2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
39 #include <linux/compiler.h>
40 #include <linux/module.h>
42 /* People can turn this off for buggy TCP's found in printers etc. */
43 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
45 /* People can turn this on to work with those rare, broken TCPs that
46 * interpret the window field as a signed quantity.
48 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
50 /* This limits the percentage of the congestion window which we
51 * will allow a single TSO frame to consume. Building TSO frames
52 * which are too large can cause TCP streams to be bursty.
54 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
56 int sysctl_tcp_mtu_probing __read_mostly
= 0;
57 int sysctl_tcp_base_mss __read_mostly
= 512;
59 /* By default, RFC2861 behavior. */
60 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
62 static void tcp_event_new_data_sent(struct sock
*sk
, struct sk_buff
*skb
)
64 struct tcp_sock
*tp
= tcp_sk(sk
);
65 unsigned int prior_packets
= tp
->packets_out
;
67 tcp_advance_send_head(sk
, skb
);
68 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
70 /* Don't override Nagle indefinately with F-RTO */
71 if (tp
->frto_counter
== 2)
74 tp
->packets_out
+= tcp_skb_pcount(skb
);
76 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
77 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
80 /* SND.NXT, if window was not shrunk.
81 * If window has been shrunk, what should we make? It is not clear at all.
82 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
83 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
84 * invalid. OK, let's make this for now:
86 static inline __u32
tcp_acceptable_seq(struct sock
*sk
)
88 struct tcp_sock
*tp
= tcp_sk(sk
);
90 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
))
93 return tcp_wnd_end(tp
);
96 /* Calculate mss to advertise in SYN segment.
97 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
99 * 1. It is independent of path mtu.
100 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
101 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
102 * attached devices, because some buggy hosts are confused by
104 * 4. We do not make 3, we advertise MSS, calculated from first
105 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
106 * This may be overridden via information stored in routing table.
107 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
108 * probably even Jumbo".
110 static __u16
tcp_advertise_mss(struct sock
*sk
)
112 struct tcp_sock
*tp
= tcp_sk(sk
);
113 struct dst_entry
*dst
= __sk_dst_get(sk
);
114 int mss
= tp
->advmss
;
116 if (dst
&& dst_metric(dst
, RTAX_ADVMSS
) < mss
) {
117 mss
= dst_metric(dst
, RTAX_ADVMSS
);
124 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
125 * This is the first part of cwnd validation mechanism. */
126 static void tcp_cwnd_restart(struct sock
*sk
, struct dst_entry
*dst
)
128 struct tcp_sock
*tp
= tcp_sk(sk
);
129 s32 delta
= tcp_time_stamp
- tp
->lsndtime
;
130 u32 restart_cwnd
= tcp_init_cwnd(tp
, dst
);
131 u32 cwnd
= tp
->snd_cwnd
;
133 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
135 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
136 restart_cwnd
= min(restart_cwnd
, cwnd
);
138 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
140 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
141 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
142 tp
->snd_cwnd_used
= 0;
145 static void tcp_event_data_sent(struct tcp_sock
*tp
,
146 struct sk_buff
*skb
, struct sock
*sk
)
148 struct inet_connection_sock
*icsk
= inet_csk(sk
);
149 const u32 now
= tcp_time_stamp
;
151 if (sysctl_tcp_slow_start_after_idle
&&
152 (!tp
->packets_out
&& (s32
)(now
- tp
->lsndtime
) > icsk
->icsk_rto
))
153 tcp_cwnd_restart(sk
, __sk_dst_get(sk
));
157 /* If it is a reply for ato after last received
158 * packet, enter pingpong mode.
160 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
161 icsk
->icsk_ack
.pingpong
= 1;
164 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
166 tcp_dec_quickack_mode(sk
, pkts
);
167 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
170 /* Determine a window scaling and initial window to offer.
171 * Based on the assumption that the given amount of space
172 * will be offered. Store the results in the tp structure.
173 * NOTE: for smooth operation initial space offering should
174 * be a multiple of mss if possible. We assume here that mss >= 1.
175 * This MUST be enforced by all callers.
177 void tcp_select_initial_window(int __space
, __u32 mss
,
178 __u32
*rcv_wnd
, __u32
*window_clamp
,
179 int wscale_ok
, __u8
*rcv_wscale
)
181 unsigned int space
= (__space
< 0 ? 0 : __space
);
183 /* If no clamp set the clamp to the max possible scaled window */
184 if (*window_clamp
== 0)
185 (*window_clamp
) = (65535 << 14);
186 space
= min(*window_clamp
, space
);
188 /* Quantize space offering to a multiple of mss if possible. */
190 space
= (space
/ mss
) * mss
;
192 /* NOTE: offering an initial window larger than 32767
193 * will break some buggy TCP stacks. If the admin tells us
194 * it is likely we could be speaking with such a buggy stack
195 * we will truncate our initial window offering to 32K-1
196 * unless the remote has sent us a window scaling option,
197 * which we interpret as a sign the remote TCP is not
198 * misinterpreting the window field as a signed quantity.
200 if (sysctl_tcp_workaround_signed_windows
)
201 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
207 /* Set window scaling on max possible window
208 * See RFC1323 for an explanation of the limit to 14
210 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
211 space
= min_t(u32
, space
, *window_clamp
);
212 while (space
> 65535 && (*rcv_wscale
) < 14) {
218 /* Set initial window to value enough for senders,
219 * following RFC2414. Senders, not following this RFC,
220 * will be satisfied with 2.
222 if (mss
> (1 << *rcv_wscale
)) {
228 if (*rcv_wnd
> init_cwnd
* mss
)
229 *rcv_wnd
= init_cwnd
* mss
;
232 /* Set the clamp no higher than max representable value */
233 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
236 /* Chose a new window to advertise, update state in tcp_sock for the
237 * socket, and return result with RFC1323 scaling applied. The return
238 * value can be stuffed directly into th->window for an outgoing
241 static u16
tcp_select_window(struct sock
*sk
)
243 struct tcp_sock
*tp
= tcp_sk(sk
);
244 u32 cur_win
= tcp_receive_window(tp
);
245 u32 new_win
= __tcp_select_window(sk
);
247 /* Never shrink the offered window */
248 if (new_win
< cur_win
) {
249 /* Danger Will Robinson!
250 * Don't update rcv_wup/rcv_wnd here or else
251 * we will not be able to advertise a zero
252 * window in time. --DaveM
254 * Relax Will Robinson.
256 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
258 tp
->rcv_wnd
= new_win
;
259 tp
->rcv_wup
= tp
->rcv_nxt
;
261 /* Make sure we do not exceed the maximum possible
264 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
265 new_win
= min(new_win
, MAX_TCP_WINDOW
);
267 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
269 /* RFC1323 scaling applied */
270 new_win
>>= tp
->rx_opt
.rcv_wscale
;
272 /* If we advertise zero window, disable fast path. */
279 static inline void TCP_ECN_send_synack(struct tcp_sock
*tp
, struct sk_buff
*skb
)
281 TCP_SKB_CB(skb
)->flags
&= ~TCPCB_FLAG_CWR
;
282 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
283 TCP_SKB_CB(skb
)->flags
&= ~TCPCB_FLAG_ECE
;
286 static inline void TCP_ECN_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
288 struct tcp_sock
*tp
= tcp_sk(sk
);
291 if (sysctl_tcp_ecn
) {
292 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_ECE
| TCPCB_FLAG_CWR
;
293 tp
->ecn_flags
= TCP_ECN_OK
;
297 static __inline__
void
298 TCP_ECN_make_synack(struct request_sock
*req
, struct tcphdr
*th
)
300 if (inet_rsk(req
)->ecn_ok
)
304 static inline void TCP_ECN_send(struct sock
*sk
, struct sk_buff
*skb
,
307 struct tcp_sock
*tp
= tcp_sk(sk
);
309 if (tp
->ecn_flags
& TCP_ECN_OK
) {
310 /* Not-retransmitted data segment: set ECT and inject CWR. */
311 if (skb
->len
!= tcp_header_len
&&
312 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
314 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
315 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
316 tcp_hdr(skb
)->cwr
= 1;
317 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
320 /* ACK or retransmitted segment: clear ECT|CE */
321 INET_ECN_dontxmit(sk
);
323 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
324 tcp_hdr(skb
)->ece
= 1;
328 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
329 * auto increment end seqno.
331 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
335 TCP_SKB_CB(skb
)->flags
= flags
;
336 TCP_SKB_CB(skb
)->sacked
= 0;
338 skb_shinfo(skb
)->gso_segs
= 1;
339 skb_shinfo(skb
)->gso_size
= 0;
340 skb_shinfo(skb
)->gso_type
= 0;
342 TCP_SKB_CB(skb
)->seq
= seq
;
343 if (flags
& (TCPCB_FLAG_SYN
| TCPCB_FLAG_FIN
))
345 TCP_SKB_CB(skb
)->end_seq
= seq
;
348 static inline int tcp_urg_mode(const struct tcp_sock
*tp
)
350 return tp
->snd_una
!= tp
->snd_up
;
353 #define OPTION_SACK_ADVERTISE (1 << 0)
354 #define OPTION_TS (1 << 1)
355 #define OPTION_MD5 (1 << 2)
357 struct tcp_out_options
{
358 u8 options
; /* bit field of OPTION_* */
359 u8 ws
; /* window scale, 0 to disable */
360 u8 num_sack_blocks
; /* number of SACK blocks to include */
361 u16 mss
; /* 0 to disable */
362 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
365 /* Beware: Something in the Internet is very sensitive to the ordering of
366 * TCP options, we learned this through the hard way, so be careful here.
367 * Luckily we can at least blame others for their non-compliance but from
368 * inter-operatibility perspective it seems that we're somewhat stuck with
369 * the ordering which we have been using if we want to keep working with
370 * those broken things (not that it currently hurts anybody as there isn't
371 * particular reason why the ordering would need to be changed).
373 * At least SACK_PERM as the first option is known to lead to a disaster
374 * (but it may well be that other scenarios fail similarly).
376 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
377 const struct tcp_out_options
*opts
,
379 if (unlikely(OPTION_MD5
& opts
->options
)) {
380 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
382 (TCPOPT_MD5SIG
<< 8) |
384 *md5_hash
= (__u8
*)ptr
;
390 if (unlikely(opts
->mss
)) {
391 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
392 (TCPOLEN_MSS
<< 16) |
396 if (likely(OPTION_TS
& opts
->options
)) {
397 if (unlikely(OPTION_SACK_ADVERTISE
& opts
->options
)) {
398 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
399 (TCPOLEN_SACK_PERM
<< 16) |
400 (TCPOPT_TIMESTAMP
<< 8) |
403 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
405 (TCPOPT_TIMESTAMP
<< 8) |
408 *ptr
++ = htonl(opts
->tsval
);
409 *ptr
++ = htonl(opts
->tsecr
);
412 if (unlikely(OPTION_SACK_ADVERTISE
& opts
->options
&&
413 !(OPTION_TS
& opts
->options
))) {
414 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
416 (TCPOPT_SACK_PERM
<< 8) |
420 if (unlikely(opts
->ws
)) {
421 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
422 (TCPOPT_WINDOW
<< 16) |
423 (TCPOLEN_WINDOW
<< 8) |
427 if (unlikely(opts
->num_sack_blocks
)) {
428 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
429 tp
->duplicate_sack
: tp
->selective_acks
;
432 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
435 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
436 TCPOLEN_SACK_PERBLOCK
)));
438 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
440 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
441 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
444 if (tp
->rx_opt
.dsack
) {
445 tp
->rx_opt
.dsack
= 0;
446 tp
->rx_opt
.eff_sacks
= tp
->rx_opt
.num_sacks
;
451 static unsigned tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
452 struct tcp_out_options
*opts
,
453 struct tcp_md5sig_key
**md5
) {
454 struct tcp_sock
*tp
= tcp_sk(sk
);
457 #ifdef CONFIG_TCP_MD5SIG
458 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
460 opts
->options
|= OPTION_MD5
;
461 size
+= TCPOLEN_MD5SIG_ALIGNED
;
467 /* We always get an MSS option. The option bytes which will be seen in
468 * normal data packets should timestamps be used, must be in the MSS
469 * advertised. But we subtract them from tp->mss_cache so that
470 * calculations in tcp_sendmsg are simpler etc. So account for this
471 * fact here if necessary. If we don't do this correctly, as a
472 * receiver we won't recognize data packets as being full sized when we
473 * should, and thus we won't abide by the delayed ACK rules correctly.
474 * SACKs don't matter, we never delay an ACK when we have any of those
476 opts
->mss
= tcp_advertise_mss(sk
);
477 size
+= TCPOLEN_MSS_ALIGNED
;
479 if (likely(sysctl_tcp_timestamps
&& *md5
== NULL
)) {
480 opts
->options
|= OPTION_TS
;
481 opts
->tsval
= TCP_SKB_CB(skb
)->when
;
482 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
483 size
+= TCPOLEN_TSTAMP_ALIGNED
;
485 if (likely(sysctl_tcp_window_scaling
)) {
486 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
487 if (likely(opts
->ws
))
488 size
+= TCPOLEN_WSCALE_ALIGNED
;
490 if (likely(sysctl_tcp_sack
)) {
491 opts
->options
|= OPTION_SACK_ADVERTISE
;
492 if (unlikely(!(OPTION_TS
& opts
->options
)))
493 size
+= TCPOLEN_SACKPERM_ALIGNED
;
499 static unsigned tcp_synack_options(struct sock
*sk
,
500 struct request_sock
*req
,
501 unsigned mss
, struct sk_buff
*skb
,
502 struct tcp_out_options
*opts
,
503 struct tcp_md5sig_key
**md5
) {
505 struct inet_request_sock
*ireq
= inet_rsk(req
);
508 #ifdef CONFIG_TCP_MD5SIG
509 *md5
= tcp_rsk(req
)->af_specific
->md5_lookup(sk
, req
);
511 opts
->options
|= OPTION_MD5
;
512 size
+= TCPOLEN_MD5SIG_ALIGNED
;
518 /* we can't fit any SACK blocks in a packet with MD5 + TS
519 options. There was discussion about disabling SACK rather than TS in
520 order to fit in better with old, buggy kernels, but that was deemed
521 to be unnecessary. */
522 doing_ts
= ireq
->tstamp_ok
&& !(*md5
&& ireq
->sack_ok
);
525 size
+= TCPOLEN_MSS_ALIGNED
;
527 if (likely(ireq
->wscale_ok
)) {
528 opts
->ws
= ireq
->rcv_wscale
;
529 if (likely(opts
->ws
))
530 size
+= TCPOLEN_WSCALE_ALIGNED
;
532 if (likely(doing_ts
)) {
533 opts
->options
|= OPTION_TS
;
534 opts
->tsval
= TCP_SKB_CB(skb
)->when
;
535 opts
->tsecr
= req
->ts_recent
;
536 size
+= TCPOLEN_TSTAMP_ALIGNED
;
538 if (likely(ireq
->sack_ok
)) {
539 opts
->options
|= OPTION_SACK_ADVERTISE
;
540 if (unlikely(!doing_ts
))
541 size
+= TCPOLEN_SACKPERM_ALIGNED
;
547 static unsigned tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
548 struct tcp_out_options
*opts
,
549 struct tcp_md5sig_key
**md5
) {
550 struct tcp_skb_cb
*tcb
= skb
? TCP_SKB_CB(skb
) : NULL
;
551 struct tcp_sock
*tp
= tcp_sk(sk
);
554 #ifdef CONFIG_TCP_MD5SIG
555 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
556 if (unlikely(*md5
)) {
557 opts
->options
|= OPTION_MD5
;
558 size
+= TCPOLEN_MD5SIG_ALIGNED
;
564 if (likely(tp
->rx_opt
.tstamp_ok
)) {
565 opts
->options
|= OPTION_TS
;
566 opts
->tsval
= tcb
? tcb
->when
: 0;
567 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
568 size
+= TCPOLEN_TSTAMP_ALIGNED
;
571 if (unlikely(tp
->rx_opt
.eff_sacks
)) {
572 const unsigned remaining
= MAX_TCP_OPTION_SPACE
- size
;
573 opts
->num_sack_blocks
=
574 min_t(unsigned, tp
->rx_opt
.eff_sacks
,
575 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
576 TCPOLEN_SACK_PERBLOCK
);
577 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
578 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
584 /* This routine actually transmits TCP packets queued in by
585 * tcp_do_sendmsg(). This is used by both the initial
586 * transmission and possible later retransmissions.
587 * All SKB's seen here are completely headerless. It is our
588 * job to build the TCP header, and pass the packet down to
589 * IP so it can do the same plus pass the packet off to the
592 * We are working here with either a clone of the original
593 * SKB, or a fresh unique copy made by the retransmit engine.
595 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
598 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
599 struct inet_sock
*inet
;
601 struct tcp_skb_cb
*tcb
;
602 struct tcp_out_options opts
;
603 unsigned tcp_options_size
, tcp_header_size
;
604 struct tcp_md5sig_key
*md5
;
605 __u8
*md5_hash_location
;
609 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
611 /* If congestion control is doing timestamping, we must
612 * take such a timestamp before we potentially clone/copy.
614 if (icsk
->icsk_ca_ops
->flags
& TCP_CONG_RTT_STAMP
)
615 __net_timestamp(skb
);
617 if (likely(clone_it
)) {
618 if (unlikely(skb_cloned(skb
)))
619 skb
= pskb_copy(skb
, gfp_mask
);
621 skb
= skb_clone(skb
, gfp_mask
);
628 tcb
= TCP_SKB_CB(skb
);
629 memset(&opts
, 0, sizeof(opts
));
631 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
))
632 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
634 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
636 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
638 if (tcp_packets_in_flight(tp
) == 0)
639 tcp_ca_event(sk
, CA_EVENT_TX_START
);
641 skb_push(skb
, tcp_header_size
);
642 skb_reset_transport_header(skb
);
643 skb_set_owner_w(skb
, sk
);
645 /* Build TCP header and checksum it. */
647 th
->source
= inet
->sport
;
648 th
->dest
= inet
->dport
;
649 th
->seq
= htonl(tcb
->seq
);
650 th
->ack_seq
= htonl(tp
->rcv_nxt
);
651 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
654 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
655 /* RFC1323: The window in SYN & SYN/ACK segments
658 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
660 th
->window
= htons(tcp_select_window(sk
));
665 /* The urg_mode check is necessary during a below snd_una win probe */
666 if (unlikely(tcp_urg_mode(tp
) &&
667 between(tp
->snd_up
, tcb
->seq
+ 1, tcb
->seq
+ 0xFFFF))) {
668 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
672 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
, &md5_hash_location
);
673 if (likely((tcb
->flags
& TCPCB_FLAG_SYN
) == 0))
674 TCP_ECN_send(sk
, skb
, tcp_header_size
);
676 #ifdef CONFIG_TCP_MD5SIG
677 /* Calculate the MD5 hash, as we have all we need now */
679 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
680 tp
->af_specific
->calc_md5_hash(md5_hash_location
,
685 icsk
->icsk_af_ops
->send_check(sk
, skb
->len
, skb
);
687 if (likely(tcb
->flags
& TCPCB_FLAG_ACK
))
688 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
690 if (skb
->len
!= tcp_header_size
)
691 tcp_event_data_sent(tp
, skb
, sk
);
693 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
694 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
696 err
= icsk
->icsk_af_ops
->queue_xmit(skb
, 0);
697 if (likely(err
<= 0))
700 tcp_enter_cwr(sk
, 1);
702 return net_xmit_eval(err
);
705 /* This routine just queue's the buffer
707 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
708 * otherwise socket can stall.
710 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
712 struct tcp_sock
*tp
= tcp_sk(sk
);
714 /* Advance write_seq and place onto the write_queue. */
715 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
716 skb_header_release(skb
);
717 tcp_add_write_queue_tail(sk
, skb
);
718 sk
->sk_wmem_queued
+= skb
->truesize
;
719 sk_mem_charge(sk
, skb
->truesize
);
722 static void tcp_set_skb_tso_segs(struct sock
*sk
, struct sk_buff
*skb
,
723 unsigned int mss_now
)
725 if (skb
->len
<= mss_now
|| !sk_can_gso(sk
)) {
726 /* Avoid the costly divide in the normal
729 skb_shinfo(skb
)->gso_segs
= 1;
730 skb_shinfo(skb
)->gso_size
= 0;
731 skb_shinfo(skb
)->gso_type
= 0;
733 skb_shinfo(skb
)->gso_segs
= DIV_ROUND_UP(skb
->len
, mss_now
);
734 skb_shinfo(skb
)->gso_size
= mss_now
;
735 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
739 /* When a modification to fackets out becomes necessary, we need to check
740 * skb is counted to fackets_out or not.
742 static void tcp_adjust_fackets_out(struct sock
*sk
, struct sk_buff
*skb
,
745 struct tcp_sock
*tp
= tcp_sk(sk
);
747 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
750 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
751 tp
->fackets_out
-= decr
;
754 /* Function to create two new TCP segments. Shrinks the given segment
755 * to the specified size and appends a new segment with the rest of the
756 * packet to the list. This won't be called frequently, I hope.
757 * Remember, these are still headerless SKBs at this point.
759 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
760 unsigned int mss_now
)
762 struct tcp_sock
*tp
= tcp_sk(sk
);
763 struct sk_buff
*buff
;
764 int nsize
, old_factor
;
768 BUG_ON(len
> skb
->len
);
770 tcp_clear_retrans_hints_partial(tp
);
771 nsize
= skb_headlen(skb
) - len
;
775 if (skb_cloned(skb
) &&
776 skb_is_nonlinear(skb
) &&
777 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
780 /* Get a new skb... force flag on. */
781 buff
= sk_stream_alloc_skb(sk
, nsize
, GFP_ATOMIC
);
783 return -ENOMEM
; /* We'll just try again later. */
785 sk
->sk_wmem_queued
+= buff
->truesize
;
786 sk_mem_charge(sk
, buff
->truesize
);
787 nlen
= skb
->len
- len
- nsize
;
788 buff
->truesize
+= nlen
;
789 skb
->truesize
-= nlen
;
791 /* Correct the sequence numbers. */
792 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
793 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
794 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
796 /* PSH and FIN should only be set in the second packet. */
797 flags
= TCP_SKB_CB(skb
)->flags
;
798 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
| TCPCB_FLAG_PSH
);
799 TCP_SKB_CB(buff
)->flags
= flags
;
800 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
802 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
803 /* Copy and checksum data tail into the new buffer. */
804 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
805 skb_put(buff
, nsize
),
810 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
812 skb
->ip_summed
= CHECKSUM_PARTIAL
;
813 skb_split(skb
, buff
, len
);
816 buff
->ip_summed
= skb
->ip_summed
;
818 /* Looks stupid, but our code really uses when of
819 * skbs, which it never sent before. --ANK
821 TCP_SKB_CB(buff
)->when
= TCP_SKB_CB(skb
)->when
;
822 buff
->tstamp
= skb
->tstamp
;
824 old_factor
= tcp_skb_pcount(skb
);
826 /* Fix up tso_factor for both original and new SKB. */
827 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
828 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
830 /* If this packet has been sent out already, we must
831 * adjust the various packet counters.
833 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
834 int diff
= old_factor
- tcp_skb_pcount(skb
) -
835 tcp_skb_pcount(buff
);
837 tp
->packets_out
-= diff
;
839 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
840 tp
->sacked_out
-= diff
;
841 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
842 tp
->retrans_out
-= diff
;
844 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
845 tp
->lost_out
-= diff
;
847 /* Adjust Reno SACK estimate. */
848 if (tcp_is_reno(tp
) && diff
> 0) {
849 tcp_dec_pcount_approx_int(&tp
->sacked_out
, diff
);
850 tcp_verify_left_out(tp
);
852 tcp_adjust_fackets_out(sk
, skb
, diff
);
855 /* Link BUFF into the send queue. */
856 skb_header_release(buff
);
857 tcp_insert_write_queue_after(skb
, buff
, sk
);
862 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
863 * eventually). The difference is that pulled data not copied, but
864 * immediately discarded.
866 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
872 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
873 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
874 put_page(skb_shinfo(skb
)->frags
[i
].page
);
875 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
877 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
879 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
880 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
886 skb_shinfo(skb
)->nr_frags
= k
;
888 skb_reset_tail_pointer(skb
);
889 skb
->data_len
-= len
;
890 skb
->len
= skb
->data_len
;
893 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
895 if (skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
898 /* If len == headlen, we avoid __skb_pull to preserve alignment. */
899 if (unlikely(len
< skb_headlen(skb
)))
900 __skb_pull(skb
, len
);
902 __pskb_trim_head(skb
, len
- skb_headlen(skb
));
904 TCP_SKB_CB(skb
)->seq
+= len
;
905 skb
->ip_summed
= CHECKSUM_PARTIAL
;
907 skb
->truesize
-= len
;
908 sk
->sk_wmem_queued
-= len
;
909 sk_mem_uncharge(sk
, len
);
910 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
912 /* Any change of skb->len requires recalculation of tso
915 if (tcp_skb_pcount(skb
) > 1)
916 tcp_set_skb_tso_segs(sk
, skb
, tcp_current_mss(sk
, 1));
921 /* Not accounting for SACKs here. */
922 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
924 struct tcp_sock
*tp
= tcp_sk(sk
);
925 struct inet_connection_sock
*icsk
= inet_csk(sk
);
928 /* Calculate base mss without TCP options:
929 It is MMS_S - sizeof(tcphdr) of rfc1122
931 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
933 /* Clamp it (mss_clamp does not include tcp options) */
934 if (mss_now
> tp
->rx_opt
.mss_clamp
)
935 mss_now
= tp
->rx_opt
.mss_clamp
;
937 /* Now subtract optional transport overhead */
938 mss_now
-= icsk
->icsk_ext_hdr_len
;
940 /* Then reserve room for full set of TCP options and 8 bytes of data */
944 /* Now subtract TCP options size, not including SACKs */
945 mss_now
-= tp
->tcp_header_len
- sizeof(struct tcphdr
);
950 /* Inverse of above */
951 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
953 struct tcp_sock
*tp
= tcp_sk(sk
);
954 struct inet_connection_sock
*icsk
= inet_csk(sk
);
959 icsk
->icsk_ext_hdr_len
+
960 icsk
->icsk_af_ops
->net_header_len
;
965 void tcp_mtup_init(struct sock
*sk
)
967 struct tcp_sock
*tp
= tcp_sk(sk
);
968 struct inet_connection_sock
*icsk
= inet_csk(sk
);
970 icsk
->icsk_mtup
.enabled
= sysctl_tcp_mtu_probing
> 1;
971 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
972 icsk
->icsk_af_ops
->net_header_len
;
973 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, sysctl_tcp_base_mss
);
974 icsk
->icsk_mtup
.probe_size
= 0;
977 /* Bound MSS / TSO packet size with the half of the window */
978 static int tcp_bound_to_half_wnd(struct tcp_sock
*tp
, int pktsize
)
980 if (tp
->max_window
&& pktsize
> (tp
->max_window
>> 1))
981 return max(tp
->max_window
>> 1, 68U - tp
->tcp_header_len
);
986 /* This function synchronize snd mss to current pmtu/exthdr set.
988 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
989 for TCP options, but includes only bare TCP header.
991 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
992 It is minimum of user_mss and mss received with SYN.
993 It also does not include TCP options.
995 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
997 tp->mss_cache is current effective sending mss, including
998 all tcp options except for SACKs. It is evaluated,
999 taking into account current pmtu, but never exceeds
1000 tp->rx_opt.mss_clamp.
1002 NOTE1. rfc1122 clearly states that advertised MSS
1003 DOES NOT include either tcp or ip options.
1005 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1006 are READ ONLY outside this function. --ANK (980731)
1008 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
1010 struct tcp_sock
*tp
= tcp_sk(sk
);
1011 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1014 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1015 icsk
->icsk_mtup
.search_high
= pmtu
;
1017 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1018 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1020 /* And store cached results */
1021 icsk
->icsk_pmtu_cookie
= pmtu
;
1022 if (icsk
->icsk_mtup
.enabled
)
1023 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1024 tp
->mss_cache
= mss_now
;
1029 /* Compute the current effective MSS, taking SACKs and IP options,
1030 * and even PMTU discovery events into account.
1032 unsigned int tcp_current_mss(struct sock
*sk
, int large_allowed
)
1034 struct tcp_sock
*tp
= tcp_sk(sk
);
1035 struct dst_entry
*dst
= __sk_dst_get(sk
);
1039 unsigned header_len
;
1040 struct tcp_out_options opts
;
1041 struct tcp_md5sig_key
*md5
;
1043 mss_now
= tp
->mss_cache
;
1045 if (large_allowed
&& sk_can_gso(sk
))
1049 u32 mtu
= dst_mtu(dst
);
1050 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1051 mss_now
= tcp_sync_mss(sk
, mtu
);
1054 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1055 sizeof(struct tcphdr
);
1056 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1057 * some common options. If this is an odd packet (because we have SACK
1058 * blocks etc) then our calculated header_len will be different, and
1059 * we have to adjust mss_now correspondingly */
1060 if (header_len
!= tp
->tcp_header_len
) {
1061 int delta
= (int) header_len
- tp
->tcp_header_len
;
1065 xmit_size_goal
= mss_now
;
1068 xmit_size_goal
= ((sk
->sk_gso_max_size
- 1) -
1069 inet_csk(sk
)->icsk_af_ops
->net_header_len
-
1070 inet_csk(sk
)->icsk_ext_hdr_len
-
1071 tp
->tcp_header_len
);
1073 xmit_size_goal
= tcp_bound_to_half_wnd(tp
, xmit_size_goal
);
1074 xmit_size_goal
-= (xmit_size_goal
% mss_now
);
1076 tp
->xmit_size_goal
= xmit_size_goal
;
1081 /* Congestion window validation. (RFC2861) */
1082 static void tcp_cwnd_validate(struct sock
*sk
)
1084 struct tcp_sock
*tp
= tcp_sk(sk
);
1086 if (tp
->packets_out
>= tp
->snd_cwnd
) {
1087 /* Network is feed fully. */
1088 tp
->snd_cwnd_used
= 0;
1089 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1091 /* Network starves. */
1092 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1093 tp
->snd_cwnd_used
= tp
->packets_out
;
1095 if (sysctl_tcp_slow_start_after_idle
&&
1096 (s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
1097 tcp_cwnd_application_limited(sk
);
1101 /* Returns the portion of skb which can be sent right away without
1102 * introducing MSS oddities to segment boundaries. In rare cases where
1103 * mss_now != mss_cache, we will request caller to create a small skb
1104 * per input skb which could be mostly avoided here (if desired).
1106 * We explicitly want to create a request for splitting write queue tail
1107 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1108 * thus all the complexity (cwnd_len is always MSS multiple which we
1109 * return whenever allowed by the other factors). Basically we need the
1110 * modulo only when the receiver window alone is the limiting factor or
1111 * when we would be allowed to send the split-due-to-Nagle skb fully.
1113 static unsigned int tcp_mss_split_point(struct sock
*sk
, struct sk_buff
*skb
,
1114 unsigned int mss_now
, unsigned int cwnd
)
1116 struct tcp_sock
*tp
= tcp_sk(sk
);
1117 u32 needed
, window
, cwnd_len
;
1119 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1120 cwnd_len
= mss_now
* cwnd
;
1122 if (likely(cwnd_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1125 needed
= min(skb
->len
, window
);
1127 if (cwnd_len
<= needed
)
1130 return needed
- needed
% mss_now
;
1133 /* Can at least one segment of SKB be sent right now, according to the
1134 * congestion window rules? If so, return how many segments are allowed.
1136 static inline unsigned int tcp_cwnd_test(struct tcp_sock
*tp
,
1137 struct sk_buff
*skb
)
1139 u32 in_flight
, cwnd
;
1141 /* Don't be strict about the congestion window for the final FIN. */
1142 if ((TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
) &&
1143 tcp_skb_pcount(skb
) == 1)
1146 in_flight
= tcp_packets_in_flight(tp
);
1147 cwnd
= tp
->snd_cwnd
;
1148 if (in_flight
< cwnd
)
1149 return (cwnd
- in_flight
);
1154 /* This must be invoked the first time we consider transmitting
1155 * SKB onto the wire.
1157 static int tcp_init_tso_segs(struct sock
*sk
, struct sk_buff
*skb
,
1158 unsigned int mss_now
)
1160 int tso_segs
= tcp_skb_pcount(skb
);
1162 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1163 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1164 tso_segs
= tcp_skb_pcount(skb
);
1169 static inline int tcp_minshall_check(const struct tcp_sock
*tp
)
1171 return after(tp
->snd_sml
, tp
->snd_una
) &&
1172 !after(tp
->snd_sml
, tp
->snd_nxt
);
1175 /* Return 0, if packet can be sent now without violation Nagle's rules:
1176 * 1. It is full sized.
1177 * 2. Or it contains FIN. (already checked by caller)
1178 * 3. Or TCP_NODELAY was set.
1179 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1180 * With Minshall's modification: all sent small packets are ACKed.
1182 static inline int tcp_nagle_check(const struct tcp_sock
*tp
,
1183 const struct sk_buff
*skb
,
1184 unsigned mss_now
, int nonagle
)
1186 return (skb
->len
< mss_now
&&
1187 ((nonagle
& TCP_NAGLE_CORK
) ||
1188 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
))));
1191 /* Return non-zero if the Nagle test allows this packet to be
1194 static inline int tcp_nagle_test(struct tcp_sock
*tp
, struct sk_buff
*skb
,
1195 unsigned int cur_mss
, int nonagle
)
1197 /* Nagle rule does not apply to frames, which sit in the middle of the
1198 * write_queue (they have no chances to get new data).
1200 * This is implemented in the callers, where they modify the 'nonagle'
1201 * argument based upon the location of SKB in the send queue.
1203 if (nonagle
& TCP_NAGLE_PUSH
)
1206 /* Don't use the nagle rule for urgent data (or for the final FIN).
1207 * Nagle can be ignored during F-RTO too (see RFC4138).
1209 if (tcp_urg_mode(tp
) || (tp
->frto_counter
== 2) ||
1210 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
))
1213 if (!tcp_nagle_check(tp
, skb
, cur_mss
, nonagle
))
1219 /* Does at least the first segment of SKB fit into the send window? */
1220 static inline int tcp_snd_wnd_test(struct tcp_sock
*tp
, struct sk_buff
*skb
,
1221 unsigned int cur_mss
)
1223 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1225 if (skb
->len
> cur_mss
)
1226 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1228 return !after(end_seq
, tcp_wnd_end(tp
));
1231 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1232 * should be put on the wire right now. If so, it returns the number of
1233 * packets allowed by the congestion window.
1235 static unsigned int tcp_snd_test(struct sock
*sk
, struct sk_buff
*skb
,
1236 unsigned int cur_mss
, int nonagle
)
1238 struct tcp_sock
*tp
= tcp_sk(sk
);
1239 unsigned int cwnd_quota
;
1241 tcp_init_tso_segs(sk
, skb
, cur_mss
);
1243 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1246 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1247 if (cwnd_quota
&& !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1253 int tcp_may_send_now(struct sock
*sk
)
1255 struct tcp_sock
*tp
= tcp_sk(sk
);
1256 struct sk_buff
*skb
= tcp_send_head(sk
);
1259 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
, 1),
1260 (tcp_skb_is_last(sk
, skb
) ?
1261 tp
->nonagle
: TCP_NAGLE_PUSH
)));
1264 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1265 * which is put after SKB on the list. It is very much like
1266 * tcp_fragment() except that it may make several kinds of assumptions
1267 * in order to speed up the splitting operation. In particular, we
1268 * know that all the data is in scatter-gather pages, and that the
1269 * packet has never been sent out before (and thus is not cloned).
1271 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1272 unsigned int mss_now
)
1274 struct sk_buff
*buff
;
1275 int nlen
= skb
->len
- len
;
1278 /* All of a TSO frame must be composed of paged data. */
1279 if (skb
->len
!= skb
->data_len
)
1280 return tcp_fragment(sk
, skb
, len
, mss_now
);
1282 buff
= sk_stream_alloc_skb(sk
, 0, GFP_ATOMIC
);
1283 if (unlikely(buff
== NULL
))
1286 sk
->sk_wmem_queued
+= buff
->truesize
;
1287 sk_mem_charge(sk
, buff
->truesize
);
1288 buff
->truesize
+= nlen
;
1289 skb
->truesize
-= nlen
;
1291 /* Correct the sequence numbers. */
1292 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1293 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1294 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1296 /* PSH and FIN should only be set in the second packet. */
1297 flags
= TCP_SKB_CB(skb
)->flags
;
1298 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
| TCPCB_FLAG_PSH
);
1299 TCP_SKB_CB(buff
)->flags
= flags
;
1301 /* This packet was never sent out yet, so no SACK bits. */
1302 TCP_SKB_CB(buff
)->sacked
= 0;
1304 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1305 skb_split(skb
, buff
, len
);
1307 /* Fix up tso_factor for both original and new SKB. */
1308 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1309 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
1311 /* Link BUFF into the send queue. */
1312 skb_header_release(buff
);
1313 tcp_insert_write_queue_after(skb
, buff
, sk
);
1318 /* Try to defer sending, if possible, in order to minimize the amount
1319 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1321 * This algorithm is from John Heffner.
1323 static int tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
)
1325 struct tcp_sock
*tp
= tcp_sk(sk
);
1326 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1327 u32 send_win
, cong_win
, limit
, in_flight
;
1329 if (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
)
1332 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
1335 /* Defer for less than two clock ticks. */
1336 if (tp
->tso_deferred
&&
1337 (((u32
)jiffies
<< 1) >> 1) - (tp
->tso_deferred
>> 1) > 1)
1340 in_flight
= tcp_packets_in_flight(tp
);
1342 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1344 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1346 /* From in_flight test above, we know that cwnd > in_flight. */
1347 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1349 limit
= min(send_win
, cong_win
);
1351 /* If a full-sized TSO skb can be sent, do it. */
1352 if (limit
>= sk
->sk_gso_max_size
)
1355 if (sysctl_tcp_tso_win_divisor
) {
1356 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1358 /* If at least some fraction of a window is available,
1361 chunk
/= sysctl_tcp_tso_win_divisor
;
1365 /* Different approach, try not to defer past a single
1366 * ACK. Receiver should ACK every other full sized
1367 * frame, so if we have space for more than 3 frames
1370 if (limit
> tcp_max_burst(tp
) * tp
->mss_cache
)
1374 /* Ok, it looks like it is advisable to defer. */
1375 tp
->tso_deferred
= 1 | (jiffies
<< 1);
1380 tp
->tso_deferred
= 0;
1384 /* Create a new MTU probe if we are ready.
1385 * Returns 0 if we should wait to probe (no cwnd available),
1386 * 1 if a probe was sent,
1389 static int tcp_mtu_probe(struct sock
*sk
)
1391 struct tcp_sock
*tp
= tcp_sk(sk
);
1392 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1393 struct sk_buff
*skb
, *nskb
, *next
;
1400 /* Not currently probing/verifying,
1402 * have enough cwnd, and
1403 * not SACKing (the variable headers throw things off) */
1404 if (!icsk
->icsk_mtup
.enabled
||
1405 icsk
->icsk_mtup
.probe_size
||
1406 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1407 tp
->snd_cwnd
< 11 ||
1408 tp
->rx_opt
.eff_sacks
)
1411 /* Very simple search strategy: just double the MSS. */
1412 mss_now
= tcp_current_mss(sk
, 0);
1413 probe_size
= 2 * tp
->mss_cache
;
1414 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
1415 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
)) {
1416 /* TODO: set timer for probe_converge_event */
1420 /* Have enough data in the send queue to probe? */
1421 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
1424 if (tp
->snd_wnd
< size_needed
)
1426 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
1429 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1430 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
1431 if (!tcp_packets_in_flight(tp
))
1437 /* We're allowed to probe. Build it now. */
1438 if ((nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
)) == NULL
)
1440 sk
->sk_wmem_queued
+= nskb
->truesize
;
1441 sk_mem_charge(sk
, nskb
->truesize
);
1443 skb
= tcp_send_head(sk
);
1445 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1446 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1447 TCP_SKB_CB(nskb
)->flags
= TCPCB_FLAG_ACK
;
1448 TCP_SKB_CB(nskb
)->sacked
= 0;
1450 nskb
->ip_summed
= skb
->ip_summed
;
1452 tcp_insert_write_queue_before(nskb
, skb
, sk
);
1455 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
1456 copy
= min_t(int, skb
->len
, probe_size
- len
);
1457 if (nskb
->ip_summed
)
1458 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1460 nskb
->csum
= skb_copy_and_csum_bits(skb
, 0,
1461 skb_put(nskb
, copy
),
1464 if (skb
->len
<= copy
) {
1465 /* We've eaten all the data from this skb.
1467 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
;
1468 tcp_unlink_write_queue(skb
, sk
);
1469 sk_wmem_free_skb(sk
, skb
);
1471 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
&
1472 ~(TCPCB_FLAG_FIN
|TCPCB_FLAG_PSH
);
1473 if (!skb_shinfo(skb
)->nr_frags
) {
1474 skb_pull(skb
, copy
);
1475 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1476 skb
->csum
= csum_partial(skb
->data
,
1479 __pskb_trim_head(skb
, copy
);
1480 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1482 TCP_SKB_CB(skb
)->seq
+= copy
;
1487 if (len
>= probe_size
)
1490 tcp_init_tso_segs(sk
, nskb
, nskb
->len
);
1492 /* We're ready to send. If this fails, the probe will
1493 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1494 TCP_SKB_CB(nskb
)->when
= tcp_time_stamp
;
1495 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
1496 /* Decrement cwnd here because we are sending
1497 * effectively two packets. */
1499 tcp_event_new_data_sent(sk
, nskb
);
1501 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
1502 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
1503 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
1511 /* This routine writes packets to the network. It advances the
1512 * send_head. This happens as incoming acks open up the remote
1515 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
1516 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
1517 * account rare use of URG, this is not a big flaw.
1519 * Returns 1, if no segments are in flight and we have queued segments, but
1520 * cannot send anything now because of SWS or another problem.
1522 static int tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
,
1523 int push_one
, gfp_t gfp
)
1525 struct tcp_sock
*tp
= tcp_sk(sk
);
1526 struct sk_buff
*skb
;
1527 unsigned int tso_segs
, sent_pkts
;
1534 /* Do MTU probing. */
1535 result
= tcp_mtu_probe(sk
);
1538 } else if (result
> 0) {
1543 while ((skb
= tcp_send_head(sk
))) {
1546 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
1549 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1553 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
1556 if (tso_segs
== 1) {
1557 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
1558 (tcp_skb_is_last(sk
, skb
) ?
1559 nonagle
: TCP_NAGLE_PUSH
))))
1562 if (!push_one
&& tcp_tso_should_defer(sk
, skb
))
1567 if (tso_segs
> 1 && !tcp_urg_mode(tp
))
1568 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
1571 if (skb
->len
> limit
&&
1572 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
)))
1575 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1577 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, gfp
)))
1580 /* Advance the send_head. This one is sent out.
1581 * This call will increment packets_out.
1583 tcp_event_new_data_sent(sk
, skb
);
1585 tcp_minshall_update(tp
, mss_now
, skb
);
1592 if (likely(sent_pkts
)) {
1593 tcp_cwnd_validate(sk
);
1596 return !tp
->packets_out
&& tcp_send_head(sk
);
1599 /* Push out any pending frames which were held back due to
1600 * TCP_CORK or attempt at coalescing tiny packets.
1601 * The socket must be locked by the caller.
1603 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
1606 struct sk_buff
*skb
= tcp_send_head(sk
);
1611 /* If we are closed, the bytes will have to remain here.
1612 * In time closedown will finish, we empty the write queue and
1613 * all will be happy.
1615 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
1618 if (tcp_write_xmit(sk
, cur_mss
, nonagle
, 0, GFP_ATOMIC
))
1619 tcp_check_probe_timer(sk
);
1622 /* Send _single_ skb sitting at the send head. This function requires
1623 * true push pending frames to setup probe timer etc.
1625 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
1627 struct sk_buff
*skb
= tcp_send_head(sk
);
1629 BUG_ON(!skb
|| skb
->len
< mss_now
);
1631 tcp_write_xmit(sk
, mss_now
, TCP_NAGLE_PUSH
, 1, sk
->sk_allocation
);
1634 /* This function returns the amount that we can raise the
1635 * usable window based on the following constraints
1637 * 1. The window can never be shrunk once it is offered (RFC 793)
1638 * 2. We limit memory per socket
1641 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1642 * RECV.NEXT + RCV.WIN fixed until:
1643 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1645 * i.e. don't raise the right edge of the window until you can raise
1646 * it at least MSS bytes.
1648 * Unfortunately, the recommended algorithm breaks header prediction,
1649 * since header prediction assumes th->window stays fixed.
1651 * Strictly speaking, keeping th->window fixed violates the receiver
1652 * side SWS prevention criteria. The problem is that under this rule
1653 * a stream of single byte packets will cause the right side of the
1654 * window to always advance by a single byte.
1656 * Of course, if the sender implements sender side SWS prevention
1657 * then this will not be a problem.
1659 * BSD seems to make the following compromise:
1661 * If the free space is less than the 1/4 of the maximum
1662 * space available and the free space is less than 1/2 mss,
1663 * then set the window to 0.
1664 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1665 * Otherwise, just prevent the window from shrinking
1666 * and from being larger than the largest representable value.
1668 * This prevents incremental opening of the window in the regime
1669 * where TCP is limited by the speed of the reader side taking
1670 * data out of the TCP receive queue. It does nothing about
1671 * those cases where the window is constrained on the sender side
1672 * because the pipeline is full.
1674 * BSD also seems to "accidentally" limit itself to windows that are a
1675 * multiple of MSS, at least until the free space gets quite small.
1676 * This would appear to be a side effect of the mbuf implementation.
1677 * Combining these two algorithms results in the observed behavior
1678 * of having a fixed window size at almost all times.
1680 * Below we obtain similar behavior by forcing the offered window to
1681 * a multiple of the mss when it is feasible to do so.
1683 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1684 * Regular options like TIMESTAMP are taken into account.
1686 u32
__tcp_select_window(struct sock
*sk
)
1688 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1689 struct tcp_sock
*tp
= tcp_sk(sk
);
1690 /* MSS for the peer's data. Previous versions used mss_clamp
1691 * here. I don't know if the value based on our guesses
1692 * of peer's MSS is better for the performance. It's more correct
1693 * but may be worse for the performance because of rcv_mss
1694 * fluctuations. --SAW 1998/11/1
1696 int mss
= icsk
->icsk_ack
.rcv_mss
;
1697 int free_space
= tcp_space(sk
);
1698 int full_space
= min_t(int, tp
->window_clamp
, tcp_full_space(sk
));
1701 if (mss
> full_space
)
1704 if (free_space
< (full_space
>> 1)) {
1705 icsk
->icsk_ack
.quick
= 0;
1707 if (tcp_memory_pressure
)
1708 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
1711 if (free_space
< mss
)
1715 if (free_space
> tp
->rcv_ssthresh
)
1716 free_space
= tp
->rcv_ssthresh
;
1718 /* Don't do rounding if we are using window scaling, since the
1719 * scaled window will not line up with the MSS boundary anyway.
1721 window
= tp
->rcv_wnd
;
1722 if (tp
->rx_opt
.rcv_wscale
) {
1723 window
= free_space
;
1725 /* Advertise enough space so that it won't get scaled away.
1726 * Import case: prevent zero window announcement if
1727 * 1<<rcv_wscale > mss.
1729 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
1730 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
1731 << tp
->rx_opt
.rcv_wscale
);
1733 /* Get the largest window that is a nice multiple of mss.
1734 * Window clamp already applied above.
1735 * If our current window offering is within 1 mss of the
1736 * free space we just keep it. This prevents the divide
1737 * and multiply from happening most of the time.
1738 * We also don't do any window rounding when the free space
1741 if (window
<= free_space
- mss
|| window
> free_space
)
1742 window
= (free_space
/ mss
) * mss
;
1743 else if (mss
== full_space
&&
1744 free_space
> window
+ (full_space
>> 1))
1745 window
= free_space
;
1751 /* Collapses two adjacent SKB's during retransmission. */
1752 static void tcp_collapse_retrans(struct sock
*sk
, struct sk_buff
*skb
)
1754 struct tcp_sock
*tp
= tcp_sk(sk
);
1755 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
1756 int skb_size
, next_skb_size
;
1759 skb_size
= skb
->len
;
1760 next_skb_size
= next_skb
->len
;
1761 flags
= TCP_SKB_CB(skb
)->flags
;
1763 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
1765 tcp_highest_sack_combine(sk
, next_skb
, skb
);
1767 tcp_unlink_write_queue(next_skb
, sk
);
1769 skb_copy_from_linear_data(next_skb
, skb_put(skb
, next_skb_size
),
1772 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
1773 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1775 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1776 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
1778 /* Update sequence range on original skb. */
1779 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
1781 /* Merge over control information. */
1782 flags
|= TCP_SKB_CB(next_skb
)->flags
; /* This moves PSH/FIN etc. over */
1783 TCP_SKB_CB(skb
)->flags
= flags
;
1785 /* All done, get rid of second SKB and account for it so
1786 * packet counting does not break.
1788 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
1789 if (TCP_SKB_CB(next_skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1790 tp
->retrans_out
-= tcp_skb_pcount(next_skb
);
1791 if (TCP_SKB_CB(next_skb
)->sacked
& TCPCB_LOST
)
1792 tp
->lost_out
-= tcp_skb_pcount(next_skb
);
1793 /* Reno case is special. Sigh... */
1794 if (tcp_is_reno(tp
) && tp
->sacked_out
)
1795 tcp_dec_pcount_approx(&tp
->sacked_out
, next_skb
);
1797 tcp_adjust_fackets_out(sk
, next_skb
, tcp_skb_pcount(next_skb
));
1798 tp
->packets_out
-= tcp_skb_pcount(next_skb
);
1800 /* changed transmit queue under us so clear hints */
1801 tcp_clear_retrans_hints_partial(tp
);
1802 if (next_skb
== tp
->retransmit_skb_hint
)
1803 tp
->retransmit_skb_hint
= skb
;
1805 sk_wmem_free_skb(sk
, next_skb
);
1808 static int tcp_can_collapse(struct sock
*sk
, struct sk_buff
*skb
)
1810 if (tcp_skb_pcount(skb
) > 1)
1812 /* TODO: SACK collapsing could be used to remove this condition */
1813 if (skb_shinfo(skb
)->nr_frags
!= 0)
1815 if (skb_cloned(skb
))
1817 if (skb
== tcp_send_head(sk
))
1819 /* Some heurestics for collapsing over SACK'd could be invented */
1820 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
1826 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*to
,
1829 struct tcp_sock
*tp
= tcp_sk(sk
);
1830 struct sk_buff
*skb
= to
, *tmp
;
1833 if (!sysctl_tcp_retrans_collapse
)
1835 if (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_SYN
)
1838 tcp_for_write_queue_from_safe(skb
, tmp
, sk
) {
1839 if (!tcp_can_collapse(sk
, skb
))
1851 /* Punt if not enough space exists in the first SKB for
1852 * the data in the second
1854 if (skb
->len
> skb_tailroom(to
))
1857 if (after(TCP_SKB_CB(skb
)->end_seq
, tcp_wnd_end(tp
)))
1860 tcp_collapse_retrans(sk
, to
);
1864 /* This retransmits one SKB. Policy decisions and retransmit queue
1865 * state updates are done by the caller. Returns non-zero if an
1866 * error occurred which prevented the send.
1868 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
1870 struct tcp_sock
*tp
= tcp_sk(sk
);
1871 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1872 unsigned int cur_mss
;
1875 /* Inconslusive MTU probe */
1876 if (icsk
->icsk_mtup
.probe_size
) {
1877 icsk
->icsk_mtup
.probe_size
= 0;
1880 /* Do not sent more than we queued. 1/4 is reserved for possible
1881 * copying overhead: fragmentation, tunneling, mangling etc.
1883 if (atomic_read(&sk
->sk_wmem_alloc
) >
1884 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
1887 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
1888 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1890 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
1894 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
1895 return -EHOSTUNREACH
; /* Routing failure or similar. */
1897 cur_mss
= tcp_current_mss(sk
, 0);
1899 /* If receiver has shrunk his window, and skb is out of
1900 * new window, do not retransmit it. The exception is the
1901 * case, when window is shrunk to zero. In this case
1902 * our retransmit serves as a zero window probe.
1904 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))
1905 && TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
1908 if (skb
->len
> cur_mss
) {
1909 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
))
1910 return -ENOMEM
; /* We'll try again later. */
1913 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
1915 /* Some Solaris stacks overoptimize and ignore the FIN on a
1916 * retransmit when old data is attached. So strip it off
1917 * since it is cheap to do so and saves bytes on the network.
1920 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
) &&
1921 tp
->snd_una
== (TCP_SKB_CB(skb
)->end_seq
- 1)) {
1922 if (!pskb_trim(skb
, 0)) {
1923 /* Reuse, even though it does some unnecessary work */
1924 tcp_init_nondata_skb(skb
, TCP_SKB_CB(skb
)->end_seq
- 1,
1925 TCP_SKB_CB(skb
)->flags
);
1926 skb
->ip_summed
= CHECKSUM_NONE
;
1930 /* Make a copy, if the first transmission SKB clone we made
1931 * is still in somebody's hands, else make a clone.
1933 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1935 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
1938 /* Update global TCP statistics. */
1939 TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
1941 tp
->total_retrans
++;
1943 #if FASTRETRANS_DEBUG > 0
1944 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
1945 if (net_ratelimit())
1946 printk(KERN_DEBUG
"retrans_out leaked.\n");
1949 if (!tp
->retrans_out
)
1950 tp
->lost_retrans_low
= tp
->snd_nxt
;
1951 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
1952 tp
->retrans_out
+= tcp_skb_pcount(skb
);
1954 /* Save stamp of the first retransmit. */
1955 if (!tp
->retrans_stamp
)
1956 tp
->retrans_stamp
= TCP_SKB_CB(skb
)->when
;
1960 /* snd_nxt is stored to detect loss of retransmitted segment,
1961 * see tcp_input.c tcp_sacktag_write_queue().
1963 TCP_SKB_CB(skb
)->ack_seq
= tp
->snd_nxt
;
1968 static int tcp_can_forward_retransmit(struct sock
*sk
)
1970 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1971 struct tcp_sock
*tp
= tcp_sk(sk
);
1973 /* Forward retransmissions are possible only during Recovery. */
1974 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
1977 /* No forward retransmissions in Reno are possible. */
1978 if (tcp_is_reno(tp
))
1981 /* Yeah, we have to make difficult choice between forward transmission
1982 * and retransmission... Both ways have their merits...
1984 * For now we do not retransmit anything, while we have some new
1985 * segments to send. In the other cases, follow rule 3 for
1986 * NextSeg() specified in RFC3517.
1989 if (tcp_may_send_now(sk
))
1995 /* This gets called after a retransmit timeout, and the initially
1996 * retransmitted data is acknowledged. It tries to continue
1997 * resending the rest of the retransmit queue, until either
1998 * we've sent it all or the congestion window limit is reached.
1999 * If doing SACK, the first ACK which comes back for a timeout
2000 * based retransmit packet might feed us FACK information again.
2001 * If so, we use it to avoid unnecessarily retransmissions.
2003 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2005 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2006 struct tcp_sock
*tp
= tcp_sk(sk
);
2007 struct sk_buff
*skb
;
2008 struct sk_buff
*hole
= NULL
;
2011 int fwd_rexmitting
= 0;
2014 tp
->retransmit_high
= tp
->snd_una
;
2016 if (tp
->retransmit_skb_hint
) {
2017 skb
= tp
->retransmit_skb_hint
;
2018 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2019 if (after(last_lost
, tp
->retransmit_high
))
2020 last_lost
= tp
->retransmit_high
;
2022 skb
= tcp_write_queue_head(sk
);
2023 last_lost
= tp
->snd_una
;
2026 /* First pass: retransmit lost packets. */
2027 tcp_for_write_queue_from(skb
, sk
) {
2028 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
2030 if (skb
== tcp_send_head(sk
))
2032 /* we could do better than to assign each time */
2034 tp
->retransmit_skb_hint
= skb
;
2036 /* Assume this retransmit will generate
2037 * only one packet for congestion window
2038 * calculation purposes. This works because
2039 * tcp_retransmit_skb() will chop up the
2040 * packet to be MSS sized and all the
2041 * packet counting works out.
2043 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
2046 if (fwd_rexmitting
) {
2048 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
2050 mib_idx
= LINUX_MIB_TCPFORWARDRETRANS
;
2052 } else if (!before(TCP_SKB_CB(skb
)->seq
, tp
->retransmit_high
)) {
2053 tp
->retransmit_high
= last_lost
;
2054 if (!tcp_can_forward_retransmit(sk
))
2056 /* Backtrack if necessary to non-L'ed skb */
2064 } else if (!(sacked
& TCPCB_LOST
)) {
2065 if (hole
== NULL
&& !(sacked
& TCPCB_SACKED_RETRANS
))
2070 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2071 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
2072 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
2074 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
2077 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
2080 if (tcp_retransmit_skb(sk
, skb
))
2082 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2084 if (skb
== tcp_write_queue_head(sk
))
2085 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2086 inet_csk(sk
)->icsk_rto
,
2091 /* Send a fin. The caller locks the socket for us. This cannot be
2092 * allowed to fail queueing a FIN frame under any circumstances.
2094 void tcp_send_fin(struct sock
*sk
)
2096 struct tcp_sock
*tp
= tcp_sk(sk
);
2097 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
2100 /* Optimization, tack on the FIN if we have a queue of
2101 * unsent frames. But be careful about outgoing SACKS
2104 mss_now
= tcp_current_mss(sk
, 1);
2106 if (tcp_send_head(sk
) != NULL
) {
2107 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_FIN
;
2108 TCP_SKB_CB(skb
)->end_seq
++;
2111 /* Socket is locked, keep trying until memory is available. */
2113 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, GFP_KERNEL
);
2119 /* Reserve space for headers and prepare control bits. */
2120 skb_reserve(skb
, MAX_TCP_HEADER
);
2121 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2122 tcp_init_nondata_skb(skb
, tp
->write_seq
,
2123 TCPCB_FLAG_ACK
| TCPCB_FLAG_FIN
);
2124 tcp_queue_skb(sk
, skb
);
2126 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_OFF
);
2129 /* We get here when a process closes a file descriptor (either due to
2130 * an explicit close() or as a byproduct of exit()'ing) and there
2131 * was unread data in the receive queue. This behavior is recommended
2132 * by RFC 2525, section 2.17. -DaveM
2134 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
2136 struct sk_buff
*skb
;
2138 /* NOTE: No TCP options attached and we never retransmit this. */
2139 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
2141 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2145 /* Reserve space for headers and prepare control bits. */
2146 skb_reserve(skb
, MAX_TCP_HEADER
);
2147 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
2148 TCPCB_FLAG_ACK
| TCPCB_FLAG_RST
);
2150 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2151 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
2152 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2154 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
2157 /* WARNING: This routine must only be called when we have already sent
2158 * a SYN packet that crossed the incoming SYN that caused this routine
2159 * to get called. If this assumption fails then the initial rcv_wnd
2160 * and rcv_wscale values will not be correct.
2162 int tcp_send_synack(struct sock
*sk
)
2164 struct sk_buff
*skb
;
2166 skb
= tcp_write_queue_head(sk
);
2167 if (skb
== NULL
|| !(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_SYN
)) {
2168 printk(KERN_DEBUG
"tcp_send_synack: wrong queue state\n");
2171 if (!(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_ACK
)) {
2172 if (skb_cloned(skb
)) {
2173 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
2176 tcp_unlink_write_queue(skb
, sk
);
2177 skb_header_release(nskb
);
2178 __tcp_add_write_queue_head(sk
, nskb
);
2179 sk_wmem_free_skb(sk
, skb
);
2180 sk
->sk_wmem_queued
+= nskb
->truesize
;
2181 sk_mem_charge(sk
, nskb
->truesize
);
2185 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_ACK
;
2186 TCP_ECN_send_synack(tcp_sk(sk
), skb
);
2188 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2189 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2193 * Prepare a SYN-ACK.
2195 struct sk_buff
*tcp_make_synack(struct sock
*sk
, struct dst_entry
*dst
,
2196 struct request_sock
*req
)
2198 struct inet_request_sock
*ireq
= inet_rsk(req
);
2199 struct tcp_sock
*tp
= tcp_sk(sk
);
2201 int tcp_header_size
;
2202 struct tcp_out_options opts
;
2203 struct sk_buff
*skb
;
2204 struct tcp_md5sig_key
*md5
;
2205 __u8
*md5_hash_location
;
2208 skb
= sock_wmalloc(sk
, MAX_TCP_HEADER
+ 15, 1, GFP_ATOMIC
);
2212 /* Reserve space for headers. */
2213 skb_reserve(skb
, MAX_TCP_HEADER
);
2215 skb
->dst
= dst_clone(dst
);
2217 mss
= dst_metric(dst
, RTAX_ADVMSS
);
2218 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< mss
)
2219 mss
= tp
->rx_opt
.user_mss
;
2221 if (req
->rcv_wnd
== 0) { /* ignored for retransmitted syns */
2223 /* Set this up on the first call only */
2224 req
->window_clamp
= tp
->window_clamp
? : dst_metric(dst
, RTAX_WINDOW
);
2225 /* tcp_full_space because it is guaranteed to be the first packet */
2226 tcp_select_initial_window(tcp_full_space(sk
),
2227 mss
- (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0),
2232 ireq
->rcv_wscale
= rcv_wscale
;
2235 memset(&opts
, 0, sizeof(opts
));
2236 #ifdef CONFIG_SYN_COOKIES
2237 if (unlikely(req
->cookie_ts
))
2238 TCP_SKB_CB(skb
)->when
= cookie_init_timestamp(req
);
2241 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2242 tcp_header_size
= tcp_synack_options(sk
, req
, mss
,
2244 sizeof(struct tcphdr
);
2246 skb_push(skb
, tcp_header_size
);
2247 skb_reset_transport_header(skb
);
2250 memset(th
, 0, sizeof(struct tcphdr
));
2253 TCP_ECN_make_synack(req
, th
);
2254 th
->source
= ireq
->loc_port
;
2255 th
->dest
= ireq
->rmt_port
;
2256 /* Setting of flags are superfluous here for callers (and ECE is
2257 * not even correctly set)
2259 tcp_init_nondata_skb(skb
, tcp_rsk(req
)->snt_isn
,
2260 TCPCB_FLAG_SYN
| TCPCB_FLAG_ACK
);
2261 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
2262 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_isn
+ 1);
2264 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2265 th
->window
= htons(min(req
->rcv_wnd
, 65535U));
2266 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
, &md5_hash_location
);
2267 th
->doff
= (tcp_header_size
>> 2);
2268 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
2270 #ifdef CONFIG_TCP_MD5SIG
2271 /* Okay, we have all we need - do the md5 hash if needed */
2273 tp
->af_specific
->calc_md5_hash(md5_hash_location
,
2274 md5
, NULL
, req
, skb
);
2282 * Do all connect socket setups that can be done AF independent.
2284 static void tcp_connect_init(struct sock
*sk
)
2286 struct dst_entry
*dst
= __sk_dst_get(sk
);
2287 struct tcp_sock
*tp
= tcp_sk(sk
);
2290 /* We'll fix this up when we get a response from the other end.
2291 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2293 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
2294 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
2296 #ifdef CONFIG_TCP_MD5SIG
2297 if (tp
->af_specific
->md5_lookup(sk
, sk
) != NULL
)
2298 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
2301 /* If user gave his TCP_MAXSEG, record it to clamp */
2302 if (tp
->rx_opt
.user_mss
)
2303 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
2306 tcp_sync_mss(sk
, dst_mtu(dst
));
2308 if (!tp
->window_clamp
)
2309 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
2310 tp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
2311 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->advmss
)
2312 tp
->advmss
= tp
->rx_opt
.user_mss
;
2314 tcp_initialize_rcv_mss(sk
);
2316 tcp_select_initial_window(tcp_full_space(sk
),
2317 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
2320 sysctl_tcp_window_scaling
,
2323 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2324 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
2327 sock_reset_flag(sk
, SOCK_DONE
);
2329 tcp_init_wl(tp
, tp
->write_seq
, 0);
2330 tp
->snd_una
= tp
->write_seq
;
2331 tp
->snd_sml
= tp
->write_seq
;
2332 tp
->snd_up
= tp
->write_seq
;
2337 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
2338 inet_csk(sk
)->icsk_retransmits
= 0;
2339 tcp_clear_retrans(tp
);
2343 * Build a SYN and send it off.
2345 int tcp_connect(struct sock
*sk
)
2347 struct tcp_sock
*tp
= tcp_sk(sk
);
2348 struct sk_buff
*buff
;
2350 tcp_connect_init(sk
);
2352 buff
= alloc_skb_fclone(MAX_TCP_HEADER
+ 15, sk
->sk_allocation
);
2353 if (unlikely(buff
== NULL
))
2356 /* Reserve space for headers. */
2357 skb_reserve(buff
, MAX_TCP_HEADER
);
2359 tp
->snd_nxt
= tp
->write_seq
;
2360 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPCB_FLAG_SYN
);
2361 TCP_ECN_send_syn(sk
, buff
);
2364 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2365 tp
->retrans_stamp
= TCP_SKB_CB(buff
)->when
;
2366 skb_header_release(buff
);
2367 __tcp_add_write_queue_tail(sk
, buff
);
2368 sk
->sk_wmem_queued
+= buff
->truesize
;
2369 sk_mem_charge(sk
, buff
->truesize
);
2370 tp
->packets_out
+= tcp_skb_pcount(buff
);
2371 tcp_transmit_skb(sk
, buff
, 1, GFP_KERNEL
);
2373 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2374 * in order to make this packet get counted in tcpOutSegs.
2376 tp
->snd_nxt
= tp
->write_seq
;
2377 tp
->pushed_seq
= tp
->write_seq
;
2378 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
2380 /* Timer for repeating the SYN until an answer. */
2381 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2382 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
2386 /* Send out a delayed ack, the caller does the policy checking
2387 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2390 void tcp_send_delayed_ack(struct sock
*sk
)
2392 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2393 int ato
= icsk
->icsk_ack
.ato
;
2394 unsigned long timeout
;
2396 if (ato
> TCP_DELACK_MIN
) {
2397 const struct tcp_sock
*tp
= tcp_sk(sk
);
2398 int max_ato
= HZ
/ 2;
2400 if (icsk
->icsk_ack
.pingpong
||
2401 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
2402 max_ato
= TCP_DELACK_MAX
;
2404 /* Slow path, intersegment interval is "high". */
2406 /* If some rtt estimate is known, use it to bound delayed ack.
2407 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2411 int rtt
= max(tp
->srtt
>> 3, TCP_DELACK_MIN
);
2417 ato
= min(ato
, max_ato
);
2420 /* Stay within the limit we were given */
2421 timeout
= jiffies
+ ato
;
2423 /* Use new timeout only if there wasn't a older one earlier. */
2424 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
2425 /* If delack timer was blocked or is about to expire,
2428 if (icsk
->icsk_ack
.blocked
||
2429 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
2434 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
2435 timeout
= icsk
->icsk_ack
.timeout
;
2437 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
2438 icsk
->icsk_ack
.timeout
= timeout
;
2439 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
2442 /* This routine sends an ack and also updates the window. */
2443 void tcp_send_ack(struct sock
*sk
)
2445 struct sk_buff
*buff
;
2447 /* If we have been reset, we may not send again. */
2448 if (sk
->sk_state
== TCP_CLOSE
)
2451 /* We are not putting this on the write queue, so
2452 * tcp_transmit_skb() will set the ownership to this
2455 buff
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2457 inet_csk_schedule_ack(sk
);
2458 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
2459 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
2460 TCP_DELACK_MAX
, TCP_RTO_MAX
);
2464 /* Reserve space for headers and prepare control bits. */
2465 skb_reserve(buff
, MAX_TCP_HEADER
);
2466 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPCB_FLAG_ACK
);
2468 /* Send it off, this clears delayed acks for us. */
2469 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2470 tcp_transmit_skb(sk
, buff
, 0, GFP_ATOMIC
);
2473 /* This routine sends a packet with an out of date sequence
2474 * number. It assumes the other end will try to ack it.
2476 * Question: what should we make while urgent mode?
2477 * 4.4BSD forces sending single byte of data. We cannot send
2478 * out of window data, because we have SND.NXT==SND.MAX...
2480 * Current solution: to send TWO zero-length segments in urgent mode:
2481 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2482 * out-of-date with SND.UNA-1 to probe window.
2484 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
)
2486 struct tcp_sock
*tp
= tcp_sk(sk
);
2487 struct sk_buff
*skb
;
2489 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2490 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2494 /* Reserve space for headers and set control bits. */
2495 skb_reserve(skb
, MAX_TCP_HEADER
);
2496 /* Use a previous sequence. This should cause the other
2497 * end to send an ack. Don't queue or clone SKB, just
2500 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPCB_FLAG_ACK
);
2501 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2502 return tcp_transmit_skb(sk
, skb
, 0, GFP_ATOMIC
);
2505 int tcp_write_wakeup(struct sock
*sk
)
2507 struct tcp_sock
*tp
= tcp_sk(sk
);
2508 struct sk_buff
*skb
;
2510 if (sk
->sk_state
== TCP_CLOSE
)
2513 if ((skb
= tcp_send_head(sk
)) != NULL
&&
2514 before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
2516 unsigned int mss
= tcp_current_mss(sk
, 0);
2517 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
2519 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
2520 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
2522 /* We are probing the opening of a window
2523 * but the window size is != 0
2524 * must have been a result SWS avoidance ( sender )
2526 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
2528 seg_size
= min(seg_size
, mss
);
2529 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2530 if (tcp_fragment(sk
, skb
, seg_size
, mss
))
2532 } else if (!tcp_skb_pcount(skb
))
2533 tcp_set_skb_tso_segs(sk
, skb
, mss
);
2535 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2536 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2537 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2539 tcp_event_new_data_sent(sk
, skb
);
2542 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
2543 tcp_xmit_probe_skb(sk
, 1);
2544 return tcp_xmit_probe_skb(sk
, 0);
2548 /* A window probe timeout has occurred. If window is not closed send
2549 * a partial packet else a zero probe.
2551 void tcp_send_probe0(struct sock
*sk
)
2553 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2554 struct tcp_sock
*tp
= tcp_sk(sk
);
2557 err
= tcp_write_wakeup(sk
);
2559 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
2560 /* Cancel probe timer, if it is not required. */
2561 icsk
->icsk_probes_out
= 0;
2562 icsk
->icsk_backoff
= 0;
2567 if (icsk
->icsk_backoff
< sysctl_tcp_retries2
)
2568 icsk
->icsk_backoff
++;
2569 icsk
->icsk_probes_out
++;
2570 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2571 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
2574 /* If packet was not sent due to local congestion,
2575 * do not backoff and do not remember icsk_probes_out.
2576 * Let local senders to fight for local resources.
2578 * Use accumulated backoff yet.
2580 if (!icsk
->icsk_probes_out
)
2581 icsk
->icsk_probes_out
= 1;
2582 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2583 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
,
2584 TCP_RESOURCE_PROBE_INTERVAL
),
2589 EXPORT_SYMBOL(tcp_select_initial_window
);
2590 EXPORT_SYMBOL(tcp_connect
);
2591 EXPORT_SYMBOL(tcp_make_synack
);
2592 EXPORT_SYMBOL(tcp_simple_retransmit
);
2593 EXPORT_SYMBOL(tcp_sync_mss
);
2594 EXPORT_SYMBOL(tcp_mtup_init
);