2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
19 #include <asm/pgtable.h>
21 #include <linux/hugetlb.h>
24 const unsigned long hugetlb_zero
= 0, hugetlb_infinity
= ~0UL;
25 static unsigned long nr_huge_pages
, free_huge_pages
, resv_huge_pages
;
26 unsigned long max_huge_pages
;
27 static struct list_head hugepage_freelists
[MAX_NUMNODES
];
28 static unsigned int nr_huge_pages_node
[MAX_NUMNODES
];
29 static unsigned int free_huge_pages_node
[MAX_NUMNODES
];
30 static gfp_t htlb_alloc_mask
= GFP_HIGHUSER
;
31 unsigned long hugepages_treat_as_movable
;
34 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
36 static DEFINE_SPINLOCK(hugetlb_lock
);
38 static void clear_huge_page(struct page
*page
, unsigned long addr
)
43 for (i
= 0; i
< (HPAGE_SIZE
/PAGE_SIZE
); i
++) {
45 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
49 static void copy_huge_page(struct page
*dst
, struct page
*src
,
50 unsigned long addr
, struct vm_area_struct
*vma
)
55 for (i
= 0; i
< HPAGE_SIZE
/PAGE_SIZE
; i
++) {
57 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
61 static void enqueue_huge_page(struct page
*page
)
63 int nid
= page_to_nid(page
);
64 list_add(&page
->lru
, &hugepage_freelists
[nid
]);
66 free_huge_pages_node
[nid
]++;
69 static struct page
*dequeue_huge_page(struct vm_area_struct
*vma
,
70 unsigned long address
)
73 struct page
*page
= NULL
;
74 struct mempolicy
*mpol
;
75 struct zonelist
*zonelist
= huge_zonelist(vma
, address
,
76 htlb_alloc_mask
, &mpol
);
79 for (z
= zonelist
->zones
; *z
; z
++) {
80 nid
= zone_to_nid(*z
);
81 if (cpuset_zone_allowed_softwall(*z
, htlb_alloc_mask
) &&
82 !list_empty(&hugepage_freelists
[nid
])) {
83 page
= list_entry(hugepage_freelists
[nid
].next
,
87 free_huge_pages_node
[nid
]--;
91 mpol_free(mpol
); /* unref if mpol !NULL */
95 static void free_huge_page(struct page
*page
)
97 BUG_ON(page_count(page
));
99 INIT_LIST_HEAD(&page
->lru
);
101 spin_lock(&hugetlb_lock
);
102 enqueue_huge_page(page
);
103 spin_unlock(&hugetlb_lock
);
106 static int alloc_fresh_huge_page(void)
113 * Copy static prev_nid to local nid, work on that, then copy it
114 * back to prev_nid afterwards: otherwise there's a window in which
115 * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node.
116 * But we don't need to use a spin_lock here: it really doesn't
117 * matter if occasionally a racer chooses the same nid as we do.
119 nid
= next_node(prev_nid
, node_online_map
);
120 if (nid
== MAX_NUMNODES
)
121 nid
= first_node(node_online_map
);
124 page
= alloc_pages_node(nid
, htlb_alloc_mask
|__GFP_COMP
|__GFP_NOWARN
,
127 set_compound_page_dtor(page
, free_huge_page
);
128 spin_lock(&hugetlb_lock
);
130 nr_huge_pages_node
[page_to_nid(page
)]++;
131 spin_unlock(&hugetlb_lock
);
132 put_page(page
); /* free it into the hugepage allocator */
138 static struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
143 spin_lock(&hugetlb_lock
);
144 if (vma
->vm_flags
& VM_MAYSHARE
)
146 else if (free_huge_pages
<= resv_huge_pages
)
149 page
= dequeue_huge_page(vma
, addr
);
153 spin_unlock(&hugetlb_lock
);
154 set_page_refcounted(page
);
158 if (vma
->vm_flags
& VM_MAYSHARE
)
160 spin_unlock(&hugetlb_lock
);
164 static int __init
hugetlb_init(void)
168 if (HPAGE_SHIFT
== 0)
171 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
172 INIT_LIST_HEAD(&hugepage_freelists
[i
]);
174 for (i
= 0; i
< max_huge_pages
; ++i
) {
175 if (!alloc_fresh_huge_page())
178 max_huge_pages
= free_huge_pages
= nr_huge_pages
= i
;
179 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages
);
182 module_init(hugetlb_init
);
184 static int __init
hugetlb_setup(char *s
)
186 if (sscanf(s
, "%lu", &max_huge_pages
) <= 0)
190 __setup("hugepages=", hugetlb_setup
);
192 static unsigned int cpuset_mems_nr(unsigned int *array
)
197 for_each_node_mask(node
, cpuset_current_mems_allowed
)
204 static void update_and_free_page(struct page
*page
)
208 nr_huge_pages_node
[page_to_nid(page
)]--;
209 for (i
= 0; i
< (HPAGE_SIZE
/ PAGE_SIZE
); i
++) {
210 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
| 1 << PG_referenced
|
211 1 << PG_dirty
| 1 << PG_active
| 1 << PG_reserved
|
212 1 << PG_private
| 1<< PG_writeback
);
214 set_compound_page_dtor(page
, NULL
);
215 set_page_refcounted(page
);
216 __free_pages(page
, HUGETLB_PAGE_ORDER
);
219 #ifdef CONFIG_HIGHMEM
220 static void try_to_free_low(unsigned long count
)
224 for (i
= 0; i
< MAX_NUMNODES
; ++i
) {
225 struct page
*page
, *next
;
226 list_for_each_entry_safe(page
, next
, &hugepage_freelists
[i
], lru
) {
227 if (PageHighMem(page
))
229 list_del(&page
->lru
);
230 update_and_free_page(page
);
232 free_huge_pages_node
[page_to_nid(page
)]--;
233 if (count
>= nr_huge_pages
)
239 static inline void try_to_free_low(unsigned long count
)
244 static unsigned long set_max_huge_pages(unsigned long count
)
246 while (count
> nr_huge_pages
) {
247 if (!alloc_fresh_huge_page())
248 return nr_huge_pages
;
250 if (count
>= nr_huge_pages
)
251 return nr_huge_pages
;
253 spin_lock(&hugetlb_lock
);
254 count
= max(count
, resv_huge_pages
);
255 try_to_free_low(count
);
256 while (count
< nr_huge_pages
) {
257 struct page
*page
= dequeue_huge_page(NULL
, 0);
260 update_and_free_page(page
);
262 spin_unlock(&hugetlb_lock
);
263 return nr_huge_pages
;
266 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
267 struct file
*file
, void __user
*buffer
,
268 size_t *length
, loff_t
*ppos
)
270 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
271 max_huge_pages
= set_max_huge_pages(max_huge_pages
);
275 int hugetlb_treat_movable_handler(struct ctl_table
*table
, int write
,
276 struct file
*file
, void __user
*buffer
,
277 size_t *length
, loff_t
*ppos
)
279 proc_dointvec(table
, write
, file
, buffer
, length
, ppos
);
280 if (hugepages_treat_as_movable
)
281 htlb_alloc_mask
= GFP_HIGHUSER_MOVABLE
;
283 htlb_alloc_mask
= GFP_HIGHUSER
;
287 #endif /* CONFIG_SYSCTL */
289 int hugetlb_report_meminfo(char *buf
)
292 "HugePages_Total: %5lu\n"
293 "HugePages_Free: %5lu\n"
294 "HugePages_Rsvd: %5lu\n"
295 "Hugepagesize: %5lu kB\n",
302 int hugetlb_report_node_meminfo(int nid
, char *buf
)
305 "Node %d HugePages_Total: %5u\n"
306 "Node %d HugePages_Free: %5u\n",
307 nid
, nr_huge_pages_node
[nid
],
308 nid
, free_huge_pages_node
[nid
]);
311 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
312 unsigned long hugetlb_total_pages(void)
314 return nr_huge_pages
* (HPAGE_SIZE
/ PAGE_SIZE
);
318 * We cannot handle pagefaults against hugetlb pages at all. They cause
319 * handle_mm_fault() to try to instantiate regular-sized pages in the
320 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
323 static int hugetlb_vm_op_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
329 struct vm_operations_struct hugetlb_vm_ops
= {
330 .fault
= hugetlb_vm_op_fault
,
333 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
340 pte_mkwrite(pte_mkdirty(mk_pte(page
, vma
->vm_page_prot
)));
342 entry
= pte_wrprotect(mk_pte(page
, vma
->vm_page_prot
));
344 entry
= pte_mkyoung(entry
);
345 entry
= pte_mkhuge(entry
);
350 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
351 unsigned long address
, pte_t
*ptep
)
355 entry
= pte_mkwrite(pte_mkdirty(*ptep
));
356 if (ptep_set_access_flags(vma
, address
, ptep
, entry
, 1)) {
357 update_mmu_cache(vma
, address
, entry
);
358 lazy_mmu_prot_update(entry
);
363 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
364 struct vm_area_struct
*vma
)
366 pte_t
*src_pte
, *dst_pte
, entry
;
367 struct page
*ptepage
;
371 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
373 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= HPAGE_SIZE
) {
374 src_pte
= huge_pte_offset(src
, addr
);
377 dst_pte
= huge_pte_alloc(dst
, addr
);
380 spin_lock(&dst
->page_table_lock
);
381 spin_lock(&src
->page_table_lock
);
382 if (!pte_none(*src_pte
)) {
384 ptep_set_wrprotect(src
, addr
, src_pte
);
386 ptepage
= pte_page(entry
);
388 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
390 spin_unlock(&src
->page_table_lock
);
391 spin_unlock(&dst
->page_table_lock
);
399 void __unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
402 struct mm_struct
*mm
= vma
->vm_mm
;
403 unsigned long address
;
409 * A page gathering list, protected by per file i_mmap_lock. The
410 * lock is used to avoid list corruption from multiple unmapping
411 * of the same page since we are using page->lru.
413 LIST_HEAD(page_list
);
415 WARN_ON(!is_vm_hugetlb_page(vma
));
416 BUG_ON(start
& ~HPAGE_MASK
);
417 BUG_ON(end
& ~HPAGE_MASK
);
419 spin_lock(&mm
->page_table_lock
);
420 for (address
= start
; address
< end
; address
+= HPAGE_SIZE
) {
421 ptep
= huge_pte_offset(mm
, address
);
425 if (huge_pmd_unshare(mm
, &address
, ptep
))
428 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
432 page
= pte_page(pte
);
434 set_page_dirty(page
);
435 list_add(&page
->lru
, &page_list
);
437 spin_unlock(&mm
->page_table_lock
);
438 flush_tlb_range(vma
, start
, end
);
439 list_for_each_entry_safe(page
, tmp
, &page_list
, lru
) {
440 list_del(&page
->lru
);
445 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
449 * It is undesirable to test vma->vm_file as it should be non-null
450 * for valid hugetlb area. However, vm_file will be NULL in the error
451 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
452 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
453 * to clean up. Since no pte has actually been setup, it is safe to
454 * do nothing in this case.
457 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
458 __unmap_hugepage_range(vma
, start
, end
);
459 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
463 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
464 unsigned long address
, pte_t
*ptep
, pte_t pte
)
466 struct page
*old_page
, *new_page
;
469 old_page
= pte_page(pte
);
471 /* If no-one else is actually using this page, avoid the copy
472 * and just make the page writable */
473 avoidcopy
= (page_count(old_page
) == 1);
475 set_huge_ptep_writable(vma
, address
, ptep
);
479 page_cache_get(old_page
);
480 new_page
= alloc_huge_page(vma
, address
);
483 page_cache_release(old_page
);
487 spin_unlock(&mm
->page_table_lock
);
488 copy_huge_page(new_page
, old_page
, address
, vma
);
489 spin_lock(&mm
->page_table_lock
);
491 ptep
= huge_pte_offset(mm
, address
& HPAGE_MASK
);
492 if (likely(pte_same(*ptep
, pte
))) {
494 set_huge_pte_at(mm
, address
, ptep
,
495 make_huge_pte(vma
, new_page
, 1));
496 /* Make the old page be freed below */
499 page_cache_release(new_page
);
500 page_cache_release(old_page
);
504 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
505 unsigned long address
, pte_t
*ptep
, int write_access
)
507 int ret
= VM_FAULT_SIGBUS
;
511 struct address_space
*mapping
;
514 mapping
= vma
->vm_file
->f_mapping
;
515 idx
= ((address
- vma
->vm_start
) >> HPAGE_SHIFT
)
516 + (vma
->vm_pgoff
>> (HPAGE_SHIFT
- PAGE_SHIFT
));
519 * Use page lock to guard against racing truncation
520 * before we get page_table_lock.
523 page
= find_lock_page(mapping
, idx
);
525 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
528 if (hugetlb_get_quota(mapping
))
530 page
= alloc_huge_page(vma
, address
);
532 hugetlb_put_quota(mapping
);
536 clear_huge_page(page
, address
);
538 if (vma
->vm_flags
& VM_SHARED
) {
541 err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
544 hugetlb_put_quota(mapping
);
553 spin_lock(&mm
->page_table_lock
);
554 size
= i_size_read(mapping
->host
) >> HPAGE_SHIFT
;
559 if (!pte_none(*ptep
))
562 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
563 && (vma
->vm_flags
& VM_SHARED
)));
564 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
566 if (write_access
&& !(vma
->vm_flags
& VM_SHARED
)) {
567 /* Optimization, do the COW without a second fault */
568 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, new_pte
);
571 spin_unlock(&mm
->page_table_lock
);
577 spin_unlock(&mm
->page_table_lock
);
578 hugetlb_put_quota(mapping
);
584 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
585 unsigned long address
, int write_access
)
590 static DEFINE_MUTEX(hugetlb_instantiation_mutex
);
592 ptep
= huge_pte_alloc(mm
, address
);
597 * Serialize hugepage allocation and instantiation, so that we don't
598 * get spurious allocation failures if two CPUs race to instantiate
599 * the same page in the page cache.
601 mutex_lock(&hugetlb_instantiation_mutex
);
603 if (pte_none(entry
)) {
604 ret
= hugetlb_no_page(mm
, vma
, address
, ptep
, write_access
);
605 mutex_unlock(&hugetlb_instantiation_mutex
);
611 spin_lock(&mm
->page_table_lock
);
612 /* Check for a racing update before calling hugetlb_cow */
613 if (likely(pte_same(entry
, *ptep
)))
614 if (write_access
&& !pte_write(entry
))
615 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, entry
);
616 spin_unlock(&mm
->page_table_lock
);
617 mutex_unlock(&hugetlb_instantiation_mutex
);
622 int follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
623 struct page
**pages
, struct vm_area_struct
**vmas
,
624 unsigned long *position
, int *length
, int i
)
626 unsigned long pfn_offset
;
627 unsigned long vaddr
= *position
;
628 int remainder
= *length
;
630 spin_lock(&mm
->page_table_lock
);
631 while (vaddr
< vma
->vm_end
&& remainder
) {
636 * Some archs (sparc64, sh*) have multiple pte_ts to
637 * each hugepage. We have to make * sure we get the
638 * first, for the page indexing below to work.
640 pte
= huge_pte_offset(mm
, vaddr
& HPAGE_MASK
);
642 if (!pte
|| pte_none(*pte
)) {
645 spin_unlock(&mm
->page_table_lock
);
646 ret
= hugetlb_fault(mm
, vma
, vaddr
, 0);
647 spin_lock(&mm
->page_table_lock
);
648 if (!(ret
& VM_FAULT_ERROR
))
657 pfn_offset
= (vaddr
& ~HPAGE_MASK
) >> PAGE_SHIFT
;
658 page
= pte_page(*pte
);
662 pages
[i
] = page
+ pfn_offset
;
672 if (vaddr
< vma
->vm_end
&& remainder
&&
673 pfn_offset
< HPAGE_SIZE
/PAGE_SIZE
) {
675 * We use pfn_offset to avoid touching the pageframes
676 * of this compound page.
681 spin_unlock(&mm
->page_table_lock
);
688 void hugetlb_change_protection(struct vm_area_struct
*vma
,
689 unsigned long address
, unsigned long end
, pgprot_t newprot
)
691 struct mm_struct
*mm
= vma
->vm_mm
;
692 unsigned long start
= address
;
696 BUG_ON(address
>= end
);
697 flush_cache_range(vma
, address
, end
);
699 spin_lock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
700 spin_lock(&mm
->page_table_lock
);
701 for (; address
< end
; address
+= HPAGE_SIZE
) {
702 ptep
= huge_pte_offset(mm
, address
);
705 if (huge_pmd_unshare(mm
, &address
, ptep
))
707 if (!pte_none(*ptep
)) {
708 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
709 pte
= pte_mkhuge(pte_modify(pte
, newprot
));
710 set_huge_pte_at(mm
, address
, ptep
, pte
);
711 lazy_mmu_prot_update(pte
);
714 spin_unlock(&mm
->page_table_lock
);
715 spin_unlock(&vma
->vm_file
->f_mapping
->i_mmap_lock
);
717 flush_tlb_range(vma
, start
, end
);
721 struct list_head link
;
726 static long region_add(struct list_head
*head
, long f
, long t
)
728 struct file_region
*rg
, *nrg
, *trg
;
730 /* Locate the region we are either in or before. */
731 list_for_each_entry(rg
, head
, link
)
735 /* Round our left edge to the current segment if it encloses us. */
739 /* Check for and consume any regions we now overlap with. */
741 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
742 if (&rg
->link
== head
)
747 /* If this area reaches higher then extend our area to
748 * include it completely. If this is not the first area
749 * which we intend to reuse, free it. */
762 static long region_chg(struct list_head
*head
, long f
, long t
)
764 struct file_region
*rg
, *nrg
;
767 /* Locate the region we are before or in. */
768 list_for_each_entry(rg
, head
, link
)
772 /* If we are below the current region then a new region is required.
773 * Subtle, allocate a new region at the position but make it zero
774 * size such that we can guarentee to record the reservation. */
775 if (&rg
->link
== head
|| t
< rg
->from
) {
776 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
781 INIT_LIST_HEAD(&nrg
->link
);
782 list_add(&nrg
->link
, rg
->link
.prev
);
787 /* Round our left edge to the current segment if it encloses us. */
792 /* Check for and consume any regions we now overlap with. */
793 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
794 if (&rg
->link
== head
)
799 /* We overlap with this area, if it extends futher than
800 * us then we must extend ourselves. Account for its
801 * existing reservation. */
806 chg
-= rg
->to
- rg
->from
;
811 static long region_truncate(struct list_head
*head
, long end
)
813 struct file_region
*rg
, *trg
;
816 /* Locate the region we are either in or before. */
817 list_for_each_entry(rg
, head
, link
)
820 if (&rg
->link
== head
)
823 /* If we are in the middle of a region then adjust it. */
824 if (end
> rg
->from
) {
827 rg
= list_entry(rg
->link
.next
, typeof(*rg
), link
);
830 /* Drop any remaining regions. */
831 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
832 if (&rg
->link
== head
)
834 chg
+= rg
->to
- rg
->from
;
841 static int hugetlb_acct_memory(long delta
)
845 spin_lock(&hugetlb_lock
);
846 if ((delta
+ resv_huge_pages
) <= free_huge_pages
) {
847 resv_huge_pages
+= delta
;
850 spin_unlock(&hugetlb_lock
);
854 int hugetlb_reserve_pages(struct inode
*inode
, long from
, long to
)
858 chg
= region_chg(&inode
->i_mapping
->private_list
, from
, to
);
862 * When cpuset is configured, it breaks the strict hugetlb page
863 * reservation as the accounting is done on a global variable. Such
864 * reservation is completely rubbish in the presence of cpuset because
865 * the reservation is not checked against page availability for the
866 * current cpuset. Application can still potentially OOM'ed by kernel
867 * with lack of free htlb page in cpuset that the task is in.
868 * Attempt to enforce strict accounting with cpuset is almost
869 * impossible (or too ugly) because cpuset is too fluid that
870 * task or memory node can be dynamically moved between cpusets.
872 * The change of semantics for shared hugetlb mapping with cpuset is
873 * undesirable. However, in order to preserve some of the semantics,
874 * we fall back to check against current free page availability as
875 * a best attempt and hopefully to minimize the impact of changing
876 * semantics that cpuset has.
878 if (chg
> cpuset_mems_nr(free_huge_pages_node
))
881 ret
= hugetlb_acct_memory(chg
);
884 region_add(&inode
->i_mapping
->private_list
, from
, to
);
888 void hugetlb_unreserve_pages(struct inode
*inode
, long offset
, long freed
)
890 long chg
= region_truncate(&inode
->i_mapping
->private_list
, offset
);
891 hugetlb_acct_memory(freed
- chg
);