio_read() a chance of actually working.
2196 ret
= ocfs2_inode_lock_atime(inode
, filp
->f_vfsmnt
, &lock_level
);
2201 ocfs2_inode_unlock(inode
, lock_level
);
2203 ret
= generic_file_aio_read(iocb
, iov
, nr_segs
, iocb
->ki_pos
);
2205 mlog(ML_ERROR
, "generic_file_aio_read returned -EINVAL\n");
2207 /* buffered aio wouldn't have proper lock coverage today */
2208 BUG_ON(ret
== -EIOCBQUEUED
&& !(filp
->f_flags
& O_DIRECT
));
2210 /* see ocfs2_file_aio_write */
2211 if (ret
== -EIOCBQUEUED
|| !ocfs2_iocb_is_rw_locked(iocb
)) {
2218 up_read(&inode
->i_alloc_sem
);
2220 ocfs2_rw_unlock(inode
, rw_level
);
2226 const struct inode_operations ocfs2_file_iops
= {
2227 .setattr
= ocfs2_setattr
,
2228 .getattr
= ocfs2_getattr
,
2229 .permission
= ocfs2_permission
,
2230 .fallocate
= ocfs2_fallocate
,
2233 const struct inode_operations ocfs2_special_file_iops
= {
2234 .setattr
= ocfs2_setattr
,
2235 .getattr
= ocfs2_getattr
,
2236 .permission
= ocfs2_permission
,
2239 const struct file_operations ocfs2_fops
= {
2240 .llseek
= generic_file_llseek
,
2241 .read
= do_sync_read
,
2242 .write
= do_sync_write
,
2244 .fsync
= ocfs2_sync_file
,
2245 .release
= ocfs2_file_release
,
2246 .open
= ocfs2_file_open
,
2247 .aio_read
= ocfs2_file_aio_read
,
2248 .aio_write
= ocfs2_file_aio_write
,
2249 .unlocked_ioctl
= ocfs2_ioctl
,
2250 #ifdef CONFIG_COMPAT
2251 .compat_ioctl
= ocfs2_compat_ioctl
,
2253 .flock
= ocfs2_flock
,
2254 .splice_read
= ocfs2_file_splice_read
,
2255 .splice_write
= ocfs2_file_splice_write
,
2258 const struct file_operations ocfs2_dops
= {
2259 .llseek
= generic_file_llseek
,
2260 .read
= generic_read_dir
,
2261 .readdir
= ocfs2_readdir
,
2262 .fsync
= ocfs2_sync_file
,
2263 .release
= ocfs2_dir_release
,
2264 .open
= ocfs2_dir_open
,
2265 .unlocked_ioctl
= ocfs2_ioctl
,
2266 #ifdef CONFIG_COMPAT
2267 .compat_ioctl
= ocfs2_compat_ioctl
,
2269 .flock
= ocfs2_flock
,