2 * sparse memory mappings.
5 #include <linux/mmzone.h>
6 #include <linux/bootmem.h>
7 #include <linux/highmem.h>
8 #include <linux/module.h>
9 #include <linux/spinlock.h>
10 #include <linux/vmalloc.h>
14 * Permanent SPARSEMEM data:
16 * 1) mem_section - memory sections, mem_map's for valid memory
18 #ifdef CONFIG_SPARSEMEM_EXTREME
19 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
20 ____cacheline_internodealigned_in_smp
;
22 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
23 ____cacheline_internodealigned_in_smp
;
25 EXPORT_SYMBOL(mem_section
);
27 #ifdef NODE_NOT_IN_PAGE_FLAGS
29 * If we did not store the node number in the page then we have to
30 * do a lookup in the section_to_node_table in order to find which
31 * node the page belongs to.
33 #if MAX_NUMNODES <= 256
34 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
36 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
39 int page_to_nid(struct page
*page
)
41 return section_to_node_table
[page_to_section(page
)];
43 EXPORT_SYMBOL(page_to_nid
);
45 static void set_section_nid(unsigned long section_nr
, int nid
)
47 section_to_node_table
[section_nr
] = nid
;
49 #else /* !NODE_NOT_IN_PAGE_FLAGS */
50 static inline void set_section_nid(unsigned long section_nr
, int nid
)
55 #ifdef CONFIG_SPARSEMEM_EXTREME
56 static struct mem_section noinline __init_refok
*sparse_index_alloc(int nid
)
58 struct mem_section
*section
= NULL
;
59 unsigned long array_size
= SECTIONS_PER_ROOT
*
60 sizeof(struct mem_section
);
62 if (slab_is_available())
63 section
= kmalloc_node(array_size
, GFP_KERNEL
, nid
);
65 section
= alloc_bootmem_node(NODE_DATA(nid
), array_size
);
68 memset(section
, 0, array_size
);
73 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
75 static DEFINE_SPINLOCK(index_init_lock
);
76 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
77 struct mem_section
*section
;
80 if (mem_section
[root
])
83 section
= sparse_index_alloc(nid
);
85 * This lock keeps two different sections from
86 * reallocating for the same index
88 spin_lock(&index_init_lock
);
90 if (mem_section
[root
]) {
95 mem_section
[root
] = section
;
97 spin_unlock(&index_init_lock
);
100 #else /* !SPARSEMEM_EXTREME */
101 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
108 * Although written for the SPARSEMEM_EXTREME case, this happens
109 * to also work for the flat array case becase
110 * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
112 int __section_nr(struct mem_section
* ms
)
114 unsigned long root_nr
;
115 struct mem_section
* root
;
117 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
118 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
122 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
126 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
130 * During early boot, before section_mem_map is used for an actual
131 * mem_map, we use section_mem_map to store the section's NUMA
132 * node. This keeps us from having to use another data structure. The
133 * node information is cleared just before we store the real mem_map.
135 static inline unsigned long sparse_encode_early_nid(int nid
)
137 return (nid
<< SECTION_NID_SHIFT
);
140 static inline int sparse_early_nid(struct mem_section
*section
)
142 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
145 /* Record a memory area against a node. */
146 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
150 start
&= PAGE_SECTION_MASK
;
151 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
152 unsigned long section
= pfn_to_section_nr(pfn
);
153 struct mem_section
*ms
;
155 sparse_index_init(section
, nid
);
156 set_section_nid(section
, nid
);
158 ms
= __nr_to_section(section
);
159 if (!ms
->section_mem_map
)
160 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
161 SECTION_MARKED_PRESENT
;
166 * Only used by the i386 NUMA architecures, but relatively
169 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
170 unsigned long end_pfn
)
173 unsigned long nr_pages
= 0;
175 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
176 if (nid
!= early_pfn_to_nid(pfn
))
180 nr_pages
+= PAGES_PER_SECTION
;
183 return nr_pages
* sizeof(struct page
);
187 * Subtle, we encode the real pfn into the mem_map such that
188 * the identity pfn - section_mem_map will return the actual
189 * physical page frame number.
191 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
193 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
197 * We need this if we ever free the mem_maps. While not implemented yet,
198 * this function is included for parity with its sibling.
200 static __attribute((unused
))
201 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
203 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
206 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
207 unsigned long pnum
, struct page
*mem_map
)
209 if (!valid_section(ms
))
212 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
213 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
);
218 __attribute__((weak
)) __init
219 void *alloc_bootmem_high_node(pg_data_t
*pgdat
, unsigned long size
)
224 static struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
227 struct mem_section
*ms
= __nr_to_section(pnum
);
228 int nid
= sparse_early_nid(ms
);
230 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
234 map
= alloc_bootmem_high_node(NODE_DATA(nid
),
235 sizeof(struct page
) * PAGES_PER_SECTION
);
239 map
= alloc_bootmem_node(NODE_DATA(nid
),
240 sizeof(struct page
) * PAGES_PER_SECTION
);
244 printk(KERN_WARNING
"%s: allocation failed\n", __FUNCTION__
);
245 ms
->section_mem_map
= 0;
250 * Allocate the accumulated non-linear sections, allocate a mem_map
251 * for each and record the physical to section mapping.
253 void __init
sparse_init(void)
258 for (pnum
= 0; pnum
< NR_MEM_SECTIONS
; pnum
++) {
259 if (!valid_section_nr(pnum
))
262 map
= sparse_early_mem_map_alloc(pnum
);
265 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
);
269 #ifdef CONFIG_MEMORY_HOTPLUG
270 static struct page
*__kmalloc_section_memmap(unsigned long nr_pages
)
272 struct page
*page
, *ret
;
273 unsigned long memmap_size
= sizeof(struct page
) * nr_pages
;
275 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
279 ret
= vmalloc(memmap_size
);
285 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
287 memset(ret
, 0, memmap_size
);
292 static int vaddr_in_vmalloc_area(void *addr
)
294 if (addr
>= (void *)VMALLOC_START
&&
295 addr
< (void *)VMALLOC_END
)
300 static void __kfree_section_memmap(struct page
*memmap
, unsigned long nr_pages
)
302 if (vaddr_in_vmalloc_area(memmap
))
305 free_pages((unsigned long)memmap
,
306 get_order(sizeof(struct page
) * nr_pages
));
310 * returns the number of sections whose mem_maps were properly
311 * set. If this is <=0, then that means that the passed-in
312 * map was not consumed and must be freed.
314 int sparse_add_one_section(struct zone
*zone
, unsigned long start_pfn
,
317 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
318 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
319 struct mem_section
*ms
;
325 * no locking for this, because it does its own
326 * plus, it does a kmalloc
328 sparse_index_init(section_nr
, pgdat
->node_id
);
329 memmap
= __kmalloc_section_memmap(nr_pages
);
331 pgdat_resize_lock(pgdat
, &flags
);
333 ms
= __pfn_to_section(start_pfn
);
334 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
338 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
340 ret
= sparse_init_one_section(ms
, section_nr
, memmap
);
343 pgdat_resize_unlock(pgdat
, &flags
);
345 __kfree_section_memmap(memmap
, nr_pages
);