Merge branch 'x86/uv' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux...
[linux-2.6/mini2440.git] / block / cfq-iosched.c
blob0d3b70de3d80e7385d5fce32186819dc4f52e618
1 /*
2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
8 */
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
17 * tunables
19 /* max queue in one round of service */
20 static const int cfq_quantum = 4;
21 static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max = 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty = 2;
26 static const int cfq_slice_sync = HZ / 10;
27 static int cfq_slice_async = HZ / 25;
28 static const int cfq_slice_async_rq = 2;
29 static int cfq_slice_idle = HZ / 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
44 #define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache *cfq_pool;
49 static struct kmem_cache *cfq_ioc_pool;
51 static DEFINE_PER_CPU(unsigned long, ioc_count);
52 static struct completion *ioc_gone;
53 static DEFINE_SPINLOCK(ioc_gone_lock);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
67 struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per block device queue structure
76 struct cfq_data {
77 struct request_queue *queue;
80 * rr list of queues with requests and the count of them
82 struct cfq_rb_root service_tree;
85 * Each priority tree is sorted by next_request position. These
86 * trees are used when determining if two or more queues are
87 * interleaving requests (see cfq_close_cooperator).
89 struct rb_root prio_trees[CFQ_PRIO_LISTS];
91 unsigned int busy_queues;
93 * Used to track any pending rt requests so we can pre-empt current
94 * non-RT cfqq in service when this value is non-zero.
96 unsigned int busy_rt_queues;
98 int rq_in_driver;
99 int sync_flight;
102 * queue-depth detection
104 int rq_queued;
105 int hw_tag;
106 int hw_tag_samples;
107 int rq_in_driver_peak;
110 * idle window management
112 struct timer_list idle_slice_timer;
113 struct work_struct unplug_work;
115 struct cfq_queue *active_queue;
116 struct cfq_io_context *active_cic;
119 * async queue for each priority case
121 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
122 struct cfq_queue *async_idle_cfqq;
124 sector_t last_position;
125 unsigned long last_end_request;
128 * tunables, see top of file
130 unsigned int cfq_quantum;
131 unsigned int cfq_fifo_expire[2];
132 unsigned int cfq_back_penalty;
133 unsigned int cfq_back_max;
134 unsigned int cfq_slice[2];
135 unsigned int cfq_slice_async_rq;
136 unsigned int cfq_slice_idle;
138 struct list_head cic_list;
142 * Per process-grouping structure
144 struct cfq_queue {
145 /* reference count */
146 atomic_t ref;
147 /* various state flags, see below */
148 unsigned int flags;
149 /* parent cfq_data */
150 struct cfq_data *cfqd;
151 /* service_tree member */
152 struct rb_node rb_node;
153 /* service_tree key */
154 unsigned long rb_key;
155 /* prio tree member */
156 struct rb_node p_node;
157 /* sorted list of pending requests */
158 struct rb_root sort_list;
159 /* if fifo isn't expired, next request to serve */
160 struct request *next_rq;
161 /* requests queued in sort_list */
162 int queued[2];
163 /* currently allocated requests */
164 int allocated[2];
165 /* fifo list of requests in sort_list */
166 struct list_head fifo;
168 unsigned long slice_end;
169 long slice_resid;
170 unsigned int slice_dispatch;
172 /* pending metadata requests */
173 int meta_pending;
174 /* number of requests that are on the dispatch list or inside driver */
175 int dispatched;
177 /* io prio of this group */
178 unsigned short ioprio, org_ioprio;
179 unsigned short ioprio_class, org_ioprio_class;
181 pid_t pid;
184 enum cfqq_state_flags {
185 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
186 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
187 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
188 CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
189 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
190 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
191 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
192 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
193 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
194 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
195 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
198 #define CFQ_CFQQ_FNS(name) \
199 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
201 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
203 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
205 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
207 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
209 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
212 CFQ_CFQQ_FNS(on_rr);
213 CFQ_CFQQ_FNS(wait_request);
214 CFQ_CFQQ_FNS(must_dispatch);
215 CFQ_CFQQ_FNS(must_alloc);
216 CFQ_CFQQ_FNS(must_alloc_slice);
217 CFQ_CFQQ_FNS(fifo_expire);
218 CFQ_CFQQ_FNS(idle_window);
219 CFQ_CFQQ_FNS(prio_changed);
220 CFQ_CFQQ_FNS(slice_new);
221 CFQ_CFQQ_FNS(sync);
222 CFQ_CFQQ_FNS(coop);
223 #undef CFQ_CFQQ_FNS
225 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
226 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
227 #define cfq_log(cfqd, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
230 static void cfq_dispatch_insert(struct request_queue *, struct request *);
231 static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
232 struct io_context *, gfp_t);
233 static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
234 struct io_context *);
236 static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
237 int is_sync)
239 return cic->cfqq[!!is_sync];
242 static inline void cic_set_cfqq(struct cfq_io_context *cic,
243 struct cfq_queue *cfqq, int is_sync)
245 cic->cfqq[!!is_sync] = cfqq;
249 * We regard a request as SYNC, if it's either a read or has the SYNC bit
250 * set (in which case it could also be direct WRITE).
252 static inline int cfq_bio_sync(struct bio *bio)
254 if (bio_data_dir(bio) == READ || bio_sync(bio))
255 return 1;
257 return 0;
261 * scheduler run of queue, if there are requests pending and no one in the
262 * driver that will restart queueing
264 static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
266 if (cfqd->busy_queues) {
267 cfq_log(cfqd, "schedule dispatch");
268 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
272 static int cfq_queue_empty(struct request_queue *q)
274 struct cfq_data *cfqd = q->elevator->elevator_data;
276 return !cfqd->busy_queues;
280 * Scale schedule slice based on io priority. Use the sync time slice only
281 * if a queue is marked sync and has sync io queued. A sync queue with async
282 * io only, should not get full sync slice length.
284 static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
285 unsigned short prio)
287 const int base_slice = cfqd->cfq_slice[sync];
289 WARN_ON(prio >= IOPRIO_BE_NR);
291 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
294 static inline int
295 cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
297 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
300 static inline void
301 cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
303 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
304 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
308 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
309 * isn't valid until the first request from the dispatch is activated
310 * and the slice time set.
312 static inline int cfq_slice_used(struct cfq_queue *cfqq)
314 if (cfq_cfqq_slice_new(cfqq))
315 return 0;
316 if (time_before(jiffies, cfqq->slice_end))
317 return 0;
319 return 1;
323 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
324 * We choose the request that is closest to the head right now. Distance
325 * behind the head is penalized and only allowed to a certain extent.
327 static struct request *
328 cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
330 sector_t last, s1, s2, d1 = 0, d2 = 0;
331 unsigned long back_max;
332 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
333 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
334 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
336 if (rq1 == NULL || rq1 == rq2)
337 return rq2;
338 if (rq2 == NULL)
339 return rq1;
341 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
342 return rq1;
343 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
344 return rq2;
345 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
346 return rq1;
347 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
348 return rq2;
350 s1 = rq1->sector;
351 s2 = rq2->sector;
353 last = cfqd->last_position;
356 * by definition, 1KiB is 2 sectors
358 back_max = cfqd->cfq_back_max * 2;
361 * Strict one way elevator _except_ in the case where we allow
362 * short backward seeks which are biased as twice the cost of a
363 * similar forward seek.
365 if (s1 >= last)
366 d1 = s1 - last;
367 else if (s1 + back_max >= last)
368 d1 = (last - s1) * cfqd->cfq_back_penalty;
369 else
370 wrap |= CFQ_RQ1_WRAP;
372 if (s2 >= last)
373 d2 = s2 - last;
374 else if (s2 + back_max >= last)
375 d2 = (last - s2) * cfqd->cfq_back_penalty;
376 else
377 wrap |= CFQ_RQ2_WRAP;
379 /* Found required data */
382 * By doing switch() on the bit mask "wrap" we avoid having to
383 * check two variables for all permutations: --> faster!
385 switch (wrap) {
386 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
387 if (d1 < d2)
388 return rq1;
389 else if (d2 < d1)
390 return rq2;
391 else {
392 if (s1 >= s2)
393 return rq1;
394 else
395 return rq2;
398 case CFQ_RQ2_WRAP:
399 return rq1;
400 case CFQ_RQ1_WRAP:
401 return rq2;
402 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
403 default:
405 * Since both rqs are wrapped,
406 * start with the one that's further behind head
407 * (--> only *one* back seek required),
408 * since back seek takes more time than forward.
410 if (s1 <= s2)
411 return rq1;
412 else
413 return rq2;
418 * The below is leftmost cache rbtree addon
420 static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
422 if (!root->left)
423 root->left = rb_first(&root->rb);
425 if (root->left)
426 return rb_entry(root->left, struct cfq_queue, rb_node);
428 return NULL;
431 static void rb_erase_init(struct rb_node *n, struct rb_root *root)
433 rb_erase(n, root);
434 RB_CLEAR_NODE(n);
437 static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
439 if (root->left == n)
440 root->left = NULL;
441 rb_erase_init(n, &root->rb);
445 * would be nice to take fifo expire time into account as well
447 static struct request *
448 cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
449 struct request *last)
451 struct rb_node *rbnext = rb_next(&last->rb_node);
452 struct rb_node *rbprev = rb_prev(&last->rb_node);
453 struct request *next = NULL, *prev = NULL;
455 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
457 if (rbprev)
458 prev = rb_entry_rq(rbprev);
460 if (rbnext)
461 next = rb_entry_rq(rbnext);
462 else {
463 rbnext = rb_first(&cfqq->sort_list);
464 if (rbnext && rbnext != &last->rb_node)
465 next = rb_entry_rq(rbnext);
468 return cfq_choose_req(cfqd, next, prev);
471 static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
472 struct cfq_queue *cfqq)
475 * just an approximation, should be ok.
477 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
478 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
482 * The cfqd->service_tree holds all pending cfq_queue's that have
483 * requests waiting to be processed. It is sorted in the order that
484 * we will service the queues.
486 static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
487 int add_front)
489 struct rb_node **p, *parent;
490 struct cfq_queue *__cfqq;
491 unsigned long rb_key;
492 int left;
494 if (cfq_class_idle(cfqq)) {
495 rb_key = CFQ_IDLE_DELAY;
496 parent = rb_last(&cfqd->service_tree.rb);
497 if (parent && parent != &cfqq->rb_node) {
498 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
499 rb_key += __cfqq->rb_key;
500 } else
501 rb_key += jiffies;
502 } else if (!add_front) {
503 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
504 rb_key += cfqq->slice_resid;
505 cfqq->slice_resid = 0;
506 } else
507 rb_key = 0;
509 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
511 * same position, nothing more to do
513 if (rb_key == cfqq->rb_key)
514 return;
516 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
519 left = 1;
520 parent = NULL;
521 p = &cfqd->service_tree.rb.rb_node;
522 while (*p) {
523 struct rb_node **n;
525 parent = *p;
526 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
529 * sort RT queues first, we always want to give
530 * preference to them. IDLE queues goes to the back.
531 * after that, sort on the next service time.
533 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
534 n = &(*p)->rb_left;
535 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
536 n = &(*p)->rb_right;
537 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
538 n = &(*p)->rb_left;
539 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
540 n = &(*p)->rb_right;
541 else if (rb_key < __cfqq->rb_key)
542 n = &(*p)->rb_left;
543 else
544 n = &(*p)->rb_right;
546 if (n == &(*p)->rb_right)
547 left = 0;
549 p = n;
552 if (left)
553 cfqd->service_tree.left = &cfqq->rb_node;
555 cfqq->rb_key = rb_key;
556 rb_link_node(&cfqq->rb_node, parent, p);
557 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
560 static struct cfq_queue *
561 cfq_prio_tree_lookup(struct cfq_data *cfqd, int ioprio, sector_t sector,
562 struct rb_node **ret_parent, struct rb_node ***rb_link)
564 struct rb_root *root = &cfqd->prio_trees[ioprio];
565 struct rb_node **p, *parent;
566 struct cfq_queue *cfqq = NULL;
568 parent = NULL;
569 p = &root->rb_node;
570 while (*p) {
571 struct rb_node **n;
573 parent = *p;
574 cfqq = rb_entry(parent, struct cfq_queue, p_node);
577 * Sort strictly based on sector. Smallest to the left,
578 * largest to the right.
580 if (sector > cfqq->next_rq->sector)
581 n = &(*p)->rb_right;
582 else if (sector < cfqq->next_rq->sector)
583 n = &(*p)->rb_left;
584 else
585 break;
586 p = n;
589 *ret_parent = parent;
590 if (rb_link)
591 *rb_link = p;
592 return NULL;
595 static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
597 struct rb_root *root = &cfqd->prio_trees[cfqq->ioprio];
598 struct rb_node **p, *parent;
599 struct cfq_queue *__cfqq;
601 if (!RB_EMPTY_NODE(&cfqq->p_node))
602 rb_erase_init(&cfqq->p_node, root);
604 if (cfq_class_idle(cfqq))
605 return;
606 if (!cfqq->next_rq)
607 return;
609 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->ioprio, cfqq->next_rq->sector,
610 &parent, &p);
611 BUG_ON(__cfqq);
613 rb_link_node(&cfqq->p_node, parent, p);
614 rb_insert_color(&cfqq->p_node, root);
618 * Update cfqq's position in the service tree.
620 static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
623 * Resorting requires the cfqq to be on the RR list already.
625 if (cfq_cfqq_on_rr(cfqq)) {
626 cfq_service_tree_add(cfqd, cfqq, 0);
627 cfq_prio_tree_add(cfqd, cfqq);
632 * add to busy list of queues for service, trying to be fair in ordering
633 * the pending list according to last request service
635 static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
637 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
638 BUG_ON(cfq_cfqq_on_rr(cfqq));
639 cfq_mark_cfqq_on_rr(cfqq);
640 cfqd->busy_queues++;
641 if (cfq_class_rt(cfqq))
642 cfqd->busy_rt_queues++;
644 cfq_resort_rr_list(cfqd, cfqq);
648 * Called when the cfqq no longer has requests pending, remove it from
649 * the service tree.
651 static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
653 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
654 BUG_ON(!cfq_cfqq_on_rr(cfqq));
655 cfq_clear_cfqq_on_rr(cfqq);
657 if (!RB_EMPTY_NODE(&cfqq->rb_node))
658 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
659 if (!RB_EMPTY_NODE(&cfqq->p_node))
660 rb_erase_init(&cfqq->p_node, &cfqd->prio_trees[cfqq->ioprio]);
662 BUG_ON(!cfqd->busy_queues);
663 cfqd->busy_queues--;
664 if (cfq_class_rt(cfqq))
665 cfqd->busy_rt_queues--;
669 * rb tree support functions
671 static void cfq_del_rq_rb(struct request *rq)
673 struct cfq_queue *cfqq = RQ_CFQQ(rq);
674 struct cfq_data *cfqd = cfqq->cfqd;
675 const int sync = rq_is_sync(rq);
677 BUG_ON(!cfqq->queued[sync]);
678 cfqq->queued[sync]--;
680 elv_rb_del(&cfqq->sort_list, rq);
682 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
683 cfq_del_cfqq_rr(cfqd, cfqq);
686 static void cfq_add_rq_rb(struct request *rq)
688 struct cfq_queue *cfqq = RQ_CFQQ(rq);
689 struct cfq_data *cfqd = cfqq->cfqd;
690 struct request *__alias, *prev;
692 cfqq->queued[rq_is_sync(rq)]++;
695 * looks a little odd, but the first insert might return an alias.
696 * if that happens, put the alias on the dispatch list
698 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
699 cfq_dispatch_insert(cfqd->queue, __alias);
701 if (!cfq_cfqq_on_rr(cfqq))
702 cfq_add_cfqq_rr(cfqd, cfqq);
705 * check if this request is a better next-serve candidate
707 prev = cfqq->next_rq;
708 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
711 * adjust priority tree position, if ->next_rq changes
713 if (prev != cfqq->next_rq)
714 cfq_prio_tree_add(cfqd, cfqq);
716 BUG_ON(!cfqq->next_rq);
719 static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
721 elv_rb_del(&cfqq->sort_list, rq);
722 cfqq->queued[rq_is_sync(rq)]--;
723 cfq_add_rq_rb(rq);
726 static struct request *
727 cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
729 struct task_struct *tsk = current;
730 struct cfq_io_context *cic;
731 struct cfq_queue *cfqq;
733 cic = cfq_cic_lookup(cfqd, tsk->io_context);
734 if (!cic)
735 return NULL;
737 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
738 if (cfqq) {
739 sector_t sector = bio->bi_sector + bio_sectors(bio);
741 return elv_rb_find(&cfqq->sort_list, sector);
744 return NULL;
747 static void cfq_activate_request(struct request_queue *q, struct request *rq)
749 struct cfq_data *cfqd = q->elevator->elevator_data;
751 cfqd->rq_in_driver++;
752 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
753 cfqd->rq_in_driver);
755 cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
758 static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
760 struct cfq_data *cfqd = q->elevator->elevator_data;
762 WARN_ON(!cfqd->rq_in_driver);
763 cfqd->rq_in_driver--;
764 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
765 cfqd->rq_in_driver);
768 static void cfq_remove_request(struct request *rq)
770 struct cfq_queue *cfqq = RQ_CFQQ(rq);
772 if (cfqq->next_rq == rq)
773 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
775 list_del_init(&rq->queuelist);
776 cfq_del_rq_rb(rq);
778 cfqq->cfqd->rq_queued--;
779 if (rq_is_meta(rq)) {
780 WARN_ON(!cfqq->meta_pending);
781 cfqq->meta_pending--;
785 static int cfq_merge(struct request_queue *q, struct request **req,
786 struct bio *bio)
788 struct cfq_data *cfqd = q->elevator->elevator_data;
789 struct request *__rq;
791 __rq = cfq_find_rq_fmerge(cfqd, bio);
792 if (__rq && elv_rq_merge_ok(__rq, bio)) {
793 *req = __rq;
794 return ELEVATOR_FRONT_MERGE;
797 return ELEVATOR_NO_MERGE;
800 static void cfq_merged_request(struct request_queue *q, struct request *req,
801 int type)
803 if (type == ELEVATOR_FRONT_MERGE) {
804 struct cfq_queue *cfqq = RQ_CFQQ(req);
806 cfq_reposition_rq_rb(cfqq, req);
810 static void
811 cfq_merged_requests(struct request_queue *q, struct request *rq,
812 struct request *next)
815 * reposition in fifo if next is older than rq
817 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
818 time_before(next->start_time, rq->start_time))
819 list_move(&rq->queuelist, &next->queuelist);
821 cfq_remove_request(next);
824 static int cfq_allow_merge(struct request_queue *q, struct request *rq,
825 struct bio *bio)
827 struct cfq_data *cfqd = q->elevator->elevator_data;
828 struct cfq_io_context *cic;
829 struct cfq_queue *cfqq;
832 * Disallow merge of a sync bio into an async request.
834 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
835 return 0;
838 * Lookup the cfqq that this bio will be queued with. Allow
839 * merge only if rq is queued there.
841 cic = cfq_cic_lookup(cfqd, current->io_context);
842 if (!cic)
843 return 0;
845 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
846 if (cfqq == RQ_CFQQ(rq))
847 return 1;
849 return 0;
852 static void __cfq_set_active_queue(struct cfq_data *cfqd,
853 struct cfq_queue *cfqq)
855 if (cfqq) {
856 cfq_log_cfqq(cfqd, cfqq, "set_active");
857 cfqq->slice_end = 0;
858 cfqq->slice_dispatch = 0;
860 cfq_clear_cfqq_wait_request(cfqq);
861 cfq_clear_cfqq_must_dispatch(cfqq);
862 cfq_clear_cfqq_must_alloc_slice(cfqq);
863 cfq_clear_cfqq_fifo_expire(cfqq);
864 cfq_mark_cfqq_slice_new(cfqq);
866 del_timer(&cfqd->idle_slice_timer);
869 cfqd->active_queue = cfqq;
873 * current cfqq expired its slice (or was too idle), select new one
875 static void
876 __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
877 int timed_out)
879 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
881 if (cfq_cfqq_wait_request(cfqq))
882 del_timer(&cfqd->idle_slice_timer);
884 cfq_clear_cfqq_wait_request(cfqq);
887 * store what was left of this slice, if the queue idled/timed out
889 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
890 cfqq->slice_resid = cfqq->slice_end - jiffies;
891 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
894 cfq_resort_rr_list(cfqd, cfqq);
896 if (cfqq == cfqd->active_queue)
897 cfqd->active_queue = NULL;
899 if (cfqd->active_cic) {
900 put_io_context(cfqd->active_cic->ioc);
901 cfqd->active_cic = NULL;
905 static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
907 struct cfq_queue *cfqq = cfqd->active_queue;
909 if (cfqq)
910 __cfq_slice_expired(cfqd, cfqq, timed_out);
914 * Get next queue for service. Unless we have a queue preemption,
915 * we'll simply select the first cfqq in the service tree.
917 static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
919 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
920 return NULL;
922 return cfq_rb_first(&cfqd->service_tree);
926 * Get and set a new active queue for service.
928 static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
929 struct cfq_queue *cfqq)
931 if (!cfqq) {
932 cfqq = cfq_get_next_queue(cfqd);
933 if (cfqq)
934 cfq_clear_cfqq_coop(cfqq);
937 __cfq_set_active_queue(cfqd, cfqq);
938 return cfqq;
941 static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
942 struct request *rq)
944 if (rq->sector >= cfqd->last_position)
945 return rq->sector - cfqd->last_position;
946 else
947 return cfqd->last_position - rq->sector;
950 static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
952 struct cfq_io_context *cic = cfqd->active_cic;
954 if (!sample_valid(cic->seek_samples))
955 return 0;
957 return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
960 static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
961 struct cfq_queue *cur_cfqq)
963 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->ioprio];
964 struct rb_node *parent, *node;
965 struct cfq_queue *__cfqq;
966 sector_t sector = cfqd->last_position;
968 if (RB_EMPTY_ROOT(root))
969 return NULL;
972 * First, if we find a request starting at the end of the last
973 * request, choose it.
975 __cfqq = cfq_prio_tree_lookup(cfqd, cur_cfqq->ioprio,
976 sector, &parent, NULL);
977 if (__cfqq)
978 return __cfqq;
981 * If the exact sector wasn't found, the parent of the NULL leaf
982 * will contain the closest sector.
984 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
985 if (cfq_rq_close(cfqd, __cfqq->next_rq))
986 return __cfqq;
988 if (__cfqq->next_rq->sector < sector)
989 node = rb_next(&__cfqq->p_node);
990 else
991 node = rb_prev(&__cfqq->p_node);
992 if (!node)
993 return NULL;
995 __cfqq = rb_entry(node, struct cfq_queue, p_node);
996 if (cfq_rq_close(cfqd, __cfqq->next_rq))
997 return __cfqq;
999 return NULL;
1003 * cfqd - obvious
1004 * cur_cfqq - passed in so that we don't decide that the current queue is
1005 * closely cooperating with itself.
1007 * So, basically we're assuming that that cur_cfqq has dispatched at least
1008 * one request, and that cfqd->last_position reflects a position on the disk
1009 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1010 * assumption.
1012 static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1013 struct cfq_queue *cur_cfqq,
1014 int probe)
1016 struct cfq_queue *cfqq;
1019 * A valid cfq_io_context is necessary to compare requests against
1020 * the seek_mean of the current cfqq.
1022 if (!cfqd->active_cic)
1023 return NULL;
1026 * We should notice if some of the queues are cooperating, eg
1027 * working closely on the same area of the disk. In that case,
1028 * we can group them together and don't waste time idling.
1030 cfqq = cfqq_close(cfqd, cur_cfqq);
1031 if (!cfqq)
1032 return NULL;
1034 if (cfq_cfqq_coop(cfqq))
1035 return NULL;
1037 if (!probe)
1038 cfq_mark_cfqq_coop(cfqq);
1039 return cfqq;
1043 #define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
1045 static void cfq_arm_slice_timer(struct cfq_data *cfqd)
1047 struct cfq_queue *cfqq = cfqd->active_queue;
1048 struct cfq_io_context *cic;
1049 unsigned long sl;
1052 * SSD device without seek penalty, disable idling. But only do so
1053 * for devices that support queuing, otherwise we still have a problem
1054 * with sync vs async workloads.
1056 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
1057 return;
1059 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
1060 WARN_ON(cfq_cfqq_slice_new(cfqq));
1063 * idle is disabled, either manually or by past process history
1065 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1066 return;
1069 * still requests with the driver, don't idle
1071 if (cfqd->rq_in_driver)
1072 return;
1075 * task has exited, don't wait
1077 cic = cfqd->active_cic;
1078 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
1079 return;
1081 cfq_mark_cfqq_wait_request(cfqq);
1084 * we don't want to idle for seeks, but we do want to allow
1085 * fair distribution of slice time for a process doing back-to-back
1086 * seeks. so allow a little bit of time for him to submit a new rq
1088 sl = cfqd->cfq_slice_idle;
1089 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
1090 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
1092 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
1093 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1097 * Move request from internal lists to the request queue dispatch list.
1099 static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1101 struct cfq_data *cfqd = q->elevator->elevator_data;
1102 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1104 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1106 cfq_remove_request(rq);
1107 cfqq->dispatched++;
1108 elv_dispatch_sort(q, rq);
1110 if (cfq_cfqq_sync(cfqq))
1111 cfqd->sync_flight++;
1115 * return expired entry, or NULL to just start from scratch in rbtree
1117 static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1119 struct cfq_data *cfqd = cfqq->cfqd;
1120 struct request *rq;
1121 int fifo;
1123 if (cfq_cfqq_fifo_expire(cfqq))
1124 return NULL;
1126 cfq_mark_cfqq_fifo_expire(cfqq);
1128 if (list_empty(&cfqq->fifo))
1129 return NULL;
1131 fifo = cfq_cfqq_sync(cfqq);
1132 rq = rq_entry_fifo(cfqq->fifo.next);
1134 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
1135 rq = NULL;
1137 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
1138 return rq;
1141 static inline int
1142 cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1144 const int base_rq = cfqd->cfq_slice_async_rq;
1146 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1148 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1152 * Select a queue for service. If we have a current active queue,
1153 * check whether to continue servicing it, or retrieve and set a new one.
1155 static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1157 struct cfq_queue *cfqq, *new_cfqq = NULL;
1159 cfqq = cfqd->active_queue;
1160 if (!cfqq)
1161 goto new_queue;
1164 * The active queue has run out of time, expire it and select new.
1166 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
1167 goto expire;
1170 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1171 * cfqq.
1173 if (!cfq_class_rt(cfqq) && cfqd->busy_rt_queues) {
1175 * We simulate this as cfqq timed out so that it gets to bank
1176 * the remaining of its time slice.
1178 cfq_log_cfqq(cfqd, cfqq, "preempt");
1179 cfq_slice_expired(cfqd, 1);
1180 goto new_queue;
1184 * The active queue has requests and isn't expired, allow it to
1185 * dispatch.
1187 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
1188 goto keep_queue;
1191 * If another queue has a request waiting within our mean seek
1192 * distance, let it run. The expire code will check for close
1193 * cooperators and put the close queue at the front of the service
1194 * tree.
1196 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1197 if (new_cfqq)
1198 goto expire;
1201 * No requests pending. If the active queue still has requests in
1202 * flight or is idling for a new request, allow either of these
1203 * conditions to happen (or time out) before selecting a new queue.
1205 if (timer_pending(&cfqd->idle_slice_timer) ||
1206 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
1207 cfqq = NULL;
1208 goto keep_queue;
1211 expire:
1212 cfq_slice_expired(cfqd, 0);
1213 new_queue:
1214 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
1215 keep_queue:
1216 return cfqq;
1219 static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
1221 int dispatched = 0;
1223 while (cfqq->next_rq) {
1224 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1225 dispatched++;
1228 BUG_ON(!list_empty(&cfqq->fifo));
1229 return dispatched;
1233 * Drain our current requests. Used for barriers and when switching
1234 * io schedulers on-the-fly.
1236 static int cfq_forced_dispatch(struct cfq_data *cfqd)
1238 struct cfq_queue *cfqq;
1239 int dispatched = 0;
1241 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
1242 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1244 cfq_slice_expired(cfqd, 0);
1246 BUG_ON(cfqd->busy_queues);
1248 cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
1249 return dispatched;
1253 * Dispatch a request from cfqq, moving them to the request queue
1254 * dispatch list.
1256 static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1258 struct request *rq;
1260 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1263 * follow expired path, else get first next available
1265 rq = cfq_check_fifo(cfqq);
1266 if (!rq)
1267 rq = cfqq->next_rq;
1270 * insert request into driver dispatch list
1272 cfq_dispatch_insert(cfqd->queue, rq);
1274 if (!cfqd->active_cic) {
1275 struct cfq_io_context *cic = RQ_CIC(rq);
1277 atomic_inc(&cic->ioc->refcount);
1278 cfqd->active_cic = cic;
1283 * Find the cfqq that we need to service and move a request from that to the
1284 * dispatch list
1286 static int cfq_dispatch_requests(struct request_queue *q, int force)
1288 struct cfq_data *cfqd = q->elevator->elevator_data;
1289 struct cfq_queue *cfqq;
1290 unsigned int max_dispatch;
1292 if (!cfqd->busy_queues)
1293 return 0;
1295 if (unlikely(force))
1296 return cfq_forced_dispatch(cfqd);
1298 cfqq = cfq_select_queue(cfqd);
1299 if (!cfqq)
1300 return 0;
1303 * If this is an async queue and we have sync IO in flight, let it wait
1305 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1306 return 0;
1308 max_dispatch = cfqd->cfq_quantum;
1309 if (cfq_class_idle(cfqq))
1310 max_dispatch = 1;
1313 * Does this cfqq already have too much IO in flight?
1315 if (cfqq->dispatched >= max_dispatch) {
1317 * idle queue must always only have a single IO in flight
1319 if (cfq_class_idle(cfqq))
1320 return 0;
1323 * We have other queues, don't allow more IO from this one
1325 if (cfqd->busy_queues > 1)
1326 return 0;
1329 * we are the only queue, allow up to 4 times of 'quantum'
1331 if (cfqq->dispatched >= 4 * max_dispatch)
1332 return 0;
1336 * Dispatch a request from this cfqq
1338 cfq_dispatch_request(cfqd, cfqq);
1339 cfqq->slice_dispatch++;
1340 cfq_clear_cfqq_must_dispatch(cfqq);
1343 * expire an async queue immediately if it has used up its slice. idle
1344 * queue always expire after 1 dispatch round.
1346 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1347 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1348 cfq_class_idle(cfqq))) {
1349 cfqq->slice_end = jiffies + 1;
1350 cfq_slice_expired(cfqd, 0);
1353 cfq_log(cfqd, "dispatched a request");
1354 return 1;
1358 * task holds one reference to the queue, dropped when task exits. each rq
1359 * in-flight on this queue also holds a reference, dropped when rq is freed.
1361 * queue lock must be held here.
1363 static void cfq_put_queue(struct cfq_queue *cfqq)
1365 struct cfq_data *cfqd = cfqq->cfqd;
1367 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1369 if (!atomic_dec_and_test(&cfqq->ref))
1370 return;
1372 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1373 BUG_ON(rb_first(&cfqq->sort_list));
1374 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1375 BUG_ON(cfq_cfqq_on_rr(cfqq));
1377 if (unlikely(cfqd->active_queue == cfqq)) {
1378 __cfq_slice_expired(cfqd, cfqq, 0);
1379 cfq_schedule_dispatch(cfqd);
1382 kmem_cache_free(cfq_pool, cfqq);
1386 * Must always be called with the rcu_read_lock() held
1388 static void
1389 __call_for_each_cic(struct io_context *ioc,
1390 void (*func)(struct io_context *, struct cfq_io_context *))
1392 struct cfq_io_context *cic;
1393 struct hlist_node *n;
1395 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1396 func(ioc, cic);
1400 * Call func for each cic attached to this ioc.
1402 static void
1403 call_for_each_cic(struct io_context *ioc,
1404 void (*func)(struct io_context *, struct cfq_io_context *))
1406 rcu_read_lock();
1407 __call_for_each_cic(ioc, func);
1408 rcu_read_unlock();
1411 static void cfq_cic_free_rcu(struct rcu_head *head)
1413 struct cfq_io_context *cic;
1415 cic = container_of(head, struct cfq_io_context, rcu_head);
1417 kmem_cache_free(cfq_ioc_pool, cic);
1418 elv_ioc_count_dec(ioc_count);
1420 if (ioc_gone) {
1422 * CFQ scheduler is exiting, grab exit lock and check
1423 * the pending io context count. If it hits zero,
1424 * complete ioc_gone and set it back to NULL
1426 spin_lock(&ioc_gone_lock);
1427 if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
1428 complete(ioc_gone);
1429 ioc_gone = NULL;
1431 spin_unlock(&ioc_gone_lock);
1435 static void cfq_cic_free(struct cfq_io_context *cic)
1437 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
1440 static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1442 unsigned long flags;
1444 BUG_ON(!cic->dead_key);
1446 spin_lock_irqsave(&ioc->lock, flags);
1447 radix_tree_delete(&ioc->radix_root, cic->dead_key);
1448 hlist_del_rcu(&cic->cic_list);
1449 spin_unlock_irqrestore(&ioc->lock, flags);
1451 cfq_cic_free(cic);
1455 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1456 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1457 * and ->trim() which is called with the task lock held
1459 static void cfq_free_io_context(struct io_context *ioc)
1462 * ioc->refcount is zero here, or we are called from elv_unregister(),
1463 * so no more cic's are allowed to be linked into this ioc. So it
1464 * should be ok to iterate over the known list, we will see all cic's
1465 * since no new ones are added.
1467 __call_for_each_cic(ioc, cic_free_func);
1470 static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1472 if (unlikely(cfqq == cfqd->active_queue)) {
1473 __cfq_slice_expired(cfqd, cfqq, 0);
1474 cfq_schedule_dispatch(cfqd);
1477 cfq_put_queue(cfqq);
1480 static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1481 struct cfq_io_context *cic)
1483 struct io_context *ioc = cic->ioc;
1485 list_del_init(&cic->queue_list);
1488 * Make sure key == NULL is seen for dead queues
1490 smp_wmb();
1491 cic->dead_key = (unsigned long) cic->key;
1492 cic->key = NULL;
1494 if (ioc->ioc_data == cic)
1495 rcu_assign_pointer(ioc->ioc_data, NULL);
1497 if (cic->cfqq[BLK_RW_ASYNC]) {
1498 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1499 cic->cfqq[BLK_RW_ASYNC] = NULL;
1502 if (cic->cfqq[BLK_RW_SYNC]) {
1503 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1504 cic->cfqq[BLK_RW_SYNC] = NULL;
1508 static void cfq_exit_single_io_context(struct io_context *ioc,
1509 struct cfq_io_context *cic)
1511 struct cfq_data *cfqd = cic->key;
1513 if (cfqd) {
1514 struct request_queue *q = cfqd->queue;
1515 unsigned long flags;
1517 spin_lock_irqsave(q->queue_lock, flags);
1520 * Ensure we get a fresh copy of the ->key to prevent
1521 * race between exiting task and queue
1523 smp_read_barrier_depends();
1524 if (cic->key)
1525 __cfq_exit_single_io_context(cfqd, cic);
1527 spin_unlock_irqrestore(q->queue_lock, flags);
1532 * The process that ioc belongs to has exited, we need to clean up
1533 * and put the internal structures we have that belongs to that process.
1535 static void cfq_exit_io_context(struct io_context *ioc)
1537 call_for_each_cic(ioc, cfq_exit_single_io_context);
1540 static struct cfq_io_context *
1541 cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1543 struct cfq_io_context *cic;
1545 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1546 cfqd->queue->node);
1547 if (cic) {
1548 cic->last_end_request = jiffies;
1549 INIT_LIST_HEAD(&cic->queue_list);
1550 INIT_HLIST_NODE(&cic->cic_list);
1551 cic->dtor = cfq_free_io_context;
1552 cic->exit = cfq_exit_io_context;
1553 elv_ioc_count_inc(ioc_count);
1556 return cic;
1559 static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
1561 struct task_struct *tsk = current;
1562 int ioprio_class;
1564 if (!cfq_cfqq_prio_changed(cfqq))
1565 return;
1567 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
1568 switch (ioprio_class) {
1569 default:
1570 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1571 case IOPRIO_CLASS_NONE:
1573 * no prio set, inherit CPU scheduling settings
1575 cfqq->ioprio = task_nice_ioprio(tsk);
1576 cfqq->ioprio_class = task_nice_ioclass(tsk);
1577 break;
1578 case IOPRIO_CLASS_RT:
1579 cfqq->ioprio = task_ioprio(ioc);
1580 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1581 break;
1582 case IOPRIO_CLASS_BE:
1583 cfqq->ioprio = task_ioprio(ioc);
1584 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1585 break;
1586 case IOPRIO_CLASS_IDLE:
1587 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1588 cfqq->ioprio = 7;
1589 cfq_clear_cfqq_idle_window(cfqq);
1590 break;
1594 * keep track of original prio settings in case we have to temporarily
1595 * elevate the priority of this queue
1597 cfqq->org_ioprio = cfqq->ioprio;
1598 cfqq->org_ioprio_class = cfqq->ioprio_class;
1599 cfq_clear_cfqq_prio_changed(cfqq);
1602 static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
1604 struct cfq_data *cfqd = cic->key;
1605 struct cfq_queue *cfqq;
1606 unsigned long flags;
1608 if (unlikely(!cfqd))
1609 return;
1611 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1613 cfqq = cic->cfqq[BLK_RW_ASYNC];
1614 if (cfqq) {
1615 struct cfq_queue *new_cfqq;
1616 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1617 GFP_ATOMIC);
1618 if (new_cfqq) {
1619 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
1620 cfq_put_queue(cfqq);
1624 cfqq = cic->cfqq[BLK_RW_SYNC];
1625 if (cfqq)
1626 cfq_mark_cfqq_prio_changed(cfqq);
1628 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1631 static void cfq_ioc_set_ioprio(struct io_context *ioc)
1633 call_for_each_cic(ioc, changed_ioprio);
1634 ioc->ioprio_changed = 0;
1637 static struct cfq_queue *
1638 cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
1639 struct io_context *ioc, gfp_t gfp_mask)
1641 struct cfq_queue *cfqq, *new_cfqq = NULL;
1642 struct cfq_io_context *cic;
1644 retry:
1645 cic = cfq_cic_lookup(cfqd, ioc);
1646 /* cic always exists here */
1647 cfqq = cic_to_cfqq(cic, is_sync);
1649 if (!cfqq) {
1650 if (new_cfqq) {
1651 cfqq = new_cfqq;
1652 new_cfqq = NULL;
1653 } else if (gfp_mask & __GFP_WAIT) {
1655 * Inform the allocator of the fact that we will
1656 * just repeat this allocation if it fails, to allow
1657 * the allocator to do whatever it needs to attempt to
1658 * free memory.
1660 spin_unlock_irq(cfqd->queue->queue_lock);
1661 new_cfqq = kmem_cache_alloc_node(cfq_pool,
1662 gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
1663 cfqd->queue->node);
1664 spin_lock_irq(cfqd->queue->queue_lock);
1665 goto retry;
1666 } else {
1667 cfqq = kmem_cache_alloc_node(cfq_pool,
1668 gfp_mask | __GFP_ZERO,
1669 cfqd->queue->node);
1670 if (!cfqq)
1671 goto out;
1674 RB_CLEAR_NODE(&cfqq->rb_node);
1675 RB_CLEAR_NODE(&cfqq->p_node);
1676 INIT_LIST_HEAD(&cfqq->fifo);
1678 atomic_set(&cfqq->ref, 0);
1679 cfqq->cfqd = cfqd;
1681 cfq_mark_cfqq_prio_changed(cfqq);
1683 cfq_init_prio_data(cfqq, ioc);
1685 if (is_sync) {
1686 if (!cfq_class_idle(cfqq))
1687 cfq_mark_cfqq_idle_window(cfqq);
1688 cfq_mark_cfqq_sync(cfqq);
1690 cfqq->pid = current->pid;
1691 cfq_log_cfqq(cfqd, cfqq, "alloced");
1694 if (new_cfqq)
1695 kmem_cache_free(cfq_pool, new_cfqq);
1697 out:
1698 WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
1699 return cfqq;
1702 static struct cfq_queue **
1703 cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1705 switch (ioprio_class) {
1706 case IOPRIO_CLASS_RT:
1707 return &cfqd->async_cfqq[0][ioprio];
1708 case IOPRIO_CLASS_BE:
1709 return &cfqd->async_cfqq[1][ioprio];
1710 case IOPRIO_CLASS_IDLE:
1711 return &cfqd->async_idle_cfqq;
1712 default:
1713 BUG();
1717 static struct cfq_queue *
1718 cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
1719 gfp_t gfp_mask)
1721 const int ioprio = task_ioprio(ioc);
1722 const int ioprio_class = task_ioprio_class(ioc);
1723 struct cfq_queue **async_cfqq = NULL;
1724 struct cfq_queue *cfqq = NULL;
1726 if (!is_sync) {
1727 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1728 cfqq = *async_cfqq;
1731 if (!cfqq) {
1732 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
1733 if (!cfqq)
1734 return NULL;
1738 * pin the queue now that it's allocated, scheduler exit will prune it
1740 if (!is_sync && !(*async_cfqq)) {
1741 atomic_inc(&cfqq->ref);
1742 *async_cfqq = cfqq;
1745 atomic_inc(&cfqq->ref);
1746 return cfqq;
1750 * We drop cfq io contexts lazily, so we may find a dead one.
1752 static void
1753 cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1754 struct cfq_io_context *cic)
1756 unsigned long flags;
1758 WARN_ON(!list_empty(&cic->queue_list));
1760 spin_lock_irqsave(&ioc->lock, flags);
1762 BUG_ON(ioc->ioc_data == cic);
1764 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
1765 hlist_del_rcu(&cic->cic_list);
1766 spin_unlock_irqrestore(&ioc->lock, flags);
1768 cfq_cic_free(cic);
1771 static struct cfq_io_context *
1772 cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
1774 struct cfq_io_context *cic;
1775 unsigned long flags;
1776 void *k;
1778 if (unlikely(!ioc))
1779 return NULL;
1781 rcu_read_lock();
1784 * we maintain a last-hit cache, to avoid browsing over the tree
1786 cic = rcu_dereference(ioc->ioc_data);
1787 if (cic && cic->key == cfqd) {
1788 rcu_read_unlock();
1789 return cic;
1792 do {
1793 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1794 rcu_read_unlock();
1795 if (!cic)
1796 break;
1797 /* ->key must be copied to avoid race with cfq_exit_queue() */
1798 k = cic->key;
1799 if (unlikely(!k)) {
1800 cfq_drop_dead_cic(cfqd, ioc, cic);
1801 rcu_read_lock();
1802 continue;
1805 spin_lock_irqsave(&ioc->lock, flags);
1806 rcu_assign_pointer(ioc->ioc_data, cic);
1807 spin_unlock_irqrestore(&ioc->lock, flags);
1808 break;
1809 } while (1);
1811 return cic;
1815 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1816 * the process specific cfq io context when entered from the block layer.
1817 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1819 static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1820 struct cfq_io_context *cic, gfp_t gfp_mask)
1822 unsigned long flags;
1823 int ret;
1825 ret = radix_tree_preload(gfp_mask);
1826 if (!ret) {
1827 cic->ioc = ioc;
1828 cic->key = cfqd;
1830 spin_lock_irqsave(&ioc->lock, flags);
1831 ret = radix_tree_insert(&ioc->radix_root,
1832 (unsigned long) cfqd, cic);
1833 if (!ret)
1834 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
1835 spin_unlock_irqrestore(&ioc->lock, flags);
1837 radix_tree_preload_end();
1839 if (!ret) {
1840 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1841 list_add(&cic->queue_list, &cfqd->cic_list);
1842 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1846 if (ret)
1847 printk(KERN_ERR "cfq: cic link failed!\n");
1849 return ret;
1853 * Setup general io context and cfq io context. There can be several cfq
1854 * io contexts per general io context, if this process is doing io to more
1855 * than one device managed by cfq.
1857 static struct cfq_io_context *
1858 cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1860 struct io_context *ioc = NULL;
1861 struct cfq_io_context *cic;
1863 might_sleep_if(gfp_mask & __GFP_WAIT);
1865 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1866 if (!ioc)
1867 return NULL;
1869 cic = cfq_cic_lookup(cfqd, ioc);
1870 if (cic)
1871 goto out;
1873 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1874 if (cic == NULL)
1875 goto err;
1877 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1878 goto err_free;
1880 out:
1881 smp_read_barrier_depends();
1882 if (unlikely(ioc->ioprio_changed))
1883 cfq_ioc_set_ioprio(ioc);
1885 return cic;
1886 err_free:
1887 cfq_cic_free(cic);
1888 err:
1889 put_io_context(ioc);
1890 return NULL;
1893 static void
1894 cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1896 unsigned long elapsed = jiffies - cic->last_end_request;
1897 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
1899 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1900 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1901 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1904 static void
1905 cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1906 struct request *rq)
1908 sector_t sdist;
1909 u64 total;
1911 if (cic->last_request_pos < rq->sector)
1912 sdist = rq->sector - cic->last_request_pos;
1913 else
1914 sdist = cic->last_request_pos - rq->sector;
1917 * Don't allow the seek distance to get too large from the
1918 * odd fragment, pagein, etc
1920 if (cic->seek_samples <= 60) /* second&third seek */
1921 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1922 else
1923 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1925 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1926 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1927 total = cic->seek_total + (cic->seek_samples/2);
1928 do_div(total, cic->seek_samples);
1929 cic->seek_mean = (sector_t)total;
1933 * Disable idle window if the process thinks too long or seeks so much that
1934 * it doesn't matter
1936 static void
1937 cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1938 struct cfq_io_context *cic)
1940 int old_idle, enable_idle;
1943 * Don't idle for async or idle io prio class
1945 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1946 return;
1948 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1950 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
1951 (cfqd->hw_tag && CIC_SEEKY(cic)))
1952 enable_idle = 0;
1953 else if (sample_valid(cic->ttime_samples)) {
1954 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1955 enable_idle = 0;
1956 else
1957 enable_idle = 1;
1960 if (old_idle != enable_idle) {
1961 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1962 if (enable_idle)
1963 cfq_mark_cfqq_idle_window(cfqq);
1964 else
1965 cfq_clear_cfqq_idle_window(cfqq);
1970 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1971 * no or if we aren't sure, a 1 will cause a preempt.
1973 static int
1974 cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
1975 struct request *rq)
1977 struct cfq_queue *cfqq;
1979 cfqq = cfqd->active_queue;
1980 if (!cfqq)
1981 return 0;
1983 if (cfq_slice_used(cfqq))
1984 return 1;
1986 if (cfq_class_idle(new_cfqq))
1987 return 0;
1989 if (cfq_class_idle(cfqq))
1990 return 1;
1993 * if the new request is sync, but the currently running queue is
1994 * not, let the sync request have priority.
1996 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
1997 return 1;
2000 * So both queues are sync. Let the new request get disk time if
2001 * it's a metadata request and the current queue is doing regular IO.
2003 if (rq_is_meta(rq) && !cfqq->meta_pending)
2004 return 1;
2007 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2009 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2010 return 1;
2012 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2013 return 0;
2016 * if this request is as-good as one we would expect from the
2017 * current cfqq, let it preempt
2019 if (cfq_rq_close(cfqd, rq))
2020 return 1;
2022 return 0;
2026 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2027 * let it have half of its nominal slice.
2029 static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2031 cfq_log_cfqq(cfqd, cfqq, "preempt");
2032 cfq_slice_expired(cfqd, 1);
2035 * Put the new queue at the front of the of the current list,
2036 * so we know that it will be selected next.
2038 BUG_ON(!cfq_cfqq_on_rr(cfqq));
2040 cfq_service_tree_add(cfqd, cfqq, 1);
2042 cfqq->slice_end = 0;
2043 cfq_mark_cfqq_slice_new(cfqq);
2047 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2048 * something we should do about it
2050 static void
2051 cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2052 struct request *rq)
2054 struct cfq_io_context *cic = RQ_CIC(rq);
2056 cfqd->rq_queued++;
2057 if (rq_is_meta(rq))
2058 cfqq->meta_pending++;
2060 cfq_update_io_thinktime(cfqd, cic);
2061 cfq_update_io_seektime(cfqd, cic, rq);
2062 cfq_update_idle_window(cfqd, cfqq, cic);
2064 cic->last_request_pos = rq->sector + rq->nr_sectors;
2066 if (cfqq == cfqd->active_queue) {
2068 * Remember that we saw a request from this process, but
2069 * don't start queuing just yet. Otherwise we risk seeing lots
2070 * of tiny requests, because we disrupt the normal plugging
2071 * and merging. If the request is already larger than a single
2072 * page, let it rip immediately. For that case we assume that
2073 * merging is already done. Ditto for a busy system that
2074 * has other work pending, don't risk delaying until the
2075 * idle timer unplug to continue working.
2077 if (cfq_cfqq_wait_request(cfqq)) {
2078 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2079 cfqd->busy_queues > 1) {
2080 del_timer(&cfqd->idle_slice_timer);
2081 blk_start_queueing(cfqd->queue);
2083 cfq_mark_cfqq_must_dispatch(cfqq);
2085 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
2087 * not the active queue - expire current slice if it is
2088 * idle and has expired it's mean thinktime or this new queue
2089 * has some old slice time left and is of higher priority or
2090 * this new queue is RT and the current one is BE
2092 cfq_preempt_queue(cfqd, cfqq);
2093 blk_start_queueing(cfqd->queue);
2097 static void cfq_insert_request(struct request_queue *q, struct request *rq)
2099 struct cfq_data *cfqd = q->elevator->elevator_data;
2100 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2102 cfq_log_cfqq(cfqd, cfqq, "insert_request");
2103 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
2105 cfq_add_rq_rb(rq);
2107 list_add_tail(&rq->queuelist, &cfqq->fifo);
2109 cfq_rq_enqueued(cfqd, cfqq, rq);
2113 * Update hw_tag based on peak queue depth over 50 samples under
2114 * sufficient load.
2116 static void cfq_update_hw_tag(struct cfq_data *cfqd)
2118 if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
2119 cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
2121 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
2122 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
2123 return;
2125 if (cfqd->hw_tag_samples++ < 50)
2126 return;
2128 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2129 cfqd->hw_tag = 1;
2130 else
2131 cfqd->hw_tag = 0;
2133 cfqd->hw_tag_samples = 0;
2134 cfqd->rq_in_driver_peak = 0;
2137 static void cfq_completed_request(struct request_queue *q, struct request *rq)
2139 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2140 struct cfq_data *cfqd = cfqq->cfqd;
2141 const int sync = rq_is_sync(rq);
2142 unsigned long now;
2144 now = jiffies;
2145 cfq_log_cfqq(cfqd, cfqq, "complete");
2147 cfq_update_hw_tag(cfqd);
2149 WARN_ON(!cfqd->rq_in_driver);
2150 WARN_ON(!cfqq->dispatched);
2151 cfqd->rq_in_driver--;
2152 cfqq->dispatched--;
2154 if (cfq_cfqq_sync(cfqq))
2155 cfqd->sync_flight--;
2157 if (!cfq_class_idle(cfqq))
2158 cfqd->last_end_request = now;
2160 if (sync)
2161 RQ_CIC(rq)->last_end_request = now;
2164 * If this is the active queue, check if it needs to be expired,
2165 * or if we want to idle in case it has no pending requests.
2167 if (cfqd->active_queue == cfqq) {
2168 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2170 if (cfq_cfqq_slice_new(cfqq)) {
2171 cfq_set_prio_slice(cfqd, cfqq);
2172 cfq_clear_cfqq_slice_new(cfqq);
2175 * If there are no requests waiting in this queue, and
2176 * there are other queues ready to issue requests, AND
2177 * those other queues are issuing requests within our
2178 * mean seek distance, give them a chance to run instead
2179 * of idling.
2181 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
2182 cfq_slice_expired(cfqd, 1);
2183 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2184 sync && !rq_noidle(rq))
2185 cfq_arm_slice_timer(cfqd);
2188 if (!cfqd->rq_in_driver)
2189 cfq_schedule_dispatch(cfqd);
2193 * we temporarily boost lower priority queues if they are holding fs exclusive
2194 * resources. they are boosted to normal prio (CLASS_BE/4)
2196 static void cfq_prio_boost(struct cfq_queue *cfqq)
2198 if (has_fs_excl()) {
2200 * boost idle prio on transactions that would lock out other
2201 * users of the filesystem
2203 if (cfq_class_idle(cfqq))
2204 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2205 if (cfqq->ioprio > IOPRIO_NORM)
2206 cfqq->ioprio = IOPRIO_NORM;
2207 } else {
2209 * check if we need to unboost the queue
2211 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2212 cfqq->ioprio_class = cfqq->org_ioprio_class;
2213 if (cfqq->ioprio != cfqq->org_ioprio)
2214 cfqq->ioprio = cfqq->org_ioprio;
2218 static inline int __cfq_may_queue(struct cfq_queue *cfqq)
2220 if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
2221 !cfq_cfqq_must_alloc_slice(cfqq)) {
2222 cfq_mark_cfqq_must_alloc_slice(cfqq);
2223 return ELV_MQUEUE_MUST;
2226 return ELV_MQUEUE_MAY;
2229 static int cfq_may_queue(struct request_queue *q, int rw)
2231 struct cfq_data *cfqd = q->elevator->elevator_data;
2232 struct task_struct *tsk = current;
2233 struct cfq_io_context *cic;
2234 struct cfq_queue *cfqq;
2237 * don't force setup of a queue from here, as a call to may_queue
2238 * does not necessarily imply that a request actually will be queued.
2239 * so just lookup a possibly existing queue, or return 'may queue'
2240 * if that fails
2242 cic = cfq_cic_lookup(cfqd, tsk->io_context);
2243 if (!cic)
2244 return ELV_MQUEUE_MAY;
2246 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
2247 if (cfqq) {
2248 cfq_init_prio_data(cfqq, cic->ioc);
2249 cfq_prio_boost(cfqq);
2251 return __cfq_may_queue(cfqq);
2254 return ELV_MQUEUE_MAY;
2258 * queue lock held here
2260 static void cfq_put_request(struct request *rq)
2262 struct cfq_queue *cfqq = RQ_CFQQ(rq);
2264 if (cfqq) {
2265 const int rw = rq_data_dir(rq);
2267 BUG_ON(!cfqq->allocated[rw]);
2268 cfqq->allocated[rw]--;
2270 put_io_context(RQ_CIC(rq)->ioc);
2272 rq->elevator_private = NULL;
2273 rq->elevator_private2 = NULL;
2275 cfq_put_queue(cfqq);
2280 * Allocate cfq data structures associated with this request.
2282 static int
2283 cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
2285 struct cfq_data *cfqd = q->elevator->elevator_data;
2286 struct cfq_io_context *cic;
2287 const int rw = rq_data_dir(rq);
2288 const int is_sync = rq_is_sync(rq);
2289 struct cfq_queue *cfqq;
2290 unsigned long flags;
2292 might_sleep_if(gfp_mask & __GFP_WAIT);
2294 cic = cfq_get_io_context(cfqd, gfp_mask);
2296 spin_lock_irqsave(q->queue_lock, flags);
2298 if (!cic)
2299 goto queue_fail;
2301 cfqq = cic_to_cfqq(cic, is_sync);
2302 if (!cfqq) {
2303 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
2305 if (!cfqq)
2306 goto queue_fail;
2308 cic_set_cfqq(cic, cfqq, is_sync);
2311 cfqq->allocated[rw]++;
2312 cfq_clear_cfqq_must_alloc(cfqq);
2313 atomic_inc(&cfqq->ref);
2315 spin_unlock_irqrestore(q->queue_lock, flags);
2317 rq->elevator_private = cic;
2318 rq->elevator_private2 = cfqq;
2319 return 0;
2321 queue_fail:
2322 if (cic)
2323 put_io_context(cic->ioc);
2325 cfq_schedule_dispatch(cfqd);
2326 spin_unlock_irqrestore(q->queue_lock, flags);
2327 cfq_log(cfqd, "set_request fail");
2328 return 1;
2331 static void cfq_kick_queue(struct work_struct *work)
2333 struct cfq_data *cfqd =
2334 container_of(work, struct cfq_data, unplug_work);
2335 struct request_queue *q = cfqd->queue;
2337 spin_lock_irq(q->queue_lock);
2338 blk_start_queueing(q);
2339 spin_unlock_irq(q->queue_lock);
2343 * Timer running if the active_queue is currently idling inside its time slice
2345 static void cfq_idle_slice_timer(unsigned long data)
2347 struct cfq_data *cfqd = (struct cfq_data *) data;
2348 struct cfq_queue *cfqq;
2349 unsigned long flags;
2350 int timed_out = 1;
2352 cfq_log(cfqd, "idle timer fired");
2354 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2356 cfqq = cfqd->active_queue;
2357 if (cfqq) {
2358 timed_out = 0;
2361 * We saw a request before the queue expired, let it through
2363 if (cfq_cfqq_must_dispatch(cfqq))
2364 goto out_kick;
2367 * expired
2369 if (cfq_slice_used(cfqq))
2370 goto expire;
2373 * only expire and reinvoke request handler, if there are
2374 * other queues with pending requests
2376 if (!cfqd->busy_queues)
2377 goto out_cont;
2380 * not expired and it has a request pending, let it dispatch
2382 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
2383 goto out_kick;
2385 expire:
2386 cfq_slice_expired(cfqd, timed_out);
2387 out_kick:
2388 cfq_schedule_dispatch(cfqd);
2389 out_cont:
2390 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2393 static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2395 del_timer_sync(&cfqd->idle_slice_timer);
2396 cancel_work_sync(&cfqd->unplug_work);
2399 static void cfq_put_async_queues(struct cfq_data *cfqd)
2401 int i;
2403 for (i = 0; i < IOPRIO_BE_NR; i++) {
2404 if (cfqd->async_cfqq[0][i])
2405 cfq_put_queue(cfqd->async_cfqq[0][i]);
2406 if (cfqd->async_cfqq[1][i])
2407 cfq_put_queue(cfqd->async_cfqq[1][i]);
2410 if (cfqd->async_idle_cfqq)
2411 cfq_put_queue(cfqd->async_idle_cfqq);
2414 static void cfq_exit_queue(struct elevator_queue *e)
2416 struct cfq_data *cfqd = e->elevator_data;
2417 struct request_queue *q = cfqd->queue;
2419 cfq_shutdown_timer_wq(cfqd);
2421 spin_lock_irq(q->queue_lock);
2423 if (cfqd->active_queue)
2424 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
2426 while (!list_empty(&cfqd->cic_list)) {
2427 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2428 struct cfq_io_context,
2429 queue_list);
2431 __cfq_exit_single_io_context(cfqd, cic);
2434 cfq_put_async_queues(cfqd);
2436 spin_unlock_irq(q->queue_lock);
2438 cfq_shutdown_timer_wq(cfqd);
2440 kfree(cfqd);
2443 static void *cfq_init_queue(struct request_queue *q)
2445 struct cfq_data *cfqd;
2447 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
2448 if (!cfqd)
2449 return NULL;
2451 cfqd->service_tree = CFQ_RB_ROOT;
2452 INIT_LIST_HEAD(&cfqd->cic_list);
2454 cfqd->queue = q;
2456 init_timer(&cfqd->idle_slice_timer);
2457 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2458 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2460 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
2462 cfqd->last_end_request = jiffies;
2463 cfqd->cfq_quantum = cfq_quantum;
2464 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2465 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
2466 cfqd->cfq_back_max = cfq_back_max;
2467 cfqd->cfq_back_penalty = cfq_back_penalty;
2468 cfqd->cfq_slice[0] = cfq_slice_async;
2469 cfqd->cfq_slice[1] = cfq_slice_sync;
2470 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2471 cfqd->cfq_slice_idle = cfq_slice_idle;
2472 cfqd->hw_tag = 1;
2474 return cfqd;
2477 static void cfq_slab_kill(void)
2480 * Caller already ensured that pending RCU callbacks are completed,
2481 * so we should have no busy allocations at this point.
2483 if (cfq_pool)
2484 kmem_cache_destroy(cfq_pool);
2485 if (cfq_ioc_pool)
2486 kmem_cache_destroy(cfq_ioc_pool);
2489 static int __init cfq_slab_setup(void)
2491 cfq_pool = KMEM_CACHE(cfq_queue, 0);
2492 if (!cfq_pool)
2493 goto fail;
2495 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
2496 if (!cfq_ioc_pool)
2497 goto fail;
2499 return 0;
2500 fail:
2501 cfq_slab_kill();
2502 return -ENOMEM;
2506 * sysfs parts below -->
2508 static ssize_t
2509 cfq_var_show(unsigned int var, char *page)
2511 return sprintf(page, "%d\n", var);
2514 static ssize_t
2515 cfq_var_store(unsigned int *var, const char *page, size_t count)
2517 char *p = (char *) page;
2519 *var = simple_strtoul(p, &p, 10);
2520 return count;
2523 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2524 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2526 struct cfq_data *cfqd = e->elevator_data; \
2527 unsigned int __data = __VAR; \
2528 if (__CONV) \
2529 __data = jiffies_to_msecs(__data); \
2530 return cfq_var_show(__data, (page)); \
2532 SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
2533 SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2534 SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
2535 SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2536 SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
2537 SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2538 SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2539 SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2540 SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
2541 #undef SHOW_FUNCTION
2543 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2544 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2546 struct cfq_data *cfqd = e->elevator_data; \
2547 unsigned int __data; \
2548 int ret = cfq_var_store(&__data, (page), count); \
2549 if (__data < (MIN)) \
2550 __data = (MIN); \
2551 else if (__data > (MAX)) \
2552 __data = (MAX); \
2553 if (__CONV) \
2554 *(__PTR) = msecs_to_jiffies(__data); \
2555 else \
2556 *(__PTR) = __data; \
2557 return ret; \
2559 STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
2560 STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2561 UINT_MAX, 1);
2562 STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2563 UINT_MAX, 1);
2564 STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
2565 STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2566 UINT_MAX, 0);
2567 STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2568 STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2569 STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
2570 STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2571 UINT_MAX, 0);
2572 #undef STORE_FUNCTION
2574 #define CFQ_ATTR(name) \
2575 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2577 static struct elv_fs_entry cfq_attrs[] = {
2578 CFQ_ATTR(quantum),
2579 CFQ_ATTR(fifo_expire_sync),
2580 CFQ_ATTR(fifo_expire_async),
2581 CFQ_ATTR(back_seek_max),
2582 CFQ_ATTR(back_seek_penalty),
2583 CFQ_ATTR(slice_sync),
2584 CFQ_ATTR(slice_async),
2585 CFQ_ATTR(slice_async_rq),
2586 CFQ_ATTR(slice_idle),
2587 __ATTR_NULL
2590 static struct elevator_type iosched_cfq = {
2591 .ops = {
2592 .elevator_merge_fn = cfq_merge,
2593 .elevator_merged_fn = cfq_merged_request,
2594 .elevator_merge_req_fn = cfq_merged_requests,
2595 .elevator_allow_merge_fn = cfq_allow_merge,
2596 .elevator_dispatch_fn = cfq_dispatch_requests,
2597 .elevator_add_req_fn = cfq_insert_request,
2598 .elevator_activate_req_fn = cfq_activate_request,
2599 .elevator_deactivate_req_fn = cfq_deactivate_request,
2600 .elevator_queue_empty_fn = cfq_queue_empty,
2601 .elevator_completed_req_fn = cfq_completed_request,
2602 .elevator_former_req_fn = elv_rb_former_request,
2603 .elevator_latter_req_fn = elv_rb_latter_request,
2604 .elevator_set_req_fn = cfq_set_request,
2605 .elevator_put_req_fn = cfq_put_request,
2606 .elevator_may_queue_fn = cfq_may_queue,
2607 .elevator_init_fn = cfq_init_queue,
2608 .elevator_exit_fn = cfq_exit_queue,
2609 .trim = cfq_free_io_context,
2611 .elevator_attrs = cfq_attrs,
2612 .elevator_name = "cfq",
2613 .elevator_owner = THIS_MODULE,
2616 static int __init cfq_init(void)
2619 * could be 0 on HZ < 1000 setups
2621 if (!cfq_slice_async)
2622 cfq_slice_async = 1;
2623 if (!cfq_slice_idle)
2624 cfq_slice_idle = 1;
2626 if (cfq_slab_setup())
2627 return -ENOMEM;
2629 elv_register(&iosched_cfq);
2631 return 0;
2634 static void __exit cfq_exit(void)
2636 DECLARE_COMPLETION_ONSTACK(all_gone);
2637 elv_unregister(&iosched_cfq);
2638 ioc_gone = &all_gone;
2639 /* ioc_gone's update must be visible before reading ioc_count */
2640 smp_wmb();
2643 * this also protects us from entering cfq_slab_kill() with
2644 * pending RCU callbacks
2646 if (elv_ioc_count_read(ioc_count))
2647 wait_for_completion(&all_gone);
2648 cfq_slab_kill();
2651 module_init(cfq_init);
2652 module_exit(cfq_exit);
2654 MODULE_AUTHOR("Jens Axboe");
2655 MODULE_LICENSE("GPL");
2656 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");