ftrace: fix printout
[linux-2.6/mini2440.git] / include / linux / sched.h
blobc0b1c69b55cec57dfdbf8945d9669f741a465748
1 #ifndef _LINUX_SCHED_H
2 #define _LINUX_SCHED_H
4 /*
5 * cloning flags:
6 */
7 #define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
8 #define CLONE_VM 0x00000100 /* set if VM shared between processes */
9 #define CLONE_FS 0x00000200 /* set if fs info shared between processes */
10 #define CLONE_FILES 0x00000400 /* set if open files shared between processes */
11 #define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
12 #define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
13 #define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
14 #define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
15 #define CLONE_THREAD 0x00010000 /* Same thread group? */
16 #define CLONE_NEWNS 0x00020000 /* New namespace group? */
17 #define CLONE_SYSVSEM 0x00040000 /* share system V SEM_UNDO semantics */
18 #define CLONE_SETTLS 0x00080000 /* create a new TLS for the child */
19 #define CLONE_PARENT_SETTID 0x00100000 /* set the TID in the parent */
20 #define CLONE_CHILD_CLEARTID 0x00200000 /* clear the TID in the child */
21 #define CLONE_DETACHED 0x00400000 /* Unused, ignored */
22 #define CLONE_UNTRACED 0x00800000 /* set if the tracing process can't force CLONE_PTRACE on this clone */
23 #define CLONE_CHILD_SETTID 0x01000000 /* set the TID in the child */
24 #define CLONE_STOPPED 0x02000000 /* Start in stopped state */
25 #define CLONE_NEWUTS 0x04000000 /* New utsname group? */
26 #define CLONE_NEWIPC 0x08000000 /* New ipcs */
27 #define CLONE_NEWUSER 0x10000000 /* New user namespace */
28 #define CLONE_NEWPID 0x20000000 /* New pid namespace */
29 #define CLONE_NEWNET 0x40000000 /* New network namespace */
30 #define CLONE_IO 0x80000000 /* Clone io context */
33 * Scheduling policies
35 #define SCHED_NORMAL 0
36 #define SCHED_FIFO 1
37 #define SCHED_RR 2
38 #define SCHED_BATCH 3
39 /* SCHED_ISO: reserved but not implemented yet */
40 #define SCHED_IDLE 5
42 #ifdef __KERNEL__
44 struct sched_param {
45 int sched_priority;
48 #include <asm/param.h> /* for HZ */
50 #include <linux/capability.h>
51 #include <linux/threads.h>
52 #include <linux/kernel.h>
53 #include <linux/types.h>
54 #include <linux/timex.h>
55 #include <linux/jiffies.h>
56 #include <linux/rbtree.h>
57 #include <linux/thread_info.h>
58 #include <linux/cpumask.h>
59 #include <linux/errno.h>
60 #include <linux/nodemask.h>
61 #include <linux/mm_types.h>
63 #include <asm/system.h>
64 #include <asm/page.h>
65 #include <asm/ptrace.h>
66 #include <asm/cputime.h>
68 #include <linux/smp.h>
69 #include <linux/sem.h>
70 #include <linux/signal.h>
71 #include <linux/fs_struct.h>
72 #include <linux/compiler.h>
73 #include <linux/completion.h>
74 #include <linux/pid.h>
75 #include <linux/percpu.h>
76 #include <linux/topology.h>
77 #include <linux/proportions.h>
78 #include <linux/seccomp.h>
79 #include <linux/rcupdate.h>
80 #include <linux/rtmutex.h>
82 #include <linux/time.h>
83 #include <linux/param.h>
84 #include <linux/resource.h>
85 #include <linux/timer.h>
86 #include <linux/hrtimer.h>
87 #include <linux/task_io_accounting.h>
88 #include <linux/kobject.h>
89 #include <linux/latencytop.h>
91 #include <asm/processor.h>
93 struct mem_cgroup;
94 struct exec_domain;
95 struct futex_pi_state;
96 struct robust_list_head;
97 struct bio;
100 * List of flags we want to share for kernel threads,
101 * if only because they are not used by them anyway.
103 #define CLONE_KERNEL (CLONE_FS | CLONE_FILES | CLONE_SIGHAND)
106 * These are the constant used to fake the fixed-point load-average
107 * counting. Some notes:
108 * - 11 bit fractions expand to 22 bits by the multiplies: this gives
109 * a load-average precision of 10 bits integer + 11 bits fractional
110 * - if you want to count load-averages more often, you need more
111 * precision, or rounding will get you. With 2-second counting freq,
112 * the EXP_n values would be 1981, 2034 and 2043 if still using only
113 * 11 bit fractions.
115 extern unsigned long avenrun[]; /* Load averages */
117 #define FSHIFT 11 /* nr of bits of precision */
118 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */
119 #define LOAD_FREQ (5*HZ+1) /* 5 sec intervals */
120 #define EXP_1 1884 /* 1/exp(5sec/1min) as fixed-point */
121 #define EXP_5 2014 /* 1/exp(5sec/5min) */
122 #define EXP_15 2037 /* 1/exp(5sec/15min) */
124 #define CALC_LOAD(load,exp,n) \
125 load *= exp; \
126 load += n*(FIXED_1-exp); \
127 load >>= FSHIFT;
129 extern unsigned long total_forks;
130 extern int nr_threads;
131 DECLARE_PER_CPU(unsigned long, process_counts);
132 extern int nr_processes(void);
133 extern unsigned long nr_running(void);
134 extern unsigned long nr_uninterruptible(void);
135 extern unsigned long nr_active(void);
136 extern unsigned long nr_iowait(void);
137 extern unsigned long weighted_cpuload(const int cpu);
139 struct seq_file;
140 struct cfs_rq;
141 struct task_group;
142 #ifdef CONFIG_SCHED_DEBUG
143 extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m);
144 extern void proc_sched_set_task(struct task_struct *p);
145 extern void
146 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
147 #else
148 static inline void
149 proc_sched_show_task(struct task_struct *p, struct seq_file *m)
152 static inline void proc_sched_set_task(struct task_struct *p)
155 static inline void
156 print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
159 #endif
161 extern unsigned long long time_sync_thresh;
164 * Task state bitmask. NOTE! These bits are also
165 * encoded in fs/proc/array.c: get_task_state().
167 * We have two separate sets of flags: task->state
168 * is about runnability, while task->exit_state are
169 * about the task exiting. Confusing, but this way
170 * modifying one set can't modify the other one by
171 * mistake.
173 #define TASK_RUNNING 0
174 #define TASK_INTERRUPTIBLE 1
175 #define TASK_UNINTERRUPTIBLE 2
176 #define __TASK_STOPPED 4
177 #define __TASK_TRACED 8
178 /* in tsk->exit_state */
179 #define EXIT_ZOMBIE 16
180 #define EXIT_DEAD 32
181 /* in tsk->state again */
182 #define TASK_DEAD 64
183 #define TASK_WAKEKILL 128
185 /* Convenience macros for the sake of set_task_state */
186 #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
187 #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
188 #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
190 /* Convenience macros for the sake of wake_up */
191 #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
192 #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED)
194 /* get_task_state() */
195 #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
196 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
197 __TASK_TRACED)
199 #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
200 #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
201 #define task_is_stopped_or_traced(task) \
202 ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
203 #define task_contributes_to_load(task) \
204 ((task->state & TASK_UNINTERRUPTIBLE) != 0)
206 #define __set_task_state(tsk, state_value) \
207 do { (tsk)->state = (state_value); } while (0)
208 #define set_task_state(tsk, state_value) \
209 set_mb((tsk)->state, (state_value))
212 * set_current_state() includes a barrier so that the write of current->state
213 * is correctly serialised wrt the caller's subsequent test of whether to
214 * actually sleep:
216 * set_current_state(TASK_UNINTERRUPTIBLE);
217 * if (do_i_need_to_sleep())
218 * schedule();
220 * If the caller does not need such serialisation then use __set_current_state()
222 #define __set_current_state(state_value) \
223 do { current->state = (state_value); } while (0)
224 #define set_current_state(state_value) \
225 set_mb(current->state, (state_value))
227 /* Task command name length */
228 #define TASK_COMM_LEN 16
230 #include <linux/spinlock.h>
233 * This serializes "schedule()" and also protects
234 * the run-queue from deletions/modifications (but
235 * _adding_ to the beginning of the run-queue has
236 * a separate lock).
238 extern rwlock_t tasklist_lock;
239 extern spinlock_t mmlist_lock;
241 struct task_struct;
243 extern void sched_init(void);
244 extern void sched_init_smp(void);
245 extern asmlinkage void schedule_tail(struct task_struct *prev);
246 extern void init_idle(struct task_struct *idle, int cpu);
247 extern void init_idle_bootup_task(struct task_struct *idle);
249 extern int runqueue_is_locked(void);
251 extern cpumask_t nohz_cpu_mask;
252 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ)
253 extern int select_nohz_load_balancer(int cpu);
254 #else
255 static inline int select_nohz_load_balancer(int cpu)
257 return 0;
259 #endif
261 extern unsigned long rt_needs_cpu(int cpu);
264 * Only dump TASK_* tasks. (0 for all tasks)
266 extern void show_state_filter(unsigned long state_filter);
268 static inline void show_state(void)
270 show_state_filter(0);
273 extern void show_regs(struct pt_regs *);
276 * TASK is a pointer to the task whose backtrace we want to see (or NULL for current
277 * task), SP is the stack pointer of the first frame that should be shown in the back
278 * trace (or NULL if the entire call-chain of the task should be shown).
280 extern void show_stack(struct task_struct *task, unsigned long *sp);
282 void io_schedule(void);
283 long io_schedule_timeout(long timeout);
285 extern void cpu_init (void);
286 extern void trap_init(void);
287 extern void account_process_tick(struct task_struct *task, int user);
288 extern void update_process_times(int user);
289 extern void scheduler_tick(void);
290 extern void hrtick_resched(void);
292 extern void sched_show_task(struct task_struct *p);
294 #ifdef CONFIG_DETECT_SOFTLOCKUP
295 extern void softlockup_tick(void);
296 extern void spawn_softlockup_task(void);
297 extern void touch_softlockup_watchdog(void);
298 extern void touch_all_softlockup_watchdogs(void);
299 extern unsigned long softlockup_thresh;
300 extern unsigned long sysctl_hung_task_check_count;
301 extern unsigned long sysctl_hung_task_timeout_secs;
302 extern unsigned long sysctl_hung_task_warnings;
303 #else
304 static inline void softlockup_tick(void)
307 static inline void spawn_softlockup_task(void)
310 static inline void touch_softlockup_watchdog(void)
313 static inline void touch_all_softlockup_watchdogs(void)
316 #endif
319 /* Attach to any functions which should be ignored in wchan output. */
320 #define __sched __attribute__((__section__(".sched.text")))
322 /* Linker adds these: start and end of __sched functions */
323 extern char __sched_text_start[], __sched_text_end[];
325 /* Is this address in the __sched functions? */
326 extern int in_sched_functions(unsigned long addr);
328 #define MAX_SCHEDULE_TIMEOUT LONG_MAX
329 extern signed long schedule_timeout(signed long timeout);
330 extern signed long schedule_timeout_interruptible(signed long timeout);
331 extern signed long schedule_timeout_killable(signed long timeout);
332 extern signed long schedule_timeout_uninterruptible(signed long timeout);
333 asmlinkage void schedule(void);
335 struct nsproxy;
336 struct user_namespace;
338 /* Maximum number of active map areas.. This is a random (large) number */
339 #define DEFAULT_MAX_MAP_COUNT 65536
341 extern int sysctl_max_map_count;
343 #include <linux/aio.h>
345 extern unsigned long
346 arch_get_unmapped_area(struct file *, unsigned long, unsigned long,
347 unsigned long, unsigned long);
348 extern unsigned long
349 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
350 unsigned long len, unsigned long pgoff,
351 unsigned long flags);
352 extern void arch_unmap_area(struct mm_struct *, unsigned long);
353 extern void arch_unmap_area_topdown(struct mm_struct *, unsigned long);
355 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
357 * The mm counters are not protected by its page_table_lock,
358 * so must be incremented atomically.
360 #define set_mm_counter(mm, member, value) atomic_long_set(&(mm)->_##member, value)
361 #define get_mm_counter(mm, member) ((unsigned long)atomic_long_read(&(mm)->_##member))
362 #define add_mm_counter(mm, member, value) atomic_long_add(value, &(mm)->_##member)
363 #define inc_mm_counter(mm, member) atomic_long_inc(&(mm)->_##member)
364 #define dec_mm_counter(mm, member) atomic_long_dec(&(mm)->_##member)
366 #else /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
368 * The mm counters are protected by its page_table_lock,
369 * so can be incremented directly.
371 #define set_mm_counter(mm, member, value) (mm)->_##member = (value)
372 #define get_mm_counter(mm, member) ((mm)->_##member)
373 #define add_mm_counter(mm, member, value) (mm)->_##member += (value)
374 #define inc_mm_counter(mm, member) (mm)->_##member++
375 #define dec_mm_counter(mm, member) (mm)->_##member--
377 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
379 #define get_mm_rss(mm) \
380 (get_mm_counter(mm, file_rss) + get_mm_counter(mm, anon_rss))
381 #define update_hiwater_rss(mm) do { \
382 unsigned long _rss = get_mm_rss(mm); \
383 if ((mm)->hiwater_rss < _rss) \
384 (mm)->hiwater_rss = _rss; \
385 } while (0)
386 #define update_hiwater_vm(mm) do { \
387 if ((mm)->hiwater_vm < (mm)->total_vm) \
388 (mm)->hiwater_vm = (mm)->total_vm; \
389 } while (0)
391 extern void set_dumpable(struct mm_struct *mm, int value);
392 extern int get_dumpable(struct mm_struct *mm);
394 /* mm flags */
395 /* dumpable bits */
396 #define MMF_DUMPABLE 0 /* core dump is permitted */
397 #define MMF_DUMP_SECURELY 1 /* core file is readable only by root */
398 #define MMF_DUMPABLE_BITS 2
400 /* coredump filter bits */
401 #define MMF_DUMP_ANON_PRIVATE 2
402 #define MMF_DUMP_ANON_SHARED 3
403 #define MMF_DUMP_MAPPED_PRIVATE 4
404 #define MMF_DUMP_MAPPED_SHARED 5
405 #define MMF_DUMP_ELF_HEADERS 6
406 #define MMF_DUMP_FILTER_SHIFT MMF_DUMPABLE_BITS
407 #define MMF_DUMP_FILTER_BITS 5
408 #define MMF_DUMP_FILTER_MASK \
409 (((1 << MMF_DUMP_FILTER_BITS) - 1) << MMF_DUMP_FILTER_SHIFT)
410 #define MMF_DUMP_FILTER_DEFAULT \
411 ((1 << MMF_DUMP_ANON_PRIVATE) | (1 << MMF_DUMP_ANON_SHARED))
413 struct sighand_struct {
414 atomic_t count;
415 struct k_sigaction action[_NSIG];
416 spinlock_t siglock;
417 wait_queue_head_t signalfd_wqh;
420 struct pacct_struct {
421 int ac_flag;
422 long ac_exitcode;
423 unsigned long ac_mem;
424 cputime_t ac_utime, ac_stime;
425 unsigned long ac_minflt, ac_majflt;
429 * NOTE! "signal_struct" does not have it's own
430 * locking, because a shared signal_struct always
431 * implies a shared sighand_struct, so locking
432 * sighand_struct is always a proper superset of
433 * the locking of signal_struct.
435 struct signal_struct {
436 atomic_t count;
437 atomic_t live;
439 wait_queue_head_t wait_chldexit; /* for wait4() */
441 /* current thread group signal load-balancing target: */
442 struct task_struct *curr_target;
444 /* shared signal handling: */
445 struct sigpending shared_pending;
447 /* thread group exit support */
448 int group_exit_code;
449 /* overloaded:
450 * - notify group_exit_task when ->count is equal to notify_count
451 * - everyone except group_exit_task is stopped during signal delivery
452 * of fatal signals, group_exit_task processes the signal.
454 struct task_struct *group_exit_task;
455 int notify_count;
457 /* thread group stop support, overloads group_exit_code too */
458 int group_stop_count;
459 unsigned int flags; /* see SIGNAL_* flags below */
461 /* POSIX.1b Interval Timers */
462 struct list_head posix_timers;
464 /* ITIMER_REAL timer for the process */
465 struct hrtimer real_timer;
466 struct pid *leader_pid;
467 ktime_t it_real_incr;
469 /* ITIMER_PROF and ITIMER_VIRTUAL timers for the process */
470 cputime_t it_prof_expires, it_virt_expires;
471 cputime_t it_prof_incr, it_virt_incr;
473 /* job control IDs */
476 * pgrp and session fields are deprecated.
477 * use the task_session_Xnr and task_pgrp_Xnr routines below
480 union {
481 pid_t pgrp __deprecated;
482 pid_t __pgrp;
485 struct pid *tty_old_pgrp;
487 union {
488 pid_t session __deprecated;
489 pid_t __session;
492 /* boolean value for session group leader */
493 int leader;
495 struct tty_struct *tty; /* NULL if no tty */
498 * Cumulative resource counters for dead threads in the group,
499 * and for reaped dead child processes forked by this group.
500 * Live threads maintain their own counters and add to these
501 * in __exit_signal, except for the group leader.
503 cputime_t utime, stime, cutime, cstime;
504 cputime_t gtime;
505 cputime_t cgtime;
506 unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
507 unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
508 unsigned long inblock, oublock, cinblock, coublock;
511 * Cumulative ns of scheduled CPU time for dead threads in the
512 * group, not including a zombie group leader. (This only differs
513 * from jiffies_to_ns(utime + stime) if sched_clock uses something
514 * other than jiffies.)
516 unsigned long long sum_sched_runtime;
519 * We don't bother to synchronize most readers of this at all,
520 * because there is no reader checking a limit that actually needs
521 * to get both rlim_cur and rlim_max atomically, and either one
522 * alone is a single word that can safely be read normally.
523 * getrlimit/setrlimit use task_lock(current->group_leader) to
524 * protect this instead of the siglock, because they really
525 * have no need to disable irqs.
527 struct rlimit rlim[RLIM_NLIMITS];
529 struct list_head cpu_timers[3];
531 /* keep the process-shared keyrings here so that they do the right
532 * thing in threads created with CLONE_THREAD */
533 #ifdef CONFIG_KEYS
534 struct key *session_keyring; /* keyring inherited over fork */
535 struct key *process_keyring; /* keyring private to this process */
536 #endif
537 #ifdef CONFIG_BSD_PROCESS_ACCT
538 struct pacct_struct pacct; /* per-process accounting information */
539 #endif
540 #ifdef CONFIG_TASKSTATS
541 struct taskstats *stats;
542 #endif
543 #ifdef CONFIG_AUDIT
544 unsigned audit_tty;
545 struct tty_audit_buf *tty_audit_buf;
546 #endif
549 /* Context switch must be unlocked if interrupts are to be enabled */
550 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
551 # define __ARCH_WANT_UNLOCKED_CTXSW
552 #endif
555 * Bits in flags field of signal_struct.
557 #define SIGNAL_STOP_STOPPED 0x00000001 /* job control stop in effect */
558 #define SIGNAL_STOP_DEQUEUED 0x00000002 /* stop signal dequeued */
559 #define SIGNAL_STOP_CONTINUED 0x00000004 /* SIGCONT since WCONTINUED reap */
560 #define SIGNAL_GROUP_EXIT 0x00000008 /* group exit in progress */
562 * Pending notifications to parent.
564 #define SIGNAL_CLD_STOPPED 0x00000010
565 #define SIGNAL_CLD_CONTINUED 0x00000020
566 #define SIGNAL_CLD_MASK (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
568 #define SIGNAL_UNKILLABLE 0x00000040 /* for init: ignore fatal signals */
570 /* If true, all threads except ->group_exit_task have pending SIGKILL */
571 static inline int signal_group_exit(const struct signal_struct *sig)
573 return (sig->flags & SIGNAL_GROUP_EXIT) ||
574 (sig->group_exit_task != NULL);
578 * Some day this will be a full-fledged user tracking system..
580 struct user_struct {
581 atomic_t __count; /* reference count */
582 atomic_t processes; /* How many processes does this user have? */
583 atomic_t files; /* How many open files does this user have? */
584 atomic_t sigpending; /* How many pending signals does this user have? */
585 #ifdef CONFIG_INOTIFY_USER
586 atomic_t inotify_watches; /* How many inotify watches does this user have? */
587 atomic_t inotify_devs; /* How many inotify devs does this user have opened? */
588 #endif
589 #ifdef CONFIG_POSIX_MQUEUE
590 /* protected by mq_lock */
591 unsigned long mq_bytes; /* How many bytes can be allocated to mqueue? */
592 #endif
593 unsigned long locked_shm; /* How many pages of mlocked shm ? */
595 #ifdef CONFIG_KEYS
596 struct key *uid_keyring; /* UID specific keyring */
597 struct key *session_keyring; /* UID's default session keyring */
598 #endif
600 /* Hash table maintenance information */
601 struct hlist_node uidhash_node;
602 uid_t uid;
604 #ifdef CONFIG_USER_SCHED
605 struct task_group *tg;
606 #ifdef CONFIG_SYSFS
607 struct kobject kobj;
608 struct work_struct work;
609 #endif
610 #endif
613 extern int uids_sysfs_init(void);
615 extern struct user_struct *find_user(uid_t);
617 extern struct user_struct root_user;
618 #define INIT_USER (&root_user)
620 struct backing_dev_info;
621 struct reclaim_state;
623 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
624 struct sched_info {
625 /* cumulative counters */
626 unsigned long pcount; /* # of times run on this cpu */
627 unsigned long long cpu_time, /* time spent on the cpu */
628 run_delay; /* time spent waiting on a runqueue */
630 /* timestamps */
631 unsigned long long last_arrival,/* when we last ran on a cpu */
632 last_queued; /* when we were last queued to run */
633 #ifdef CONFIG_SCHEDSTATS
634 /* BKL stats */
635 unsigned int bkl_count;
636 #endif
638 #endif /* defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) */
640 #ifdef CONFIG_SCHEDSTATS
641 extern const struct file_operations proc_schedstat_operations;
642 #endif /* CONFIG_SCHEDSTATS */
644 #ifdef CONFIG_TASK_DELAY_ACCT
645 struct task_delay_info {
646 spinlock_t lock;
647 unsigned int flags; /* Private per-task flags */
649 /* For each stat XXX, add following, aligned appropriately
651 * struct timespec XXX_start, XXX_end;
652 * u64 XXX_delay;
653 * u32 XXX_count;
655 * Atomicity of updates to XXX_delay, XXX_count protected by
656 * single lock above (split into XXX_lock if contention is an issue).
660 * XXX_count is incremented on every XXX operation, the delay
661 * associated with the operation is added to XXX_delay.
662 * XXX_delay contains the accumulated delay time in nanoseconds.
664 struct timespec blkio_start, blkio_end; /* Shared by blkio, swapin */
665 u64 blkio_delay; /* wait for sync block io completion */
666 u64 swapin_delay; /* wait for swapin block io completion */
667 u32 blkio_count; /* total count of the number of sync block */
668 /* io operations performed */
669 u32 swapin_count; /* total count of the number of swapin block */
670 /* io operations performed */
672 #endif /* CONFIG_TASK_DELAY_ACCT */
674 static inline int sched_info_on(void)
676 #ifdef CONFIG_SCHEDSTATS
677 return 1;
678 #elif defined(CONFIG_TASK_DELAY_ACCT)
679 extern int delayacct_on;
680 return delayacct_on;
681 #else
682 return 0;
683 #endif
686 enum cpu_idle_type {
687 CPU_IDLE,
688 CPU_NOT_IDLE,
689 CPU_NEWLY_IDLE,
690 CPU_MAX_IDLE_TYPES
694 * sched-domains (multiprocessor balancing) declarations:
698 * Increase resolution of nice-level calculations:
700 #define SCHED_LOAD_SHIFT 10
701 #define SCHED_LOAD_SCALE (1L << SCHED_LOAD_SHIFT)
703 #define SCHED_LOAD_SCALE_FUZZ SCHED_LOAD_SCALE
705 #ifdef CONFIG_SMP
706 #define SD_LOAD_BALANCE 1 /* Do load balancing on this domain. */
707 #define SD_BALANCE_NEWIDLE 2 /* Balance when about to become idle */
708 #define SD_BALANCE_EXEC 4 /* Balance on exec */
709 #define SD_BALANCE_FORK 8 /* Balance on fork, clone */
710 #define SD_WAKE_IDLE 16 /* Wake to idle CPU on task wakeup */
711 #define SD_WAKE_AFFINE 32 /* Wake task to waking CPU */
712 #define SD_WAKE_BALANCE 64 /* Perform balancing at task wakeup */
713 #define SD_SHARE_CPUPOWER 128 /* Domain members share cpu power */
714 #define SD_POWERSAVINGS_BALANCE 256 /* Balance for power savings */
715 #define SD_SHARE_PKG_RESOURCES 512 /* Domain members share cpu pkg resources */
716 #define SD_SERIALIZE 1024 /* Only a single load balancing instance */
717 #define SD_WAKE_IDLE_FAR 2048 /* Gain latency sacrificing cache hit */
719 #define BALANCE_FOR_MC_POWER \
720 (sched_smt_power_savings ? SD_POWERSAVINGS_BALANCE : 0)
722 #define BALANCE_FOR_PKG_POWER \
723 ((sched_mc_power_savings || sched_smt_power_savings) ? \
724 SD_POWERSAVINGS_BALANCE : 0)
726 #define test_sd_parent(sd, flag) ((sd->parent && \
727 (sd->parent->flags & flag)) ? 1 : 0)
730 struct sched_group {
731 struct sched_group *next; /* Must be a circular list */
732 cpumask_t cpumask;
735 * CPU power of this group, SCHED_LOAD_SCALE being max power for a
736 * single CPU. This is read only (except for setup, hotplug CPU).
737 * Note : Never change cpu_power without recompute its reciprocal
739 unsigned int __cpu_power;
741 * reciprocal value of cpu_power to avoid expensive divides
742 * (see include/linux/reciprocal_div.h)
744 u32 reciprocal_cpu_power;
747 enum sched_domain_level {
748 SD_LV_NONE = 0,
749 SD_LV_SIBLING,
750 SD_LV_MC,
751 SD_LV_CPU,
752 SD_LV_NODE,
753 SD_LV_ALLNODES,
754 SD_LV_MAX
757 struct sched_domain_attr {
758 int relax_domain_level;
761 #define SD_ATTR_INIT (struct sched_domain_attr) { \
762 .relax_domain_level = -1, \
765 struct sched_domain {
766 /* These fields must be setup */
767 struct sched_domain *parent; /* top domain must be null terminated */
768 struct sched_domain *child; /* bottom domain must be null terminated */
769 struct sched_group *groups; /* the balancing groups of the domain */
770 cpumask_t span; /* span of all CPUs in this domain */
771 int first_cpu; /* cache of the first cpu in this domain */
772 unsigned long min_interval; /* Minimum balance interval ms */
773 unsigned long max_interval; /* Maximum balance interval ms */
774 unsigned int busy_factor; /* less balancing by factor if busy */
775 unsigned int imbalance_pct; /* No balance until over watermark */
776 unsigned int cache_nice_tries; /* Leave cache hot tasks for # tries */
777 unsigned int busy_idx;
778 unsigned int idle_idx;
779 unsigned int newidle_idx;
780 unsigned int wake_idx;
781 unsigned int forkexec_idx;
782 int flags; /* See SD_* */
783 enum sched_domain_level level;
785 /* Runtime fields. */
786 unsigned long last_balance; /* init to jiffies. units in jiffies */
787 unsigned int balance_interval; /* initialise to 1. units in ms. */
788 unsigned int nr_balance_failed; /* initialise to 0 */
790 #ifdef CONFIG_SCHEDSTATS
791 /* load_balance() stats */
792 unsigned int lb_count[CPU_MAX_IDLE_TYPES];
793 unsigned int lb_failed[CPU_MAX_IDLE_TYPES];
794 unsigned int lb_balanced[CPU_MAX_IDLE_TYPES];
795 unsigned int lb_imbalance[CPU_MAX_IDLE_TYPES];
796 unsigned int lb_gained[CPU_MAX_IDLE_TYPES];
797 unsigned int lb_hot_gained[CPU_MAX_IDLE_TYPES];
798 unsigned int lb_nobusyg[CPU_MAX_IDLE_TYPES];
799 unsigned int lb_nobusyq[CPU_MAX_IDLE_TYPES];
801 /* Active load balancing */
802 unsigned int alb_count;
803 unsigned int alb_failed;
804 unsigned int alb_pushed;
806 /* SD_BALANCE_EXEC stats */
807 unsigned int sbe_count;
808 unsigned int sbe_balanced;
809 unsigned int sbe_pushed;
811 /* SD_BALANCE_FORK stats */
812 unsigned int sbf_count;
813 unsigned int sbf_balanced;
814 unsigned int sbf_pushed;
816 /* try_to_wake_up() stats */
817 unsigned int ttwu_wake_remote;
818 unsigned int ttwu_move_affine;
819 unsigned int ttwu_move_balance;
820 #endif
823 extern void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
824 struct sched_domain_attr *dattr_new);
825 extern int arch_reinit_sched_domains(void);
827 #endif /* CONFIG_SMP */
830 * A runqueue laden with a single nice 0 task scores a weighted_cpuload of
831 * SCHED_LOAD_SCALE. This function returns 1 if any cpu is laden with a
832 * task of nice 0 or enough lower priority tasks to bring up the
833 * weighted_cpuload
835 static inline int above_background_load(void)
837 unsigned long cpu;
839 for_each_online_cpu(cpu) {
840 if (weighted_cpuload(cpu) >= SCHED_LOAD_SCALE)
841 return 1;
843 return 0;
846 struct io_context; /* See blkdev.h */
847 #define NGROUPS_SMALL 32
848 #define NGROUPS_PER_BLOCK ((unsigned int)(PAGE_SIZE / sizeof(gid_t)))
849 struct group_info {
850 int ngroups;
851 atomic_t usage;
852 gid_t small_block[NGROUPS_SMALL];
853 int nblocks;
854 gid_t *blocks[0];
858 * get_group_info() must be called with the owning task locked (via task_lock())
859 * when task != current. The reason being that the vast majority of callers are
860 * looking at current->group_info, which can not be changed except by the
861 * current task. Changing current->group_info requires the task lock, too.
863 #define get_group_info(group_info) do { \
864 atomic_inc(&(group_info)->usage); \
865 } while (0)
867 #define put_group_info(group_info) do { \
868 if (atomic_dec_and_test(&(group_info)->usage)) \
869 groups_free(group_info); \
870 } while (0)
872 extern struct group_info *groups_alloc(int gidsetsize);
873 extern void groups_free(struct group_info *group_info);
874 extern int set_current_groups(struct group_info *group_info);
875 extern int groups_search(struct group_info *group_info, gid_t grp);
876 /* access the groups "array" with this macro */
877 #define GROUP_AT(gi, i) \
878 ((gi)->blocks[(i)/NGROUPS_PER_BLOCK][(i)%NGROUPS_PER_BLOCK])
880 #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK
881 extern void prefetch_stack(struct task_struct *t);
882 #else
883 static inline void prefetch_stack(struct task_struct *t) { }
884 #endif
886 struct audit_context; /* See audit.c */
887 struct mempolicy;
888 struct pipe_inode_info;
889 struct uts_namespace;
891 struct rq;
892 struct sched_domain;
894 struct sched_class {
895 const struct sched_class *next;
897 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int wakeup);
898 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int sleep);
899 void (*yield_task) (struct rq *rq);
900 int (*select_task_rq)(struct task_struct *p, int sync);
902 void (*check_preempt_curr) (struct rq *rq, struct task_struct *p);
904 struct task_struct * (*pick_next_task) (struct rq *rq);
905 void (*put_prev_task) (struct rq *rq, struct task_struct *p);
907 #ifdef CONFIG_SMP
908 unsigned long (*load_balance) (struct rq *this_rq, int this_cpu,
909 struct rq *busiest, unsigned long max_load_move,
910 struct sched_domain *sd, enum cpu_idle_type idle,
911 int *all_pinned, int *this_best_prio);
913 int (*move_one_task) (struct rq *this_rq, int this_cpu,
914 struct rq *busiest, struct sched_domain *sd,
915 enum cpu_idle_type idle);
916 void (*pre_schedule) (struct rq *this_rq, struct task_struct *task);
917 void (*post_schedule) (struct rq *this_rq);
918 void (*task_wake_up) (struct rq *this_rq, struct task_struct *task);
919 #endif
921 void (*set_curr_task) (struct rq *rq);
922 void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
923 void (*task_new) (struct rq *rq, struct task_struct *p);
924 void (*set_cpus_allowed)(struct task_struct *p,
925 const cpumask_t *newmask);
927 void (*join_domain)(struct rq *rq);
928 void (*leave_domain)(struct rq *rq);
930 void (*switched_from) (struct rq *this_rq, struct task_struct *task,
931 int running);
932 void (*switched_to) (struct rq *this_rq, struct task_struct *task,
933 int running);
934 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
935 int oldprio, int running);
937 #ifdef CONFIG_FAIR_GROUP_SCHED
938 void (*moved_group) (struct task_struct *p);
939 #endif
942 struct load_weight {
943 unsigned long weight, inv_weight;
947 * CFS stats for a schedulable entity (task, task-group etc)
949 * Current field usage histogram:
951 * 4 se->block_start
952 * 4 se->run_node
953 * 4 se->sleep_start
954 * 6 se->load.weight
956 struct sched_entity {
957 struct load_weight load; /* for load-balancing */
958 struct rb_node run_node;
959 struct list_head group_node;
960 unsigned int on_rq;
962 u64 exec_start;
963 u64 sum_exec_runtime;
964 u64 vruntime;
965 u64 prev_sum_exec_runtime;
967 u64 last_wakeup;
968 u64 avg_overlap;
970 #ifdef CONFIG_SCHEDSTATS
971 u64 wait_start;
972 u64 wait_max;
973 u64 wait_count;
974 u64 wait_sum;
976 u64 sleep_start;
977 u64 sleep_max;
978 s64 sum_sleep_runtime;
980 u64 block_start;
981 u64 block_max;
982 u64 exec_max;
983 u64 slice_max;
985 u64 nr_migrations;
986 u64 nr_migrations_cold;
987 u64 nr_failed_migrations_affine;
988 u64 nr_failed_migrations_running;
989 u64 nr_failed_migrations_hot;
990 u64 nr_forced_migrations;
991 u64 nr_forced2_migrations;
993 u64 nr_wakeups;
994 u64 nr_wakeups_sync;
995 u64 nr_wakeups_migrate;
996 u64 nr_wakeups_local;
997 u64 nr_wakeups_remote;
998 u64 nr_wakeups_affine;
999 u64 nr_wakeups_affine_attempts;
1000 u64 nr_wakeups_passive;
1001 u64 nr_wakeups_idle;
1002 #endif
1004 #ifdef CONFIG_FAIR_GROUP_SCHED
1005 struct sched_entity *parent;
1006 /* rq on which this entity is (to be) queued: */
1007 struct cfs_rq *cfs_rq;
1008 /* rq "owned" by this entity/group: */
1009 struct cfs_rq *my_q;
1010 #endif
1013 struct sched_rt_entity {
1014 struct list_head run_list;
1015 unsigned int time_slice;
1016 unsigned long timeout;
1017 int nr_cpus_allowed;
1019 struct sched_rt_entity *back;
1020 #ifdef CONFIG_RT_GROUP_SCHED
1021 struct sched_rt_entity *parent;
1022 /* rq on which this entity is (to be) queued: */
1023 struct rt_rq *rt_rq;
1024 /* rq "owned" by this entity/group: */
1025 struct rt_rq *my_q;
1026 #endif
1029 struct task_struct {
1030 volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */
1031 void *stack;
1032 atomic_t usage;
1033 unsigned int flags; /* per process flags, defined below */
1034 unsigned int ptrace;
1036 int lock_depth; /* BKL lock depth */
1038 #ifdef CONFIG_SMP
1039 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1040 int oncpu;
1041 #endif
1042 #endif
1044 int prio, static_prio, normal_prio;
1045 const struct sched_class *sched_class;
1046 struct sched_entity se;
1047 struct sched_rt_entity rt;
1049 #ifdef CONFIG_PREEMPT_NOTIFIERS
1050 /* list of struct preempt_notifier: */
1051 struct hlist_head preempt_notifiers;
1052 #endif
1055 * fpu_counter contains the number of consecutive context switches
1056 * that the FPU is used. If this is over a threshold, the lazy fpu
1057 * saving becomes unlazy to save the trap. This is an unsigned char
1058 * so that after 256 times the counter wraps and the behavior turns
1059 * lazy again; this to deal with bursty apps that only use FPU for
1060 * a short time
1062 unsigned char fpu_counter;
1063 s8 oomkilladj; /* OOM kill score adjustment (bit shift). */
1064 #ifdef CONFIG_BLK_DEV_IO_TRACE
1065 unsigned int btrace_seq;
1066 #endif
1068 unsigned int policy;
1069 cpumask_t cpus_allowed;
1071 #ifdef CONFIG_PREEMPT_RCU
1072 int rcu_read_lock_nesting;
1073 int rcu_flipctr_idx;
1074 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1076 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1077 struct sched_info sched_info;
1078 #endif
1080 struct list_head tasks;
1082 * ptrace_list/ptrace_children forms the list of my children
1083 * that were stolen by a ptracer.
1085 struct list_head ptrace_children;
1086 struct list_head ptrace_list;
1088 struct mm_struct *mm, *active_mm;
1090 /* task state */
1091 struct linux_binfmt *binfmt;
1092 int exit_state;
1093 int exit_code, exit_signal;
1094 int pdeath_signal; /* The signal sent when the parent dies */
1095 /* ??? */
1096 unsigned int personality;
1097 unsigned did_exec:1;
1098 pid_t pid;
1099 pid_t tgid;
1101 #ifdef CONFIG_CC_STACKPROTECTOR
1102 /* Canary value for the -fstack-protector gcc feature */
1103 unsigned long stack_canary;
1104 #endif
1106 * pointers to (original) parent process, youngest child, younger sibling,
1107 * older sibling, respectively. (p->father can be replaced with
1108 * p->parent->pid)
1110 struct task_struct *real_parent; /* real parent process (when being debugged) */
1111 struct task_struct *parent; /* parent process */
1113 * children/sibling forms the list of my children plus the
1114 * tasks I'm ptracing.
1116 struct list_head children; /* list of my children */
1117 struct list_head sibling; /* linkage in my parent's children list */
1118 struct task_struct *group_leader; /* threadgroup leader */
1120 /* PID/PID hash table linkage. */
1121 struct pid_link pids[PIDTYPE_MAX];
1122 struct list_head thread_group;
1124 struct completion *vfork_done; /* for vfork() */
1125 int __user *set_child_tid; /* CLONE_CHILD_SETTID */
1126 int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */
1128 unsigned int rt_priority;
1129 cputime_t utime, stime, utimescaled, stimescaled;
1130 cputime_t gtime;
1131 cputime_t prev_utime, prev_stime;
1132 unsigned long nvcsw, nivcsw; /* context switch counts */
1133 struct timespec start_time; /* monotonic time */
1134 struct timespec real_start_time; /* boot based time */
1135 /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */
1136 unsigned long min_flt, maj_flt;
1138 cputime_t it_prof_expires, it_virt_expires;
1139 unsigned long long it_sched_expires;
1140 struct list_head cpu_timers[3];
1142 /* process credentials */
1143 uid_t uid,euid,suid,fsuid;
1144 gid_t gid,egid,sgid,fsgid;
1145 struct group_info *group_info;
1146 kernel_cap_t cap_effective, cap_inheritable, cap_permitted, cap_bset;
1147 unsigned securebits;
1148 struct user_struct *user;
1149 #ifdef CONFIG_KEYS
1150 struct key *request_key_auth; /* assumed request_key authority */
1151 struct key *thread_keyring; /* keyring private to this thread */
1152 unsigned char jit_keyring; /* default keyring to attach requested keys to */
1153 #endif
1154 char comm[TASK_COMM_LEN]; /* executable name excluding path
1155 - access with [gs]et_task_comm (which lock
1156 it with task_lock())
1157 - initialized normally by flush_old_exec */
1158 /* file system info */
1159 int link_count, total_link_count;
1160 #ifdef CONFIG_SYSVIPC
1161 /* ipc stuff */
1162 struct sysv_sem sysvsem;
1163 #endif
1164 #ifdef CONFIG_DETECT_SOFTLOCKUP
1165 /* hung task detection */
1166 unsigned long last_switch_timestamp;
1167 unsigned long last_switch_count;
1168 #endif
1169 /* CPU-specific state of this task */
1170 struct thread_struct thread;
1171 /* filesystem information */
1172 struct fs_struct *fs;
1173 /* open file information */
1174 struct files_struct *files;
1175 /* namespaces */
1176 struct nsproxy *nsproxy;
1177 /* signal handlers */
1178 struct signal_struct *signal;
1179 struct sighand_struct *sighand;
1181 sigset_t blocked, real_blocked;
1182 sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */
1183 struct sigpending pending;
1185 unsigned long sas_ss_sp;
1186 size_t sas_ss_size;
1187 int (*notifier)(void *priv);
1188 void *notifier_data;
1189 sigset_t *notifier_mask;
1190 #ifdef CONFIG_SECURITY
1191 void *security;
1192 #endif
1193 struct audit_context *audit_context;
1194 #ifdef CONFIG_AUDITSYSCALL
1195 uid_t loginuid;
1196 unsigned int sessionid;
1197 #endif
1198 seccomp_t seccomp;
1200 /* Thread group tracking */
1201 u32 parent_exec_id;
1202 u32 self_exec_id;
1203 /* Protection of (de-)allocation: mm, files, fs, tty, keyrings */
1204 spinlock_t alloc_lock;
1206 /* Protection of the PI data structures: */
1207 spinlock_t pi_lock;
1209 #ifdef CONFIG_RT_MUTEXES
1210 /* PI waiters blocked on a rt_mutex held by this task */
1211 struct plist_head pi_waiters;
1212 /* Deadlock detection and priority inheritance handling */
1213 struct rt_mutex_waiter *pi_blocked_on;
1214 #endif
1216 #ifdef CONFIG_DEBUG_MUTEXES
1217 /* mutex deadlock detection */
1218 struct mutex_waiter *blocked_on;
1219 #endif
1220 #ifdef CONFIG_TRACE_IRQFLAGS
1221 unsigned int irq_events;
1222 int hardirqs_enabled;
1223 unsigned long hardirq_enable_ip;
1224 unsigned int hardirq_enable_event;
1225 unsigned long hardirq_disable_ip;
1226 unsigned int hardirq_disable_event;
1227 int softirqs_enabled;
1228 unsigned long softirq_disable_ip;
1229 unsigned int softirq_disable_event;
1230 unsigned long softirq_enable_ip;
1231 unsigned int softirq_enable_event;
1232 int hardirq_context;
1233 int softirq_context;
1234 #endif
1235 #ifdef CONFIG_LOCKDEP
1236 # define MAX_LOCK_DEPTH 48UL
1237 u64 curr_chain_key;
1238 int lockdep_depth;
1239 struct held_lock held_locks[MAX_LOCK_DEPTH];
1240 unsigned int lockdep_recursion;
1241 #endif
1243 /* journalling filesystem info */
1244 void *journal_info;
1246 /* stacked block device info */
1247 struct bio *bio_list, **bio_tail;
1249 /* VM state */
1250 struct reclaim_state *reclaim_state;
1252 struct backing_dev_info *backing_dev_info;
1254 struct io_context *io_context;
1256 unsigned long ptrace_message;
1257 siginfo_t *last_siginfo; /* For ptrace use. */
1258 #ifdef CONFIG_TASK_XACCT
1259 /* i/o counters(bytes read/written, #syscalls */
1260 u64 rchar, wchar, syscr, syscw;
1261 #endif
1262 struct task_io_accounting ioac;
1263 #if defined(CONFIG_TASK_XACCT)
1264 u64 acct_rss_mem1; /* accumulated rss usage */
1265 u64 acct_vm_mem1; /* accumulated virtual memory usage */
1266 cputime_t acct_stimexpd;/* stime since last update */
1267 #endif
1268 #ifdef CONFIG_NUMA
1269 struct mempolicy *mempolicy;
1270 short il_next;
1271 #endif
1272 #ifdef CONFIG_CPUSETS
1273 nodemask_t mems_allowed;
1274 int cpuset_mems_generation;
1275 int cpuset_mem_spread_rotor;
1276 #endif
1277 #ifdef CONFIG_CGROUPS
1278 /* Control Group info protected by css_set_lock */
1279 struct css_set *cgroups;
1280 /* cg_list protected by css_set_lock and tsk->alloc_lock */
1281 struct list_head cg_list;
1282 #endif
1283 #ifdef CONFIG_FUTEX
1284 struct robust_list_head __user *robust_list;
1285 #ifdef CONFIG_COMPAT
1286 struct compat_robust_list_head __user *compat_robust_list;
1287 #endif
1288 struct list_head pi_state_list;
1289 struct futex_pi_state *pi_state_cache;
1290 #endif
1291 atomic_t fs_excl; /* holding fs exclusive resources */
1292 struct rcu_head rcu;
1295 * cache last used pipe for splice
1297 struct pipe_inode_info *splice_pipe;
1298 #ifdef CONFIG_TASK_DELAY_ACCT
1299 struct task_delay_info *delays;
1300 #endif
1301 #ifdef CONFIG_FAULT_INJECTION
1302 int make_it_fail;
1303 #endif
1304 struct prop_local_single dirties;
1305 #ifdef CONFIG_LATENCYTOP
1306 int latency_record_count;
1307 struct latency_record latency_record[LT_SAVECOUNT];
1308 #endif
1312 * Priority of a process goes from 0..MAX_PRIO-1, valid RT
1313 * priority is 0..MAX_RT_PRIO-1, and SCHED_NORMAL/SCHED_BATCH
1314 * tasks are in the range MAX_RT_PRIO..MAX_PRIO-1. Priority
1315 * values are inverted: lower p->prio value means higher priority.
1317 * The MAX_USER_RT_PRIO value allows the actual maximum
1318 * RT priority to be separate from the value exported to
1319 * user-space. This allows kernel threads to set their
1320 * priority to a value higher than any user task. Note:
1321 * MAX_RT_PRIO must not be smaller than MAX_USER_RT_PRIO.
1324 #define MAX_USER_RT_PRIO 100
1325 #define MAX_RT_PRIO MAX_USER_RT_PRIO
1327 #define MAX_PRIO (MAX_RT_PRIO + 40)
1328 #define DEFAULT_PRIO (MAX_RT_PRIO + 20)
1330 static inline int rt_prio(int prio)
1332 if (unlikely(prio < MAX_RT_PRIO))
1333 return 1;
1334 return 0;
1337 static inline int rt_task(struct task_struct *p)
1339 return rt_prio(p->prio);
1342 static inline void set_task_session(struct task_struct *tsk, pid_t session)
1344 tsk->signal->__session = session;
1347 static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
1349 tsk->signal->__pgrp = pgrp;
1352 static inline struct pid *task_pid(struct task_struct *task)
1354 return task->pids[PIDTYPE_PID].pid;
1357 static inline struct pid *task_tgid(struct task_struct *task)
1359 return task->group_leader->pids[PIDTYPE_PID].pid;
1362 static inline struct pid *task_pgrp(struct task_struct *task)
1364 return task->group_leader->pids[PIDTYPE_PGID].pid;
1367 static inline struct pid *task_session(struct task_struct *task)
1369 return task->group_leader->pids[PIDTYPE_SID].pid;
1372 struct pid_namespace;
1375 * the helpers to get the task's different pids as they are seen
1376 * from various namespaces
1378 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1379 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1380 * current.
1381 * task_xid_nr_ns() : id seen from the ns specified;
1383 * set_task_vxid() : assigns a virtual id to a task;
1385 * see also pid_nr() etc in include/linux/pid.h
1388 static inline pid_t task_pid_nr(struct task_struct *tsk)
1390 return tsk->pid;
1393 pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1395 static inline pid_t task_pid_vnr(struct task_struct *tsk)
1397 return pid_vnr(task_pid(tsk));
1401 static inline pid_t task_tgid_nr(struct task_struct *tsk)
1403 return tsk->tgid;
1406 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1408 static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1410 return pid_vnr(task_tgid(tsk));
1414 static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1416 return tsk->signal->__pgrp;
1419 pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1421 static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1423 return pid_vnr(task_pgrp(tsk));
1427 static inline pid_t task_session_nr(struct task_struct *tsk)
1429 return tsk->signal->__session;
1432 pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns);
1434 static inline pid_t task_session_vnr(struct task_struct *tsk)
1436 return pid_vnr(task_session(tsk));
1441 * pid_alive - check that a task structure is not stale
1442 * @p: Task structure to be checked.
1444 * Test if a process is not yet dead (at most zombie state)
1445 * If pid_alive fails, then pointers within the task structure
1446 * can be stale and must not be dereferenced.
1448 static inline int pid_alive(struct task_struct *p)
1450 return p->pids[PIDTYPE_PID].pid != NULL;
1454 * is_global_init - check if a task structure is init
1455 * @tsk: Task structure to be checked.
1457 * Check if a task structure is the first user space task the kernel created.
1459 static inline int is_global_init(struct task_struct *tsk)
1461 return tsk->pid == 1;
1465 * is_container_init:
1466 * check whether in the task is init in its own pid namespace.
1468 extern int is_container_init(struct task_struct *tsk);
1470 extern struct pid *cad_pid;
1472 extern void free_task(struct task_struct *tsk);
1473 #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0)
1475 extern void __put_task_struct(struct task_struct *t);
1477 static inline void put_task_struct(struct task_struct *t)
1479 if (atomic_dec_and_test(&t->usage))
1480 __put_task_struct(t);
1484 * Per process flags
1486 #define PF_ALIGNWARN 0x00000001 /* Print alignment warning msgs */
1487 /* Not implemented yet, only for 486*/
1488 #define PF_STARTING 0x00000002 /* being created */
1489 #define PF_EXITING 0x00000004 /* getting shut down */
1490 #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */
1491 #define PF_VCPU 0x00000010 /* I'm a virtual CPU */
1492 #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */
1493 #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */
1494 #define PF_DUMPCORE 0x00000200 /* dumped core */
1495 #define PF_SIGNALED 0x00000400 /* killed by a signal */
1496 #define PF_MEMALLOC 0x00000800 /* Allocating memory */
1497 #define PF_FLUSHER 0x00001000 /* responsible for disk writeback */
1498 #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */
1499 #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */
1500 #define PF_FROZEN 0x00010000 /* frozen for system suspend */
1501 #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */
1502 #define PF_KSWAPD 0x00040000 /* I am kswapd */
1503 #define PF_SWAPOFF 0x00080000 /* I am in swapoff */
1504 #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */
1505 #define PF_BORROWED_MM 0x00200000 /* I am a kthread doing use_mm */
1506 #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */
1507 #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1508 #define PF_SPREAD_PAGE 0x01000000 /* Spread page cache over cpuset */
1509 #define PF_SPREAD_SLAB 0x02000000 /* Spread some slab caches over cpuset */
1510 #define PF_MEMPOLICY 0x10000000 /* Non-default NUMA mempolicy */
1511 #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */
1512 #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezeable */
1515 * Only the _current_ task can read/write to tsk->flags, but other
1516 * tasks can access tsk->flags in readonly mode for example
1517 * with tsk_used_math (like during threaded core dumping).
1518 * There is however an exception to this rule during ptrace
1519 * or during fork: the ptracer task is allowed to write to the
1520 * child->flags of its traced child (same goes for fork, the parent
1521 * can write to the child->flags), because we're guaranteed the
1522 * child is not running and in turn not changing child->flags
1523 * at the same time the parent does it.
1525 #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1526 #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1527 #define clear_used_math() clear_stopped_child_used_math(current)
1528 #define set_used_math() set_stopped_child_used_math(current)
1529 #define conditional_stopped_child_used_math(condition, child) \
1530 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1531 #define conditional_used_math(condition) \
1532 conditional_stopped_child_used_math(condition, current)
1533 #define copy_to_stopped_child_used_math(child) \
1534 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1535 /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1536 #define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1537 #define used_math() tsk_used_math(current)
1539 #ifdef CONFIG_SMP
1540 extern int set_cpus_allowed_ptr(struct task_struct *p,
1541 const cpumask_t *new_mask);
1542 #else
1543 static inline int set_cpus_allowed_ptr(struct task_struct *p,
1544 const cpumask_t *new_mask)
1546 if (!cpu_isset(0, *new_mask))
1547 return -EINVAL;
1548 return 0;
1550 #endif
1551 static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1553 return set_cpus_allowed_ptr(p, &new_mask);
1556 extern unsigned long long sched_clock(void);
1558 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
1559 static inline void sched_clock_init(void)
1563 static inline u64 sched_clock_cpu(int cpu)
1565 return sched_clock();
1568 static inline void sched_clock_tick(void)
1572 static inline void sched_clock_idle_sleep_event(void)
1576 static inline void sched_clock_idle_wakeup_event(u64 delta_ns)
1579 #else
1580 extern void sched_clock_init(void);
1581 extern u64 sched_clock_cpu(int cpu);
1582 extern void sched_clock_tick(void);
1583 extern void sched_clock_idle_sleep_event(void);
1584 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1585 #endif
1588 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
1589 * clock constructed from sched_clock():
1591 extern unsigned long long cpu_clock(int cpu);
1593 extern unsigned long long
1594 task_sched_runtime(struct task_struct *task);
1596 /* sched_exec is called by processes performing an exec */
1597 #ifdef CONFIG_SMP
1598 extern void sched_exec(void);
1599 #else
1600 #define sched_exec() {}
1601 #endif
1603 extern void sched_clock_idle_sleep_event(void);
1604 extern void sched_clock_idle_wakeup_event(u64 delta_ns);
1606 #ifdef CONFIG_HOTPLUG_CPU
1607 extern void idle_task_exit(void);
1608 #else
1609 static inline void idle_task_exit(void) {}
1610 #endif
1612 extern void sched_idle_next(void);
1614 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
1615 extern void wake_up_idle_cpu(int cpu);
1616 #else
1617 static inline void wake_up_idle_cpu(int cpu) { }
1618 #endif
1620 #ifdef CONFIG_SCHED_DEBUG
1621 extern unsigned int sysctl_sched_latency;
1622 extern unsigned int sysctl_sched_min_granularity;
1623 extern unsigned int sysctl_sched_wakeup_granularity;
1624 extern unsigned int sysctl_sched_child_runs_first;
1625 extern unsigned int sysctl_sched_features;
1626 extern unsigned int sysctl_sched_migration_cost;
1627 extern unsigned int sysctl_sched_nr_migrate;
1629 int sched_nr_latency_handler(struct ctl_table *table, int write,
1630 struct file *file, void __user *buffer, size_t *length,
1631 loff_t *ppos);
1632 #endif
1633 extern unsigned int sysctl_sched_rt_period;
1634 extern int sysctl_sched_rt_runtime;
1636 int sched_rt_handler(struct ctl_table *table, int write,
1637 struct file *filp, void __user *buffer, size_t *lenp,
1638 loff_t *ppos);
1640 extern unsigned int sysctl_sched_compat_yield;
1642 #ifdef CONFIG_RT_MUTEXES
1643 extern int rt_mutex_getprio(struct task_struct *p);
1644 extern void rt_mutex_setprio(struct task_struct *p, int prio);
1645 extern void rt_mutex_adjust_pi(struct task_struct *p);
1646 #else
1647 static inline int rt_mutex_getprio(struct task_struct *p)
1649 return p->normal_prio;
1651 # define rt_mutex_adjust_pi(p) do { } while (0)
1652 #endif
1654 extern void set_user_nice(struct task_struct *p, long nice);
1655 extern int task_prio(const struct task_struct *p);
1656 extern int task_nice(const struct task_struct *p);
1657 extern int can_nice(const struct task_struct *p, const int nice);
1658 extern int task_curr(const struct task_struct *p);
1659 extern int idle_cpu(int cpu);
1660 extern int sched_setscheduler(struct task_struct *, int, struct sched_param *);
1661 extern struct task_struct *idle_task(int cpu);
1662 extern struct task_struct *curr_task(int cpu);
1663 extern void set_curr_task(int cpu, struct task_struct *p);
1665 void yield(void);
1668 * The default (Linux) execution domain.
1670 extern struct exec_domain default_exec_domain;
1672 union thread_union {
1673 struct thread_info thread_info;
1674 unsigned long stack[THREAD_SIZE/sizeof(long)];
1677 #ifndef __HAVE_ARCH_KSTACK_END
1678 static inline int kstack_end(void *addr)
1680 /* Reliable end of stack detection:
1681 * Some APM bios versions misalign the stack
1683 return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*)));
1685 #endif
1687 extern union thread_union init_thread_union;
1688 extern struct task_struct init_task;
1690 extern struct mm_struct init_mm;
1692 extern struct pid_namespace init_pid_ns;
1695 * find a task by one of its numerical ids
1697 * find_task_by_pid_type_ns():
1698 * it is the most generic call - it finds a task by all id,
1699 * type and namespace specified
1700 * find_task_by_pid_ns():
1701 * finds a task by its pid in the specified namespace
1702 * find_task_by_vpid():
1703 * finds a task by its virtual pid
1704 * find_task_by_pid():
1705 * finds a task by its global pid
1707 * see also find_pid() etc in include/linux/pid.h
1710 extern struct task_struct *find_task_by_pid_type_ns(int type, int pid,
1711 struct pid_namespace *ns);
1713 static inline struct task_struct *__deprecated find_task_by_pid(pid_t nr)
1715 return find_task_by_pid_type_ns(PIDTYPE_PID, nr, &init_pid_ns);
1717 extern struct task_struct *find_task_by_vpid(pid_t nr);
1718 extern struct task_struct *find_task_by_pid_ns(pid_t nr,
1719 struct pid_namespace *ns);
1721 extern void __set_special_pids(struct pid *pid);
1723 /* per-UID process charging. */
1724 extern struct user_struct * alloc_uid(struct user_namespace *, uid_t);
1725 static inline struct user_struct *get_uid(struct user_struct *u)
1727 atomic_inc(&u->__count);
1728 return u;
1730 extern void free_uid(struct user_struct *);
1731 extern void switch_uid(struct user_struct *);
1732 extern void release_uids(struct user_namespace *ns);
1734 #include <asm/current.h>
1736 extern void do_timer(unsigned long ticks);
1738 extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1739 extern int wake_up_process(struct task_struct *tsk);
1740 extern void wake_up_new_task(struct task_struct *tsk,
1741 unsigned long clone_flags);
1742 #ifdef CONFIG_SMP
1743 extern void kick_process(struct task_struct *tsk);
1744 #else
1745 static inline void kick_process(struct task_struct *tsk) { }
1746 #endif
1747 extern void sched_fork(struct task_struct *p, int clone_flags);
1748 extern void sched_dead(struct task_struct *p);
1750 extern int in_group_p(gid_t);
1751 extern int in_egroup_p(gid_t);
1753 extern void proc_caches_init(void);
1754 extern void flush_signals(struct task_struct *);
1755 extern void ignore_signals(struct task_struct *);
1756 extern void flush_signal_handlers(struct task_struct *, int force_default);
1757 extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
1759 static inline int dequeue_signal_lock(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
1761 unsigned long flags;
1762 int ret;
1764 spin_lock_irqsave(&tsk->sighand->siglock, flags);
1765 ret = dequeue_signal(tsk, mask, info);
1766 spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
1768 return ret;
1771 extern void block_all_signals(int (*notifier)(void *priv), void *priv,
1772 sigset_t *mask);
1773 extern void unblock_all_signals(void);
1774 extern void release_task(struct task_struct * p);
1775 extern int send_sig_info(int, struct siginfo *, struct task_struct *);
1776 extern int force_sigsegv(int, struct task_struct *);
1777 extern int force_sig_info(int, struct siginfo *, struct task_struct *);
1778 extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
1779 extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
1780 extern int kill_pid_info_as_uid(int, struct siginfo *, struct pid *, uid_t, uid_t, u32);
1781 extern int kill_pgrp(struct pid *pid, int sig, int priv);
1782 extern int kill_pid(struct pid *pid, int sig, int priv);
1783 extern int kill_proc_info(int, struct siginfo *, pid_t);
1784 extern void do_notify_parent(struct task_struct *, int);
1785 extern void force_sig(int, struct task_struct *);
1786 extern void force_sig_specific(int, struct task_struct *);
1787 extern int send_sig(int, struct task_struct *, int);
1788 extern void zap_other_threads(struct task_struct *p);
1789 extern int kill_proc(pid_t, int, int);
1790 extern struct sigqueue *sigqueue_alloc(void);
1791 extern void sigqueue_free(struct sigqueue *);
1792 extern int send_sigqueue(struct sigqueue *, struct task_struct *, int group);
1793 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
1794 extern int do_sigaltstack(const stack_t __user *, stack_t __user *, unsigned long);
1796 static inline int kill_cad_pid(int sig, int priv)
1798 return kill_pid(cad_pid, sig, priv);
1801 /* These can be the second arg to send_sig_info/send_group_sig_info. */
1802 #define SEND_SIG_NOINFO ((struct siginfo *) 0)
1803 #define SEND_SIG_PRIV ((struct siginfo *) 1)
1804 #define SEND_SIG_FORCED ((struct siginfo *) 2)
1806 static inline int is_si_special(const struct siginfo *info)
1808 return info <= SEND_SIG_FORCED;
1811 /* True if we are on the alternate signal stack. */
1813 static inline int on_sig_stack(unsigned long sp)
1815 return (sp - current->sas_ss_sp < current->sas_ss_size);
1818 static inline int sas_ss_flags(unsigned long sp)
1820 return (current->sas_ss_size == 0 ? SS_DISABLE
1821 : on_sig_stack(sp) ? SS_ONSTACK : 0);
1825 * Routines for handling mm_structs
1827 extern struct mm_struct * mm_alloc(void);
1829 /* mmdrop drops the mm and the page tables */
1830 extern void __mmdrop(struct mm_struct *);
1831 static inline void mmdrop(struct mm_struct * mm)
1833 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
1834 __mmdrop(mm);
1837 /* mmput gets rid of the mappings and all user-space */
1838 extern void mmput(struct mm_struct *);
1839 /* Grab a reference to a task's mm, if it is not already going away */
1840 extern struct mm_struct *get_task_mm(struct task_struct *task);
1841 /* Remove the current tasks stale references to the old mm_struct */
1842 extern void mm_release(struct task_struct *, struct mm_struct *);
1843 /* Allocate a new mm structure and copy contents from tsk->mm */
1844 extern struct mm_struct *dup_mm(struct task_struct *tsk);
1846 extern int copy_thread(int, unsigned long, unsigned long, unsigned long, struct task_struct *, struct pt_regs *);
1847 extern void flush_thread(void);
1848 extern void exit_thread(void);
1850 extern void exit_files(struct task_struct *);
1851 extern void __cleanup_signal(struct signal_struct *);
1852 extern void __cleanup_sighand(struct sighand_struct *);
1853 extern void exit_itimers(struct signal_struct *);
1855 extern NORET_TYPE void do_group_exit(int);
1857 extern void daemonize(const char *, ...);
1858 extern int allow_signal(int);
1859 extern int disallow_signal(int);
1861 extern int do_execve(char *, char __user * __user *, char __user * __user *, struct pt_regs *);
1862 extern long do_fork(unsigned long, unsigned long, struct pt_regs *, unsigned long, int __user *, int __user *);
1863 struct task_struct *fork_idle(int);
1865 extern void set_task_comm(struct task_struct *tsk, char *from);
1866 extern char *get_task_comm(char *to, struct task_struct *tsk);
1868 #ifdef CONFIG_SMP
1869 extern void wait_task_inactive(struct task_struct * p);
1870 #else
1871 #define wait_task_inactive(p) do { } while (0)
1872 #endif
1874 #define remove_parent(p) list_del_init(&(p)->sibling)
1875 #define add_parent(p) list_add_tail(&(p)->sibling,&(p)->parent->children)
1877 #define next_task(p) list_entry(rcu_dereference((p)->tasks.next), struct task_struct, tasks)
1879 #define for_each_process(p) \
1880 for (p = &init_task ; (p = next_task(p)) != &init_task ; )
1883 * Careful: do_each_thread/while_each_thread is a double loop so
1884 * 'break' will not work as expected - use goto instead.
1886 #define do_each_thread(g, t) \
1887 for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
1889 #define while_each_thread(g, t) \
1890 while ((t = next_thread(t)) != g)
1892 /* de_thread depends on thread_group_leader not being a pid based check */
1893 #define thread_group_leader(p) (p == p->group_leader)
1895 /* Do to the insanities of de_thread it is possible for a process
1896 * to have the pid of the thread group leader without actually being
1897 * the thread group leader. For iteration through the pids in proc
1898 * all we care about is that we have a task with the appropriate
1899 * pid, we don't actually care if we have the right task.
1901 static inline int has_group_leader_pid(struct task_struct *p)
1903 return p->pid == p->tgid;
1906 static inline
1907 int same_thread_group(struct task_struct *p1, struct task_struct *p2)
1909 return p1->tgid == p2->tgid;
1912 static inline struct task_struct *next_thread(const struct task_struct *p)
1914 return list_entry(rcu_dereference(p->thread_group.next),
1915 struct task_struct, thread_group);
1918 static inline int thread_group_empty(struct task_struct *p)
1920 return list_empty(&p->thread_group);
1923 #define delay_group_leader(p) \
1924 (thread_group_leader(p) && !thread_group_empty(p))
1927 * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring
1928 * subscriptions and synchronises with wait4(). Also used in procfs. Also
1929 * pins the final release of task.io_context. Also protects ->cpuset and
1930 * ->cgroup.subsys[].
1932 * Nests both inside and outside of read_lock(&tasklist_lock).
1933 * It must not be nested with write_lock_irq(&tasklist_lock),
1934 * neither inside nor outside.
1936 static inline void task_lock(struct task_struct *p)
1938 spin_lock(&p->alloc_lock);
1941 static inline void task_unlock(struct task_struct *p)
1943 spin_unlock(&p->alloc_lock);
1946 extern struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
1947 unsigned long *flags);
1949 static inline void unlock_task_sighand(struct task_struct *tsk,
1950 unsigned long *flags)
1952 spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
1955 #ifndef __HAVE_THREAD_FUNCTIONS
1957 #define task_thread_info(task) ((struct thread_info *)(task)->stack)
1958 #define task_stack_page(task) ((task)->stack)
1960 static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org)
1962 *task_thread_info(p) = *task_thread_info(org);
1963 task_thread_info(p)->task = p;
1966 static inline unsigned long *end_of_stack(struct task_struct *p)
1968 return (unsigned long *)(task_thread_info(p) + 1);
1971 #endif
1973 extern void thread_info_cache_init(void);
1975 /* set thread flags in other task's structures
1976 * - see asm/thread_info.h for TIF_xxxx flags available
1978 static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1980 set_ti_thread_flag(task_thread_info(tsk), flag);
1983 static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1985 clear_ti_thread_flag(task_thread_info(tsk), flag);
1988 static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1990 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1993 static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1995 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1998 static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
2000 return test_ti_thread_flag(task_thread_info(tsk), flag);
2003 static inline void set_tsk_need_resched(struct task_struct *tsk)
2005 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2008 static inline void clear_tsk_need_resched(struct task_struct *tsk)
2010 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
2013 static inline int test_tsk_need_resched(struct task_struct *tsk)
2015 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
2018 static inline int signal_pending(struct task_struct *p)
2020 return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
2023 extern int __fatal_signal_pending(struct task_struct *p);
2025 static inline int fatal_signal_pending(struct task_struct *p)
2027 return signal_pending(p) && __fatal_signal_pending(p);
2030 static inline int need_resched(void)
2032 return unlikely(test_thread_flag(TIF_NEED_RESCHED));
2036 * cond_resched() and cond_resched_lock(): latency reduction via
2037 * explicit rescheduling in places that are safe. The return
2038 * value indicates whether a reschedule was done in fact.
2039 * cond_resched_lock() will drop the spinlock before scheduling,
2040 * cond_resched_softirq() will enable bhs before scheduling.
2042 extern int _cond_resched(void);
2043 #ifdef CONFIG_PREEMPT_BKL
2044 static inline int cond_resched(void)
2046 return 0;
2048 #else
2049 static inline int cond_resched(void)
2051 return _cond_resched();
2053 #endif
2054 extern int cond_resched_lock(spinlock_t * lock);
2055 extern int cond_resched_softirq(void);
2056 static inline int cond_resched_bkl(void)
2058 return _cond_resched();
2062 * Does a critical section need to be broken due to another
2063 * task waiting?: (technically does not depend on CONFIG_PREEMPT,
2064 * but a general need for low latency)
2066 static inline int spin_needbreak(spinlock_t *lock)
2068 #ifdef CONFIG_PREEMPT
2069 return spin_is_contended(lock);
2070 #else
2071 return 0;
2072 #endif
2076 * Reevaluate whether the task has signals pending delivery.
2077 * Wake the task if so.
2078 * This is required every time the blocked sigset_t changes.
2079 * callers must hold sighand->siglock.
2081 extern void recalc_sigpending_and_wake(struct task_struct *t);
2082 extern void recalc_sigpending(void);
2084 extern void signal_wake_up(struct task_struct *t, int resume_stopped);
2087 * Wrappers for p->thread_info->cpu access. No-op on UP.
2089 #ifdef CONFIG_SMP
2091 static inline unsigned int task_cpu(const struct task_struct *p)
2093 return task_thread_info(p)->cpu;
2096 extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2098 #else
2100 static inline unsigned int task_cpu(const struct task_struct *p)
2102 return 0;
2105 static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2109 #endif /* CONFIG_SMP */
2111 #ifdef HAVE_ARCH_PICK_MMAP_LAYOUT
2112 extern void arch_pick_mmap_layout(struct mm_struct *mm);
2113 #else
2114 static inline void arch_pick_mmap_layout(struct mm_struct *mm)
2116 mm->mmap_base = TASK_UNMAPPED_BASE;
2117 mm->get_unmapped_area = arch_get_unmapped_area;
2118 mm->unmap_area = arch_unmap_area;
2120 #endif
2122 #ifdef CONFIG_TRACING
2123 extern void
2124 __trace_special(void *__tr, void *__data,
2125 unsigned long arg1, unsigned long arg2, unsigned long arg3);
2126 #else
2127 static inline void
2128 __trace_special(void *__tr, void *__data,
2129 unsigned long arg1, unsigned long arg2, unsigned long arg3)
2132 #endif
2134 extern long sched_setaffinity(pid_t pid, const cpumask_t *new_mask);
2135 extern long sched_getaffinity(pid_t pid, cpumask_t *mask);
2137 extern int sched_mc_power_savings, sched_smt_power_savings;
2139 extern void normalize_rt_tasks(void);
2141 #ifdef CONFIG_GROUP_SCHED
2143 extern struct task_group init_task_group;
2144 #ifdef CONFIG_USER_SCHED
2145 extern struct task_group root_task_group;
2146 #endif
2148 extern struct task_group *sched_create_group(struct task_group *parent);
2149 extern void sched_destroy_group(struct task_group *tg);
2150 extern void sched_move_task(struct task_struct *tsk);
2151 #ifdef CONFIG_FAIR_GROUP_SCHED
2152 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
2153 extern unsigned long sched_group_shares(struct task_group *tg);
2154 #endif
2155 #ifdef CONFIG_RT_GROUP_SCHED
2156 extern int sched_group_set_rt_runtime(struct task_group *tg,
2157 long rt_runtime_us);
2158 extern long sched_group_rt_runtime(struct task_group *tg);
2159 extern int sched_group_set_rt_period(struct task_group *tg,
2160 long rt_period_us);
2161 extern long sched_group_rt_period(struct task_group *tg);
2162 #endif
2163 #endif
2165 #ifdef CONFIG_TASK_XACCT
2166 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2168 tsk->rchar += amt;
2171 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2173 tsk->wchar += amt;
2176 static inline void inc_syscr(struct task_struct *tsk)
2178 tsk->syscr++;
2181 static inline void inc_syscw(struct task_struct *tsk)
2183 tsk->syscw++;
2185 #else
2186 static inline void add_rchar(struct task_struct *tsk, ssize_t amt)
2190 static inline void add_wchar(struct task_struct *tsk, ssize_t amt)
2194 static inline void inc_syscr(struct task_struct *tsk)
2198 static inline void inc_syscw(struct task_struct *tsk)
2201 #endif
2203 #ifdef CONFIG_SMP
2204 void migration_init(void);
2205 #else
2206 static inline void migration_init(void)
2209 #endif
2211 #ifndef TASK_SIZE_OF
2212 #define TASK_SIZE_OF(tsk) TASK_SIZE
2213 #endif
2215 #ifdef CONFIG_MM_OWNER
2216 extern void mm_update_next_owner(struct mm_struct *mm);
2217 extern void mm_init_owner(struct mm_struct *mm, struct task_struct *p);
2218 #else
2219 static inline void mm_update_next_owner(struct mm_struct *mm)
2223 static inline void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
2226 #endif /* CONFIG_MM_OWNER */
2228 #define TASK_STATE_TO_CHAR_STR "RSDTtZX"
2230 #endif /* __KERNEL__ */
2232 #endif