badpage: zap print_bad_pte on swap and file
[linux-2.6/mini2440.git] / mm / swapfile.c
blobf28745855772506fb34ed19252e130343daeb532
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
37 static DEFINE_SPINLOCK(swap_lock);
38 static unsigned int nr_swapfiles;
39 long nr_swap_pages;
40 long total_swap_pages;
41 static int swap_overflow;
42 static int least_priority;
44 static const char Bad_file[] = "Bad swap file entry ";
45 static const char Unused_file[] = "Unused swap file entry ";
46 static const char Bad_offset[] = "Bad swap offset entry ";
47 static const char Unused_offset[] = "Unused swap offset entry ";
49 static struct swap_list_t swap_list = {-1, -1};
51 static struct swap_info_struct swap_info[MAX_SWAPFILES];
53 static DEFINE_MUTEX(swapon_mutex);
56 * We need this because the bdev->unplug_fn can sleep and we cannot
57 * hold swap_lock while calling the unplug_fn. And swap_lock
58 * cannot be turned into a mutex.
60 static DECLARE_RWSEM(swap_unplug_sem);
62 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
64 swp_entry_t entry;
66 down_read(&swap_unplug_sem);
67 entry.val = page_private(page);
68 if (PageSwapCache(page)) {
69 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
70 struct backing_dev_info *bdi;
73 * If the page is removed from swapcache from under us (with a
74 * racy try_to_unuse/swapoff) we need an additional reference
75 * count to avoid reading garbage from page_private(page) above.
76 * If the WARN_ON triggers during a swapoff it maybe the race
77 * condition and it's harmless. However if it triggers without
78 * swapoff it signals a problem.
80 WARN_ON(page_count(page) <= 1);
82 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
83 blk_run_backing_dev(bdi, page);
85 up_read(&swap_unplug_sem);
89 * swapon tell device that all the old swap contents can be discarded,
90 * to allow the swap device to optimize its wear-levelling.
92 static int discard_swap(struct swap_info_struct *si)
94 struct swap_extent *se;
95 int err = 0;
97 list_for_each_entry(se, &si->extent_list, list) {
98 sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
99 sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
101 if (se->start_page == 0) {
102 /* Do not discard the swap header page! */
103 start_block += 1 << (PAGE_SHIFT - 9);
104 nr_blocks -= 1 << (PAGE_SHIFT - 9);
105 if (!nr_blocks)
106 continue;
109 err = blkdev_issue_discard(si->bdev, start_block,
110 nr_blocks, GFP_KERNEL);
111 if (err)
112 break;
114 cond_resched();
116 return err; /* That will often be -EOPNOTSUPP */
120 * swap allocation tell device that a cluster of swap can now be discarded,
121 * to allow the swap device to optimize its wear-levelling.
123 static void discard_swap_cluster(struct swap_info_struct *si,
124 pgoff_t start_page, pgoff_t nr_pages)
126 struct swap_extent *se = si->curr_swap_extent;
127 int found_extent = 0;
129 while (nr_pages) {
130 struct list_head *lh;
132 if (se->start_page <= start_page &&
133 start_page < se->start_page + se->nr_pages) {
134 pgoff_t offset = start_page - se->start_page;
135 sector_t start_block = se->start_block + offset;
136 sector_t nr_blocks = se->nr_pages - offset;
138 if (nr_blocks > nr_pages)
139 nr_blocks = nr_pages;
140 start_page += nr_blocks;
141 nr_pages -= nr_blocks;
143 if (!found_extent++)
144 si->curr_swap_extent = se;
146 start_block <<= PAGE_SHIFT - 9;
147 nr_blocks <<= PAGE_SHIFT - 9;
148 if (blkdev_issue_discard(si->bdev, start_block,
149 nr_blocks, GFP_NOIO))
150 break;
153 lh = se->list.next;
154 if (lh == &si->extent_list)
155 lh = lh->next;
156 se = list_entry(lh, struct swap_extent, list);
160 static int wait_for_discard(void *word)
162 schedule();
163 return 0;
166 #define SWAPFILE_CLUSTER 256
167 #define LATENCY_LIMIT 256
169 static inline unsigned long scan_swap_map(struct swap_info_struct *si)
171 unsigned long offset;
172 unsigned long scan_base;
173 unsigned long last_in_cluster = 0;
174 int latency_ration = LATENCY_LIMIT;
175 int found_free_cluster = 0;
178 * We try to cluster swap pages by allocating them sequentially
179 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
180 * way, however, we resort to first-free allocation, starting
181 * a new cluster. This prevents us from scattering swap pages
182 * all over the entire swap partition, so that we reduce
183 * overall disk seek times between swap pages. -- sct
184 * But we do now try to find an empty cluster. -Andrea
185 * And we let swap pages go all over an SSD partition. Hugh
188 si->flags += SWP_SCANNING;
189 scan_base = offset = si->cluster_next;
191 if (unlikely(!si->cluster_nr--)) {
192 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
193 si->cluster_nr = SWAPFILE_CLUSTER - 1;
194 goto checks;
196 if (si->flags & SWP_DISCARDABLE) {
198 * Start range check on racing allocations, in case
199 * they overlap the cluster we eventually decide on
200 * (we scan without swap_lock to allow preemption).
201 * It's hardly conceivable that cluster_nr could be
202 * wrapped during our scan, but don't depend on it.
204 if (si->lowest_alloc)
205 goto checks;
206 si->lowest_alloc = si->max;
207 si->highest_alloc = 0;
209 spin_unlock(&swap_lock);
212 * If seek is expensive, start searching for new cluster from
213 * start of partition, to minimize the span of allocated swap.
214 * But if seek is cheap, search from our current position, so
215 * that swap is allocated from all over the partition: if the
216 * Flash Translation Layer only remaps within limited zones,
217 * we don't want to wear out the first zone too quickly.
219 if (!(si->flags & SWP_SOLIDSTATE))
220 scan_base = offset = si->lowest_bit;
221 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
223 /* Locate the first empty (unaligned) cluster */
224 for (; last_in_cluster <= si->highest_bit; offset++) {
225 if (si->swap_map[offset])
226 last_in_cluster = offset + SWAPFILE_CLUSTER;
227 else if (offset == last_in_cluster) {
228 spin_lock(&swap_lock);
229 offset -= SWAPFILE_CLUSTER - 1;
230 si->cluster_next = offset;
231 si->cluster_nr = SWAPFILE_CLUSTER - 1;
232 found_free_cluster = 1;
233 goto checks;
235 if (unlikely(--latency_ration < 0)) {
236 cond_resched();
237 latency_ration = LATENCY_LIMIT;
241 offset = si->lowest_bit;
242 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
244 /* Locate the first empty (unaligned) cluster */
245 for (; last_in_cluster < scan_base; offset++) {
246 if (si->swap_map[offset])
247 last_in_cluster = offset + SWAPFILE_CLUSTER;
248 else if (offset == last_in_cluster) {
249 spin_lock(&swap_lock);
250 offset -= SWAPFILE_CLUSTER - 1;
251 si->cluster_next = offset;
252 si->cluster_nr = SWAPFILE_CLUSTER - 1;
253 found_free_cluster = 1;
254 goto checks;
256 if (unlikely(--latency_ration < 0)) {
257 cond_resched();
258 latency_ration = LATENCY_LIMIT;
262 offset = scan_base;
263 spin_lock(&swap_lock);
264 si->cluster_nr = SWAPFILE_CLUSTER - 1;
265 si->lowest_alloc = 0;
268 checks:
269 if (!(si->flags & SWP_WRITEOK))
270 goto no_page;
271 if (!si->highest_bit)
272 goto no_page;
273 if (offset > si->highest_bit)
274 scan_base = offset = si->lowest_bit;
275 if (si->swap_map[offset])
276 goto scan;
278 if (offset == si->lowest_bit)
279 si->lowest_bit++;
280 if (offset == si->highest_bit)
281 si->highest_bit--;
282 si->inuse_pages++;
283 if (si->inuse_pages == si->pages) {
284 si->lowest_bit = si->max;
285 si->highest_bit = 0;
287 si->swap_map[offset] = 1;
288 si->cluster_next = offset + 1;
289 si->flags -= SWP_SCANNING;
291 if (si->lowest_alloc) {
293 * Only set when SWP_DISCARDABLE, and there's a scan
294 * for a free cluster in progress or just completed.
296 if (found_free_cluster) {
298 * To optimize wear-levelling, discard the
299 * old data of the cluster, taking care not to
300 * discard any of its pages that have already
301 * been allocated by racing tasks (offset has
302 * already stepped over any at the beginning).
304 if (offset < si->highest_alloc &&
305 si->lowest_alloc <= last_in_cluster)
306 last_in_cluster = si->lowest_alloc - 1;
307 si->flags |= SWP_DISCARDING;
308 spin_unlock(&swap_lock);
310 if (offset < last_in_cluster)
311 discard_swap_cluster(si, offset,
312 last_in_cluster - offset + 1);
314 spin_lock(&swap_lock);
315 si->lowest_alloc = 0;
316 si->flags &= ~SWP_DISCARDING;
318 smp_mb(); /* wake_up_bit advises this */
319 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
321 } else if (si->flags & SWP_DISCARDING) {
323 * Delay using pages allocated by racing tasks
324 * until the whole discard has been issued. We
325 * could defer that delay until swap_writepage,
326 * but it's easier to keep this self-contained.
328 spin_unlock(&swap_lock);
329 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
330 wait_for_discard, TASK_UNINTERRUPTIBLE);
331 spin_lock(&swap_lock);
332 } else {
334 * Note pages allocated by racing tasks while
335 * scan for a free cluster is in progress, so
336 * that its final discard can exclude them.
338 if (offset < si->lowest_alloc)
339 si->lowest_alloc = offset;
340 if (offset > si->highest_alloc)
341 si->highest_alloc = offset;
344 return offset;
346 scan:
347 spin_unlock(&swap_lock);
348 while (++offset <= si->highest_bit) {
349 if (!si->swap_map[offset]) {
350 spin_lock(&swap_lock);
351 goto checks;
353 if (unlikely(--latency_ration < 0)) {
354 cond_resched();
355 latency_ration = LATENCY_LIMIT;
358 offset = si->lowest_bit;
359 while (++offset < scan_base) {
360 if (!si->swap_map[offset]) {
361 spin_lock(&swap_lock);
362 goto checks;
364 if (unlikely(--latency_ration < 0)) {
365 cond_resched();
366 latency_ration = LATENCY_LIMIT;
369 spin_lock(&swap_lock);
371 no_page:
372 si->flags -= SWP_SCANNING;
373 return 0;
376 swp_entry_t get_swap_page(void)
378 struct swap_info_struct *si;
379 pgoff_t offset;
380 int type, next;
381 int wrapped = 0;
383 spin_lock(&swap_lock);
384 if (nr_swap_pages <= 0)
385 goto noswap;
386 nr_swap_pages--;
388 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
389 si = swap_info + type;
390 next = si->next;
391 if (next < 0 ||
392 (!wrapped && si->prio != swap_info[next].prio)) {
393 next = swap_list.head;
394 wrapped++;
397 if (!si->highest_bit)
398 continue;
399 if (!(si->flags & SWP_WRITEOK))
400 continue;
402 swap_list.next = next;
403 offset = scan_swap_map(si);
404 if (offset) {
405 spin_unlock(&swap_lock);
406 return swp_entry(type, offset);
408 next = swap_list.next;
411 nr_swap_pages++;
412 noswap:
413 spin_unlock(&swap_lock);
414 return (swp_entry_t) {0};
417 swp_entry_t get_swap_page_of_type(int type)
419 struct swap_info_struct *si;
420 pgoff_t offset;
422 spin_lock(&swap_lock);
423 si = swap_info + type;
424 if (si->flags & SWP_WRITEOK) {
425 nr_swap_pages--;
426 offset = scan_swap_map(si);
427 if (offset) {
428 spin_unlock(&swap_lock);
429 return swp_entry(type, offset);
431 nr_swap_pages++;
433 spin_unlock(&swap_lock);
434 return (swp_entry_t) {0};
437 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
439 struct swap_info_struct * p;
440 unsigned long offset, type;
442 if (!entry.val)
443 goto out;
444 type = swp_type(entry);
445 if (type >= nr_swapfiles)
446 goto bad_nofile;
447 p = & swap_info[type];
448 if (!(p->flags & SWP_USED))
449 goto bad_device;
450 offset = swp_offset(entry);
451 if (offset >= p->max)
452 goto bad_offset;
453 if (!p->swap_map[offset])
454 goto bad_free;
455 spin_lock(&swap_lock);
456 return p;
458 bad_free:
459 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
460 goto out;
461 bad_offset:
462 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
463 goto out;
464 bad_device:
465 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
466 goto out;
467 bad_nofile:
468 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
469 out:
470 return NULL;
473 static int swap_entry_free(struct swap_info_struct *p, unsigned long offset)
475 int count = p->swap_map[offset];
477 if (count < SWAP_MAP_MAX) {
478 count--;
479 p->swap_map[offset] = count;
480 if (!count) {
481 if (offset < p->lowest_bit)
482 p->lowest_bit = offset;
483 if (offset > p->highest_bit)
484 p->highest_bit = offset;
485 if (p->prio > swap_info[swap_list.next].prio)
486 swap_list.next = p - swap_info;
487 nr_swap_pages++;
488 p->inuse_pages--;
491 return count;
495 * Caller has made sure that the swapdevice corresponding to entry
496 * is still around or has not been recycled.
498 void swap_free(swp_entry_t entry)
500 struct swap_info_struct * p;
502 p = swap_info_get(entry);
503 if (p) {
504 swap_entry_free(p, swp_offset(entry));
505 spin_unlock(&swap_lock);
510 * How many references to page are currently swapped out?
512 static inline int page_swapcount(struct page *page)
514 int count = 0;
515 struct swap_info_struct *p;
516 swp_entry_t entry;
518 entry.val = page_private(page);
519 p = swap_info_get(entry);
520 if (p) {
521 /* Subtract the 1 for the swap cache itself */
522 count = p->swap_map[swp_offset(entry)] - 1;
523 spin_unlock(&swap_lock);
525 return count;
529 * We can write to an anon page without COW if there are no other references
530 * to it. And as a side-effect, free up its swap: because the old content
531 * on disk will never be read, and seeking back there to write new content
532 * later would only waste time away from clustering.
534 int reuse_swap_page(struct page *page)
536 int count;
538 VM_BUG_ON(!PageLocked(page));
539 count = page_mapcount(page);
540 if (count <= 1 && PageSwapCache(page)) {
541 count += page_swapcount(page);
542 if (count == 1 && !PageWriteback(page)) {
543 delete_from_swap_cache(page);
544 SetPageDirty(page);
547 return count == 1;
551 * If swap is getting full, or if there are no more mappings of this page,
552 * then try_to_free_swap is called to free its swap space.
554 int try_to_free_swap(struct page *page)
556 VM_BUG_ON(!PageLocked(page));
558 if (!PageSwapCache(page))
559 return 0;
560 if (PageWriteback(page))
561 return 0;
562 if (page_swapcount(page))
563 return 0;
565 delete_from_swap_cache(page);
566 SetPageDirty(page);
567 return 1;
571 * Free the swap entry like above, but also try to
572 * free the page cache entry if it is the last user.
574 int free_swap_and_cache(swp_entry_t entry)
576 struct swap_info_struct *p;
577 struct page *page = NULL;
579 if (is_migration_entry(entry))
580 return 1;
582 p = swap_info_get(entry);
583 if (p) {
584 if (swap_entry_free(p, swp_offset(entry)) == 1) {
585 page = find_get_page(&swapper_space, entry.val);
586 if (page && !trylock_page(page)) {
587 page_cache_release(page);
588 page = NULL;
591 spin_unlock(&swap_lock);
593 if (page) {
595 * Not mapped elsewhere, or swap space full? Free it!
596 * Also recheck PageSwapCache now page is locked (above).
598 if (PageSwapCache(page) && !PageWriteback(page) &&
599 (!page_mapped(page) || vm_swap_full())) {
600 delete_from_swap_cache(page);
601 SetPageDirty(page);
603 unlock_page(page);
604 page_cache_release(page);
606 return p != NULL;
609 #ifdef CONFIG_HIBERNATION
611 * Find the swap type that corresponds to given device (if any).
613 * @offset - number of the PAGE_SIZE-sized block of the device, starting
614 * from 0, in which the swap header is expected to be located.
616 * This is needed for the suspend to disk (aka swsusp).
618 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
620 struct block_device *bdev = NULL;
621 int i;
623 if (device)
624 bdev = bdget(device);
626 spin_lock(&swap_lock);
627 for (i = 0; i < nr_swapfiles; i++) {
628 struct swap_info_struct *sis = swap_info + i;
630 if (!(sis->flags & SWP_WRITEOK))
631 continue;
633 if (!bdev) {
634 if (bdev_p)
635 *bdev_p = sis->bdev;
637 spin_unlock(&swap_lock);
638 return i;
640 if (bdev == sis->bdev) {
641 struct swap_extent *se;
643 se = list_entry(sis->extent_list.next,
644 struct swap_extent, list);
645 if (se->start_block == offset) {
646 if (bdev_p)
647 *bdev_p = sis->bdev;
649 spin_unlock(&swap_lock);
650 bdput(bdev);
651 return i;
655 spin_unlock(&swap_lock);
656 if (bdev)
657 bdput(bdev);
659 return -ENODEV;
663 * Return either the total number of swap pages of given type, or the number
664 * of free pages of that type (depending on @free)
666 * This is needed for software suspend
668 unsigned int count_swap_pages(int type, int free)
670 unsigned int n = 0;
672 if (type < nr_swapfiles) {
673 spin_lock(&swap_lock);
674 if (swap_info[type].flags & SWP_WRITEOK) {
675 n = swap_info[type].pages;
676 if (free)
677 n -= swap_info[type].inuse_pages;
679 spin_unlock(&swap_lock);
681 return n;
683 #endif
686 * No need to decide whether this PTE shares the swap entry with others,
687 * just let do_wp_page work it out if a write is requested later - to
688 * force COW, vm_page_prot omits write permission from any private vma.
690 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
691 unsigned long addr, swp_entry_t entry, struct page *page)
693 spinlock_t *ptl;
694 pte_t *pte;
695 int ret = 1;
697 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
698 ret = -ENOMEM;
700 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
701 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
702 if (ret > 0)
703 mem_cgroup_uncharge_page(page);
704 ret = 0;
705 goto out;
708 inc_mm_counter(vma->vm_mm, anon_rss);
709 get_page(page);
710 set_pte_at(vma->vm_mm, addr, pte,
711 pte_mkold(mk_pte(page, vma->vm_page_prot)));
712 page_add_anon_rmap(page, vma, addr);
713 swap_free(entry);
715 * Move the page to the active list so it is not
716 * immediately swapped out again after swapon.
718 activate_page(page);
719 out:
720 pte_unmap_unlock(pte, ptl);
721 return ret;
724 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
725 unsigned long addr, unsigned long end,
726 swp_entry_t entry, struct page *page)
728 pte_t swp_pte = swp_entry_to_pte(entry);
729 pte_t *pte;
730 int ret = 0;
733 * We don't actually need pte lock while scanning for swp_pte: since
734 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
735 * page table while we're scanning; though it could get zapped, and on
736 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
737 * of unmatched parts which look like swp_pte, so unuse_pte must
738 * recheck under pte lock. Scanning without pte lock lets it be
739 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
741 pte = pte_offset_map(pmd, addr);
742 do {
744 * swapoff spends a _lot_ of time in this loop!
745 * Test inline before going to call unuse_pte.
747 if (unlikely(pte_same(*pte, swp_pte))) {
748 pte_unmap(pte);
749 ret = unuse_pte(vma, pmd, addr, entry, page);
750 if (ret)
751 goto out;
752 pte = pte_offset_map(pmd, addr);
754 } while (pte++, addr += PAGE_SIZE, addr != end);
755 pte_unmap(pte - 1);
756 out:
757 return ret;
760 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
761 unsigned long addr, unsigned long end,
762 swp_entry_t entry, struct page *page)
764 pmd_t *pmd;
765 unsigned long next;
766 int ret;
768 pmd = pmd_offset(pud, addr);
769 do {
770 next = pmd_addr_end(addr, end);
771 if (pmd_none_or_clear_bad(pmd))
772 continue;
773 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
774 if (ret)
775 return ret;
776 } while (pmd++, addr = next, addr != end);
777 return 0;
780 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
781 unsigned long addr, unsigned long end,
782 swp_entry_t entry, struct page *page)
784 pud_t *pud;
785 unsigned long next;
786 int ret;
788 pud = pud_offset(pgd, addr);
789 do {
790 next = pud_addr_end(addr, end);
791 if (pud_none_or_clear_bad(pud))
792 continue;
793 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
794 if (ret)
795 return ret;
796 } while (pud++, addr = next, addr != end);
797 return 0;
800 static int unuse_vma(struct vm_area_struct *vma,
801 swp_entry_t entry, struct page *page)
803 pgd_t *pgd;
804 unsigned long addr, end, next;
805 int ret;
807 if (page->mapping) {
808 addr = page_address_in_vma(page, vma);
809 if (addr == -EFAULT)
810 return 0;
811 else
812 end = addr + PAGE_SIZE;
813 } else {
814 addr = vma->vm_start;
815 end = vma->vm_end;
818 pgd = pgd_offset(vma->vm_mm, addr);
819 do {
820 next = pgd_addr_end(addr, end);
821 if (pgd_none_or_clear_bad(pgd))
822 continue;
823 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
824 if (ret)
825 return ret;
826 } while (pgd++, addr = next, addr != end);
827 return 0;
830 static int unuse_mm(struct mm_struct *mm,
831 swp_entry_t entry, struct page *page)
833 struct vm_area_struct *vma;
834 int ret = 0;
836 if (!down_read_trylock(&mm->mmap_sem)) {
838 * Activate page so shrink_inactive_list is unlikely to unmap
839 * its ptes while lock is dropped, so swapoff can make progress.
841 activate_page(page);
842 unlock_page(page);
843 down_read(&mm->mmap_sem);
844 lock_page(page);
846 for (vma = mm->mmap; vma; vma = vma->vm_next) {
847 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
848 break;
850 up_read(&mm->mmap_sem);
851 return (ret < 0)? ret: 0;
855 * Scan swap_map from current position to next entry still in use.
856 * Recycle to start on reaching the end, returning 0 when empty.
858 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
859 unsigned int prev)
861 unsigned int max = si->max;
862 unsigned int i = prev;
863 int count;
866 * No need for swap_lock here: we're just looking
867 * for whether an entry is in use, not modifying it; false
868 * hits are okay, and sys_swapoff() has already prevented new
869 * allocations from this area (while holding swap_lock).
871 for (;;) {
872 if (++i >= max) {
873 if (!prev) {
874 i = 0;
875 break;
878 * No entries in use at top of swap_map,
879 * loop back to start and recheck there.
881 max = prev + 1;
882 prev = 0;
883 i = 1;
885 count = si->swap_map[i];
886 if (count && count != SWAP_MAP_BAD)
887 break;
889 return i;
893 * We completely avoid races by reading each swap page in advance,
894 * and then search for the process using it. All the necessary
895 * page table adjustments can then be made atomically.
897 static int try_to_unuse(unsigned int type)
899 struct swap_info_struct * si = &swap_info[type];
900 struct mm_struct *start_mm;
901 unsigned short *swap_map;
902 unsigned short swcount;
903 struct page *page;
904 swp_entry_t entry;
905 unsigned int i = 0;
906 int retval = 0;
907 int reset_overflow = 0;
908 int shmem;
911 * When searching mms for an entry, a good strategy is to
912 * start at the first mm we freed the previous entry from
913 * (though actually we don't notice whether we or coincidence
914 * freed the entry). Initialize this start_mm with a hold.
916 * A simpler strategy would be to start at the last mm we
917 * freed the previous entry from; but that would take less
918 * advantage of mmlist ordering, which clusters forked mms
919 * together, child after parent. If we race with dup_mmap(), we
920 * prefer to resolve parent before child, lest we miss entries
921 * duplicated after we scanned child: using last mm would invert
922 * that. Though it's only a serious concern when an overflowed
923 * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
925 start_mm = &init_mm;
926 atomic_inc(&init_mm.mm_users);
929 * Keep on scanning until all entries have gone. Usually,
930 * one pass through swap_map is enough, but not necessarily:
931 * there are races when an instance of an entry might be missed.
933 while ((i = find_next_to_unuse(si, i)) != 0) {
934 if (signal_pending(current)) {
935 retval = -EINTR;
936 break;
940 * Get a page for the entry, using the existing swap
941 * cache page if there is one. Otherwise, get a clean
942 * page and read the swap into it.
944 swap_map = &si->swap_map[i];
945 entry = swp_entry(type, i);
946 page = read_swap_cache_async(entry,
947 GFP_HIGHUSER_MOVABLE, NULL, 0);
948 if (!page) {
950 * Either swap_duplicate() failed because entry
951 * has been freed independently, and will not be
952 * reused since sys_swapoff() already disabled
953 * allocation from here, or alloc_page() failed.
955 if (!*swap_map)
956 continue;
957 retval = -ENOMEM;
958 break;
962 * Don't hold on to start_mm if it looks like exiting.
964 if (atomic_read(&start_mm->mm_users) == 1) {
965 mmput(start_mm);
966 start_mm = &init_mm;
967 atomic_inc(&init_mm.mm_users);
971 * Wait for and lock page. When do_swap_page races with
972 * try_to_unuse, do_swap_page can handle the fault much
973 * faster than try_to_unuse can locate the entry. This
974 * apparently redundant "wait_on_page_locked" lets try_to_unuse
975 * defer to do_swap_page in such a case - in some tests,
976 * do_swap_page and try_to_unuse repeatedly compete.
978 wait_on_page_locked(page);
979 wait_on_page_writeback(page);
980 lock_page(page);
981 wait_on_page_writeback(page);
984 * Remove all references to entry.
985 * Whenever we reach init_mm, there's no address space
986 * to search, but use it as a reminder to search shmem.
988 shmem = 0;
989 swcount = *swap_map;
990 if (swcount > 1) {
991 if (start_mm == &init_mm)
992 shmem = shmem_unuse(entry, page);
993 else
994 retval = unuse_mm(start_mm, entry, page);
996 if (*swap_map > 1) {
997 int set_start_mm = (*swap_map >= swcount);
998 struct list_head *p = &start_mm->mmlist;
999 struct mm_struct *new_start_mm = start_mm;
1000 struct mm_struct *prev_mm = start_mm;
1001 struct mm_struct *mm;
1003 atomic_inc(&new_start_mm->mm_users);
1004 atomic_inc(&prev_mm->mm_users);
1005 spin_lock(&mmlist_lock);
1006 while (*swap_map > 1 && !retval && !shmem &&
1007 (p = p->next) != &start_mm->mmlist) {
1008 mm = list_entry(p, struct mm_struct, mmlist);
1009 if (!atomic_inc_not_zero(&mm->mm_users))
1010 continue;
1011 spin_unlock(&mmlist_lock);
1012 mmput(prev_mm);
1013 prev_mm = mm;
1015 cond_resched();
1017 swcount = *swap_map;
1018 if (swcount <= 1)
1020 else if (mm == &init_mm) {
1021 set_start_mm = 1;
1022 shmem = shmem_unuse(entry, page);
1023 } else
1024 retval = unuse_mm(mm, entry, page);
1025 if (set_start_mm && *swap_map < swcount) {
1026 mmput(new_start_mm);
1027 atomic_inc(&mm->mm_users);
1028 new_start_mm = mm;
1029 set_start_mm = 0;
1031 spin_lock(&mmlist_lock);
1033 spin_unlock(&mmlist_lock);
1034 mmput(prev_mm);
1035 mmput(start_mm);
1036 start_mm = new_start_mm;
1038 if (shmem) {
1039 /* page has already been unlocked and released */
1040 if (shmem > 0)
1041 continue;
1042 retval = shmem;
1043 break;
1045 if (retval) {
1046 unlock_page(page);
1047 page_cache_release(page);
1048 break;
1052 * How could swap count reach 0x7fff when the maximum
1053 * pid is 0x7fff, and there's no way to repeat a swap
1054 * page within an mm (except in shmem, where it's the
1055 * shared object which takes the reference count)?
1056 * We believe SWAP_MAP_MAX cannot occur in Linux 2.4.
1058 * If that's wrong, then we should worry more about
1059 * exit_mmap() and do_munmap() cases described above:
1060 * we might be resetting SWAP_MAP_MAX too early here.
1061 * We know "Undead"s can happen, they're okay, so don't
1062 * report them; but do report if we reset SWAP_MAP_MAX.
1064 if (*swap_map == SWAP_MAP_MAX) {
1065 spin_lock(&swap_lock);
1066 *swap_map = 1;
1067 spin_unlock(&swap_lock);
1068 reset_overflow = 1;
1072 * If a reference remains (rare), we would like to leave
1073 * the page in the swap cache; but try_to_unmap could
1074 * then re-duplicate the entry once we drop page lock,
1075 * so we might loop indefinitely; also, that page could
1076 * not be swapped out to other storage meanwhile. So:
1077 * delete from cache even if there's another reference,
1078 * after ensuring that the data has been saved to disk -
1079 * since if the reference remains (rarer), it will be
1080 * read from disk into another page. Splitting into two
1081 * pages would be incorrect if swap supported "shared
1082 * private" pages, but they are handled by tmpfs files.
1084 if ((*swap_map > 1) && PageDirty(page) && PageSwapCache(page)) {
1085 struct writeback_control wbc = {
1086 .sync_mode = WB_SYNC_NONE,
1089 swap_writepage(page, &wbc);
1090 lock_page(page);
1091 wait_on_page_writeback(page);
1095 * It is conceivable that a racing task removed this page from
1096 * swap cache just before we acquired the page lock at the top,
1097 * or while we dropped it in unuse_mm(). The page might even
1098 * be back in swap cache on another swap area: that we must not
1099 * delete, since it may not have been written out to swap yet.
1101 if (PageSwapCache(page) &&
1102 likely(page_private(page) == entry.val))
1103 delete_from_swap_cache(page);
1106 * So we could skip searching mms once swap count went
1107 * to 1, we did not mark any present ptes as dirty: must
1108 * mark page dirty so shrink_page_list will preserve it.
1110 SetPageDirty(page);
1111 unlock_page(page);
1112 page_cache_release(page);
1115 * Make sure that we aren't completely killing
1116 * interactive performance.
1118 cond_resched();
1121 mmput(start_mm);
1122 if (reset_overflow) {
1123 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1124 swap_overflow = 0;
1126 return retval;
1130 * After a successful try_to_unuse, if no swap is now in use, we know
1131 * we can empty the mmlist. swap_lock must be held on entry and exit.
1132 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1133 * added to the mmlist just after page_duplicate - before would be racy.
1135 static void drain_mmlist(void)
1137 struct list_head *p, *next;
1138 unsigned int i;
1140 for (i = 0; i < nr_swapfiles; i++)
1141 if (swap_info[i].inuse_pages)
1142 return;
1143 spin_lock(&mmlist_lock);
1144 list_for_each_safe(p, next, &init_mm.mmlist)
1145 list_del_init(p);
1146 spin_unlock(&mmlist_lock);
1150 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1151 * corresponds to page offset `offset'.
1153 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1155 struct swap_extent *se = sis->curr_swap_extent;
1156 struct swap_extent *start_se = se;
1158 for ( ; ; ) {
1159 struct list_head *lh;
1161 if (se->start_page <= offset &&
1162 offset < (se->start_page + se->nr_pages)) {
1163 return se->start_block + (offset - se->start_page);
1165 lh = se->list.next;
1166 if (lh == &sis->extent_list)
1167 lh = lh->next;
1168 se = list_entry(lh, struct swap_extent, list);
1169 sis->curr_swap_extent = se;
1170 BUG_ON(se == start_se); /* It *must* be present */
1174 #ifdef CONFIG_HIBERNATION
1176 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1177 * corresponding to given index in swap_info (swap type).
1179 sector_t swapdev_block(int swap_type, pgoff_t offset)
1181 struct swap_info_struct *sis;
1183 if (swap_type >= nr_swapfiles)
1184 return 0;
1186 sis = swap_info + swap_type;
1187 return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1189 #endif /* CONFIG_HIBERNATION */
1192 * Free all of a swapdev's extent information
1194 static void destroy_swap_extents(struct swap_info_struct *sis)
1196 while (!list_empty(&sis->extent_list)) {
1197 struct swap_extent *se;
1199 se = list_entry(sis->extent_list.next,
1200 struct swap_extent, list);
1201 list_del(&se->list);
1202 kfree(se);
1207 * Add a block range (and the corresponding page range) into this swapdev's
1208 * extent list. The extent list is kept sorted in page order.
1210 * This function rather assumes that it is called in ascending page order.
1212 static int
1213 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1214 unsigned long nr_pages, sector_t start_block)
1216 struct swap_extent *se;
1217 struct swap_extent *new_se;
1218 struct list_head *lh;
1220 lh = sis->extent_list.prev; /* The highest page extent */
1221 if (lh != &sis->extent_list) {
1222 se = list_entry(lh, struct swap_extent, list);
1223 BUG_ON(se->start_page + se->nr_pages != start_page);
1224 if (se->start_block + se->nr_pages == start_block) {
1225 /* Merge it */
1226 se->nr_pages += nr_pages;
1227 return 0;
1232 * No merge. Insert a new extent, preserving ordering.
1234 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1235 if (new_se == NULL)
1236 return -ENOMEM;
1237 new_se->start_page = start_page;
1238 new_se->nr_pages = nr_pages;
1239 new_se->start_block = start_block;
1241 list_add_tail(&new_se->list, &sis->extent_list);
1242 return 1;
1246 * A `swap extent' is a simple thing which maps a contiguous range of pages
1247 * onto a contiguous range of disk blocks. An ordered list of swap extents
1248 * is built at swapon time and is then used at swap_writepage/swap_readpage
1249 * time for locating where on disk a page belongs.
1251 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1252 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1253 * swap files identically.
1255 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1256 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1257 * swapfiles are handled *identically* after swapon time.
1259 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1260 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1261 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1262 * requirements, they are simply tossed out - we will never use those blocks
1263 * for swapping.
1265 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1266 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1267 * which will scribble on the fs.
1269 * The amount of disk space which a single swap extent represents varies.
1270 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1271 * extents in the list. To avoid much list walking, we cache the previous
1272 * search location in `curr_swap_extent', and start new searches from there.
1273 * This is extremely effective. The average number of iterations in
1274 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1276 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1278 struct inode *inode;
1279 unsigned blocks_per_page;
1280 unsigned long page_no;
1281 unsigned blkbits;
1282 sector_t probe_block;
1283 sector_t last_block;
1284 sector_t lowest_block = -1;
1285 sector_t highest_block = 0;
1286 int nr_extents = 0;
1287 int ret;
1289 inode = sis->swap_file->f_mapping->host;
1290 if (S_ISBLK(inode->i_mode)) {
1291 ret = add_swap_extent(sis, 0, sis->max, 0);
1292 *span = sis->pages;
1293 goto done;
1296 blkbits = inode->i_blkbits;
1297 blocks_per_page = PAGE_SIZE >> blkbits;
1300 * Map all the blocks into the extent list. This code doesn't try
1301 * to be very smart.
1303 probe_block = 0;
1304 page_no = 0;
1305 last_block = i_size_read(inode) >> blkbits;
1306 while ((probe_block + blocks_per_page) <= last_block &&
1307 page_no < sis->max) {
1308 unsigned block_in_page;
1309 sector_t first_block;
1311 first_block = bmap(inode, probe_block);
1312 if (first_block == 0)
1313 goto bad_bmap;
1316 * It must be PAGE_SIZE aligned on-disk
1318 if (first_block & (blocks_per_page - 1)) {
1319 probe_block++;
1320 goto reprobe;
1323 for (block_in_page = 1; block_in_page < blocks_per_page;
1324 block_in_page++) {
1325 sector_t block;
1327 block = bmap(inode, probe_block + block_in_page);
1328 if (block == 0)
1329 goto bad_bmap;
1330 if (block != first_block + block_in_page) {
1331 /* Discontiguity */
1332 probe_block++;
1333 goto reprobe;
1337 first_block >>= (PAGE_SHIFT - blkbits);
1338 if (page_no) { /* exclude the header page */
1339 if (first_block < lowest_block)
1340 lowest_block = first_block;
1341 if (first_block > highest_block)
1342 highest_block = first_block;
1346 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1348 ret = add_swap_extent(sis, page_no, 1, first_block);
1349 if (ret < 0)
1350 goto out;
1351 nr_extents += ret;
1352 page_no++;
1353 probe_block += blocks_per_page;
1354 reprobe:
1355 continue;
1357 ret = nr_extents;
1358 *span = 1 + highest_block - lowest_block;
1359 if (page_no == 0)
1360 page_no = 1; /* force Empty message */
1361 sis->max = page_no;
1362 sis->pages = page_no - 1;
1363 sis->highest_bit = page_no - 1;
1364 done:
1365 sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1366 struct swap_extent, list);
1367 goto out;
1368 bad_bmap:
1369 printk(KERN_ERR "swapon: swapfile has holes\n");
1370 ret = -EINVAL;
1371 out:
1372 return ret;
1375 #if 0 /* We don't need this yet */
1376 #include <linux/backing-dev.h>
1377 int page_queue_congested(struct page *page)
1379 struct backing_dev_info *bdi;
1381 VM_BUG_ON(!PageLocked(page)); /* It pins the swap_info_struct */
1383 if (PageSwapCache(page)) {
1384 swp_entry_t entry = { .val = page_private(page) };
1385 struct swap_info_struct *sis;
1387 sis = get_swap_info_struct(swp_type(entry));
1388 bdi = sis->bdev->bd_inode->i_mapping->backing_dev_info;
1389 } else
1390 bdi = page->mapping->backing_dev_info;
1391 return bdi_write_congested(bdi);
1393 #endif
1395 asmlinkage long sys_swapoff(const char __user * specialfile)
1397 struct swap_info_struct * p = NULL;
1398 unsigned short *swap_map;
1399 struct file *swap_file, *victim;
1400 struct address_space *mapping;
1401 struct inode *inode;
1402 char * pathname;
1403 int i, type, prev;
1404 int err;
1406 if (!capable(CAP_SYS_ADMIN))
1407 return -EPERM;
1409 pathname = getname(specialfile);
1410 err = PTR_ERR(pathname);
1411 if (IS_ERR(pathname))
1412 goto out;
1414 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1415 putname(pathname);
1416 err = PTR_ERR(victim);
1417 if (IS_ERR(victim))
1418 goto out;
1420 mapping = victim->f_mapping;
1421 prev = -1;
1422 spin_lock(&swap_lock);
1423 for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1424 p = swap_info + type;
1425 if (p->flags & SWP_WRITEOK) {
1426 if (p->swap_file->f_mapping == mapping)
1427 break;
1429 prev = type;
1431 if (type < 0) {
1432 err = -EINVAL;
1433 spin_unlock(&swap_lock);
1434 goto out_dput;
1436 if (!security_vm_enough_memory(p->pages))
1437 vm_unacct_memory(p->pages);
1438 else {
1439 err = -ENOMEM;
1440 spin_unlock(&swap_lock);
1441 goto out_dput;
1443 if (prev < 0) {
1444 swap_list.head = p->next;
1445 } else {
1446 swap_info[prev].next = p->next;
1448 if (type == swap_list.next) {
1449 /* just pick something that's safe... */
1450 swap_list.next = swap_list.head;
1452 if (p->prio < 0) {
1453 for (i = p->next; i >= 0; i = swap_info[i].next)
1454 swap_info[i].prio = p->prio--;
1455 least_priority++;
1457 nr_swap_pages -= p->pages;
1458 total_swap_pages -= p->pages;
1459 p->flags &= ~SWP_WRITEOK;
1460 spin_unlock(&swap_lock);
1462 current->flags |= PF_SWAPOFF;
1463 err = try_to_unuse(type);
1464 current->flags &= ~PF_SWAPOFF;
1466 if (err) {
1467 /* re-insert swap space back into swap_list */
1468 spin_lock(&swap_lock);
1469 if (p->prio < 0)
1470 p->prio = --least_priority;
1471 prev = -1;
1472 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1473 if (p->prio >= swap_info[i].prio)
1474 break;
1475 prev = i;
1477 p->next = i;
1478 if (prev < 0)
1479 swap_list.head = swap_list.next = p - swap_info;
1480 else
1481 swap_info[prev].next = p - swap_info;
1482 nr_swap_pages += p->pages;
1483 total_swap_pages += p->pages;
1484 p->flags |= SWP_WRITEOK;
1485 spin_unlock(&swap_lock);
1486 goto out_dput;
1489 /* wait for any unplug function to finish */
1490 down_write(&swap_unplug_sem);
1491 up_write(&swap_unplug_sem);
1493 destroy_swap_extents(p);
1494 mutex_lock(&swapon_mutex);
1495 spin_lock(&swap_lock);
1496 drain_mmlist();
1498 /* wait for anyone still in scan_swap_map */
1499 p->highest_bit = 0; /* cuts scans short */
1500 while (p->flags >= SWP_SCANNING) {
1501 spin_unlock(&swap_lock);
1502 schedule_timeout_uninterruptible(1);
1503 spin_lock(&swap_lock);
1506 swap_file = p->swap_file;
1507 p->swap_file = NULL;
1508 p->max = 0;
1509 swap_map = p->swap_map;
1510 p->swap_map = NULL;
1511 p->flags = 0;
1512 spin_unlock(&swap_lock);
1513 mutex_unlock(&swapon_mutex);
1514 vfree(swap_map);
1515 inode = mapping->host;
1516 if (S_ISBLK(inode->i_mode)) {
1517 struct block_device *bdev = I_BDEV(inode);
1518 set_blocksize(bdev, p->old_block_size);
1519 bd_release(bdev);
1520 } else {
1521 mutex_lock(&inode->i_mutex);
1522 inode->i_flags &= ~S_SWAPFILE;
1523 mutex_unlock(&inode->i_mutex);
1525 filp_close(swap_file, NULL);
1526 err = 0;
1528 out_dput:
1529 filp_close(victim, NULL);
1530 out:
1531 return err;
1534 #ifdef CONFIG_PROC_FS
1535 /* iterator */
1536 static void *swap_start(struct seq_file *swap, loff_t *pos)
1538 struct swap_info_struct *ptr = swap_info;
1539 int i;
1540 loff_t l = *pos;
1542 mutex_lock(&swapon_mutex);
1544 if (!l)
1545 return SEQ_START_TOKEN;
1547 for (i = 0; i < nr_swapfiles; i++, ptr++) {
1548 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1549 continue;
1550 if (!--l)
1551 return ptr;
1554 return NULL;
1557 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1559 struct swap_info_struct *ptr;
1560 struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1562 if (v == SEQ_START_TOKEN)
1563 ptr = swap_info;
1564 else {
1565 ptr = v;
1566 ptr++;
1569 for (; ptr < endptr; ptr++) {
1570 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1571 continue;
1572 ++*pos;
1573 return ptr;
1576 return NULL;
1579 static void swap_stop(struct seq_file *swap, void *v)
1581 mutex_unlock(&swapon_mutex);
1584 static int swap_show(struct seq_file *swap, void *v)
1586 struct swap_info_struct *ptr = v;
1587 struct file *file;
1588 int len;
1590 if (ptr == SEQ_START_TOKEN) {
1591 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1592 return 0;
1595 file = ptr->swap_file;
1596 len = seq_path(swap, &file->f_path, " \t\n\\");
1597 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1598 len < 40 ? 40 - len : 1, " ",
1599 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1600 "partition" : "file\t",
1601 ptr->pages << (PAGE_SHIFT - 10),
1602 ptr->inuse_pages << (PAGE_SHIFT - 10),
1603 ptr->prio);
1604 return 0;
1607 static const struct seq_operations swaps_op = {
1608 .start = swap_start,
1609 .next = swap_next,
1610 .stop = swap_stop,
1611 .show = swap_show
1614 static int swaps_open(struct inode *inode, struct file *file)
1616 return seq_open(file, &swaps_op);
1619 static const struct file_operations proc_swaps_operations = {
1620 .open = swaps_open,
1621 .read = seq_read,
1622 .llseek = seq_lseek,
1623 .release = seq_release,
1626 static int __init procswaps_init(void)
1628 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1629 return 0;
1631 __initcall(procswaps_init);
1632 #endif /* CONFIG_PROC_FS */
1634 #ifdef MAX_SWAPFILES_CHECK
1635 static int __init max_swapfiles_check(void)
1637 MAX_SWAPFILES_CHECK();
1638 return 0;
1640 late_initcall(max_swapfiles_check);
1641 #endif
1644 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1646 * The swapon system call
1648 asmlinkage long sys_swapon(const char __user * specialfile, int swap_flags)
1650 struct swap_info_struct * p;
1651 char *name = NULL;
1652 struct block_device *bdev = NULL;
1653 struct file *swap_file = NULL;
1654 struct address_space *mapping;
1655 unsigned int type;
1656 int i, prev;
1657 int error;
1658 union swap_header *swap_header = NULL;
1659 unsigned int nr_good_pages = 0;
1660 int nr_extents = 0;
1661 sector_t span;
1662 unsigned long maxpages = 1;
1663 unsigned long swapfilepages;
1664 unsigned short *swap_map = NULL;
1665 struct page *page = NULL;
1666 struct inode *inode = NULL;
1667 int did_down = 0;
1669 if (!capable(CAP_SYS_ADMIN))
1670 return -EPERM;
1671 spin_lock(&swap_lock);
1672 p = swap_info;
1673 for (type = 0 ; type < nr_swapfiles ; type++,p++)
1674 if (!(p->flags & SWP_USED))
1675 break;
1676 error = -EPERM;
1677 if (type >= MAX_SWAPFILES) {
1678 spin_unlock(&swap_lock);
1679 goto out;
1681 if (type >= nr_swapfiles)
1682 nr_swapfiles = type+1;
1683 memset(p, 0, sizeof(*p));
1684 INIT_LIST_HEAD(&p->extent_list);
1685 p->flags = SWP_USED;
1686 p->next = -1;
1687 spin_unlock(&swap_lock);
1688 name = getname(specialfile);
1689 error = PTR_ERR(name);
1690 if (IS_ERR(name)) {
1691 name = NULL;
1692 goto bad_swap_2;
1694 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1695 error = PTR_ERR(swap_file);
1696 if (IS_ERR(swap_file)) {
1697 swap_file = NULL;
1698 goto bad_swap_2;
1701 p->swap_file = swap_file;
1702 mapping = swap_file->f_mapping;
1703 inode = mapping->host;
1705 error = -EBUSY;
1706 for (i = 0; i < nr_swapfiles; i++) {
1707 struct swap_info_struct *q = &swap_info[i];
1709 if (i == type || !q->swap_file)
1710 continue;
1711 if (mapping == q->swap_file->f_mapping)
1712 goto bad_swap;
1715 error = -EINVAL;
1716 if (S_ISBLK(inode->i_mode)) {
1717 bdev = I_BDEV(inode);
1718 error = bd_claim(bdev, sys_swapon);
1719 if (error < 0) {
1720 bdev = NULL;
1721 error = -EINVAL;
1722 goto bad_swap;
1724 p->old_block_size = block_size(bdev);
1725 error = set_blocksize(bdev, PAGE_SIZE);
1726 if (error < 0)
1727 goto bad_swap;
1728 p->bdev = bdev;
1729 } else if (S_ISREG(inode->i_mode)) {
1730 p->bdev = inode->i_sb->s_bdev;
1731 mutex_lock(&inode->i_mutex);
1732 did_down = 1;
1733 if (IS_SWAPFILE(inode)) {
1734 error = -EBUSY;
1735 goto bad_swap;
1737 } else {
1738 goto bad_swap;
1741 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1744 * Read the swap header.
1746 if (!mapping->a_ops->readpage) {
1747 error = -EINVAL;
1748 goto bad_swap;
1750 page = read_mapping_page(mapping, 0, swap_file);
1751 if (IS_ERR(page)) {
1752 error = PTR_ERR(page);
1753 goto bad_swap;
1755 swap_header = kmap(page);
1757 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1758 printk(KERN_ERR "Unable to find swap-space signature\n");
1759 error = -EINVAL;
1760 goto bad_swap;
1763 /* swap partition endianess hack... */
1764 if (swab32(swap_header->info.version) == 1) {
1765 swab32s(&swap_header->info.version);
1766 swab32s(&swap_header->info.last_page);
1767 swab32s(&swap_header->info.nr_badpages);
1768 for (i = 0; i < swap_header->info.nr_badpages; i++)
1769 swab32s(&swap_header->info.badpages[i]);
1771 /* Check the swap header's sub-version */
1772 if (swap_header->info.version != 1) {
1773 printk(KERN_WARNING
1774 "Unable to handle swap header version %d\n",
1775 swap_header->info.version);
1776 error = -EINVAL;
1777 goto bad_swap;
1780 p->lowest_bit = 1;
1781 p->cluster_next = 1;
1784 * Find out how many pages are allowed for a single swap
1785 * device. There are two limiting factors: 1) the number of
1786 * bits for the swap offset in the swp_entry_t type and
1787 * 2) the number of bits in the a swap pte as defined by
1788 * the different architectures. In order to find the
1789 * largest possible bit mask a swap entry with swap type 0
1790 * and swap offset ~0UL is created, encoded to a swap pte,
1791 * decoded to a swp_entry_t again and finally the swap
1792 * offset is extracted. This will mask all the bits from
1793 * the initial ~0UL mask that can't be encoded in either
1794 * the swp_entry_t or the architecture definition of a
1795 * swap pte.
1797 maxpages = swp_offset(pte_to_swp_entry(
1798 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1799 if (maxpages > swap_header->info.last_page)
1800 maxpages = swap_header->info.last_page;
1801 p->highest_bit = maxpages - 1;
1803 error = -EINVAL;
1804 if (!maxpages)
1805 goto bad_swap;
1806 if (swapfilepages && maxpages > swapfilepages) {
1807 printk(KERN_WARNING
1808 "Swap area shorter than signature indicates\n");
1809 goto bad_swap;
1811 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1812 goto bad_swap;
1813 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1814 goto bad_swap;
1816 /* OK, set up the swap map and apply the bad block list */
1817 swap_map = vmalloc(maxpages * sizeof(short));
1818 if (!swap_map) {
1819 error = -ENOMEM;
1820 goto bad_swap;
1823 memset(swap_map, 0, maxpages * sizeof(short));
1824 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1825 int page_nr = swap_header->info.badpages[i];
1826 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1827 error = -EINVAL;
1828 goto bad_swap;
1830 swap_map[page_nr] = SWAP_MAP_BAD;
1832 nr_good_pages = swap_header->info.last_page -
1833 swap_header->info.nr_badpages -
1834 1 /* header page */;
1836 if (nr_good_pages) {
1837 swap_map[0] = SWAP_MAP_BAD;
1838 p->max = maxpages;
1839 p->pages = nr_good_pages;
1840 nr_extents = setup_swap_extents(p, &span);
1841 if (nr_extents < 0) {
1842 error = nr_extents;
1843 goto bad_swap;
1845 nr_good_pages = p->pages;
1847 if (!nr_good_pages) {
1848 printk(KERN_WARNING "Empty swap-file\n");
1849 error = -EINVAL;
1850 goto bad_swap;
1853 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1854 p->flags |= SWP_SOLIDSTATE;
1855 p->cluster_next = 1 + (random32() % p->highest_bit);
1857 if (discard_swap(p) == 0)
1858 p->flags |= SWP_DISCARDABLE;
1860 mutex_lock(&swapon_mutex);
1861 spin_lock(&swap_lock);
1862 if (swap_flags & SWAP_FLAG_PREFER)
1863 p->prio =
1864 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1865 else
1866 p->prio = --least_priority;
1867 p->swap_map = swap_map;
1868 p->flags |= SWP_WRITEOK;
1869 nr_swap_pages += nr_good_pages;
1870 total_swap_pages += nr_good_pages;
1872 printk(KERN_INFO "Adding %uk swap on %s. "
1873 "Priority:%d extents:%d across:%lluk %s%s\n",
1874 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1875 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
1876 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1877 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1879 /* insert swap space into swap_list: */
1880 prev = -1;
1881 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1882 if (p->prio >= swap_info[i].prio) {
1883 break;
1885 prev = i;
1887 p->next = i;
1888 if (prev < 0) {
1889 swap_list.head = swap_list.next = p - swap_info;
1890 } else {
1891 swap_info[prev].next = p - swap_info;
1893 spin_unlock(&swap_lock);
1894 mutex_unlock(&swapon_mutex);
1895 error = 0;
1896 goto out;
1897 bad_swap:
1898 if (bdev) {
1899 set_blocksize(bdev, p->old_block_size);
1900 bd_release(bdev);
1902 destroy_swap_extents(p);
1903 bad_swap_2:
1904 spin_lock(&swap_lock);
1905 p->swap_file = NULL;
1906 p->flags = 0;
1907 spin_unlock(&swap_lock);
1908 vfree(swap_map);
1909 if (swap_file)
1910 filp_close(swap_file, NULL);
1911 out:
1912 if (page && !IS_ERR(page)) {
1913 kunmap(page);
1914 page_cache_release(page);
1916 if (name)
1917 putname(name);
1918 if (did_down) {
1919 if (!error)
1920 inode->i_flags |= S_SWAPFILE;
1921 mutex_unlock(&inode->i_mutex);
1923 return error;
1926 void si_swapinfo(struct sysinfo *val)
1928 unsigned int i;
1929 unsigned long nr_to_be_unused = 0;
1931 spin_lock(&swap_lock);
1932 for (i = 0; i < nr_swapfiles; i++) {
1933 if (!(swap_info[i].flags & SWP_USED) ||
1934 (swap_info[i].flags & SWP_WRITEOK))
1935 continue;
1936 nr_to_be_unused += swap_info[i].inuse_pages;
1938 val->freeswap = nr_swap_pages + nr_to_be_unused;
1939 val->totalswap = total_swap_pages + nr_to_be_unused;
1940 spin_unlock(&swap_lock);
1944 * Verify that a swap entry is valid and increment its swap map count.
1946 * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
1947 * "permanent", but will be reclaimed by the next swapoff.
1949 int swap_duplicate(swp_entry_t entry)
1951 struct swap_info_struct * p;
1952 unsigned long offset, type;
1953 int result = 0;
1955 if (is_migration_entry(entry))
1956 return 1;
1958 type = swp_type(entry);
1959 if (type >= nr_swapfiles)
1960 goto bad_file;
1961 p = type + swap_info;
1962 offset = swp_offset(entry);
1964 spin_lock(&swap_lock);
1965 if (offset < p->max && p->swap_map[offset]) {
1966 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {
1967 p->swap_map[offset]++;
1968 result = 1;
1969 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {
1970 if (swap_overflow++ < 5)
1971 printk(KERN_WARNING "swap_dup: swap entry overflow\n");
1972 p->swap_map[offset] = SWAP_MAP_MAX;
1973 result = 1;
1976 spin_unlock(&swap_lock);
1977 out:
1978 return result;
1980 bad_file:
1981 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
1982 goto out;
1985 struct swap_info_struct *
1986 get_swap_info_struct(unsigned type)
1988 return &swap_info[type];
1992 * swap_lock prevents swap_map being freed. Don't grab an extra
1993 * reference on the swaphandle, it doesn't matter if it becomes unused.
1995 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
1997 struct swap_info_struct *si;
1998 int our_page_cluster = page_cluster;
1999 pgoff_t target, toff;
2000 pgoff_t base, end;
2001 int nr_pages = 0;
2003 if (!our_page_cluster) /* no readahead */
2004 return 0;
2006 si = &swap_info[swp_type(entry)];
2007 target = swp_offset(entry);
2008 base = (target >> our_page_cluster) << our_page_cluster;
2009 end = base + (1 << our_page_cluster);
2010 if (!base) /* first page is swap header */
2011 base++;
2013 spin_lock(&swap_lock);
2014 if (end > si->max) /* don't go beyond end of map */
2015 end = si->max;
2017 /* Count contiguous allocated slots above our target */
2018 for (toff = target; ++toff < end; nr_pages++) {
2019 /* Don't read in free or bad pages */
2020 if (!si->swap_map[toff])
2021 break;
2022 if (si->swap_map[toff] == SWAP_MAP_BAD)
2023 break;
2025 /* Count contiguous allocated slots below our target */
2026 for (toff = target; --toff >= base; nr_pages++) {
2027 /* Don't read in free or bad pages */
2028 if (!si->swap_map[toff])
2029 break;
2030 if (si->swap_map[toff] == SWAP_MAP_BAD)
2031 break;
2033 spin_unlock(&swap_lock);
2036 * Indicate starting offset, and return number of pages to get:
2037 * if only 1, say 0, since there's then no readahead to be done.
2039 *offset = ++toff;
2040 return nr_pages? ++nr_pages: 0;