e1000: Jumbo frames fixes for 82573
[linux-2.6/mini2440.git] / mm / vmalloc.c
blob9aad8b0cc6ee71f5da612d0c4bd79aa8a3fb4476
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/mm.h>
12 #include <linux/module.h>
13 #include <linux/highmem.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/interrupt.h>
18 #include <linux/vmalloc.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
24 DEFINE_RWLOCK(vmlist_lock);
25 struct vm_struct *vmlist;
27 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
28 int node);
30 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
32 pte_t *pte;
34 pte = pte_offset_kernel(pmd, addr);
35 do {
36 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
37 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
38 } while (pte++, addr += PAGE_SIZE, addr != end);
41 static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
42 unsigned long end)
44 pmd_t *pmd;
45 unsigned long next;
47 pmd = pmd_offset(pud, addr);
48 do {
49 next = pmd_addr_end(addr, end);
50 if (pmd_none_or_clear_bad(pmd))
51 continue;
52 vunmap_pte_range(pmd, addr, next);
53 } while (pmd++, addr = next, addr != end);
56 static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
57 unsigned long end)
59 pud_t *pud;
60 unsigned long next;
62 pud = pud_offset(pgd, addr);
63 do {
64 next = pud_addr_end(addr, end);
65 if (pud_none_or_clear_bad(pud))
66 continue;
67 vunmap_pmd_range(pud, addr, next);
68 } while (pud++, addr = next, addr != end);
71 void unmap_vm_area(struct vm_struct *area)
73 pgd_t *pgd;
74 unsigned long next;
75 unsigned long addr = (unsigned long) area->addr;
76 unsigned long end = addr + area->size;
78 BUG_ON(addr >= end);
79 pgd = pgd_offset_k(addr);
80 flush_cache_vunmap(addr, end);
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
87 flush_tlb_kernel_range((unsigned long) area->addr, end);
90 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
91 unsigned long end, pgprot_t prot, struct page ***pages)
93 pte_t *pte;
95 pte = pte_alloc_kernel(pmd, addr);
96 if (!pte)
97 return -ENOMEM;
98 do {
99 struct page *page = **pages;
100 WARN_ON(!pte_none(*pte));
101 if (!page)
102 return -ENOMEM;
103 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
104 (*pages)++;
105 } while (pte++, addr += PAGE_SIZE, addr != end);
106 return 0;
109 static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
110 unsigned long end, pgprot_t prot, struct page ***pages)
112 pmd_t *pmd;
113 unsigned long next;
115 pmd = pmd_alloc(&init_mm, pud, addr);
116 if (!pmd)
117 return -ENOMEM;
118 do {
119 next = pmd_addr_end(addr, end);
120 if (vmap_pte_range(pmd, addr, next, prot, pages))
121 return -ENOMEM;
122 } while (pmd++, addr = next, addr != end);
123 return 0;
126 static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
127 unsigned long end, pgprot_t prot, struct page ***pages)
129 pud_t *pud;
130 unsigned long next;
132 pud = pud_alloc(&init_mm, pgd, addr);
133 if (!pud)
134 return -ENOMEM;
135 do {
136 next = pud_addr_end(addr, end);
137 if (vmap_pmd_range(pud, addr, next, prot, pages))
138 return -ENOMEM;
139 } while (pud++, addr = next, addr != end);
140 return 0;
143 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
145 pgd_t *pgd;
146 unsigned long next;
147 unsigned long addr = (unsigned long) area->addr;
148 unsigned long end = addr + area->size - PAGE_SIZE;
149 int err;
151 BUG_ON(addr >= end);
152 pgd = pgd_offset_k(addr);
153 do {
154 next = pgd_addr_end(addr, end);
155 err = vmap_pud_range(pgd, addr, next, prot, pages);
156 if (err)
157 break;
158 } while (pgd++, addr = next, addr != end);
159 flush_cache_vmap((unsigned long) area->addr, end);
160 return err;
163 struct vm_struct *__get_vm_area_node(unsigned long size, unsigned long flags,
164 unsigned long start, unsigned long end, int node)
166 struct vm_struct **p, *tmp, *area;
167 unsigned long align = 1;
168 unsigned long addr;
170 if (flags & VM_IOREMAP) {
171 int bit = fls(size);
173 if (bit > IOREMAP_MAX_ORDER)
174 bit = IOREMAP_MAX_ORDER;
175 else if (bit < PAGE_SHIFT)
176 bit = PAGE_SHIFT;
178 align = 1ul << bit;
180 addr = ALIGN(start, align);
181 size = PAGE_ALIGN(size);
183 area = kmalloc_node(sizeof(*area), GFP_KERNEL, node);
184 if (unlikely(!area))
185 return NULL;
187 if (unlikely(!size)) {
188 kfree (area);
189 return NULL;
193 * We always allocate a guard page.
195 size += PAGE_SIZE;
197 write_lock(&vmlist_lock);
198 for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
199 if ((unsigned long)tmp->addr < addr) {
200 if((unsigned long)tmp->addr + tmp->size >= addr)
201 addr = ALIGN(tmp->size +
202 (unsigned long)tmp->addr, align);
203 continue;
205 if ((size + addr) < addr)
206 goto out;
207 if (size + addr <= (unsigned long)tmp->addr)
208 goto found;
209 addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
210 if (addr > end - size)
211 goto out;
214 found:
215 area->next = *p;
216 *p = area;
218 area->flags = flags;
219 area->addr = (void *)addr;
220 area->size = size;
221 area->pages = NULL;
222 area->nr_pages = 0;
223 area->phys_addr = 0;
224 write_unlock(&vmlist_lock);
226 return area;
228 out:
229 write_unlock(&vmlist_lock);
230 kfree(area);
231 if (printk_ratelimit())
232 printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
233 return NULL;
236 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
237 unsigned long start, unsigned long end)
239 return __get_vm_area_node(size, flags, start, end, -1);
243 * get_vm_area - reserve a contingous kernel virtual area
245 * @size: size of the area
246 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
248 * Search an area of @size in the kernel virtual mapping area,
249 * and reserved it for out purposes. Returns the area descriptor
250 * on success or %NULL on failure.
252 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
254 return __get_vm_area(size, flags, VMALLOC_START, VMALLOC_END);
257 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags, int node)
259 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node);
262 /* Caller must hold vmlist_lock */
263 static struct vm_struct *__find_vm_area(void *addr)
265 struct vm_struct *tmp;
267 for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
268 if (tmp->addr == addr)
269 break;
272 return tmp;
275 /* Caller must hold vmlist_lock */
276 struct vm_struct *__remove_vm_area(void *addr)
278 struct vm_struct **p, *tmp;
280 for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
281 if (tmp->addr == addr)
282 goto found;
284 return NULL;
286 found:
287 unmap_vm_area(tmp);
288 *p = tmp->next;
291 * Remove the guard page.
293 tmp->size -= PAGE_SIZE;
294 return tmp;
298 * remove_vm_area - find and remove a contingous kernel virtual area
300 * @addr: base address
302 * Search for the kernel VM area starting at @addr, and remove it.
303 * This function returns the found VM area, but using it is NOT safe
304 * on SMP machines, except for its size or flags.
306 struct vm_struct *remove_vm_area(void *addr)
308 struct vm_struct *v;
309 write_lock(&vmlist_lock);
310 v = __remove_vm_area(addr);
311 write_unlock(&vmlist_lock);
312 return v;
315 void __vunmap(void *addr, int deallocate_pages)
317 struct vm_struct *area;
319 if (!addr)
320 return;
322 if ((PAGE_SIZE-1) & (unsigned long)addr) {
323 printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
324 WARN_ON(1);
325 return;
328 area = remove_vm_area(addr);
329 if (unlikely(!area)) {
330 printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
331 addr);
332 WARN_ON(1);
333 return;
336 debug_check_no_locks_freed(addr, area->size);
338 if (deallocate_pages) {
339 int i;
341 for (i = 0; i < area->nr_pages; i++) {
342 BUG_ON(!area->pages[i]);
343 __free_page(area->pages[i]);
346 if (area->flags & VM_VPAGES)
347 vfree(area->pages);
348 else
349 kfree(area->pages);
352 kfree(area);
353 return;
357 * vfree - release memory allocated by vmalloc()
359 * @addr: memory base address
361 * Free the virtually contiguous memory area starting at @addr, as
362 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
363 * NULL, no operation is performed.
365 * Must not be called in interrupt context.
367 void vfree(void *addr)
369 BUG_ON(in_interrupt());
370 __vunmap(addr, 1);
372 EXPORT_SYMBOL(vfree);
375 * vunmap - release virtual mapping obtained by vmap()
377 * @addr: memory base address
379 * Free the virtually contiguous memory area starting at @addr,
380 * which was created from the page array passed to vmap().
382 * Must not be called in interrupt context.
384 void vunmap(void *addr)
386 BUG_ON(in_interrupt());
387 __vunmap(addr, 0);
389 EXPORT_SYMBOL(vunmap);
392 * vmap - map an array of pages into virtually contiguous space
394 * @pages: array of page pointers
395 * @count: number of pages to map
396 * @flags: vm_area->flags
397 * @prot: page protection for the mapping
399 * Maps @count pages from @pages into contiguous kernel virtual
400 * space.
402 void *vmap(struct page **pages, unsigned int count,
403 unsigned long flags, pgprot_t prot)
405 struct vm_struct *area;
407 if (count > num_physpages)
408 return NULL;
410 area = get_vm_area((count << PAGE_SHIFT), flags);
411 if (!area)
412 return NULL;
413 if (map_vm_area(area, prot, &pages)) {
414 vunmap(area->addr);
415 return NULL;
418 return area->addr;
420 EXPORT_SYMBOL(vmap);
422 void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
423 pgprot_t prot, int node)
425 struct page **pages;
426 unsigned int nr_pages, array_size, i;
428 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
429 array_size = (nr_pages * sizeof(struct page *));
431 area->nr_pages = nr_pages;
432 /* Please note that the recursion is strictly bounded. */
433 if (array_size > PAGE_SIZE) {
434 pages = __vmalloc_node(array_size, gfp_mask, PAGE_KERNEL, node);
435 area->flags |= VM_VPAGES;
436 } else
437 pages = kmalloc_node(array_size, (gfp_mask & ~__GFP_HIGHMEM), node);
438 area->pages = pages;
439 if (!area->pages) {
440 remove_vm_area(area->addr);
441 kfree(area);
442 return NULL;
444 memset(area->pages, 0, array_size);
446 for (i = 0; i < area->nr_pages; i++) {
447 if (node < 0)
448 area->pages[i] = alloc_page(gfp_mask);
449 else
450 area->pages[i] = alloc_pages_node(node, gfp_mask, 0);
451 if (unlikely(!area->pages[i])) {
452 /* Successfully allocated i pages, free them in __vunmap() */
453 area->nr_pages = i;
454 goto fail;
458 if (map_vm_area(area, prot, &pages))
459 goto fail;
460 return area->addr;
462 fail:
463 vfree(area->addr);
464 return NULL;
467 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
469 return __vmalloc_area_node(area, gfp_mask, prot, -1);
473 * __vmalloc_node - allocate virtually contiguous memory
475 * @size: allocation size
476 * @gfp_mask: flags for the page level allocator
477 * @prot: protection mask for the allocated pages
478 * @node: node to use for allocation or -1
480 * Allocate enough pages to cover @size from the page level
481 * allocator with @gfp_mask flags. Map them into contiguous
482 * kernel virtual space, using a pagetable protection of @prot.
484 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
485 int node)
487 struct vm_struct *area;
489 size = PAGE_ALIGN(size);
490 if (!size || (size >> PAGE_SHIFT) > num_physpages)
491 return NULL;
493 area = get_vm_area_node(size, VM_ALLOC, node);
494 if (!area)
495 return NULL;
497 return __vmalloc_area_node(area, gfp_mask, prot, node);
500 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
502 return __vmalloc_node(size, gfp_mask, prot, -1);
504 EXPORT_SYMBOL(__vmalloc);
507 * vmalloc - allocate virtually contiguous memory
509 * @size: allocation size
511 * Allocate enough pages to cover @size from the page level
512 * allocator and map them into contiguous kernel virtual space.
514 * For tight cotrol over page level allocator and protection flags
515 * use __vmalloc() instead.
517 void *vmalloc(unsigned long size)
519 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
521 EXPORT_SYMBOL(vmalloc);
524 * vmalloc_user - allocate virtually contiguous memory which has
525 * been zeroed so it can be mapped to userspace without
526 * leaking data.
528 * @size: allocation size
530 void *vmalloc_user(unsigned long size)
532 struct vm_struct *area;
533 void *ret;
535 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
536 write_lock(&vmlist_lock);
537 area = __find_vm_area(ret);
538 area->flags |= VM_USERMAP;
539 write_unlock(&vmlist_lock);
541 return ret;
543 EXPORT_SYMBOL(vmalloc_user);
546 * vmalloc_node - allocate memory on a specific node
548 * @size: allocation size
549 * @node: numa node
551 * Allocate enough pages to cover @size from the page level
552 * allocator and map them into contiguous kernel virtual space.
554 * For tight cotrol over page level allocator and protection flags
555 * use __vmalloc() instead.
557 void *vmalloc_node(unsigned long size, int node)
559 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL, node);
561 EXPORT_SYMBOL(vmalloc_node);
563 #ifndef PAGE_KERNEL_EXEC
564 # define PAGE_KERNEL_EXEC PAGE_KERNEL
565 #endif
568 * vmalloc_exec - allocate virtually contiguous, executable memory
570 * @size: allocation size
572 * Kernel-internal function to allocate enough pages to cover @size
573 * the page level allocator and map them into contiguous and
574 * executable kernel virtual space.
576 * For tight cotrol over page level allocator and protection flags
577 * use __vmalloc() instead.
580 void *vmalloc_exec(unsigned long size)
582 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
586 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
588 * @size: allocation size
590 * Allocate enough 32bit PA addressable pages to cover @size from the
591 * page level allocator and map them into contiguous kernel virtual space.
593 void *vmalloc_32(unsigned long size)
595 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
597 EXPORT_SYMBOL(vmalloc_32);
600 * vmalloc_32_user - allocate virtually contiguous memory (32bit
601 * addressable) which is zeroed so it can be
602 * mapped to userspace without leaking data.
604 * @size: allocation size
606 void *vmalloc_32_user(unsigned long size)
608 struct vm_struct *area;
609 void *ret;
611 ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
612 write_lock(&vmlist_lock);
613 area = __find_vm_area(ret);
614 area->flags |= VM_USERMAP;
615 write_unlock(&vmlist_lock);
617 return ret;
619 EXPORT_SYMBOL(vmalloc_32_user);
621 long vread(char *buf, char *addr, unsigned long count)
623 struct vm_struct *tmp;
624 char *vaddr, *buf_start = buf;
625 unsigned long n;
627 /* Don't allow overflow */
628 if ((unsigned long) addr + count < count)
629 count = -(unsigned long) addr;
631 read_lock(&vmlist_lock);
632 for (tmp = vmlist; tmp; tmp = tmp->next) {
633 vaddr = (char *) tmp->addr;
634 if (addr >= vaddr + tmp->size - PAGE_SIZE)
635 continue;
636 while (addr < vaddr) {
637 if (count == 0)
638 goto finished;
639 *buf = '\0';
640 buf++;
641 addr++;
642 count--;
644 n = vaddr + tmp->size - PAGE_SIZE - addr;
645 do {
646 if (count == 0)
647 goto finished;
648 *buf = *addr;
649 buf++;
650 addr++;
651 count--;
652 } while (--n > 0);
654 finished:
655 read_unlock(&vmlist_lock);
656 return buf - buf_start;
659 long vwrite(char *buf, char *addr, unsigned long count)
661 struct vm_struct *tmp;
662 char *vaddr, *buf_start = buf;
663 unsigned long n;
665 /* Don't allow overflow */
666 if ((unsigned long) addr + count < count)
667 count = -(unsigned long) addr;
669 read_lock(&vmlist_lock);
670 for (tmp = vmlist; tmp; tmp = tmp->next) {
671 vaddr = (char *) tmp->addr;
672 if (addr >= vaddr + tmp->size - PAGE_SIZE)
673 continue;
674 while (addr < vaddr) {
675 if (count == 0)
676 goto finished;
677 buf++;
678 addr++;
679 count--;
681 n = vaddr + tmp->size - PAGE_SIZE - addr;
682 do {
683 if (count == 0)
684 goto finished;
685 *addr = *buf;
686 buf++;
687 addr++;
688 count--;
689 } while (--n > 0);
691 finished:
692 read_unlock(&vmlist_lock);
693 return buf - buf_start;
697 * remap_vmalloc_range - map vmalloc pages to userspace
699 * @vma: vma to cover (map full range of vma)
700 * @addr: vmalloc memory
701 * @pgoff: number of pages into addr before first page to map
702 * @returns: 0 for success, -Exxx on failure
704 * This function checks that addr is a valid vmalloc'ed area, and
705 * that it is big enough to cover the vma. Will return failure if
706 * that criteria isn't met.
708 * Similar to remap_pfn_range (see mm/memory.c)
710 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
711 unsigned long pgoff)
713 struct vm_struct *area;
714 unsigned long uaddr = vma->vm_start;
715 unsigned long usize = vma->vm_end - vma->vm_start;
716 int ret;
718 if ((PAGE_SIZE-1) & (unsigned long)addr)
719 return -EINVAL;
721 read_lock(&vmlist_lock);
722 area = __find_vm_area(addr);
723 if (!area)
724 goto out_einval_locked;
726 if (!(area->flags & VM_USERMAP))
727 goto out_einval_locked;
729 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
730 goto out_einval_locked;
731 read_unlock(&vmlist_lock);
733 addr += pgoff << PAGE_SHIFT;
734 do {
735 struct page *page = vmalloc_to_page(addr);
736 ret = vm_insert_page(vma, uaddr, page);
737 if (ret)
738 return ret;
740 uaddr += PAGE_SIZE;
741 addr += PAGE_SIZE;
742 usize -= PAGE_SIZE;
743 } while (usize > 0);
745 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
746 vma->vm_flags |= VM_RESERVED;
748 return ret;
750 out_einval_locked:
751 read_unlock(&vmlist_lock);
752 return -EINVAL;
754 EXPORT_SYMBOL(remap_vmalloc_range);