sparc: sys32.S incorrect compat-layer splice() system call
[linux-2.6/mini2440.git] / drivers / misc / sgi-xp / xpc_sn2.c
blob915a3b495da55c81bccb6e6a2d651437bdc6e1ea
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (c) 2008-2009 Silicon Graphics, Inc. All Rights Reserved.
7 */
9 /*
10 * Cross Partition Communication (XPC) sn2-based functions.
12 * Architecture specific implementation of common functions.
16 #include <linux/delay.h>
17 #include <asm/uncached.h>
18 #include <asm/sn/mspec.h>
19 #include <asm/sn/sn_sal.h>
20 #include "xpc.h"
23 * Define the number of u64s required to represent all the C-brick nasids
24 * as a bitmap. The cross-partition kernel modules deal only with
25 * C-brick nasids, thus the need for bitmaps which don't account for
26 * odd-numbered (non C-brick) nasids.
28 #define XPC_MAX_PHYSNODES_SN2 (MAX_NUMALINK_NODES / 2)
29 #define XP_NASID_MASK_BYTES_SN2 ((XPC_MAX_PHYSNODES_SN2 + 7) / 8)
30 #define XP_NASID_MASK_WORDS_SN2 ((XPC_MAX_PHYSNODES_SN2 + 63) / 64)
33 * Memory for XPC's amo variables is allocated by the MSPEC driver. These
34 * pages are located in the lowest granule. The lowest granule uses 4k pages
35 * for cached references and an alternate TLB handler to never provide a
36 * cacheable mapping for the entire region. This will prevent speculative
37 * reading of cached copies of our lines from being issued which will cause
38 * a PI FSB Protocol error to be generated by the SHUB. For XPC, we need 64
39 * amo variables (based on XP_MAX_NPARTITIONS_SN2) to identify the senders of
40 * NOTIFY IRQs, 128 amo variables (based on XP_NASID_MASK_WORDS_SN2) to identify
41 * the senders of ACTIVATE IRQs, 1 amo variable to identify which remote
42 * partitions (i.e., XPCs) consider themselves currently engaged with the
43 * local XPC and 1 amo variable to request partition deactivation.
45 #define XPC_NOTIFY_IRQ_AMOS_SN2 0
46 #define XPC_ACTIVATE_IRQ_AMOS_SN2 (XPC_NOTIFY_IRQ_AMOS_SN2 + \
47 XP_MAX_NPARTITIONS_SN2)
48 #define XPC_ENGAGED_PARTITIONS_AMO_SN2 (XPC_ACTIVATE_IRQ_AMOS_SN2 + \
49 XP_NASID_MASK_WORDS_SN2)
50 #define XPC_DEACTIVATE_REQUEST_AMO_SN2 (XPC_ENGAGED_PARTITIONS_AMO_SN2 + 1)
53 * Buffer used to store a local copy of portions of a remote partition's
54 * reserved page (either its header and part_nasids mask, or its vars).
56 static void *xpc_remote_copy_buffer_base_sn2;
57 static char *xpc_remote_copy_buffer_sn2;
59 static struct xpc_vars_sn2 *xpc_vars_sn2;
60 static struct xpc_vars_part_sn2 *xpc_vars_part_sn2;
62 static int
63 xpc_setup_partitions_sn2(void)
65 /* nothing needs to be done */
66 return 0;
69 static void
70 xpc_teardown_partitions_sn2(void)
72 /* nothing needs to be done */
75 /* SH_IPI_ACCESS shub register value on startup */
76 static u64 xpc_sh1_IPI_access_sn2;
77 static u64 xpc_sh2_IPI_access0_sn2;
78 static u64 xpc_sh2_IPI_access1_sn2;
79 static u64 xpc_sh2_IPI_access2_sn2;
80 static u64 xpc_sh2_IPI_access3_sn2;
83 * Change protections to allow IPI operations.
85 static void
86 xpc_allow_IPI_ops_sn2(void)
88 int node;
89 int nasid;
91 /* !!! The following should get moved into SAL. */
92 if (is_shub2()) {
93 xpc_sh2_IPI_access0_sn2 =
94 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS0));
95 xpc_sh2_IPI_access1_sn2 =
96 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS1));
97 xpc_sh2_IPI_access2_sn2 =
98 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS2));
99 xpc_sh2_IPI_access3_sn2 =
100 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH2_IPI_ACCESS3));
102 for_each_online_node(node) {
103 nasid = cnodeid_to_nasid(node);
104 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
105 -1UL);
106 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
107 -1UL);
108 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
109 -1UL);
110 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
111 -1UL);
113 } else {
114 xpc_sh1_IPI_access_sn2 =
115 (u64)HUB_L((u64 *)LOCAL_MMR_ADDR(SH1_IPI_ACCESS));
117 for_each_online_node(node) {
118 nasid = cnodeid_to_nasid(node);
119 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
120 -1UL);
126 * Restrict protections to disallow IPI operations.
128 static void
129 xpc_disallow_IPI_ops_sn2(void)
131 int node;
132 int nasid;
134 /* !!! The following should get moved into SAL. */
135 if (is_shub2()) {
136 for_each_online_node(node) {
137 nasid = cnodeid_to_nasid(node);
138 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS0),
139 xpc_sh2_IPI_access0_sn2);
140 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS1),
141 xpc_sh2_IPI_access1_sn2);
142 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS2),
143 xpc_sh2_IPI_access2_sn2);
144 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH2_IPI_ACCESS3),
145 xpc_sh2_IPI_access3_sn2);
147 } else {
148 for_each_online_node(node) {
149 nasid = cnodeid_to_nasid(node);
150 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid, SH1_IPI_ACCESS),
151 xpc_sh1_IPI_access_sn2);
157 * The following set of functions are used for the sending and receiving of
158 * IRQs (also known as IPIs). There are two flavors of IRQs, one that is
159 * associated with partition activity (SGI_XPC_ACTIVATE) and the other that
160 * is associated with channel activity (SGI_XPC_NOTIFY).
163 static u64
164 xpc_receive_IRQ_amo_sn2(struct amo *amo)
166 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_CLEAR);
169 static enum xp_retval
170 xpc_send_IRQ_sn2(struct amo *amo, u64 flag, int nasid, int phys_cpuid,
171 int vector)
173 int ret = 0;
174 unsigned long irq_flags;
176 local_irq_save(irq_flags);
178 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR, flag);
179 sn_send_IPI_phys(nasid, phys_cpuid, vector, 0);
182 * We must always use the nofault function regardless of whether we
183 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
184 * didn't, we'd never know that the other partition is down and would
185 * keep sending IRQs and amos to it until the heartbeat times out.
187 ret = xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->variable),
188 xp_nofault_PIOR_target));
190 local_irq_restore(irq_flags);
192 return (ret == 0) ? xpSuccess : xpPioReadError;
195 static struct amo *
196 xpc_init_IRQ_amo_sn2(int index)
198 struct amo *amo = xpc_vars_sn2->amos_page + index;
200 (void)xpc_receive_IRQ_amo_sn2(amo); /* clear amo variable */
201 return amo;
205 * Functions associated with SGI_XPC_ACTIVATE IRQ.
209 * Notify the heartbeat check thread that an activate IRQ has been received.
211 static irqreturn_t
212 xpc_handle_activate_IRQ_sn2(int irq, void *dev_id)
214 unsigned long irq_flags;
216 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
217 xpc_activate_IRQ_rcvd++;
218 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
220 wake_up_interruptible(&xpc_activate_IRQ_wq);
221 return IRQ_HANDLED;
225 * Flag the appropriate amo variable and send an IRQ to the specified node.
227 static void
228 xpc_send_activate_IRQ_sn2(unsigned long amos_page_pa, int from_nasid,
229 int to_nasid, int to_phys_cpuid)
231 struct amo *amos = (struct amo *)__va(amos_page_pa +
232 (XPC_ACTIVATE_IRQ_AMOS_SN2 *
233 sizeof(struct amo)));
235 (void)xpc_send_IRQ_sn2(&amos[BIT_WORD(from_nasid / 2)],
236 BIT_MASK(from_nasid / 2), to_nasid,
237 to_phys_cpuid, SGI_XPC_ACTIVATE);
240 static void
241 xpc_send_local_activate_IRQ_sn2(int from_nasid)
243 unsigned long irq_flags;
244 struct amo *amos = (struct amo *)__va(xpc_vars_sn2->amos_page_pa +
245 (XPC_ACTIVATE_IRQ_AMOS_SN2 *
246 sizeof(struct amo)));
248 /* fake the sending and receipt of an activate IRQ from remote nasid */
249 FETCHOP_STORE_OP(TO_AMO((u64)&amos[BIT_WORD(from_nasid / 2)].variable),
250 FETCHOP_OR, BIT_MASK(from_nasid / 2));
252 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
253 xpc_activate_IRQ_rcvd++;
254 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
256 wake_up_interruptible(&xpc_activate_IRQ_wq);
260 * Functions associated with SGI_XPC_NOTIFY IRQ.
264 * Check to see if any chctl flags were sent from the specified partition.
266 static void
267 xpc_check_for_sent_chctl_flags_sn2(struct xpc_partition *part)
269 union xpc_channel_ctl_flags chctl;
270 unsigned long irq_flags;
272 chctl.all_flags = xpc_receive_IRQ_amo_sn2(part->sn.sn2.
273 local_chctl_amo_va);
274 if (chctl.all_flags == 0)
275 return;
277 spin_lock_irqsave(&part->chctl_lock, irq_flags);
278 part->chctl.all_flags |= chctl.all_flags;
279 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
281 dev_dbg(xpc_chan, "received notify IRQ from partid=%d, chctl.all_flags="
282 "0x%lx\n", XPC_PARTID(part), chctl.all_flags);
284 xpc_wakeup_channel_mgr(part);
288 * Handle the receipt of a SGI_XPC_NOTIFY IRQ by seeing whether the specified
289 * partition actually sent it. Since SGI_XPC_NOTIFY IRQs may be shared by more
290 * than one partition, we use an amo structure per partition to indicate
291 * whether a partition has sent an IRQ or not. If it has, then wake up the
292 * associated kthread to handle it.
294 * All SGI_XPC_NOTIFY IRQs received by XPC are the result of IRQs sent by XPC
295 * running on other partitions.
297 * Noteworthy Arguments:
299 * irq - Interrupt ReQuest number. NOT USED.
301 * dev_id - partid of IRQ's potential sender.
303 static irqreturn_t
304 xpc_handle_notify_IRQ_sn2(int irq, void *dev_id)
306 short partid = (short)(u64)dev_id;
307 struct xpc_partition *part = &xpc_partitions[partid];
309 DBUG_ON(partid < 0 || partid >= XP_MAX_NPARTITIONS_SN2);
311 if (xpc_part_ref(part)) {
312 xpc_check_for_sent_chctl_flags_sn2(part);
314 xpc_part_deref(part);
316 return IRQ_HANDLED;
320 * Check to see if xpc_handle_notify_IRQ_sn2() dropped any IRQs on the floor
321 * because the write to their associated amo variable completed after the IRQ
322 * was received.
324 static void
325 xpc_check_for_dropped_notify_IRQ_sn2(struct xpc_partition *part)
327 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
329 if (xpc_part_ref(part)) {
330 xpc_check_for_sent_chctl_flags_sn2(part);
332 part_sn2->dropped_notify_IRQ_timer.expires = jiffies +
333 XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
334 add_timer(&part_sn2->dropped_notify_IRQ_timer);
335 xpc_part_deref(part);
340 * Send a notify IRQ to the remote partition that is associated with the
341 * specified channel.
343 static void
344 xpc_send_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
345 char *chctl_flag_string, unsigned long *irq_flags)
347 struct xpc_partition *part = &xpc_partitions[ch->partid];
348 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
349 union xpc_channel_ctl_flags chctl = { 0 };
350 enum xp_retval ret;
352 if (likely(part->act_state != XPC_P_AS_DEACTIVATING)) {
353 chctl.flags[ch->number] = chctl_flag;
354 ret = xpc_send_IRQ_sn2(part_sn2->remote_chctl_amo_va,
355 chctl.all_flags,
356 part_sn2->notify_IRQ_nasid,
357 part_sn2->notify_IRQ_phys_cpuid,
358 SGI_XPC_NOTIFY);
359 dev_dbg(xpc_chan, "%s sent to partid=%d, channel=%d, ret=%d\n",
360 chctl_flag_string, ch->partid, ch->number, ret);
361 if (unlikely(ret != xpSuccess)) {
362 if (irq_flags != NULL)
363 spin_unlock_irqrestore(&ch->lock, *irq_flags);
364 XPC_DEACTIVATE_PARTITION(part, ret);
365 if (irq_flags != NULL)
366 spin_lock_irqsave(&ch->lock, *irq_flags);
371 #define XPC_SEND_NOTIFY_IRQ_SN2(_ch, _ipi_f, _irq_f) \
372 xpc_send_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f, _irq_f)
375 * Make it look like the remote partition, which is associated with the
376 * specified channel, sent us a notify IRQ. This faked IRQ will be handled
377 * by xpc_check_for_dropped_notify_IRQ_sn2().
379 static void
380 xpc_send_local_notify_IRQ_sn2(struct xpc_channel *ch, u8 chctl_flag,
381 char *chctl_flag_string)
383 struct xpc_partition *part = &xpc_partitions[ch->partid];
384 union xpc_channel_ctl_flags chctl = { 0 };
386 chctl.flags[ch->number] = chctl_flag;
387 FETCHOP_STORE_OP(TO_AMO((u64)&part->sn.sn2.local_chctl_amo_va->
388 variable), FETCHOP_OR, chctl.all_flags);
389 dev_dbg(xpc_chan, "%s sent local from partid=%d, channel=%d\n",
390 chctl_flag_string, ch->partid, ch->number);
393 #define XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(_ch, _ipi_f) \
394 xpc_send_local_notify_IRQ_sn2(_ch, _ipi_f, #_ipi_f)
396 static void
397 xpc_send_chctl_closerequest_sn2(struct xpc_channel *ch,
398 unsigned long *irq_flags)
400 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
402 args->reason = ch->reason;
403 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREQUEST, irq_flags);
406 static void
407 xpc_send_chctl_closereply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
409 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_CLOSEREPLY, irq_flags);
412 static void
413 xpc_send_chctl_openrequest_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
415 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
417 args->entry_size = ch->entry_size;
418 args->local_nentries = ch->local_nentries;
419 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREQUEST, irq_flags);
422 static void
423 xpc_send_chctl_openreply_sn2(struct xpc_channel *ch, unsigned long *irq_flags)
425 struct xpc_openclose_args *args = ch->sn.sn2.local_openclose_args;
427 args->remote_nentries = ch->remote_nentries;
428 args->local_nentries = ch->local_nentries;
429 args->local_msgqueue_pa = xp_pa(ch->sn.sn2.local_msgqueue);
430 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENREPLY, irq_flags);
433 static void
434 xpc_send_chctl_opencomplete_sn2(struct xpc_channel *ch,
435 unsigned long *irq_flags)
437 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_OPENCOMPLETE, irq_flags);
440 static void
441 xpc_send_chctl_msgrequest_sn2(struct xpc_channel *ch)
443 XPC_SEND_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST, NULL);
446 static void
447 xpc_send_chctl_local_msgrequest_sn2(struct xpc_channel *ch)
449 XPC_SEND_LOCAL_NOTIFY_IRQ_SN2(ch, XPC_CHCTL_MSGREQUEST);
452 static enum xp_retval
453 xpc_save_remote_msgqueue_pa_sn2(struct xpc_channel *ch,
454 unsigned long msgqueue_pa)
456 ch->sn.sn2.remote_msgqueue_pa = msgqueue_pa;
457 return xpSuccess;
461 * This next set of functions are used to keep track of when a partition is
462 * potentially engaged in accessing memory belonging to another partition.
465 static void
466 xpc_indicate_partition_engaged_sn2(struct xpc_partition *part)
468 unsigned long irq_flags;
469 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
470 (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
471 sizeof(struct amo)));
473 local_irq_save(irq_flags);
475 /* set bit corresponding to our partid in remote partition's amo */
476 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
477 BIT(sn_partition_id));
480 * We must always use the nofault function regardless of whether we
481 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
482 * didn't, we'd never know that the other partition is down and would
483 * keep sending IRQs and amos to it until the heartbeat times out.
485 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
486 variable),
487 xp_nofault_PIOR_target));
489 local_irq_restore(irq_flags);
492 static void
493 xpc_indicate_partition_disengaged_sn2(struct xpc_partition *part)
495 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
496 unsigned long irq_flags;
497 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
498 (XPC_ENGAGED_PARTITIONS_AMO_SN2 *
499 sizeof(struct amo)));
501 local_irq_save(irq_flags);
503 /* clear bit corresponding to our partid in remote partition's amo */
504 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
505 ~BIT(sn_partition_id));
508 * We must always use the nofault function regardless of whether we
509 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
510 * didn't, we'd never know that the other partition is down and would
511 * keep sending IRQs and amos to it until the heartbeat times out.
513 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
514 variable),
515 xp_nofault_PIOR_target));
517 local_irq_restore(irq_flags);
520 * Send activate IRQ to get other side to see that we've cleared our
521 * bit in their engaged partitions amo.
523 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
524 cnodeid_to_nasid(0),
525 part_sn2->activate_IRQ_nasid,
526 part_sn2->activate_IRQ_phys_cpuid);
529 static void
530 xpc_assume_partition_disengaged_sn2(short partid)
532 struct amo *amo = xpc_vars_sn2->amos_page +
533 XPC_ENGAGED_PARTITIONS_AMO_SN2;
535 /* clear bit(s) based on partid mask in our partition's amo */
536 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
537 ~BIT(partid));
540 static int
541 xpc_partition_engaged_sn2(short partid)
543 struct amo *amo = xpc_vars_sn2->amos_page +
544 XPC_ENGAGED_PARTITIONS_AMO_SN2;
546 /* our partition's amo variable ANDed with partid mask */
547 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
548 BIT(partid)) != 0;
551 static int
552 xpc_any_partition_engaged_sn2(void)
554 struct amo *amo = xpc_vars_sn2->amos_page +
555 XPC_ENGAGED_PARTITIONS_AMO_SN2;
557 /* our partition's amo variable */
558 return FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) != 0;
561 /* original protection values for each node */
562 static u64 xpc_prot_vec_sn2[MAX_NUMNODES];
565 * Change protections to allow amo operations on non-Shub 1.1 systems.
567 static enum xp_retval
568 xpc_allow_amo_ops_sn2(struct amo *amos_page)
570 enum xp_retval ret = xpSuccess;
573 * On SHUB 1.1, we cannot call sn_change_memprotect() since the BIST
574 * collides with memory operations. On those systems we call
575 * xpc_allow_amo_ops_shub_wars_1_1_sn2() instead.
577 if (!enable_shub_wars_1_1())
578 ret = xp_expand_memprotect(ia64_tpa((u64)amos_page), PAGE_SIZE);
580 return ret;
584 * Change protections to allow amo operations on Shub 1.1 systems.
586 static void
587 xpc_allow_amo_ops_shub_wars_1_1_sn2(void)
589 int node;
590 int nasid;
592 if (!enable_shub_wars_1_1())
593 return;
595 for_each_online_node(node) {
596 nasid = cnodeid_to_nasid(node);
597 /* save current protection values */
598 xpc_prot_vec_sn2[node] =
599 (u64)HUB_L((u64 *)GLOBAL_MMR_ADDR(nasid,
600 SH1_MD_DQLP_MMR_DIR_PRIVEC0));
601 /* open up everything */
602 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
603 SH1_MD_DQLP_MMR_DIR_PRIVEC0),
604 -1UL);
605 HUB_S((u64 *)GLOBAL_MMR_ADDR(nasid,
606 SH1_MD_DQRP_MMR_DIR_PRIVEC0),
607 -1UL);
611 static enum xp_retval
612 xpc_get_partition_rsvd_page_pa_sn2(void *buf, u64 *cookie, unsigned long *rp_pa,
613 size_t *len)
615 s64 status;
616 enum xp_retval ret;
618 status = sn_partition_reserved_page_pa((u64)buf, cookie, rp_pa, len);
619 if (status == SALRET_OK)
620 ret = xpSuccess;
621 else if (status == SALRET_MORE_PASSES)
622 ret = xpNeedMoreInfo;
623 else
624 ret = xpSalError;
626 return ret;
630 static int
631 xpc_setup_rsvd_page_sn2(struct xpc_rsvd_page *rp)
633 struct amo *amos_page;
634 int i;
635 int ret;
637 xpc_vars_sn2 = XPC_RP_VARS(rp);
639 rp->sn.sn2.vars_pa = xp_pa(xpc_vars_sn2);
641 /* vars_part array follows immediately after vars */
642 xpc_vars_part_sn2 = (struct xpc_vars_part_sn2 *)((u8 *)XPC_RP_VARS(rp) +
643 XPC_RP_VARS_SIZE);
646 * Before clearing xpc_vars_sn2, see if a page of amos had been
647 * previously allocated. If not we'll need to allocate one and set
648 * permissions so that cross-partition amos are allowed.
650 * The allocated amo page needs MCA reporting to remain disabled after
651 * XPC has unloaded. To make this work, we keep a copy of the pointer
652 * to this page (i.e., amos_page) in the struct xpc_vars_sn2 structure,
653 * which is pointed to by the reserved page, and re-use that saved copy
654 * on subsequent loads of XPC. This amo page is never freed, and its
655 * memory protections are never restricted.
657 amos_page = xpc_vars_sn2->amos_page;
658 if (amos_page == NULL) {
659 amos_page = (struct amo *)TO_AMO(uncached_alloc_page(0, 1));
660 if (amos_page == NULL) {
661 dev_err(xpc_part, "can't allocate page of amos\n");
662 return -ENOMEM;
666 * Open up amo-R/W to cpu. This is done on Shub 1.1 systems
667 * when xpc_allow_amo_ops_shub_wars_1_1_sn2() is called.
669 ret = xpc_allow_amo_ops_sn2(amos_page);
670 if (ret != xpSuccess) {
671 dev_err(xpc_part, "can't allow amo operations\n");
672 uncached_free_page(__IA64_UNCACHED_OFFSET |
673 TO_PHYS((u64)amos_page), 1);
674 return -EPERM;
678 /* clear xpc_vars_sn2 */
679 memset(xpc_vars_sn2, 0, sizeof(struct xpc_vars_sn2));
681 xpc_vars_sn2->version = XPC_V_VERSION;
682 xpc_vars_sn2->activate_IRQ_nasid = cpuid_to_nasid(0);
683 xpc_vars_sn2->activate_IRQ_phys_cpuid = cpu_physical_id(0);
684 xpc_vars_sn2->vars_part_pa = xp_pa(xpc_vars_part_sn2);
685 xpc_vars_sn2->amos_page_pa = ia64_tpa((u64)amos_page);
686 xpc_vars_sn2->amos_page = amos_page; /* save for next load of XPC */
688 /* clear xpc_vars_part_sn2 */
689 memset((u64 *)xpc_vars_part_sn2, 0, sizeof(struct xpc_vars_part_sn2) *
690 XP_MAX_NPARTITIONS_SN2);
692 /* initialize the activate IRQ related amo variables */
693 for (i = 0; i < xpc_nasid_mask_nlongs; i++)
694 (void)xpc_init_IRQ_amo_sn2(XPC_ACTIVATE_IRQ_AMOS_SN2 + i);
696 /* initialize the engaged remote partitions related amo variables */
697 (void)xpc_init_IRQ_amo_sn2(XPC_ENGAGED_PARTITIONS_AMO_SN2);
698 (void)xpc_init_IRQ_amo_sn2(XPC_DEACTIVATE_REQUEST_AMO_SN2);
700 return 0;
703 static int
704 xpc_hb_allowed_sn2(short partid, void *heartbeating_to_mask)
706 return test_bit(partid, heartbeating_to_mask);
709 static void
710 xpc_allow_hb_sn2(short partid)
712 DBUG_ON(xpc_vars_sn2 == NULL);
713 set_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
716 static void
717 xpc_disallow_hb_sn2(short partid)
719 DBUG_ON(xpc_vars_sn2 == NULL);
720 clear_bit(partid, xpc_vars_sn2->heartbeating_to_mask);
723 static void
724 xpc_disallow_all_hbs_sn2(void)
726 DBUG_ON(xpc_vars_sn2 == NULL);
727 bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, xp_max_npartitions);
730 static void
731 xpc_increment_heartbeat_sn2(void)
733 xpc_vars_sn2->heartbeat++;
736 static void
737 xpc_offline_heartbeat_sn2(void)
739 xpc_increment_heartbeat_sn2();
740 xpc_vars_sn2->heartbeat_offline = 1;
743 static void
744 xpc_online_heartbeat_sn2(void)
746 xpc_increment_heartbeat_sn2();
747 xpc_vars_sn2->heartbeat_offline = 0;
750 static void
751 xpc_heartbeat_init_sn2(void)
753 DBUG_ON(xpc_vars_sn2 == NULL);
755 bitmap_zero(xpc_vars_sn2->heartbeating_to_mask, XP_MAX_NPARTITIONS_SN2);
756 xpc_online_heartbeat_sn2();
759 static void
760 xpc_heartbeat_exit_sn2(void)
762 xpc_offline_heartbeat_sn2();
765 static enum xp_retval
766 xpc_get_remote_heartbeat_sn2(struct xpc_partition *part)
768 struct xpc_vars_sn2 *remote_vars;
769 enum xp_retval ret;
771 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
773 /* pull the remote vars structure that contains the heartbeat */
774 ret = xp_remote_memcpy(xp_pa(remote_vars),
775 part->sn.sn2.remote_vars_pa,
776 XPC_RP_VARS_SIZE);
777 if (ret != xpSuccess)
778 return ret;
780 dev_dbg(xpc_part, "partid=%d, heartbeat=%ld, last_heartbeat=%ld, "
781 "heartbeat_offline=%ld, HB_mask[0]=0x%lx\n", XPC_PARTID(part),
782 remote_vars->heartbeat, part->last_heartbeat,
783 remote_vars->heartbeat_offline,
784 remote_vars->heartbeating_to_mask[0]);
786 if ((remote_vars->heartbeat == part->last_heartbeat &&
787 !remote_vars->heartbeat_offline) ||
788 !xpc_hb_allowed_sn2(sn_partition_id,
789 remote_vars->heartbeating_to_mask)) {
790 ret = xpNoHeartbeat;
791 } else {
792 part->last_heartbeat = remote_vars->heartbeat;
795 return ret;
799 * Get a copy of the remote partition's XPC variables from the reserved page.
801 * remote_vars points to a buffer that is cacheline aligned for BTE copies and
802 * assumed to be of size XPC_RP_VARS_SIZE.
804 static enum xp_retval
805 xpc_get_remote_vars_sn2(unsigned long remote_vars_pa,
806 struct xpc_vars_sn2 *remote_vars)
808 enum xp_retval ret;
810 if (remote_vars_pa == 0)
811 return xpVarsNotSet;
813 /* pull over the cross partition variables */
814 ret = xp_remote_memcpy(xp_pa(remote_vars), remote_vars_pa,
815 XPC_RP_VARS_SIZE);
816 if (ret != xpSuccess)
817 return ret;
819 if (XPC_VERSION_MAJOR(remote_vars->version) !=
820 XPC_VERSION_MAJOR(XPC_V_VERSION)) {
821 return xpBadVersion;
824 return xpSuccess;
827 static void
828 xpc_request_partition_activation_sn2(struct xpc_rsvd_page *remote_rp,
829 unsigned long remote_rp_pa, int nasid)
831 xpc_send_local_activate_IRQ_sn2(nasid);
834 static void
835 xpc_request_partition_reactivation_sn2(struct xpc_partition *part)
837 xpc_send_local_activate_IRQ_sn2(part->sn.sn2.activate_IRQ_nasid);
840 static void
841 xpc_request_partition_deactivation_sn2(struct xpc_partition *part)
843 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
844 unsigned long irq_flags;
845 struct amo *amo = (struct amo *)__va(part_sn2->remote_amos_page_pa +
846 (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
847 sizeof(struct amo)));
849 local_irq_save(irq_flags);
851 /* set bit corresponding to our partid in remote partition's amo */
852 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_OR,
853 BIT(sn_partition_id));
856 * We must always use the nofault function regardless of whether we
857 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
858 * didn't, we'd never know that the other partition is down and would
859 * keep sending IRQs and amos to it until the heartbeat times out.
861 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
862 variable),
863 xp_nofault_PIOR_target));
865 local_irq_restore(irq_flags);
868 * Send activate IRQ to get other side to see that we've set our
869 * bit in their deactivate request amo.
871 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
872 cnodeid_to_nasid(0),
873 part_sn2->activate_IRQ_nasid,
874 part_sn2->activate_IRQ_phys_cpuid);
877 static void
878 xpc_cancel_partition_deactivation_request_sn2(struct xpc_partition *part)
880 unsigned long irq_flags;
881 struct amo *amo = (struct amo *)__va(part->sn.sn2.remote_amos_page_pa +
882 (XPC_DEACTIVATE_REQUEST_AMO_SN2 *
883 sizeof(struct amo)));
885 local_irq_save(irq_flags);
887 /* clear bit corresponding to our partid in remote partition's amo */
888 FETCHOP_STORE_OP(TO_AMO((u64)&amo->variable), FETCHOP_AND,
889 ~BIT(sn_partition_id));
892 * We must always use the nofault function regardless of whether we
893 * are on a Shub 1.1 system or a Shub 1.2 slice 0xc processor. If we
894 * didn't, we'd never know that the other partition is down and would
895 * keep sending IRQs and amos to it until the heartbeat times out.
897 (void)xp_nofault_PIOR((u64 *)GLOBAL_MMR_ADDR(NASID_GET(&amo->
898 variable),
899 xp_nofault_PIOR_target));
901 local_irq_restore(irq_flags);
904 static int
905 xpc_partition_deactivation_requested_sn2(short partid)
907 struct amo *amo = xpc_vars_sn2->amos_page +
908 XPC_DEACTIVATE_REQUEST_AMO_SN2;
910 /* our partition's amo variable ANDed with partid mask */
911 return (FETCHOP_LOAD_OP(TO_AMO((u64)&amo->variable), FETCHOP_LOAD) &
912 BIT(partid)) != 0;
916 * Update the remote partition's info.
918 static void
919 xpc_update_partition_info_sn2(struct xpc_partition *part, u8 remote_rp_version,
920 unsigned long *remote_rp_ts_jiffies,
921 unsigned long remote_rp_pa,
922 unsigned long remote_vars_pa,
923 struct xpc_vars_sn2 *remote_vars)
925 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
927 part->remote_rp_version = remote_rp_version;
928 dev_dbg(xpc_part, " remote_rp_version = 0x%016x\n",
929 part->remote_rp_version);
931 part->remote_rp_ts_jiffies = *remote_rp_ts_jiffies;
932 dev_dbg(xpc_part, " remote_rp_ts_jiffies = 0x%016lx\n",
933 part->remote_rp_ts_jiffies);
935 part->remote_rp_pa = remote_rp_pa;
936 dev_dbg(xpc_part, " remote_rp_pa = 0x%016lx\n", part->remote_rp_pa);
938 part_sn2->remote_vars_pa = remote_vars_pa;
939 dev_dbg(xpc_part, " remote_vars_pa = 0x%016lx\n",
940 part_sn2->remote_vars_pa);
942 part->last_heartbeat = remote_vars->heartbeat - 1;
943 dev_dbg(xpc_part, " last_heartbeat = 0x%016lx\n",
944 part->last_heartbeat);
946 part_sn2->remote_vars_part_pa = remote_vars->vars_part_pa;
947 dev_dbg(xpc_part, " remote_vars_part_pa = 0x%016lx\n",
948 part_sn2->remote_vars_part_pa);
950 part_sn2->activate_IRQ_nasid = remote_vars->activate_IRQ_nasid;
951 dev_dbg(xpc_part, " activate_IRQ_nasid = 0x%x\n",
952 part_sn2->activate_IRQ_nasid);
954 part_sn2->activate_IRQ_phys_cpuid =
955 remote_vars->activate_IRQ_phys_cpuid;
956 dev_dbg(xpc_part, " activate_IRQ_phys_cpuid = 0x%x\n",
957 part_sn2->activate_IRQ_phys_cpuid);
959 part_sn2->remote_amos_page_pa = remote_vars->amos_page_pa;
960 dev_dbg(xpc_part, " remote_amos_page_pa = 0x%lx\n",
961 part_sn2->remote_amos_page_pa);
963 part_sn2->remote_vars_version = remote_vars->version;
964 dev_dbg(xpc_part, " remote_vars_version = 0x%x\n",
965 part_sn2->remote_vars_version);
969 * Prior code has determined the nasid which generated a activate IRQ.
970 * Inspect that nasid to determine if its partition needs to be activated
971 * or deactivated.
973 * A partition is considered "awaiting activation" if our partition
974 * flags indicate it is not active and it has a heartbeat. A
975 * partition is considered "awaiting deactivation" if our partition
976 * flags indicate it is active but it has no heartbeat or it is not
977 * sending its heartbeat to us.
979 * To determine the heartbeat, the remote nasid must have a properly
980 * initialized reserved page.
982 static void
983 xpc_identify_activate_IRQ_req_sn2(int nasid)
985 struct xpc_rsvd_page *remote_rp;
986 struct xpc_vars_sn2 *remote_vars;
987 unsigned long remote_rp_pa;
988 unsigned long remote_vars_pa;
989 int remote_rp_version;
990 int reactivate = 0;
991 unsigned long remote_rp_ts_jiffies = 0;
992 short partid;
993 struct xpc_partition *part;
994 struct xpc_partition_sn2 *part_sn2;
995 enum xp_retval ret;
997 /* pull over the reserved page structure */
999 remote_rp = (struct xpc_rsvd_page *)xpc_remote_copy_buffer_sn2;
1001 ret = xpc_get_remote_rp(nasid, NULL, remote_rp, &remote_rp_pa);
1002 if (ret != xpSuccess) {
1003 dev_warn(xpc_part, "unable to get reserved page from nasid %d, "
1004 "which sent interrupt, reason=%d\n", nasid, ret);
1005 return;
1008 remote_vars_pa = remote_rp->sn.sn2.vars_pa;
1009 remote_rp_version = remote_rp->version;
1010 remote_rp_ts_jiffies = remote_rp->ts_jiffies;
1012 partid = remote_rp->SAL_partid;
1013 part = &xpc_partitions[partid];
1014 part_sn2 = &part->sn.sn2;
1016 /* pull over the cross partition variables */
1018 remote_vars = (struct xpc_vars_sn2 *)xpc_remote_copy_buffer_sn2;
1020 ret = xpc_get_remote_vars_sn2(remote_vars_pa, remote_vars);
1021 if (ret != xpSuccess) {
1022 dev_warn(xpc_part, "unable to get XPC variables from nasid %d, "
1023 "which sent interrupt, reason=%d\n", nasid, ret);
1025 XPC_DEACTIVATE_PARTITION(part, ret);
1026 return;
1029 part->activate_IRQ_rcvd++;
1031 dev_dbg(xpc_part, "partid for nasid %d is %d; IRQs = %d; HB = "
1032 "%ld:0x%lx\n", (int)nasid, (int)partid, part->activate_IRQ_rcvd,
1033 remote_vars->heartbeat, remote_vars->heartbeating_to_mask[0]);
1035 if (xpc_partition_disengaged(part) &&
1036 part->act_state == XPC_P_AS_INACTIVE) {
1038 xpc_update_partition_info_sn2(part, remote_rp_version,
1039 &remote_rp_ts_jiffies,
1040 remote_rp_pa, remote_vars_pa,
1041 remote_vars);
1043 if (xpc_partition_deactivation_requested_sn2(partid)) {
1045 * Other side is waiting on us to deactivate even though
1046 * we already have.
1048 return;
1051 xpc_activate_partition(part);
1052 return;
1055 DBUG_ON(part->remote_rp_version == 0);
1056 DBUG_ON(part_sn2->remote_vars_version == 0);
1058 if (remote_rp_ts_jiffies != part->remote_rp_ts_jiffies) {
1060 /* the other side rebooted */
1062 DBUG_ON(xpc_partition_engaged_sn2(partid));
1063 DBUG_ON(xpc_partition_deactivation_requested_sn2(partid));
1065 xpc_update_partition_info_sn2(part, remote_rp_version,
1066 &remote_rp_ts_jiffies,
1067 remote_rp_pa, remote_vars_pa,
1068 remote_vars);
1069 reactivate = 1;
1072 if (part->disengage_timeout > 0 && !xpc_partition_disengaged(part)) {
1073 /* still waiting on other side to disengage from us */
1074 return;
1077 if (reactivate)
1078 XPC_DEACTIVATE_PARTITION(part, xpReactivating);
1079 else if (xpc_partition_deactivation_requested_sn2(partid))
1080 XPC_DEACTIVATE_PARTITION(part, xpOtherGoingDown);
1084 * Loop through the activation amo variables and process any bits
1085 * which are set. Each bit indicates a nasid sending a partition
1086 * activation or deactivation request.
1088 * Return #of IRQs detected.
1091 xpc_identify_activate_IRQ_sender_sn2(void)
1093 int l;
1094 int b;
1095 unsigned long nasid_mask_long;
1096 u64 nasid; /* remote nasid */
1097 int n_IRQs_detected = 0;
1098 struct amo *act_amos;
1100 act_amos = xpc_vars_sn2->amos_page + XPC_ACTIVATE_IRQ_AMOS_SN2;
1102 /* scan through activate amo variables looking for non-zero entries */
1103 for (l = 0; l < xpc_nasid_mask_nlongs; l++) {
1105 if (xpc_exiting)
1106 break;
1108 nasid_mask_long = xpc_receive_IRQ_amo_sn2(&act_amos[l]);
1110 b = find_first_bit(&nasid_mask_long, BITS_PER_LONG);
1111 if (b >= BITS_PER_LONG) {
1112 /* no IRQs from nasids in this amo variable */
1113 continue;
1116 dev_dbg(xpc_part, "amo[%d] gave back 0x%lx\n", l,
1117 nasid_mask_long);
1120 * If this nasid has been added to the machine since
1121 * our partition was reset, this will retain the
1122 * remote nasid in our reserved pages machine mask.
1123 * This is used in the event of module reload.
1125 xpc_mach_nasids[l] |= nasid_mask_long;
1127 /* locate the nasid(s) which sent interrupts */
1129 do {
1130 n_IRQs_detected++;
1131 nasid = (l * BITS_PER_LONG + b) * 2;
1132 dev_dbg(xpc_part, "interrupt from nasid %ld\n", nasid);
1133 xpc_identify_activate_IRQ_req_sn2(nasid);
1135 b = find_next_bit(&nasid_mask_long, BITS_PER_LONG,
1136 b + 1);
1137 } while (b < BITS_PER_LONG);
1139 return n_IRQs_detected;
1142 static void
1143 xpc_process_activate_IRQ_rcvd_sn2(void)
1145 unsigned long irq_flags;
1146 int n_IRQs_expected;
1147 int n_IRQs_detected;
1149 spin_lock_irqsave(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1150 n_IRQs_expected = xpc_activate_IRQ_rcvd;
1151 xpc_activate_IRQ_rcvd = 0;
1152 spin_unlock_irqrestore(&xpc_activate_IRQ_rcvd_lock, irq_flags);
1154 n_IRQs_detected = xpc_identify_activate_IRQ_sender_sn2();
1155 if (n_IRQs_detected < n_IRQs_expected) {
1156 /* retry once to help avoid missing amo */
1157 (void)xpc_identify_activate_IRQ_sender_sn2();
1162 * Setup the channel structures that are sn2 specific.
1164 static enum xp_retval
1165 xpc_setup_ch_structures_sn2(struct xpc_partition *part)
1167 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1168 struct xpc_channel_sn2 *ch_sn2;
1169 enum xp_retval retval;
1170 int ret;
1171 int cpuid;
1172 int ch_number;
1173 struct timer_list *timer;
1174 short partid = XPC_PARTID(part);
1176 /* allocate all the required GET/PUT values */
1178 part_sn2->local_GPs =
1179 xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1180 &part_sn2->local_GPs_base);
1181 if (part_sn2->local_GPs == NULL) {
1182 dev_err(xpc_chan, "can't get memory for local get/put "
1183 "values\n");
1184 return xpNoMemory;
1187 part_sn2->remote_GPs =
1188 xpc_kzalloc_cacheline_aligned(XPC_GP_SIZE, GFP_KERNEL,
1189 &part_sn2->remote_GPs_base);
1190 if (part_sn2->remote_GPs == NULL) {
1191 dev_err(xpc_chan, "can't get memory for remote get/put "
1192 "values\n");
1193 retval = xpNoMemory;
1194 goto out_1;
1197 part_sn2->remote_GPs_pa = 0;
1199 /* allocate all the required open and close args */
1201 part_sn2->local_openclose_args =
1202 xpc_kzalloc_cacheline_aligned(XPC_OPENCLOSE_ARGS_SIZE,
1203 GFP_KERNEL, &part_sn2->
1204 local_openclose_args_base);
1205 if (part_sn2->local_openclose_args == NULL) {
1206 dev_err(xpc_chan, "can't get memory for local connect args\n");
1207 retval = xpNoMemory;
1208 goto out_2;
1211 part_sn2->remote_openclose_args_pa = 0;
1213 part_sn2->local_chctl_amo_va = xpc_init_IRQ_amo_sn2(partid);
1215 part_sn2->notify_IRQ_nasid = 0;
1216 part_sn2->notify_IRQ_phys_cpuid = 0;
1217 part_sn2->remote_chctl_amo_va = NULL;
1219 sprintf(part_sn2->notify_IRQ_owner, "xpc%02d", partid);
1220 ret = request_irq(SGI_XPC_NOTIFY, xpc_handle_notify_IRQ_sn2,
1221 IRQF_SHARED, part_sn2->notify_IRQ_owner,
1222 (void *)(u64)partid);
1223 if (ret != 0) {
1224 dev_err(xpc_chan, "can't register NOTIFY IRQ handler, "
1225 "errno=%d\n", -ret);
1226 retval = xpLackOfResources;
1227 goto out_3;
1230 /* Setup a timer to check for dropped notify IRQs */
1231 timer = &part_sn2->dropped_notify_IRQ_timer;
1232 init_timer(timer);
1233 timer->function =
1234 (void (*)(unsigned long))xpc_check_for_dropped_notify_IRQ_sn2;
1235 timer->data = (unsigned long)part;
1236 timer->expires = jiffies + XPC_DROPPED_NOTIFY_IRQ_WAIT_INTERVAL;
1237 add_timer(timer);
1239 for (ch_number = 0; ch_number < part->nchannels; ch_number++) {
1240 ch_sn2 = &part->channels[ch_number].sn.sn2;
1242 ch_sn2->local_GP = &part_sn2->local_GPs[ch_number];
1243 ch_sn2->local_openclose_args =
1244 &part_sn2->local_openclose_args[ch_number];
1246 mutex_init(&ch_sn2->msg_to_pull_mutex);
1250 * Setup the per partition specific variables required by the
1251 * remote partition to establish channel connections with us.
1253 * The setting of the magic # indicates that these per partition
1254 * specific variables are ready to be used.
1256 xpc_vars_part_sn2[partid].GPs_pa = xp_pa(part_sn2->local_GPs);
1257 xpc_vars_part_sn2[partid].openclose_args_pa =
1258 xp_pa(part_sn2->local_openclose_args);
1259 xpc_vars_part_sn2[partid].chctl_amo_pa =
1260 xp_pa(part_sn2->local_chctl_amo_va);
1261 cpuid = raw_smp_processor_id(); /* any CPU in this partition will do */
1262 xpc_vars_part_sn2[partid].notify_IRQ_nasid = cpuid_to_nasid(cpuid);
1263 xpc_vars_part_sn2[partid].notify_IRQ_phys_cpuid =
1264 cpu_physical_id(cpuid);
1265 xpc_vars_part_sn2[partid].nchannels = part->nchannels;
1266 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC1_SN2;
1268 return xpSuccess;
1270 /* setup of ch structures failed */
1271 out_3:
1272 kfree(part_sn2->local_openclose_args_base);
1273 part_sn2->local_openclose_args = NULL;
1274 out_2:
1275 kfree(part_sn2->remote_GPs_base);
1276 part_sn2->remote_GPs = NULL;
1277 out_1:
1278 kfree(part_sn2->local_GPs_base);
1279 part_sn2->local_GPs = NULL;
1280 return retval;
1284 * Teardown the channel structures that are sn2 specific.
1286 static void
1287 xpc_teardown_ch_structures_sn2(struct xpc_partition *part)
1289 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1290 short partid = XPC_PARTID(part);
1293 * Indicate that the variables specific to the remote partition are no
1294 * longer available for its use.
1296 xpc_vars_part_sn2[partid].magic = 0;
1298 /* in case we've still got outstanding timers registered... */
1299 del_timer_sync(&part_sn2->dropped_notify_IRQ_timer);
1300 free_irq(SGI_XPC_NOTIFY, (void *)(u64)partid);
1302 kfree(part_sn2->local_openclose_args_base);
1303 part_sn2->local_openclose_args = NULL;
1304 kfree(part_sn2->remote_GPs_base);
1305 part_sn2->remote_GPs = NULL;
1306 kfree(part_sn2->local_GPs_base);
1307 part_sn2->local_GPs = NULL;
1308 part_sn2->local_chctl_amo_va = NULL;
1312 * Create a wrapper that hides the underlying mechanism for pulling a cacheline
1313 * (or multiple cachelines) from a remote partition.
1315 * src_pa must be a cacheline aligned physical address on the remote partition.
1316 * dst must be a cacheline aligned virtual address on this partition.
1317 * cnt must be cacheline sized
1319 /* ??? Replace this function by call to xp_remote_memcpy() or bte_copy()? */
1320 static enum xp_retval
1321 xpc_pull_remote_cachelines_sn2(struct xpc_partition *part, void *dst,
1322 const unsigned long src_pa, size_t cnt)
1324 enum xp_retval ret;
1326 DBUG_ON(src_pa != L1_CACHE_ALIGN(src_pa));
1327 DBUG_ON((unsigned long)dst != L1_CACHE_ALIGN((unsigned long)dst));
1328 DBUG_ON(cnt != L1_CACHE_ALIGN(cnt));
1330 if (part->act_state == XPC_P_AS_DEACTIVATING)
1331 return part->reason;
1333 ret = xp_remote_memcpy(xp_pa(dst), src_pa, cnt);
1334 if (ret != xpSuccess) {
1335 dev_dbg(xpc_chan, "xp_remote_memcpy() from partition %d failed,"
1336 " ret=%d\n", XPC_PARTID(part), ret);
1338 return ret;
1342 * Pull the remote per partition specific variables from the specified
1343 * partition.
1345 static enum xp_retval
1346 xpc_pull_remote_vars_part_sn2(struct xpc_partition *part)
1348 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1349 u8 buffer[L1_CACHE_BYTES * 2];
1350 struct xpc_vars_part_sn2 *pulled_entry_cacheline =
1351 (struct xpc_vars_part_sn2 *)L1_CACHE_ALIGN((u64)buffer);
1352 struct xpc_vars_part_sn2 *pulled_entry;
1353 unsigned long remote_entry_cacheline_pa;
1354 unsigned long remote_entry_pa;
1355 short partid = XPC_PARTID(part);
1356 enum xp_retval ret;
1358 /* pull the cacheline that contains the variables we're interested in */
1360 DBUG_ON(part_sn2->remote_vars_part_pa !=
1361 L1_CACHE_ALIGN(part_sn2->remote_vars_part_pa));
1362 DBUG_ON(sizeof(struct xpc_vars_part_sn2) != L1_CACHE_BYTES / 2);
1364 remote_entry_pa = part_sn2->remote_vars_part_pa +
1365 sn_partition_id * sizeof(struct xpc_vars_part_sn2);
1367 remote_entry_cacheline_pa = (remote_entry_pa & ~(L1_CACHE_BYTES - 1));
1369 pulled_entry = (struct xpc_vars_part_sn2 *)((u64)pulled_entry_cacheline
1370 + (remote_entry_pa &
1371 (L1_CACHE_BYTES - 1)));
1373 ret = xpc_pull_remote_cachelines_sn2(part, pulled_entry_cacheline,
1374 remote_entry_cacheline_pa,
1375 L1_CACHE_BYTES);
1376 if (ret != xpSuccess) {
1377 dev_dbg(xpc_chan, "failed to pull XPC vars_part from "
1378 "partition %d, ret=%d\n", partid, ret);
1379 return ret;
1382 /* see if they've been set up yet */
1384 if (pulled_entry->magic != XPC_VP_MAGIC1_SN2 &&
1385 pulled_entry->magic != XPC_VP_MAGIC2_SN2) {
1387 if (pulled_entry->magic != 0) {
1388 dev_dbg(xpc_chan, "partition %d's XPC vars_part for "
1389 "partition %d has bad magic value (=0x%lx)\n",
1390 partid, sn_partition_id, pulled_entry->magic);
1391 return xpBadMagic;
1394 /* they've not been initialized yet */
1395 return xpRetry;
1398 if (xpc_vars_part_sn2[partid].magic == XPC_VP_MAGIC1_SN2) {
1400 /* validate the variables */
1402 if (pulled_entry->GPs_pa == 0 ||
1403 pulled_entry->openclose_args_pa == 0 ||
1404 pulled_entry->chctl_amo_pa == 0) {
1406 dev_err(xpc_chan, "partition %d's XPC vars_part for "
1407 "partition %d are not valid\n", partid,
1408 sn_partition_id);
1409 return xpInvalidAddress;
1412 /* the variables we imported look to be valid */
1414 part_sn2->remote_GPs_pa = pulled_entry->GPs_pa;
1415 part_sn2->remote_openclose_args_pa =
1416 pulled_entry->openclose_args_pa;
1417 part_sn2->remote_chctl_amo_va =
1418 (struct amo *)__va(pulled_entry->chctl_amo_pa);
1419 part_sn2->notify_IRQ_nasid = pulled_entry->notify_IRQ_nasid;
1420 part_sn2->notify_IRQ_phys_cpuid =
1421 pulled_entry->notify_IRQ_phys_cpuid;
1423 if (part->nchannels > pulled_entry->nchannels)
1424 part->nchannels = pulled_entry->nchannels;
1426 /* let the other side know that we've pulled their variables */
1428 xpc_vars_part_sn2[partid].magic = XPC_VP_MAGIC2_SN2;
1431 if (pulled_entry->magic == XPC_VP_MAGIC1_SN2)
1432 return xpRetry;
1434 return xpSuccess;
1438 * Establish first contact with the remote partititon. This involves pulling
1439 * the XPC per partition variables from the remote partition and waiting for
1440 * the remote partition to pull ours.
1442 static enum xp_retval
1443 xpc_make_first_contact_sn2(struct xpc_partition *part)
1445 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1446 enum xp_retval ret;
1449 * Register the remote partition's amos with SAL so it can handle
1450 * and cleanup errors within that address range should the remote
1451 * partition go down. We don't unregister this range because it is
1452 * difficult to tell when outstanding writes to the remote partition
1453 * are finished and thus when it is safe to unregister. This should
1454 * not result in wasted space in the SAL xp_addr_region table because
1455 * we should get the same page for remote_amos_page_pa after module
1456 * reloads and system reboots.
1458 if (sn_register_xp_addr_region(part_sn2->remote_amos_page_pa,
1459 PAGE_SIZE, 1) < 0) {
1460 dev_warn(xpc_part, "xpc_activating(%d) failed to register "
1461 "xp_addr region\n", XPC_PARTID(part));
1463 ret = xpPhysAddrRegFailed;
1464 XPC_DEACTIVATE_PARTITION(part, ret);
1465 return ret;
1469 * Send activate IRQ to get other side to activate if they've not
1470 * already begun to do so.
1472 xpc_send_activate_IRQ_sn2(part_sn2->remote_amos_page_pa,
1473 cnodeid_to_nasid(0),
1474 part_sn2->activate_IRQ_nasid,
1475 part_sn2->activate_IRQ_phys_cpuid);
1477 while ((ret = xpc_pull_remote_vars_part_sn2(part)) != xpSuccess) {
1478 if (ret != xpRetry) {
1479 XPC_DEACTIVATE_PARTITION(part, ret);
1480 return ret;
1483 dev_dbg(xpc_part, "waiting to make first contact with "
1484 "partition %d\n", XPC_PARTID(part));
1486 /* wait a 1/4 of a second or so */
1487 (void)msleep_interruptible(250);
1489 if (part->act_state == XPC_P_AS_DEACTIVATING)
1490 return part->reason;
1493 return xpSuccess;
1497 * Get the chctl flags and pull the openclose args and/or remote GPs as needed.
1499 static u64
1500 xpc_get_chctl_all_flags_sn2(struct xpc_partition *part)
1502 struct xpc_partition_sn2 *part_sn2 = &part->sn.sn2;
1503 unsigned long irq_flags;
1504 union xpc_channel_ctl_flags chctl;
1505 enum xp_retval ret;
1508 * See if there are any chctl flags to be handled.
1511 spin_lock_irqsave(&part->chctl_lock, irq_flags);
1512 chctl = part->chctl;
1513 if (chctl.all_flags != 0)
1514 part->chctl.all_flags = 0;
1516 spin_unlock_irqrestore(&part->chctl_lock, irq_flags);
1518 if (xpc_any_openclose_chctl_flags_set(&chctl)) {
1519 ret = xpc_pull_remote_cachelines_sn2(part, part->
1520 remote_openclose_args,
1521 part_sn2->
1522 remote_openclose_args_pa,
1523 XPC_OPENCLOSE_ARGS_SIZE);
1524 if (ret != xpSuccess) {
1525 XPC_DEACTIVATE_PARTITION(part, ret);
1527 dev_dbg(xpc_chan, "failed to pull openclose args from "
1528 "partition %d, ret=%d\n", XPC_PARTID(part),
1529 ret);
1531 /* don't bother processing chctl flags anymore */
1532 chctl.all_flags = 0;
1536 if (xpc_any_msg_chctl_flags_set(&chctl)) {
1537 ret = xpc_pull_remote_cachelines_sn2(part, part_sn2->remote_GPs,
1538 part_sn2->remote_GPs_pa,
1539 XPC_GP_SIZE);
1540 if (ret != xpSuccess) {
1541 XPC_DEACTIVATE_PARTITION(part, ret);
1543 dev_dbg(xpc_chan, "failed to pull GPs from partition "
1544 "%d, ret=%d\n", XPC_PARTID(part), ret);
1546 /* don't bother processing chctl flags anymore */
1547 chctl.all_flags = 0;
1551 return chctl.all_flags;
1555 * Allocate the local message queue and the notify queue.
1557 static enum xp_retval
1558 xpc_allocate_local_msgqueue_sn2(struct xpc_channel *ch)
1560 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1561 unsigned long irq_flags;
1562 int nentries;
1563 size_t nbytes;
1565 for (nentries = ch->local_nentries; nentries > 0; nentries--) {
1567 nbytes = nentries * ch->entry_size;
1568 ch_sn2->local_msgqueue =
1569 xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL,
1570 &ch_sn2->local_msgqueue_base);
1571 if (ch_sn2->local_msgqueue == NULL)
1572 continue;
1574 nbytes = nentries * sizeof(struct xpc_notify_sn2);
1575 ch_sn2->notify_queue = kzalloc(nbytes, GFP_KERNEL);
1576 if (ch_sn2->notify_queue == NULL) {
1577 kfree(ch_sn2->local_msgqueue_base);
1578 ch_sn2->local_msgqueue = NULL;
1579 continue;
1582 spin_lock_irqsave(&ch->lock, irq_flags);
1583 if (nentries < ch->local_nentries) {
1584 dev_dbg(xpc_chan, "nentries=%d local_nentries=%d, "
1585 "partid=%d, channel=%d\n", nentries,
1586 ch->local_nentries, ch->partid, ch->number);
1588 ch->local_nentries = nentries;
1590 spin_unlock_irqrestore(&ch->lock, irq_flags);
1591 return xpSuccess;
1594 dev_dbg(xpc_chan, "can't get memory for local message queue and notify "
1595 "queue, partid=%d, channel=%d\n", ch->partid, ch->number);
1596 return xpNoMemory;
1600 * Allocate the cached remote message queue.
1602 static enum xp_retval
1603 xpc_allocate_remote_msgqueue_sn2(struct xpc_channel *ch)
1605 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1606 unsigned long irq_flags;
1607 int nentries;
1608 size_t nbytes;
1610 DBUG_ON(ch->remote_nentries <= 0);
1612 for (nentries = ch->remote_nentries; nentries > 0; nentries--) {
1614 nbytes = nentries * ch->entry_size;
1615 ch_sn2->remote_msgqueue =
1616 xpc_kzalloc_cacheline_aligned(nbytes, GFP_KERNEL, &ch_sn2->
1617 remote_msgqueue_base);
1618 if (ch_sn2->remote_msgqueue == NULL)
1619 continue;
1621 spin_lock_irqsave(&ch->lock, irq_flags);
1622 if (nentries < ch->remote_nentries) {
1623 dev_dbg(xpc_chan, "nentries=%d remote_nentries=%d, "
1624 "partid=%d, channel=%d\n", nentries,
1625 ch->remote_nentries, ch->partid, ch->number);
1627 ch->remote_nentries = nentries;
1629 spin_unlock_irqrestore(&ch->lock, irq_flags);
1630 return xpSuccess;
1633 dev_dbg(xpc_chan, "can't get memory for cached remote message queue, "
1634 "partid=%d, channel=%d\n", ch->partid, ch->number);
1635 return xpNoMemory;
1639 * Allocate message queues and other stuff associated with a channel.
1641 * Note: Assumes all of the channel sizes are filled in.
1643 static enum xp_retval
1644 xpc_setup_msg_structures_sn2(struct xpc_channel *ch)
1646 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1647 enum xp_retval ret;
1649 DBUG_ON(ch->flags & XPC_C_SETUP);
1651 ret = xpc_allocate_local_msgqueue_sn2(ch);
1652 if (ret == xpSuccess) {
1654 ret = xpc_allocate_remote_msgqueue_sn2(ch);
1655 if (ret != xpSuccess) {
1656 kfree(ch_sn2->local_msgqueue_base);
1657 ch_sn2->local_msgqueue = NULL;
1658 kfree(ch_sn2->notify_queue);
1659 ch_sn2->notify_queue = NULL;
1662 return ret;
1666 * Free up message queues and other stuff that were allocated for the specified
1667 * channel.
1669 static void
1670 xpc_teardown_msg_structures_sn2(struct xpc_channel *ch)
1672 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1674 DBUG_ON(!spin_is_locked(&ch->lock));
1676 ch_sn2->remote_msgqueue_pa = 0;
1678 ch_sn2->local_GP->get = 0;
1679 ch_sn2->local_GP->put = 0;
1680 ch_sn2->remote_GP.get = 0;
1681 ch_sn2->remote_GP.put = 0;
1682 ch_sn2->w_local_GP.get = 0;
1683 ch_sn2->w_local_GP.put = 0;
1684 ch_sn2->w_remote_GP.get = 0;
1685 ch_sn2->w_remote_GP.put = 0;
1686 ch_sn2->next_msg_to_pull = 0;
1688 if (ch->flags & XPC_C_SETUP) {
1689 dev_dbg(xpc_chan, "ch->flags=0x%x, partid=%d, channel=%d\n",
1690 ch->flags, ch->partid, ch->number);
1692 kfree(ch_sn2->local_msgqueue_base);
1693 ch_sn2->local_msgqueue = NULL;
1694 kfree(ch_sn2->remote_msgqueue_base);
1695 ch_sn2->remote_msgqueue = NULL;
1696 kfree(ch_sn2->notify_queue);
1697 ch_sn2->notify_queue = NULL;
1702 * Notify those who wanted to be notified upon delivery of their message.
1704 static void
1705 xpc_notify_senders_sn2(struct xpc_channel *ch, enum xp_retval reason, s64 put)
1707 struct xpc_notify_sn2 *notify;
1708 u8 notify_type;
1709 s64 get = ch->sn.sn2.w_remote_GP.get - 1;
1711 while (++get < put && atomic_read(&ch->n_to_notify) > 0) {
1713 notify = &ch->sn.sn2.notify_queue[get % ch->local_nentries];
1716 * See if the notify entry indicates it was associated with
1717 * a message who's sender wants to be notified. It is possible
1718 * that it is, but someone else is doing or has done the
1719 * notification.
1721 notify_type = notify->type;
1722 if (notify_type == 0 ||
1723 cmpxchg(&notify->type, notify_type, 0) != notify_type) {
1724 continue;
1727 DBUG_ON(notify_type != XPC_N_CALL);
1729 atomic_dec(&ch->n_to_notify);
1731 if (notify->func != NULL) {
1732 dev_dbg(xpc_chan, "notify->func() called, notify=0x%p "
1733 "msg_number=%ld partid=%d channel=%d\n",
1734 (void *)notify, get, ch->partid, ch->number);
1736 notify->func(reason, ch->partid, ch->number,
1737 notify->key);
1739 dev_dbg(xpc_chan, "notify->func() returned, notify=0x%p"
1740 " msg_number=%ld partid=%d channel=%d\n",
1741 (void *)notify, get, ch->partid, ch->number);
1746 static void
1747 xpc_notify_senders_of_disconnect_sn2(struct xpc_channel *ch)
1749 xpc_notify_senders_sn2(ch, ch->reason, ch->sn.sn2.w_local_GP.put);
1753 * Clear some of the msg flags in the local message queue.
1755 static inline void
1756 xpc_clear_local_msgqueue_flags_sn2(struct xpc_channel *ch)
1758 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1759 struct xpc_msg_sn2 *msg;
1760 s64 get;
1762 get = ch_sn2->w_remote_GP.get;
1763 do {
1764 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
1765 (get % ch->local_nentries) *
1766 ch->entry_size);
1767 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1768 msg->flags = 0;
1769 } while (++get < ch_sn2->remote_GP.get);
1773 * Clear some of the msg flags in the remote message queue.
1775 static inline void
1776 xpc_clear_remote_msgqueue_flags_sn2(struct xpc_channel *ch)
1778 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1779 struct xpc_msg_sn2 *msg;
1780 s64 put, remote_nentries = ch->remote_nentries;
1782 /* flags are zeroed when the buffer is allocated */
1783 if (ch_sn2->remote_GP.put < remote_nentries)
1784 return;
1786 put = max(ch_sn2->w_remote_GP.put, remote_nentries);
1787 do {
1788 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1789 (put % remote_nentries) *
1790 ch->entry_size);
1791 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
1792 DBUG_ON(!(msg->flags & XPC_M_SN2_DONE));
1793 DBUG_ON(msg->number != put - remote_nentries);
1794 msg->flags = 0;
1795 } while (++put < ch_sn2->remote_GP.put);
1798 static int
1799 xpc_n_of_deliverable_payloads_sn2(struct xpc_channel *ch)
1801 return ch->sn.sn2.w_remote_GP.put - ch->sn.sn2.w_local_GP.get;
1804 static void
1805 xpc_process_msg_chctl_flags_sn2(struct xpc_partition *part, int ch_number)
1807 struct xpc_channel *ch = &part->channels[ch_number];
1808 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1809 int npayloads_sent;
1811 ch_sn2->remote_GP = part->sn.sn2.remote_GPs[ch_number];
1813 /* See what, if anything, has changed for each connected channel */
1815 xpc_msgqueue_ref(ch);
1817 if (ch_sn2->w_remote_GP.get == ch_sn2->remote_GP.get &&
1818 ch_sn2->w_remote_GP.put == ch_sn2->remote_GP.put) {
1819 /* nothing changed since GPs were last pulled */
1820 xpc_msgqueue_deref(ch);
1821 return;
1824 if (!(ch->flags & XPC_C_CONNECTED)) {
1825 xpc_msgqueue_deref(ch);
1826 return;
1830 * First check to see if messages recently sent by us have been
1831 * received by the other side. (The remote GET value will have
1832 * changed since we last looked at it.)
1835 if (ch_sn2->w_remote_GP.get != ch_sn2->remote_GP.get) {
1838 * We need to notify any senders that want to be notified
1839 * that their sent messages have been received by their
1840 * intended recipients. We need to do this before updating
1841 * w_remote_GP.get so that we don't allocate the same message
1842 * queue entries prematurely (see xpc_allocate_msg()).
1844 if (atomic_read(&ch->n_to_notify) > 0) {
1846 * Notify senders that messages sent have been
1847 * received and delivered by the other side.
1849 xpc_notify_senders_sn2(ch, xpMsgDelivered,
1850 ch_sn2->remote_GP.get);
1854 * Clear msg->flags in previously sent messages, so that
1855 * they're ready for xpc_allocate_msg().
1857 xpc_clear_local_msgqueue_flags_sn2(ch);
1859 ch_sn2->w_remote_GP.get = ch_sn2->remote_GP.get;
1861 dev_dbg(xpc_chan, "w_remote_GP.get changed to %ld, partid=%d, "
1862 "channel=%d\n", ch_sn2->w_remote_GP.get, ch->partid,
1863 ch->number);
1866 * If anyone was waiting for message queue entries to become
1867 * available, wake them up.
1869 if (atomic_read(&ch->n_on_msg_allocate_wq) > 0)
1870 wake_up(&ch->msg_allocate_wq);
1874 * Now check for newly sent messages by the other side. (The remote
1875 * PUT value will have changed since we last looked at it.)
1878 if (ch_sn2->w_remote_GP.put != ch_sn2->remote_GP.put) {
1880 * Clear msg->flags in previously received messages, so that
1881 * they're ready for xpc_get_deliverable_payload_sn2().
1883 xpc_clear_remote_msgqueue_flags_sn2(ch);
1885 smp_wmb(); /* ensure flags have been cleared before bte_copy */
1886 ch_sn2->w_remote_GP.put = ch_sn2->remote_GP.put;
1888 dev_dbg(xpc_chan, "w_remote_GP.put changed to %ld, partid=%d, "
1889 "channel=%d\n", ch_sn2->w_remote_GP.put, ch->partid,
1890 ch->number);
1892 npayloads_sent = xpc_n_of_deliverable_payloads_sn2(ch);
1893 if (npayloads_sent > 0) {
1894 dev_dbg(xpc_chan, "msgs waiting to be copied and "
1895 "delivered=%d, partid=%d, channel=%d\n",
1896 npayloads_sent, ch->partid, ch->number);
1898 if (ch->flags & XPC_C_CONNECTEDCALLOUT_MADE)
1899 xpc_activate_kthreads(ch, npayloads_sent);
1903 xpc_msgqueue_deref(ch);
1906 static struct xpc_msg_sn2 *
1907 xpc_pull_remote_msg_sn2(struct xpc_channel *ch, s64 get)
1909 struct xpc_partition *part = &xpc_partitions[ch->partid];
1910 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1911 unsigned long remote_msg_pa;
1912 struct xpc_msg_sn2 *msg;
1913 u32 msg_index;
1914 u32 nmsgs;
1915 u64 msg_offset;
1916 enum xp_retval ret;
1918 if (mutex_lock_interruptible(&ch_sn2->msg_to_pull_mutex) != 0) {
1919 /* we were interrupted by a signal */
1920 return NULL;
1923 while (get >= ch_sn2->next_msg_to_pull) {
1925 /* pull as many messages as are ready and able to be pulled */
1927 msg_index = ch_sn2->next_msg_to_pull % ch->remote_nentries;
1929 DBUG_ON(ch_sn2->next_msg_to_pull >= ch_sn2->w_remote_GP.put);
1930 nmsgs = ch_sn2->w_remote_GP.put - ch_sn2->next_msg_to_pull;
1931 if (msg_index + nmsgs > ch->remote_nentries) {
1932 /* ignore the ones that wrap the msg queue for now */
1933 nmsgs = ch->remote_nentries - msg_index;
1936 msg_offset = msg_index * ch->entry_size;
1937 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue +
1938 msg_offset);
1939 remote_msg_pa = ch_sn2->remote_msgqueue_pa + msg_offset;
1941 ret = xpc_pull_remote_cachelines_sn2(part, msg, remote_msg_pa,
1942 nmsgs * ch->entry_size);
1943 if (ret != xpSuccess) {
1945 dev_dbg(xpc_chan, "failed to pull %d msgs starting with"
1946 " msg %ld from partition %d, channel=%d, "
1947 "ret=%d\n", nmsgs, ch_sn2->next_msg_to_pull,
1948 ch->partid, ch->number, ret);
1950 XPC_DEACTIVATE_PARTITION(part, ret);
1952 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1953 return NULL;
1956 ch_sn2->next_msg_to_pull += nmsgs;
1959 mutex_unlock(&ch_sn2->msg_to_pull_mutex);
1961 /* return the message we were looking for */
1962 msg_offset = (get % ch->remote_nentries) * ch->entry_size;
1963 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->remote_msgqueue + msg_offset);
1965 return msg;
1969 * Get the next deliverable message's payload.
1971 static void *
1972 xpc_get_deliverable_payload_sn2(struct xpc_channel *ch)
1974 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
1975 struct xpc_msg_sn2 *msg;
1976 void *payload = NULL;
1977 s64 get;
1979 do {
1980 if (ch->flags & XPC_C_DISCONNECTING)
1981 break;
1983 get = ch_sn2->w_local_GP.get;
1984 smp_rmb(); /* guarantee that .get loads before .put */
1985 if (get == ch_sn2->w_remote_GP.put)
1986 break;
1988 /* There are messages waiting to be pulled and delivered.
1989 * We need to try to secure one for ourselves. We'll do this
1990 * by trying to increment w_local_GP.get and hope that no one
1991 * else beats us to it. If they do, we'll we'll simply have
1992 * to try again for the next one.
1995 if (cmpxchg(&ch_sn2->w_local_GP.get, get, get + 1) == get) {
1996 /* we got the entry referenced by get */
1998 dev_dbg(xpc_chan, "w_local_GP.get changed to %ld, "
1999 "partid=%d, channel=%d\n", get + 1,
2000 ch->partid, ch->number);
2002 /* pull the message from the remote partition */
2004 msg = xpc_pull_remote_msg_sn2(ch, get);
2006 if (msg != NULL) {
2007 DBUG_ON(msg->number != get);
2008 DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2009 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2011 payload = &msg->payload;
2013 break;
2016 } while (1);
2018 return payload;
2022 * Now we actually send the messages that are ready to be sent by advancing
2023 * the local message queue's Put value and then send a chctl msgrequest to the
2024 * recipient partition.
2026 static void
2027 xpc_send_msgs_sn2(struct xpc_channel *ch, s64 initial_put)
2029 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2030 struct xpc_msg_sn2 *msg;
2031 s64 put = initial_put + 1;
2032 int send_msgrequest = 0;
2034 while (1) {
2036 while (1) {
2037 if (put == ch_sn2->w_local_GP.put)
2038 break;
2040 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2041 local_msgqueue + (put %
2042 ch->local_nentries) *
2043 ch->entry_size);
2045 if (!(msg->flags & XPC_M_SN2_READY))
2046 break;
2048 put++;
2051 if (put == initial_put) {
2052 /* nothing's changed */
2053 break;
2056 if (cmpxchg_rel(&ch_sn2->local_GP->put, initial_put, put) !=
2057 initial_put) {
2058 /* someone else beat us to it */
2059 DBUG_ON(ch_sn2->local_GP->put < initial_put);
2060 break;
2063 /* we just set the new value of local_GP->put */
2065 dev_dbg(xpc_chan, "local_GP->put changed to %ld, partid=%d, "
2066 "channel=%d\n", put, ch->partid, ch->number);
2068 send_msgrequest = 1;
2071 * We need to ensure that the message referenced by
2072 * local_GP->put is not XPC_M_SN2_READY or that local_GP->put
2073 * equals w_local_GP.put, so we'll go have a look.
2075 initial_put = put;
2078 if (send_msgrequest)
2079 xpc_send_chctl_msgrequest_sn2(ch);
2083 * Allocate an entry for a message from the message queue associated with the
2084 * specified channel.
2086 static enum xp_retval
2087 xpc_allocate_msg_sn2(struct xpc_channel *ch, u32 flags,
2088 struct xpc_msg_sn2 **address_of_msg)
2090 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2091 struct xpc_msg_sn2 *msg;
2092 enum xp_retval ret;
2093 s64 put;
2096 * Get the next available message entry from the local message queue.
2097 * If none are available, we'll make sure that we grab the latest
2098 * GP values.
2100 ret = xpTimeout;
2102 while (1) {
2104 put = ch_sn2->w_local_GP.put;
2105 smp_rmb(); /* guarantee that .put loads before .get */
2106 if (put - ch_sn2->w_remote_GP.get < ch->local_nentries) {
2108 /* There are available message entries. We need to try
2109 * to secure one for ourselves. We'll do this by trying
2110 * to increment w_local_GP.put as long as someone else
2111 * doesn't beat us to it. If they do, we'll have to
2112 * try again.
2114 if (cmpxchg(&ch_sn2->w_local_GP.put, put, put + 1) ==
2115 put) {
2116 /* we got the entry referenced by put */
2117 break;
2119 continue; /* try again */
2123 * There aren't any available msg entries at this time.
2125 * In waiting for a message entry to become available,
2126 * we set a timeout in case the other side is not sending
2127 * completion interrupts. This lets us fake a notify IRQ
2128 * that will cause the notify IRQ handler to fetch the latest
2129 * GP values as if an interrupt was sent by the other side.
2131 if (ret == xpTimeout)
2132 xpc_send_chctl_local_msgrequest_sn2(ch);
2134 if (flags & XPC_NOWAIT)
2135 return xpNoWait;
2137 ret = xpc_allocate_msg_wait(ch);
2138 if (ret != xpInterrupted && ret != xpTimeout)
2139 return ret;
2142 /* get the message's address and initialize it */
2143 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->local_msgqueue +
2144 (put % ch->local_nentries) *
2145 ch->entry_size);
2147 DBUG_ON(msg->flags != 0);
2148 msg->number = put;
2150 dev_dbg(xpc_chan, "w_local_GP.put changed to %ld; msg=0x%p, "
2151 "msg_number=%ld, partid=%d, channel=%d\n", put + 1,
2152 (void *)msg, msg->number, ch->partid, ch->number);
2154 *address_of_msg = msg;
2155 return xpSuccess;
2159 * Common code that does the actual sending of the message by advancing the
2160 * local message queue's Put value and sends a chctl msgrequest to the
2161 * partition the message is being sent to.
2163 static enum xp_retval
2164 xpc_send_payload_sn2(struct xpc_channel *ch, u32 flags, void *payload,
2165 u16 payload_size, u8 notify_type, xpc_notify_func func,
2166 void *key)
2168 enum xp_retval ret = xpSuccess;
2169 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2170 struct xpc_msg_sn2 *msg = msg;
2171 struct xpc_notify_sn2 *notify = notify;
2172 s64 msg_number;
2173 s64 put;
2175 DBUG_ON(notify_type == XPC_N_CALL && func == NULL);
2177 if (XPC_MSG_SIZE(payload_size) > ch->entry_size)
2178 return xpPayloadTooBig;
2180 xpc_msgqueue_ref(ch);
2182 if (ch->flags & XPC_C_DISCONNECTING) {
2183 ret = ch->reason;
2184 goto out_1;
2186 if (!(ch->flags & XPC_C_CONNECTED)) {
2187 ret = xpNotConnected;
2188 goto out_1;
2191 ret = xpc_allocate_msg_sn2(ch, flags, &msg);
2192 if (ret != xpSuccess)
2193 goto out_1;
2195 msg_number = msg->number;
2197 if (notify_type != 0) {
2199 * Tell the remote side to send an ACK interrupt when the
2200 * message has been delivered.
2202 msg->flags |= XPC_M_SN2_INTERRUPT;
2204 atomic_inc(&ch->n_to_notify);
2206 notify = &ch_sn2->notify_queue[msg_number % ch->local_nentries];
2207 notify->func = func;
2208 notify->key = key;
2209 notify->type = notify_type;
2211 /* ??? Is a mb() needed here? */
2213 if (ch->flags & XPC_C_DISCONNECTING) {
2215 * An error occurred between our last error check and
2216 * this one. We will try to clear the type field from
2217 * the notify entry. If we succeed then
2218 * xpc_disconnect_channel() didn't already process
2219 * the notify entry.
2221 if (cmpxchg(&notify->type, notify_type, 0) ==
2222 notify_type) {
2223 atomic_dec(&ch->n_to_notify);
2224 ret = ch->reason;
2226 goto out_1;
2230 memcpy(&msg->payload, payload, payload_size);
2232 msg->flags |= XPC_M_SN2_READY;
2235 * The preceding store of msg->flags must occur before the following
2236 * load of local_GP->put.
2238 smp_mb();
2240 /* see if the message is next in line to be sent, if so send it */
2242 put = ch_sn2->local_GP->put;
2243 if (put == msg_number)
2244 xpc_send_msgs_sn2(ch, put);
2246 out_1:
2247 xpc_msgqueue_deref(ch);
2248 return ret;
2252 * Now we actually acknowledge the messages that have been delivered and ack'd
2253 * by advancing the cached remote message queue's Get value and if requested
2254 * send a chctl msgrequest to the message sender's partition.
2256 * If a message has XPC_M_SN2_INTERRUPT set, send an interrupt to the partition
2257 * that sent the message.
2259 static void
2260 xpc_acknowledge_msgs_sn2(struct xpc_channel *ch, s64 initial_get, u8 msg_flags)
2262 struct xpc_channel_sn2 *ch_sn2 = &ch->sn.sn2;
2263 struct xpc_msg_sn2 *msg;
2264 s64 get = initial_get + 1;
2265 int send_msgrequest = 0;
2267 while (1) {
2269 while (1) {
2270 if (get == ch_sn2->w_local_GP.get)
2271 break;
2273 msg = (struct xpc_msg_sn2 *)((u64)ch_sn2->
2274 remote_msgqueue + (get %
2275 ch->remote_nentries) *
2276 ch->entry_size);
2278 if (!(msg->flags & XPC_M_SN2_DONE))
2279 break;
2281 msg_flags |= msg->flags;
2282 get++;
2285 if (get == initial_get) {
2286 /* nothing's changed */
2287 break;
2290 if (cmpxchg_rel(&ch_sn2->local_GP->get, initial_get, get) !=
2291 initial_get) {
2292 /* someone else beat us to it */
2293 DBUG_ON(ch_sn2->local_GP->get <= initial_get);
2294 break;
2297 /* we just set the new value of local_GP->get */
2299 dev_dbg(xpc_chan, "local_GP->get changed to %ld, partid=%d, "
2300 "channel=%d\n", get, ch->partid, ch->number);
2302 send_msgrequest = (msg_flags & XPC_M_SN2_INTERRUPT);
2305 * We need to ensure that the message referenced by
2306 * local_GP->get is not XPC_M_SN2_DONE or that local_GP->get
2307 * equals w_local_GP.get, so we'll go have a look.
2309 initial_get = get;
2312 if (send_msgrequest)
2313 xpc_send_chctl_msgrequest_sn2(ch);
2316 static void
2317 xpc_received_payload_sn2(struct xpc_channel *ch, void *payload)
2319 struct xpc_msg_sn2 *msg;
2320 s64 msg_number;
2321 s64 get;
2323 msg = container_of(payload, struct xpc_msg_sn2, payload);
2324 msg_number = msg->number;
2326 dev_dbg(xpc_chan, "msg=0x%p, msg_number=%ld, partid=%d, channel=%d\n",
2327 (void *)msg, msg_number, ch->partid, ch->number);
2329 DBUG_ON((((u64)msg - (u64)ch->sn.sn2.remote_msgqueue) / ch->entry_size) !=
2330 msg_number % ch->remote_nentries);
2331 DBUG_ON(!(msg->flags & XPC_M_SN2_READY));
2332 DBUG_ON(msg->flags & XPC_M_SN2_DONE);
2334 msg->flags |= XPC_M_SN2_DONE;
2337 * The preceding store of msg->flags must occur before the following
2338 * load of local_GP->get.
2340 smp_mb();
2343 * See if this message is next in line to be acknowledged as having
2344 * been delivered.
2346 get = ch->sn.sn2.local_GP->get;
2347 if (get == msg_number)
2348 xpc_acknowledge_msgs_sn2(ch, get, msg->flags);
2351 static struct xpc_arch_operations xpc_arch_ops_sn2 = {
2352 .setup_partitions = xpc_setup_partitions_sn2,
2353 .teardown_partitions = xpc_teardown_partitions_sn2,
2354 .process_activate_IRQ_rcvd = xpc_process_activate_IRQ_rcvd_sn2,
2355 .get_partition_rsvd_page_pa = xpc_get_partition_rsvd_page_pa_sn2,
2356 .setup_rsvd_page = xpc_setup_rsvd_page_sn2,
2358 .allow_hb = xpc_allow_hb_sn2,
2359 .disallow_hb = xpc_disallow_hb_sn2,
2360 .disallow_all_hbs = xpc_disallow_all_hbs_sn2,
2361 .increment_heartbeat = xpc_increment_heartbeat_sn2,
2362 .offline_heartbeat = xpc_offline_heartbeat_sn2,
2363 .online_heartbeat = xpc_online_heartbeat_sn2,
2364 .heartbeat_init = xpc_heartbeat_init_sn2,
2365 .heartbeat_exit = xpc_heartbeat_exit_sn2,
2366 .get_remote_heartbeat = xpc_get_remote_heartbeat_sn2,
2368 .request_partition_activation =
2369 xpc_request_partition_activation_sn2,
2370 .request_partition_reactivation =
2371 xpc_request_partition_reactivation_sn2,
2372 .request_partition_deactivation =
2373 xpc_request_partition_deactivation_sn2,
2374 .cancel_partition_deactivation_request =
2375 xpc_cancel_partition_deactivation_request_sn2,
2377 .setup_ch_structures = xpc_setup_ch_structures_sn2,
2378 .teardown_ch_structures = xpc_teardown_ch_structures_sn2,
2380 .make_first_contact = xpc_make_first_contact_sn2,
2382 .get_chctl_all_flags = xpc_get_chctl_all_flags_sn2,
2383 .send_chctl_closerequest = xpc_send_chctl_closerequest_sn2,
2384 .send_chctl_closereply = xpc_send_chctl_closereply_sn2,
2385 .send_chctl_openrequest = xpc_send_chctl_openrequest_sn2,
2386 .send_chctl_openreply = xpc_send_chctl_openreply_sn2,
2387 .send_chctl_opencomplete = xpc_send_chctl_opencomplete_sn2,
2388 .process_msg_chctl_flags = xpc_process_msg_chctl_flags_sn2,
2390 .save_remote_msgqueue_pa = xpc_save_remote_msgqueue_pa_sn2,
2392 .setup_msg_structures = xpc_setup_msg_structures_sn2,
2393 .teardown_msg_structures = xpc_teardown_msg_structures_sn2,
2395 .indicate_partition_engaged = xpc_indicate_partition_engaged_sn2,
2396 .indicate_partition_disengaged = xpc_indicate_partition_disengaged_sn2,
2397 .partition_engaged = xpc_partition_engaged_sn2,
2398 .any_partition_engaged = xpc_any_partition_engaged_sn2,
2399 .assume_partition_disengaged = xpc_assume_partition_disengaged_sn2,
2401 .n_of_deliverable_payloads = xpc_n_of_deliverable_payloads_sn2,
2402 .send_payload = xpc_send_payload_sn2,
2403 .get_deliverable_payload = xpc_get_deliverable_payload_sn2,
2404 .received_payload = xpc_received_payload_sn2,
2405 .notify_senders_of_disconnect = xpc_notify_senders_of_disconnect_sn2,
2409 xpc_init_sn2(void)
2411 int ret;
2412 size_t buf_size;
2414 xpc_arch_ops = xpc_arch_ops_sn2;
2416 if (offsetof(struct xpc_msg_sn2, payload) > XPC_MSG_HDR_MAX_SIZE) {
2417 dev_err(xpc_part, "header portion of struct xpc_msg_sn2 is "
2418 "larger than %d\n", XPC_MSG_HDR_MAX_SIZE);
2419 return -E2BIG;
2422 buf_size = max(XPC_RP_VARS_SIZE,
2423 XPC_RP_HEADER_SIZE + XP_NASID_MASK_BYTES_SN2);
2424 xpc_remote_copy_buffer_sn2 = xpc_kmalloc_cacheline_aligned(buf_size,
2425 GFP_KERNEL,
2426 &xpc_remote_copy_buffer_base_sn2);
2427 if (xpc_remote_copy_buffer_sn2 == NULL) {
2428 dev_err(xpc_part, "can't get memory for remote copy buffer\n");
2429 return -ENOMEM;
2432 /* open up protections for IPI and [potentially] amo operations */
2433 xpc_allow_IPI_ops_sn2();
2434 xpc_allow_amo_ops_shub_wars_1_1_sn2();
2437 * This is safe to do before the xpc_hb_checker thread has started
2438 * because the handler releases a wait queue. If an interrupt is
2439 * received before the thread is waiting, it will not go to sleep,
2440 * but rather immediately process the interrupt.
2442 ret = request_irq(SGI_XPC_ACTIVATE, xpc_handle_activate_IRQ_sn2, 0,
2443 "xpc hb", NULL);
2444 if (ret != 0) {
2445 dev_err(xpc_part, "can't register ACTIVATE IRQ handler, "
2446 "errno=%d\n", -ret);
2447 xpc_disallow_IPI_ops_sn2();
2448 kfree(xpc_remote_copy_buffer_base_sn2);
2450 return ret;
2453 void
2454 xpc_exit_sn2(void)
2456 free_irq(SGI_XPC_ACTIVATE, NULL);
2457 xpc_disallow_IPI_ops_sn2();
2458 kfree(xpc_remote_copy_buffer_base_sn2);