USB: ftdi_sio: Support for more JTAG adaptors
[linux-2.6/mini2440.git] / drivers / net / sungem.c
blob97212799c513a8f64b5ab6ecef5f366d886a3aa8
1 /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
2 * sungem.c: Sun GEM ethernet driver.
4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
10 * NAPI and NETPOLL support
11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
13 * TODO:
14 * - Now that the driver was significantly simplified, I need to rework
15 * the locking. I'm sure we don't need _2_ spinlocks, and we probably
16 * can avoid taking most of them for so long period of time (and schedule
17 * instead). The main issues at this point are caused by the netdev layer
18 * though:
20 * gem_change_mtu() and gem_set_multicast() are called with a read_lock()
21 * help by net/core/dev.c, thus they can't schedule. That means they can't
22 * call napi_disable() neither, thus force gem_poll() to keep a spinlock
23 * where it could have been dropped. change_mtu especially would love also to
24 * be able to msleep instead of horrid locked delays when resetting the HW,
25 * but that read_lock() makes it impossible, unless I defer it's action to
26 * the reset task, which means it'll be asynchronous (won't take effect until
27 * the system schedules a bit).
29 * Also, it would probably be possible to also remove most of the long-life
30 * locking in open/resume code path (gem_reinit_chip) by beeing more careful
31 * about when we can start taking interrupts or get xmit() called...
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/types.h>
37 #include <linux/fcntl.h>
38 #include <linux/interrupt.h>
39 #include <linux/ioport.h>
40 #include <linux/in.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/delay.h>
44 #include <linux/init.h>
45 #include <linux/errno.h>
46 #include <linux/pci.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/mii.h>
52 #include <linux/ethtool.h>
53 #include <linux/crc32.h>
54 #include <linux/random.h>
55 #include <linux/workqueue.h>
56 #include <linux/if_vlan.h>
57 #include <linux/bitops.h>
58 #include <linux/mutex.h>
59 #include <linux/mm.h>
61 #include <asm/system.h>
62 #include <asm/io.h>
63 #include <asm/byteorder.h>
64 #include <asm/uaccess.h>
65 #include <asm/irq.h>
67 #ifdef CONFIG_SPARC
68 #include <asm/idprom.h>
69 #include <asm/prom.h>
70 #endif
72 #ifdef CONFIG_PPC_PMAC
73 #include <asm/pci-bridge.h>
74 #include <asm/prom.h>
75 #include <asm/machdep.h>
76 #include <asm/pmac_feature.h>
77 #endif
79 #include "sungem_phy.h"
80 #include "sungem.h"
82 /* Stripping FCS is causing problems, disabled for now */
83 #undef STRIP_FCS
85 #define DEFAULT_MSG (NETIF_MSG_DRV | \
86 NETIF_MSG_PROBE | \
87 NETIF_MSG_LINK)
89 #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
90 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
91 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
92 SUPPORTED_Pause | SUPPORTED_Autoneg)
94 #define DRV_NAME "sungem"
95 #define DRV_VERSION "0.98"
96 #define DRV_RELDATE "8/24/03"
97 #define DRV_AUTHOR "David S. Miller (davem@redhat.com)"
99 static char version[] __devinitdata =
100 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
102 MODULE_AUTHOR(DRV_AUTHOR);
103 MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
104 MODULE_LICENSE("GPL");
106 #define GEM_MODULE_NAME "gem"
107 #define PFX GEM_MODULE_NAME ": "
109 static struct pci_device_id gem_pci_tbl[] = {
110 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
111 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
113 /* These models only differ from the original GEM in
114 * that their tx/rx fifos are of a different size and
115 * they only support 10/100 speeds. -DaveM
117 * Apple's GMAC does support gigabit on machines with
118 * the BCM54xx PHYs. -BenH
120 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
121 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
122 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
123 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
124 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
125 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
126 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
127 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
128 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
129 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
130 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
131 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
132 { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
133 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
134 {0, }
137 MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
139 static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
141 u32 cmd;
142 int limit = 10000;
144 cmd = (1 << 30);
145 cmd |= (2 << 28);
146 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
147 cmd |= (reg << 18) & MIF_FRAME_REGAD;
148 cmd |= (MIF_FRAME_TAMSB);
149 writel(cmd, gp->regs + MIF_FRAME);
151 while (limit--) {
152 cmd = readl(gp->regs + MIF_FRAME);
153 if (cmd & MIF_FRAME_TALSB)
154 break;
156 udelay(10);
159 if (!limit)
160 cmd = 0xffff;
162 return cmd & MIF_FRAME_DATA;
165 static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
167 struct gem *gp = dev->priv;
168 return __phy_read(gp, mii_id, reg);
171 static inline u16 phy_read(struct gem *gp, int reg)
173 return __phy_read(gp, gp->mii_phy_addr, reg);
176 static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
178 u32 cmd;
179 int limit = 10000;
181 cmd = (1 << 30);
182 cmd |= (1 << 28);
183 cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
184 cmd |= (reg << 18) & MIF_FRAME_REGAD;
185 cmd |= (MIF_FRAME_TAMSB);
186 cmd |= (val & MIF_FRAME_DATA);
187 writel(cmd, gp->regs + MIF_FRAME);
189 while (limit--) {
190 cmd = readl(gp->regs + MIF_FRAME);
191 if (cmd & MIF_FRAME_TALSB)
192 break;
194 udelay(10);
198 static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
200 struct gem *gp = dev->priv;
201 __phy_write(gp, mii_id, reg, val & 0xffff);
204 static inline void phy_write(struct gem *gp, int reg, u16 val)
206 __phy_write(gp, gp->mii_phy_addr, reg, val);
209 static inline void gem_enable_ints(struct gem *gp)
211 /* Enable all interrupts but TXDONE */
212 writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
215 static inline void gem_disable_ints(struct gem *gp)
217 /* Disable all interrupts, including TXDONE */
218 writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
221 static void gem_get_cell(struct gem *gp)
223 BUG_ON(gp->cell_enabled < 0);
224 gp->cell_enabled++;
225 #ifdef CONFIG_PPC_PMAC
226 if (gp->cell_enabled == 1) {
227 mb();
228 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
229 udelay(10);
231 #endif /* CONFIG_PPC_PMAC */
234 /* Turn off the chip's clock */
235 static void gem_put_cell(struct gem *gp)
237 BUG_ON(gp->cell_enabled <= 0);
238 gp->cell_enabled--;
239 #ifdef CONFIG_PPC_PMAC
240 if (gp->cell_enabled == 0) {
241 mb();
242 pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
243 udelay(10);
245 #endif /* CONFIG_PPC_PMAC */
248 static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
250 if (netif_msg_intr(gp))
251 printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
254 static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
256 u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
257 u32 pcs_miistat;
259 if (netif_msg_intr(gp))
260 printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
261 gp->dev->name, pcs_istat);
263 if (!(pcs_istat & PCS_ISTAT_LSC)) {
264 printk(KERN_ERR "%s: PCS irq but no link status change???\n",
265 dev->name);
266 return 0;
269 /* The link status bit latches on zero, so you must
270 * read it twice in such a case to see a transition
271 * to the link being up.
273 pcs_miistat = readl(gp->regs + PCS_MIISTAT);
274 if (!(pcs_miistat & PCS_MIISTAT_LS))
275 pcs_miistat |=
276 (readl(gp->regs + PCS_MIISTAT) &
277 PCS_MIISTAT_LS);
279 if (pcs_miistat & PCS_MIISTAT_ANC) {
280 /* The remote-fault indication is only valid
281 * when autoneg has completed.
283 if (pcs_miistat & PCS_MIISTAT_RF)
284 printk(KERN_INFO "%s: PCS AutoNEG complete, "
285 "RemoteFault\n", dev->name);
286 else
287 printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
288 dev->name);
291 if (pcs_miistat & PCS_MIISTAT_LS) {
292 printk(KERN_INFO "%s: PCS link is now up.\n",
293 dev->name);
294 netif_carrier_on(gp->dev);
295 } else {
296 printk(KERN_INFO "%s: PCS link is now down.\n",
297 dev->name);
298 netif_carrier_off(gp->dev);
299 /* If this happens and the link timer is not running,
300 * reset so we re-negotiate.
302 if (!timer_pending(&gp->link_timer))
303 return 1;
306 return 0;
309 static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
311 u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
313 if (netif_msg_intr(gp))
314 printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
315 gp->dev->name, txmac_stat);
317 /* Defer timer expiration is quite normal,
318 * don't even log the event.
320 if ((txmac_stat & MAC_TXSTAT_DTE) &&
321 !(txmac_stat & ~MAC_TXSTAT_DTE))
322 return 0;
324 if (txmac_stat & MAC_TXSTAT_URUN) {
325 printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
326 dev->name);
327 gp->net_stats.tx_fifo_errors++;
330 if (txmac_stat & MAC_TXSTAT_MPE) {
331 printk(KERN_ERR "%s: TX MAC max packet size error.\n",
332 dev->name);
333 gp->net_stats.tx_errors++;
336 /* The rest are all cases of one of the 16-bit TX
337 * counters expiring.
339 if (txmac_stat & MAC_TXSTAT_NCE)
340 gp->net_stats.collisions += 0x10000;
342 if (txmac_stat & MAC_TXSTAT_ECE) {
343 gp->net_stats.tx_aborted_errors += 0x10000;
344 gp->net_stats.collisions += 0x10000;
347 if (txmac_stat & MAC_TXSTAT_LCE) {
348 gp->net_stats.tx_aborted_errors += 0x10000;
349 gp->net_stats.collisions += 0x10000;
352 /* We do not keep track of MAC_TXSTAT_FCE and
353 * MAC_TXSTAT_PCE events.
355 return 0;
358 /* When we get a RX fifo overflow, the RX unit in GEM is probably hung
359 * so we do the following.
361 * If any part of the reset goes wrong, we return 1 and that causes the
362 * whole chip to be reset.
364 static int gem_rxmac_reset(struct gem *gp)
366 struct net_device *dev = gp->dev;
367 int limit, i;
368 u64 desc_dma;
369 u32 val;
371 /* First, reset & disable MAC RX. */
372 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
373 for (limit = 0; limit < 5000; limit++) {
374 if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
375 break;
376 udelay(10);
378 if (limit == 5000) {
379 printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
380 "chip.\n", dev->name);
381 return 1;
384 writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
385 gp->regs + MAC_RXCFG);
386 for (limit = 0; limit < 5000; limit++) {
387 if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
388 break;
389 udelay(10);
391 if (limit == 5000) {
392 printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
393 "chip.\n", dev->name);
394 return 1;
397 /* Second, disable RX DMA. */
398 writel(0, gp->regs + RXDMA_CFG);
399 for (limit = 0; limit < 5000; limit++) {
400 if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
401 break;
402 udelay(10);
404 if (limit == 5000) {
405 printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
406 "chip.\n", dev->name);
407 return 1;
410 udelay(5000);
412 /* Execute RX reset command. */
413 writel(gp->swrst_base | GREG_SWRST_RXRST,
414 gp->regs + GREG_SWRST);
415 for (limit = 0; limit < 5000; limit++) {
416 if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
417 break;
418 udelay(10);
420 if (limit == 5000) {
421 printk(KERN_ERR "%s: RX reset command will not execute, resetting "
422 "whole chip.\n", dev->name);
423 return 1;
426 /* Refresh the RX ring. */
427 for (i = 0; i < RX_RING_SIZE; i++) {
428 struct gem_rxd *rxd = &gp->init_block->rxd[i];
430 if (gp->rx_skbs[i] == NULL) {
431 printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
432 "whole chip.\n", dev->name);
433 return 1;
436 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
438 gp->rx_new = gp->rx_old = 0;
440 /* Now we must reprogram the rest of RX unit. */
441 desc_dma = (u64) gp->gblock_dvma;
442 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
443 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
444 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
445 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
446 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
447 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
448 writel(val, gp->regs + RXDMA_CFG);
449 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
450 writel(((5 & RXDMA_BLANK_IPKTS) |
451 ((8 << 12) & RXDMA_BLANK_ITIME)),
452 gp->regs + RXDMA_BLANK);
453 else
454 writel(((5 & RXDMA_BLANK_IPKTS) |
455 ((4 << 12) & RXDMA_BLANK_ITIME)),
456 gp->regs + RXDMA_BLANK);
457 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
458 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
459 writel(val, gp->regs + RXDMA_PTHRESH);
460 val = readl(gp->regs + RXDMA_CFG);
461 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
462 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
463 val = readl(gp->regs + MAC_RXCFG);
464 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
466 return 0;
469 static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
471 u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
472 int ret = 0;
474 if (netif_msg_intr(gp))
475 printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
476 gp->dev->name, rxmac_stat);
478 if (rxmac_stat & MAC_RXSTAT_OFLW) {
479 u32 smac = readl(gp->regs + MAC_SMACHINE);
481 printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
482 dev->name, smac);
483 gp->net_stats.rx_over_errors++;
484 gp->net_stats.rx_fifo_errors++;
486 ret = gem_rxmac_reset(gp);
489 if (rxmac_stat & MAC_RXSTAT_ACE)
490 gp->net_stats.rx_frame_errors += 0x10000;
492 if (rxmac_stat & MAC_RXSTAT_CCE)
493 gp->net_stats.rx_crc_errors += 0x10000;
495 if (rxmac_stat & MAC_RXSTAT_LCE)
496 gp->net_stats.rx_length_errors += 0x10000;
498 /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
499 * events.
501 return ret;
504 static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
506 u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
508 if (netif_msg_intr(gp))
509 printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
510 gp->dev->name, mac_cstat);
512 /* This interrupt is just for pause frame and pause
513 * tracking. It is useful for diagnostics and debug
514 * but probably by default we will mask these events.
516 if (mac_cstat & MAC_CSTAT_PS)
517 gp->pause_entered++;
519 if (mac_cstat & MAC_CSTAT_PRCV)
520 gp->pause_last_time_recvd = (mac_cstat >> 16);
522 return 0;
525 static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
527 u32 mif_status = readl(gp->regs + MIF_STATUS);
528 u32 reg_val, changed_bits;
530 reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
531 changed_bits = (mif_status & MIF_STATUS_STAT);
533 gem_handle_mif_event(gp, reg_val, changed_bits);
535 return 0;
538 static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
540 u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
542 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
543 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
544 printk(KERN_ERR "%s: PCI error [%04x] ",
545 dev->name, pci_estat);
547 if (pci_estat & GREG_PCIESTAT_BADACK)
548 printk("<No ACK64# during ABS64 cycle> ");
549 if (pci_estat & GREG_PCIESTAT_DTRTO)
550 printk("<Delayed transaction timeout> ");
551 if (pci_estat & GREG_PCIESTAT_OTHER)
552 printk("<other>");
553 printk("\n");
554 } else {
555 pci_estat |= GREG_PCIESTAT_OTHER;
556 printk(KERN_ERR "%s: PCI error\n", dev->name);
559 if (pci_estat & GREG_PCIESTAT_OTHER) {
560 u16 pci_cfg_stat;
562 /* Interrogate PCI config space for the
563 * true cause.
565 pci_read_config_word(gp->pdev, PCI_STATUS,
566 &pci_cfg_stat);
567 printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
568 dev->name, pci_cfg_stat);
569 if (pci_cfg_stat & PCI_STATUS_PARITY)
570 printk(KERN_ERR "%s: PCI parity error detected.\n",
571 dev->name);
572 if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
573 printk(KERN_ERR "%s: PCI target abort.\n",
574 dev->name);
575 if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
576 printk(KERN_ERR "%s: PCI master acks target abort.\n",
577 dev->name);
578 if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
579 printk(KERN_ERR "%s: PCI master abort.\n",
580 dev->name);
581 if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
582 printk(KERN_ERR "%s: PCI system error SERR#.\n",
583 dev->name);
584 if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
585 printk(KERN_ERR "%s: PCI parity error.\n",
586 dev->name);
588 /* Write the error bits back to clear them. */
589 pci_cfg_stat &= (PCI_STATUS_PARITY |
590 PCI_STATUS_SIG_TARGET_ABORT |
591 PCI_STATUS_REC_TARGET_ABORT |
592 PCI_STATUS_REC_MASTER_ABORT |
593 PCI_STATUS_SIG_SYSTEM_ERROR |
594 PCI_STATUS_DETECTED_PARITY);
595 pci_write_config_word(gp->pdev,
596 PCI_STATUS, pci_cfg_stat);
599 /* For all PCI errors, we should reset the chip. */
600 return 1;
603 /* All non-normal interrupt conditions get serviced here.
604 * Returns non-zero if we should just exit the interrupt
605 * handler right now (ie. if we reset the card which invalidates
606 * all of the other original irq status bits).
608 static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
610 if (gem_status & GREG_STAT_RXNOBUF) {
611 /* Frame arrived, no free RX buffers available. */
612 if (netif_msg_rx_err(gp))
613 printk(KERN_DEBUG "%s: no buffer for rx frame\n",
614 gp->dev->name);
615 gp->net_stats.rx_dropped++;
618 if (gem_status & GREG_STAT_RXTAGERR) {
619 /* corrupt RX tag framing */
620 if (netif_msg_rx_err(gp))
621 printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
622 gp->dev->name);
623 gp->net_stats.rx_errors++;
625 goto do_reset;
628 if (gem_status & GREG_STAT_PCS) {
629 if (gem_pcs_interrupt(dev, gp, gem_status))
630 goto do_reset;
633 if (gem_status & GREG_STAT_TXMAC) {
634 if (gem_txmac_interrupt(dev, gp, gem_status))
635 goto do_reset;
638 if (gem_status & GREG_STAT_RXMAC) {
639 if (gem_rxmac_interrupt(dev, gp, gem_status))
640 goto do_reset;
643 if (gem_status & GREG_STAT_MAC) {
644 if (gem_mac_interrupt(dev, gp, gem_status))
645 goto do_reset;
648 if (gem_status & GREG_STAT_MIF) {
649 if (gem_mif_interrupt(dev, gp, gem_status))
650 goto do_reset;
653 if (gem_status & GREG_STAT_PCIERR) {
654 if (gem_pci_interrupt(dev, gp, gem_status))
655 goto do_reset;
658 return 0;
660 do_reset:
661 gp->reset_task_pending = 1;
662 schedule_work(&gp->reset_task);
664 return 1;
667 static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
669 int entry, limit;
671 if (netif_msg_intr(gp))
672 printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
673 gp->dev->name, gem_status);
675 entry = gp->tx_old;
676 limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
677 while (entry != limit) {
678 struct sk_buff *skb;
679 struct gem_txd *txd;
680 dma_addr_t dma_addr;
681 u32 dma_len;
682 int frag;
684 if (netif_msg_tx_done(gp))
685 printk(KERN_DEBUG "%s: tx done, slot %d\n",
686 gp->dev->name, entry);
687 skb = gp->tx_skbs[entry];
688 if (skb_shinfo(skb)->nr_frags) {
689 int last = entry + skb_shinfo(skb)->nr_frags;
690 int walk = entry;
691 int incomplete = 0;
693 last &= (TX_RING_SIZE - 1);
694 for (;;) {
695 walk = NEXT_TX(walk);
696 if (walk == limit)
697 incomplete = 1;
698 if (walk == last)
699 break;
701 if (incomplete)
702 break;
704 gp->tx_skbs[entry] = NULL;
705 gp->net_stats.tx_bytes += skb->len;
707 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
708 txd = &gp->init_block->txd[entry];
710 dma_addr = le64_to_cpu(txd->buffer);
711 dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
713 pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
714 entry = NEXT_TX(entry);
717 gp->net_stats.tx_packets++;
718 dev_kfree_skb_irq(skb);
720 gp->tx_old = entry;
722 if (netif_queue_stopped(dev) &&
723 TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
724 netif_wake_queue(dev);
727 static __inline__ void gem_post_rxds(struct gem *gp, int limit)
729 int cluster_start, curr, count, kick;
731 cluster_start = curr = (gp->rx_new & ~(4 - 1));
732 count = 0;
733 kick = -1;
734 wmb();
735 while (curr != limit) {
736 curr = NEXT_RX(curr);
737 if (++count == 4) {
738 struct gem_rxd *rxd =
739 &gp->init_block->rxd[cluster_start];
740 for (;;) {
741 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
742 rxd++;
743 cluster_start = NEXT_RX(cluster_start);
744 if (cluster_start == curr)
745 break;
747 kick = curr;
748 count = 0;
751 if (kick >= 0) {
752 mb();
753 writel(kick, gp->regs + RXDMA_KICK);
757 static int gem_rx(struct gem *gp, int work_to_do)
759 int entry, drops, work_done = 0;
760 u32 done;
761 __sum16 csum;
763 if (netif_msg_rx_status(gp))
764 printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
765 gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
767 entry = gp->rx_new;
768 drops = 0;
769 done = readl(gp->regs + RXDMA_DONE);
770 for (;;) {
771 struct gem_rxd *rxd = &gp->init_block->rxd[entry];
772 struct sk_buff *skb;
773 u64 status = le64_to_cpu(rxd->status_word);
774 dma_addr_t dma_addr;
775 int len;
777 if ((status & RXDCTRL_OWN) != 0)
778 break;
780 if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
781 break;
783 /* When writing back RX descriptor, GEM writes status
784 * then buffer address, possibly in seperate transactions.
785 * If we don't wait for the chip to write both, we could
786 * post a new buffer to this descriptor then have GEM spam
787 * on the buffer address. We sync on the RX completion
788 * register to prevent this from happening.
790 if (entry == done) {
791 done = readl(gp->regs + RXDMA_DONE);
792 if (entry == done)
793 break;
796 /* We can now account for the work we're about to do */
797 work_done++;
799 skb = gp->rx_skbs[entry];
801 len = (status & RXDCTRL_BUFSZ) >> 16;
802 if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
803 gp->net_stats.rx_errors++;
804 if (len < ETH_ZLEN)
805 gp->net_stats.rx_length_errors++;
806 if (len & RXDCTRL_BAD)
807 gp->net_stats.rx_crc_errors++;
809 /* We'll just return it to GEM. */
810 drop_it:
811 gp->net_stats.rx_dropped++;
812 goto next;
815 dma_addr = le64_to_cpu(rxd->buffer);
816 if (len > RX_COPY_THRESHOLD) {
817 struct sk_buff *new_skb;
819 new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
820 if (new_skb == NULL) {
821 drops++;
822 goto drop_it;
824 pci_unmap_page(gp->pdev, dma_addr,
825 RX_BUF_ALLOC_SIZE(gp),
826 PCI_DMA_FROMDEVICE);
827 gp->rx_skbs[entry] = new_skb;
828 new_skb->dev = gp->dev;
829 skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
830 rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
831 virt_to_page(new_skb->data),
832 offset_in_page(new_skb->data),
833 RX_BUF_ALLOC_SIZE(gp),
834 PCI_DMA_FROMDEVICE));
835 skb_reserve(new_skb, RX_OFFSET);
837 /* Trim the original skb for the netif. */
838 skb_trim(skb, len);
839 } else {
840 struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
842 if (copy_skb == NULL) {
843 drops++;
844 goto drop_it;
847 skb_reserve(copy_skb, 2);
848 skb_put(copy_skb, len);
849 pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
850 skb_copy_from_linear_data(skb, copy_skb->data, len);
851 pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
853 /* We'll reuse the original ring buffer. */
854 skb = copy_skb;
857 csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff);
858 skb->csum = csum_unfold(csum);
859 skb->ip_summed = CHECKSUM_COMPLETE;
860 skb->protocol = eth_type_trans(skb, gp->dev);
862 netif_receive_skb(skb);
864 gp->net_stats.rx_packets++;
865 gp->net_stats.rx_bytes += len;
866 gp->dev->last_rx = jiffies;
868 next:
869 entry = NEXT_RX(entry);
872 gem_post_rxds(gp, entry);
874 gp->rx_new = entry;
876 if (drops)
877 printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
878 gp->dev->name);
880 return work_done;
883 static int gem_poll(struct napi_struct *napi, int budget)
885 struct gem *gp = container_of(napi, struct gem, napi);
886 struct net_device *dev = gp->dev;
887 unsigned long flags;
888 int work_done;
891 * NAPI locking nightmare: See comment at head of driver
893 spin_lock_irqsave(&gp->lock, flags);
895 work_done = 0;
896 do {
897 /* Handle anomalies */
898 if (gp->status & GREG_STAT_ABNORMAL) {
899 if (gem_abnormal_irq(dev, gp, gp->status))
900 break;
903 /* Run TX completion thread */
904 spin_lock(&gp->tx_lock);
905 gem_tx(dev, gp, gp->status);
906 spin_unlock(&gp->tx_lock);
908 spin_unlock_irqrestore(&gp->lock, flags);
910 /* Run RX thread. We don't use any locking here,
911 * code willing to do bad things - like cleaning the
912 * rx ring - must call napi_disable(), which
913 * schedule_timeout()'s if polling is already disabled.
915 work_done += gem_rx(gp, budget);
917 if (work_done >= budget)
918 return work_done;
920 spin_lock_irqsave(&gp->lock, flags);
922 gp->status = readl(gp->regs + GREG_STAT);
923 } while (gp->status & GREG_STAT_NAPI);
925 __netif_rx_complete(dev, napi);
926 gem_enable_ints(gp);
928 spin_unlock_irqrestore(&gp->lock, flags);
930 return work_done;
933 static irqreturn_t gem_interrupt(int irq, void *dev_id)
935 struct net_device *dev = dev_id;
936 struct gem *gp = dev->priv;
937 unsigned long flags;
939 /* Swallow interrupts when shutting the chip down, though
940 * that shouldn't happen, we should have done free_irq() at
941 * this point...
943 if (!gp->running)
944 return IRQ_HANDLED;
946 spin_lock_irqsave(&gp->lock, flags);
948 if (netif_rx_schedule_prep(dev, &gp->napi)) {
949 u32 gem_status = readl(gp->regs + GREG_STAT);
951 if (gem_status == 0) {
952 napi_enable(&gp->napi);
953 spin_unlock_irqrestore(&gp->lock, flags);
954 return IRQ_NONE;
956 gp->status = gem_status;
957 gem_disable_ints(gp);
958 __netif_rx_schedule(dev, &gp->napi);
961 spin_unlock_irqrestore(&gp->lock, flags);
963 /* If polling was disabled at the time we received that
964 * interrupt, we may return IRQ_HANDLED here while we
965 * should return IRQ_NONE. No big deal...
967 return IRQ_HANDLED;
970 #ifdef CONFIG_NET_POLL_CONTROLLER
971 static void gem_poll_controller(struct net_device *dev)
973 /* gem_interrupt is safe to reentrance so no need
974 * to disable_irq here.
976 gem_interrupt(dev->irq, dev);
978 #endif
980 static void gem_tx_timeout(struct net_device *dev)
982 struct gem *gp = dev->priv;
984 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
985 if (!gp->running) {
986 printk("%s: hrm.. hw not running !\n", dev->name);
987 return;
989 printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
990 dev->name,
991 readl(gp->regs + TXDMA_CFG),
992 readl(gp->regs + MAC_TXSTAT),
993 readl(gp->regs + MAC_TXCFG));
994 printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
995 dev->name,
996 readl(gp->regs + RXDMA_CFG),
997 readl(gp->regs + MAC_RXSTAT),
998 readl(gp->regs + MAC_RXCFG));
1000 spin_lock_irq(&gp->lock);
1001 spin_lock(&gp->tx_lock);
1003 gp->reset_task_pending = 1;
1004 schedule_work(&gp->reset_task);
1006 spin_unlock(&gp->tx_lock);
1007 spin_unlock_irq(&gp->lock);
1010 static __inline__ int gem_intme(int entry)
1012 /* Algorithm: IRQ every 1/2 of descriptors. */
1013 if (!(entry & ((TX_RING_SIZE>>1)-1)))
1014 return 1;
1016 return 0;
1019 static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
1021 struct gem *gp = dev->priv;
1022 int entry;
1023 u64 ctrl;
1024 unsigned long flags;
1026 ctrl = 0;
1027 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1028 const u64 csum_start_off = skb_transport_offset(skb);
1029 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1031 ctrl = (TXDCTRL_CENAB |
1032 (csum_start_off << 15) |
1033 (csum_stuff_off << 21));
1036 local_irq_save(flags);
1037 if (!spin_trylock(&gp->tx_lock)) {
1038 /* Tell upper layer to requeue */
1039 local_irq_restore(flags);
1040 return NETDEV_TX_LOCKED;
1042 /* We raced with gem_do_stop() */
1043 if (!gp->running) {
1044 spin_unlock_irqrestore(&gp->tx_lock, flags);
1045 return NETDEV_TX_BUSY;
1048 /* This is a hard error, log it. */
1049 if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1050 netif_stop_queue(dev);
1051 spin_unlock_irqrestore(&gp->tx_lock, flags);
1052 printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
1053 dev->name);
1054 return NETDEV_TX_BUSY;
1057 entry = gp->tx_new;
1058 gp->tx_skbs[entry] = skb;
1060 if (skb_shinfo(skb)->nr_frags == 0) {
1061 struct gem_txd *txd = &gp->init_block->txd[entry];
1062 dma_addr_t mapping;
1063 u32 len;
1065 len = skb->len;
1066 mapping = pci_map_page(gp->pdev,
1067 virt_to_page(skb->data),
1068 offset_in_page(skb->data),
1069 len, PCI_DMA_TODEVICE);
1070 ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1071 if (gem_intme(entry))
1072 ctrl |= TXDCTRL_INTME;
1073 txd->buffer = cpu_to_le64(mapping);
1074 wmb();
1075 txd->control_word = cpu_to_le64(ctrl);
1076 entry = NEXT_TX(entry);
1077 } else {
1078 struct gem_txd *txd;
1079 u32 first_len;
1080 u64 intme;
1081 dma_addr_t first_mapping;
1082 int frag, first_entry = entry;
1084 intme = 0;
1085 if (gem_intme(entry))
1086 intme |= TXDCTRL_INTME;
1088 /* We must give this initial chunk to the device last.
1089 * Otherwise we could race with the device.
1091 first_len = skb_headlen(skb);
1092 first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1093 offset_in_page(skb->data),
1094 first_len, PCI_DMA_TODEVICE);
1095 entry = NEXT_TX(entry);
1097 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1098 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1099 u32 len;
1100 dma_addr_t mapping;
1101 u64 this_ctrl;
1103 len = this_frag->size;
1104 mapping = pci_map_page(gp->pdev,
1105 this_frag->page,
1106 this_frag->page_offset,
1107 len, PCI_DMA_TODEVICE);
1108 this_ctrl = ctrl;
1109 if (frag == skb_shinfo(skb)->nr_frags - 1)
1110 this_ctrl |= TXDCTRL_EOF;
1112 txd = &gp->init_block->txd[entry];
1113 txd->buffer = cpu_to_le64(mapping);
1114 wmb();
1115 txd->control_word = cpu_to_le64(this_ctrl | len);
1117 if (gem_intme(entry))
1118 intme |= TXDCTRL_INTME;
1120 entry = NEXT_TX(entry);
1122 txd = &gp->init_block->txd[first_entry];
1123 txd->buffer = cpu_to_le64(first_mapping);
1124 wmb();
1125 txd->control_word =
1126 cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1129 gp->tx_new = entry;
1130 if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1131 netif_stop_queue(dev);
1133 if (netif_msg_tx_queued(gp))
1134 printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1135 dev->name, entry, skb->len);
1136 mb();
1137 writel(gp->tx_new, gp->regs + TXDMA_KICK);
1138 spin_unlock_irqrestore(&gp->tx_lock, flags);
1140 dev->trans_start = jiffies;
1142 return NETDEV_TX_OK;
1145 #define STOP_TRIES 32
1147 /* Must be invoked under gp->lock and gp->tx_lock. */
1148 static void gem_reset(struct gem *gp)
1150 int limit;
1151 u32 val;
1153 /* Make sure we won't get any more interrupts */
1154 writel(0xffffffff, gp->regs + GREG_IMASK);
1156 /* Reset the chip */
1157 writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1158 gp->regs + GREG_SWRST);
1160 limit = STOP_TRIES;
1162 do {
1163 udelay(20);
1164 val = readl(gp->regs + GREG_SWRST);
1165 if (limit-- <= 0)
1166 break;
1167 } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1169 if (limit <= 0)
1170 printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
1173 /* Must be invoked under gp->lock and gp->tx_lock. */
1174 static void gem_start_dma(struct gem *gp)
1176 u32 val;
1178 /* We are ready to rock, turn everything on. */
1179 val = readl(gp->regs + TXDMA_CFG);
1180 writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1181 val = readl(gp->regs + RXDMA_CFG);
1182 writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1183 val = readl(gp->regs + MAC_TXCFG);
1184 writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1185 val = readl(gp->regs + MAC_RXCFG);
1186 writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1188 (void) readl(gp->regs + MAC_RXCFG);
1189 udelay(100);
1191 gem_enable_ints(gp);
1193 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1196 /* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1197 * actually stopped before about 4ms tho ...
1199 static void gem_stop_dma(struct gem *gp)
1201 u32 val;
1203 /* We are done rocking, turn everything off. */
1204 val = readl(gp->regs + TXDMA_CFG);
1205 writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1206 val = readl(gp->regs + RXDMA_CFG);
1207 writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1208 val = readl(gp->regs + MAC_TXCFG);
1209 writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1210 val = readl(gp->regs + MAC_RXCFG);
1211 writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1213 (void) readl(gp->regs + MAC_RXCFG);
1215 /* Need to wait a bit ... done by the caller */
1219 /* Must be invoked under gp->lock and gp->tx_lock. */
1220 // XXX dbl check what that function should do when called on PCS PHY
1221 static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1223 u32 advertise, features;
1224 int autoneg;
1225 int speed;
1226 int duplex;
1228 if (gp->phy_type != phy_mii_mdio0 &&
1229 gp->phy_type != phy_mii_mdio1)
1230 goto non_mii;
1232 /* Setup advertise */
1233 if (found_mii_phy(gp))
1234 features = gp->phy_mii.def->features;
1235 else
1236 features = 0;
1238 advertise = features & ADVERTISE_MASK;
1239 if (gp->phy_mii.advertising != 0)
1240 advertise &= gp->phy_mii.advertising;
1242 autoneg = gp->want_autoneg;
1243 speed = gp->phy_mii.speed;
1244 duplex = gp->phy_mii.duplex;
1246 /* Setup link parameters */
1247 if (!ep)
1248 goto start_aneg;
1249 if (ep->autoneg == AUTONEG_ENABLE) {
1250 advertise = ep->advertising;
1251 autoneg = 1;
1252 } else {
1253 autoneg = 0;
1254 speed = ep->speed;
1255 duplex = ep->duplex;
1258 start_aneg:
1259 /* Sanitize settings based on PHY capabilities */
1260 if ((features & SUPPORTED_Autoneg) == 0)
1261 autoneg = 0;
1262 if (speed == SPEED_1000 &&
1263 !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1264 speed = SPEED_100;
1265 if (speed == SPEED_100 &&
1266 !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1267 speed = SPEED_10;
1268 if (duplex == DUPLEX_FULL &&
1269 !(features & (SUPPORTED_1000baseT_Full |
1270 SUPPORTED_100baseT_Full |
1271 SUPPORTED_10baseT_Full)))
1272 duplex = DUPLEX_HALF;
1273 if (speed == 0)
1274 speed = SPEED_10;
1276 /* If we are asleep, we don't try to actually setup the PHY, we
1277 * just store the settings
1279 if (gp->asleep) {
1280 gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1281 gp->phy_mii.speed = speed;
1282 gp->phy_mii.duplex = duplex;
1283 return;
1286 /* Configure PHY & start aneg */
1287 gp->want_autoneg = autoneg;
1288 if (autoneg) {
1289 if (found_mii_phy(gp))
1290 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1291 gp->lstate = link_aneg;
1292 } else {
1293 if (found_mii_phy(gp))
1294 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1295 gp->lstate = link_force_ok;
1298 non_mii:
1299 gp->timer_ticks = 0;
1300 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1303 /* A link-up condition has occurred, initialize and enable the
1304 * rest of the chip.
1306 * Must be invoked under gp->lock and gp->tx_lock.
1308 static int gem_set_link_modes(struct gem *gp)
1310 u32 val;
1311 int full_duplex, speed, pause;
1313 full_duplex = 0;
1314 speed = SPEED_10;
1315 pause = 0;
1317 if (found_mii_phy(gp)) {
1318 if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1319 return 1;
1320 full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1321 speed = gp->phy_mii.speed;
1322 pause = gp->phy_mii.pause;
1323 } else if (gp->phy_type == phy_serialink ||
1324 gp->phy_type == phy_serdes) {
1325 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1327 if (pcs_lpa & PCS_MIIADV_FD)
1328 full_duplex = 1;
1329 speed = SPEED_1000;
1332 if (netif_msg_link(gp))
1333 printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
1334 gp->dev->name, speed, (full_duplex ? "full" : "half"));
1336 if (!gp->running)
1337 return 0;
1339 val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1340 if (full_duplex) {
1341 val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1342 } else {
1343 /* MAC_TXCFG_NBO must be zero. */
1345 writel(val, gp->regs + MAC_TXCFG);
1347 val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1348 if (!full_duplex &&
1349 (gp->phy_type == phy_mii_mdio0 ||
1350 gp->phy_type == phy_mii_mdio1)) {
1351 val |= MAC_XIFCFG_DISE;
1352 } else if (full_duplex) {
1353 val |= MAC_XIFCFG_FLED;
1356 if (speed == SPEED_1000)
1357 val |= (MAC_XIFCFG_GMII);
1359 writel(val, gp->regs + MAC_XIFCFG);
1361 /* If gigabit and half-duplex, enable carrier extension
1362 * mode. Else, disable it.
1364 if (speed == SPEED_1000 && !full_duplex) {
1365 val = readl(gp->regs + MAC_TXCFG);
1366 writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1368 val = readl(gp->regs + MAC_RXCFG);
1369 writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1370 } else {
1371 val = readl(gp->regs + MAC_TXCFG);
1372 writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1374 val = readl(gp->regs + MAC_RXCFG);
1375 writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1378 if (gp->phy_type == phy_serialink ||
1379 gp->phy_type == phy_serdes) {
1380 u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1382 if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1383 pause = 1;
1386 if (netif_msg_link(gp)) {
1387 if (pause) {
1388 printk(KERN_INFO "%s: Pause is enabled "
1389 "(rxfifo: %d off: %d on: %d)\n",
1390 gp->dev->name,
1391 gp->rx_fifo_sz,
1392 gp->rx_pause_off,
1393 gp->rx_pause_on);
1394 } else {
1395 printk(KERN_INFO "%s: Pause is disabled\n",
1396 gp->dev->name);
1400 if (!full_duplex)
1401 writel(512, gp->regs + MAC_STIME);
1402 else
1403 writel(64, gp->regs + MAC_STIME);
1404 val = readl(gp->regs + MAC_MCCFG);
1405 if (pause)
1406 val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1407 else
1408 val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1409 writel(val, gp->regs + MAC_MCCFG);
1411 gem_start_dma(gp);
1413 return 0;
1416 /* Must be invoked under gp->lock and gp->tx_lock. */
1417 static int gem_mdio_link_not_up(struct gem *gp)
1419 switch (gp->lstate) {
1420 case link_force_ret:
1421 if (netif_msg_link(gp))
1422 printk(KERN_INFO "%s: Autoneg failed again, keeping"
1423 " forced mode\n", gp->dev->name);
1424 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1425 gp->last_forced_speed, DUPLEX_HALF);
1426 gp->timer_ticks = 5;
1427 gp->lstate = link_force_ok;
1428 return 0;
1429 case link_aneg:
1430 /* We try forced modes after a failed aneg only on PHYs that don't
1431 * have "magic_aneg" bit set, which means they internally do the
1432 * while forced-mode thingy. On these, we just restart aneg
1434 if (gp->phy_mii.def->magic_aneg)
1435 return 1;
1436 if (netif_msg_link(gp))
1437 printk(KERN_INFO "%s: switching to forced 100bt\n",
1438 gp->dev->name);
1439 /* Try forced modes. */
1440 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1441 DUPLEX_HALF);
1442 gp->timer_ticks = 5;
1443 gp->lstate = link_force_try;
1444 return 0;
1445 case link_force_try:
1446 /* Downgrade from 100 to 10 Mbps if necessary.
1447 * If already at 10Mbps, warn user about the
1448 * situation every 10 ticks.
1450 if (gp->phy_mii.speed == SPEED_100) {
1451 gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1452 DUPLEX_HALF);
1453 gp->timer_ticks = 5;
1454 if (netif_msg_link(gp))
1455 printk(KERN_INFO "%s: switching to forced 10bt\n",
1456 gp->dev->name);
1457 return 0;
1458 } else
1459 return 1;
1460 default:
1461 return 0;
1465 static void gem_link_timer(unsigned long data)
1467 struct gem *gp = (struct gem *) data;
1468 int restart_aneg = 0;
1470 if (gp->asleep)
1471 return;
1473 spin_lock_irq(&gp->lock);
1474 spin_lock(&gp->tx_lock);
1475 gem_get_cell(gp);
1477 /* If the reset task is still pending, we just
1478 * reschedule the link timer
1480 if (gp->reset_task_pending)
1481 goto restart;
1483 if (gp->phy_type == phy_serialink ||
1484 gp->phy_type == phy_serdes) {
1485 u32 val = readl(gp->regs + PCS_MIISTAT);
1487 if (!(val & PCS_MIISTAT_LS))
1488 val = readl(gp->regs + PCS_MIISTAT);
1490 if ((val & PCS_MIISTAT_LS) != 0) {
1491 gp->lstate = link_up;
1492 netif_carrier_on(gp->dev);
1493 (void)gem_set_link_modes(gp);
1495 goto restart;
1497 if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1498 /* Ok, here we got a link. If we had it due to a forced
1499 * fallback, and we were configured for autoneg, we do
1500 * retry a short autoneg pass. If you know your hub is
1501 * broken, use ethtool ;)
1503 if (gp->lstate == link_force_try && gp->want_autoneg) {
1504 gp->lstate = link_force_ret;
1505 gp->last_forced_speed = gp->phy_mii.speed;
1506 gp->timer_ticks = 5;
1507 if (netif_msg_link(gp))
1508 printk(KERN_INFO "%s: Got link after fallback, retrying"
1509 " autoneg once...\n", gp->dev->name);
1510 gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1511 } else if (gp->lstate != link_up) {
1512 gp->lstate = link_up;
1513 netif_carrier_on(gp->dev);
1514 if (gem_set_link_modes(gp))
1515 restart_aneg = 1;
1517 } else {
1518 /* If the link was previously up, we restart the
1519 * whole process
1521 if (gp->lstate == link_up) {
1522 gp->lstate = link_down;
1523 if (netif_msg_link(gp))
1524 printk(KERN_INFO "%s: Link down\n",
1525 gp->dev->name);
1526 netif_carrier_off(gp->dev);
1527 gp->reset_task_pending = 1;
1528 schedule_work(&gp->reset_task);
1529 restart_aneg = 1;
1530 } else if (++gp->timer_ticks > 10) {
1531 if (found_mii_phy(gp))
1532 restart_aneg = gem_mdio_link_not_up(gp);
1533 else
1534 restart_aneg = 1;
1537 if (restart_aneg) {
1538 gem_begin_auto_negotiation(gp, NULL);
1539 goto out_unlock;
1541 restart:
1542 mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1543 out_unlock:
1544 gem_put_cell(gp);
1545 spin_unlock(&gp->tx_lock);
1546 spin_unlock_irq(&gp->lock);
1549 /* Must be invoked under gp->lock and gp->tx_lock. */
1550 static void gem_clean_rings(struct gem *gp)
1552 struct gem_init_block *gb = gp->init_block;
1553 struct sk_buff *skb;
1554 int i;
1555 dma_addr_t dma_addr;
1557 for (i = 0; i < RX_RING_SIZE; i++) {
1558 struct gem_rxd *rxd;
1560 rxd = &gb->rxd[i];
1561 if (gp->rx_skbs[i] != NULL) {
1562 skb = gp->rx_skbs[i];
1563 dma_addr = le64_to_cpu(rxd->buffer);
1564 pci_unmap_page(gp->pdev, dma_addr,
1565 RX_BUF_ALLOC_SIZE(gp),
1566 PCI_DMA_FROMDEVICE);
1567 dev_kfree_skb_any(skb);
1568 gp->rx_skbs[i] = NULL;
1570 rxd->status_word = 0;
1571 wmb();
1572 rxd->buffer = 0;
1575 for (i = 0; i < TX_RING_SIZE; i++) {
1576 if (gp->tx_skbs[i] != NULL) {
1577 struct gem_txd *txd;
1578 int frag;
1580 skb = gp->tx_skbs[i];
1581 gp->tx_skbs[i] = NULL;
1583 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1584 int ent = i & (TX_RING_SIZE - 1);
1586 txd = &gb->txd[ent];
1587 dma_addr = le64_to_cpu(txd->buffer);
1588 pci_unmap_page(gp->pdev, dma_addr,
1589 le64_to_cpu(txd->control_word) &
1590 TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1592 if (frag != skb_shinfo(skb)->nr_frags)
1593 i++;
1595 dev_kfree_skb_any(skb);
1600 /* Must be invoked under gp->lock and gp->tx_lock. */
1601 static void gem_init_rings(struct gem *gp)
1603 struct gem_init_block *gb = gp->init_block;
1604 struct net_device *dev = gp->dev;
1605 int i;
1606 dma_addr_t dma_addr;
1608 gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1610 gem_clean_rings(gp);
1612 gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1613 (unsigned)VLAN_ETH_FRAME_LEN);
1615 for (i = 0; i < RX_RING_SIZE; i++) {
1616 struct sk_buff *skb;
1617 struct gem_rxd *rxd = &gb->rxd[i];
1619 skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1620 if (!skb) {
1621 rxd->buffer = 0;
1622 rxd->status_word = 0;
1623 continue;
1626 gp->rx_skbs[i] = skb;
1627 skb->dev = dev;
1628 skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1629 dma_addr = pci_map_page(gp->pdev,
1630 virt_to_page(skb->data),
1631 offset_in_page(skb->data),
1632 RX_BUF_ALLOC_SIZE(gp),
1633 PCI_DMA_FROMDEVICE);
1634 rxd->buffer = cpu_to_le64(dma_addr);
1635 wmb();
1636 rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1637 skb_reserve(skb, RX_OFFSET);
1640 for (i = 0; i < TX_RING_SIZE; i++) {
1641 struct gem_txd *txd = &gb->txd[i];
1643 txd->control_word = 0;
1644 wmb();
1645 txd->buffer = 0;
1647 wmb();
1650 /* Init PHY interface and start link poll state machine */
1651 static void gem_init_phy(struct gem *gp)
1653 u32 mifcfg;
1655 /* Revert MIF CFG setting done on stop_phy */
1656 mifcfg = readl(gp->regs + MIF_CFG);
1657 mifcfg &= ~MIF_CFG_BBMODE;
1658 writel(mifcfg, gp->regs + MIF_CFG);
1660 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1661 int i;
1663 /* Those delay sucks, the HW seem to love them though, I'll
1664 * serisouly consider breaking some locks here to be able
1665 * to schedule instead
1667 for (i = 0; i < 3; i++) {
1668 #ifdef CONFIG_PPC_PMAC
1669 pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1670 msleep(20);
1671 #endif
1672 /* Some PHYs used by apple have problem getting back to us,
1673 * we do an additional reset here
1675 phy_write(gp, MII_BMCR, BMCR_RESET);
1676 msleep(20);
1677 if (phy_read(gp, MII_BMCR) != 0xffff)
1678 break;
1679 if (i == 2)
1680 printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
1681 gp->dev->name);
1685 if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1686 gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1687 u32 val;
1689 /* Init datapath mode register. */
1690 if (gp->phy_type == phy_mii_mdio0 ||
1691 gp->phy_type == phy_mii_mdio1) {
1692 val = PCS_DMODE_MGM;
1693 } else if (gp->phy_type == phy_serialink) {
1694 val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1695 } else {
1696 val = PCS_DMODE_ESM;
1699 writel(val, gp->regs + PCS_DMODE);
1702 if (gp->phy_type == phy_mii_mdio0 ||
1703 gp->phy_type == phy_mii_mdio1) {
1704 // XXX check for errors
1705 mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1707 /* Init PHY */
1708 if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1709 gp->phy_mii.def->ops->init(&gp->phy_mii);
1710 } else {
1711 u32 val;
1712 int limit;
1714 /* Reset PCS unit. */
1715 val = readl(gp->regs + PCS_MIICTRL);
1716 val |= PCS_MIICTRL_RST;
1717 writeb(val, gp->regs + PCS_MIICTRL);
1719 limit = 32;
1720 while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1721 udelay(100);
1722 if (limit-- <= 0)
1723 break;
1725 if (limit <= 0)
1726 printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
1727 gp->dev->name);
1729 /* Make sure PCS is disabled while changing advertisement
1730 * configuration.
1732 val = readl(gp->regs + PCS_CFG);
1733 val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1734 writel(val, gp->regs + PCS_CFG);
1736 /* Advertise all capabilities except assymetric
1737 * pause.
1739 val = readl(gp->regs + PCS_MIIADV);
1740 val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1741 PCS_MIIADV_SP | PCS_MIIADV_AP);
1742 writel(val, gp->regs + PCS_MIIADV);
1744 /* Enable and restart auto-negotiation, disable wrapback/loopback,
1745 * and re-enable PCS.
1747 val = readl(gp->regs + PCS_MIICTRL);
1748 val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1749 val &= ~PCS_MIICTRL_WB;
1750 writel(val, gp->regs + PCS_MIICTRL);
1752 val = readl(gp->regs + PCS_CFG);
1753 val |= PCS_CFG_ENABLE;
1754 writel(val, gp->regs + PCS_CFG);
1756 /* Make sure serialink loopback is off. The meaning
1757 * of this bit is logically inverted based upon whether
1758 * you are in Serialink or SERDES mode.
1760 val = readl(gp->regs + PCS_SCTRL);
1761 if (gp->phy_type == phy_serialink)
1762 val &= ~PCS_SCTRL_LOOP;
1763 else
1764 val |= PCS_SCTRL_LOOP;
1765 writel(val, gp->regs + PCS_SCTRL);
1768 /* Default aneg parameters */
1769 gp->timer_ticks = 0;
1770 gp->lstate = link_down;
1771 netif_carrier_off(gp->dev);
1773 /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1774 spin_lock_irq(&gp->lock);
1775 gem_begin_auto_negotiation(gp, NULL);
1776 spin_unlock_irq(&gp->lock);
1779 /* Must be invoked under gp->lock and gp->tx_lock. */
1780 static void gem_init_dma(struct gem *gp)
1782 u64 desc_dma = (u64) gp->gblock_dvma;
1783 u32 val;
1785 val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1786 writel(val, gp->regs + TXDMA_CFG);
1788 writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1789 writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1790 desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1792 writel(0, gp->regs + TXDMA_KICK);
1794 val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1795 ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1796 writel(val, gp->regs + RXDMA_CFG);
1798 writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1799 writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1801 writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1803 val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1804 val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1805 writel(val, gp->regs + RXDMA_PTHRESH);
1807 if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1808 writel(((5 & RXDMA_BLANK_IPKTS) |
1809 ((8 << 12) & RXDMA_BLANK_ITIME)),
1810 gp->regs + RXDMA_BLANK);
1811 else
1812 writel(((5 & RXDMA_BLANK_IPKTS) |
1813 ((4 << 12) & RXDMA_BLANK_ITIME)),
1814 gp->regs + RXDMA_BLANK);
1817 /* Must be invoked under gp->lock and gp->tx_lock. */
1818 static u32 gem_setup_multicast(struct gem *gp)
1820 u32 rxcfg = 0;
1821 int i;
1823 if ((gp->dev->flags & IFF_ALLMULTI) ||
1824 (gp->dev->mc_count > 256)) {
1825 for (i=0; i<16; i++)
1826 writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1827 rxcfg |= MAC_RXCFG_HFE;
1828 } else if (gp->dev->flags & IFF_PROMISC) {
1829 rxcfg |= MAC_RXCFG_PROM;
1830 } else {
1831 u16 hash_table[16];
1832 u32 crc;
1833 struct dev_mc_list *dmi = gp->dev->mc_list;
1834 int i;
1836 for (i = 0; i < 16; i++)
1837 hash_table[i] = 0;
1839 for (i = 0; i < gp->dev->mc_count; i++) {
1840 char *addrs = dmi->dmi_addr;
1842 dmi = dmi->next;
1844 if (!(*addrs & 1))
1845 continue;
1847 crc = ether_crc_le(6, addrs);
1848 crc >>= 24;
1849 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1851 for (i=0; i<16; i++)
1852 writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1853 rxcfg |= MAC_RXCFG_HFE;
1856 return rxcfg;
1859 /* Must be invoked under gp->lock and gp->tx_lock. */
1860 static void gem_init_mac(struct gem *gp)
1862 unsigned char *e = &gp->dev->dev_addr[0];
1864 writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1866 writel(0x00, gp->regs + MAC_IPG0);
1867 writel(0x08, gp->regs + MAC_IPG1);
1868 writel(0x04, gp->regs + MAC_IPG2);
1869 writel(0x40, gp->regs + MAC_STIME);
1870 writel(0x40, gp->regs + MAC_MINFSZ);
1872 /* Ethernet payload + header + FCS + optional VLAN tag. */
1873 writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1875 writel(0x07, gp->regs + MAC_PASIZE);
1876 writel(0x04, gp->regs + MAC_JAMSIZE);
1877 writel(0x10, gp->regs + MAC_ATTLIM);
1878 writel(0x8808, gp->regs + MAC_MCTYPE);
1880 writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1882 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1883 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1884 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1886 writel(0, gp->regs + MAC_ADDR3);
1887 writel(0, gp->regs + MAC_ADDR4);
1888 writel(0, gp->regs + MAC_ADDR5);
1890 writel(0x0001, gp->regs + MAC_ADDR6);
1891 writel(0xc200, gp->regs + MAC_ADDR7);
1892 writel(0x0180, gp->regs + MAC_ADDR8);
1894 writel(0, gp->regs + MAC_AFILT0);
1895 writel(0, gp->regs + MAC_AFILT1);
1896 writel(0, gp->regs + MAC_AFILT2);
1897 writel(0, gp->regs + MAC_AF21MSK);
1898 writel(0, gp->regs + MAC_AF0MSK);
1900 gp->mac_rx_cfg = gem_setup_multicast(gp);
1901 #ifdef STRIP_FCS
1902 gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1903 #endif
1904 writel(0, gp->regs + MAC_NCOLL);
1905 writel(0, gp->regs + MAC_FASUCC);
1906 writel(0, gp->regs + MAC_ECOLL);
1907 writel(0, gp->regs + MAC_LCOLL);
1908 writel(0, gp->regs + MAC_DTIMER);
1909 writel(0, gp->regs + MAC_PATMPS);
1910 writel(0, gp->regs + MAC_RFCTR);
1911 writel(0, gp->regs + MAC_LERR);
1912 writel(0, gp->regs + MAC_AERR);
1913 writel(0, gp->regs + MAC_FCSERR);
1914 writel(0, gp->regs + MAC_RXCVERR);
1916 /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1917 * them once a link is established.
1919 writel(0, gp->regs + MAC_TXCFG);
1920 writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1921 writel(0, gp->regs + MAC_MCCFG);
1922 writel(0, gp->regs + MAC_XIFCFG);
1924 /* Setup MAC interrupts. We want to get all of the interesting
1925 * counter expiration events, but we do not want to hear about
1926 * normal rx/tx as the DMA engine tells us that.
1928 writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1929 writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1931 /* Don't enable even the PAUSE interrupts for now, we
1932 * make no use of those events other than to record them.
1934 writel(0xffffffff, gp->regs + MAC_MCMASK);
1936 /* Don't enable GEM's WOL in normal operations
1938 if (gp->has_wol)
1939 writel(0, gp->regs + WOL_WAKECSR);
1942 /* Must be invoked under gp->lock and gp->tx_lock. */
1943 static void gem_init_pause_thresholds(struct gem *gp)
1945 u32 cfg;
1947 /* Calculate pause thresholds. Setting the OFF threshold to the
1948 * full RX fifo size effectively disables PAUSE generation which
1949 * is what we do for 10/100 only GEMs which have FIFOs too small
1950 * to make real gains from PAUSE.
1952 if (gp->rx_fifo_sz <= (2 * 1024)) {
1953 gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1954 } else {
1955 int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1956 int off = (gp->rx_fifo_sz - (max_frame * 2));
1957 int on = off - max_frame;
1959 gp->rx_pause_off = off;
1960 gp->rx_pause_on = on;
1964 /* Configure the chip "burst" DMA mode & enable some
1965 * HW bug fixes on Apple version
1967 cfg = 0;
1968 if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1969 cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1970 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1971 cfg |= GREG_CFG_IBURST;
1972 #endif
1973 cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1974 cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1975 writel(cfg, gp->regs + GREG_CFG);
1977 /* If Infinite Burst didn't stick, then use different
1978 * thresholds (and Apple bug fixes don't exist)
1980 if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1981 cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1982 cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1983 writel(cfg, gp->regs + GREG_CFG);
1987 static int gem_check_invariants(struct gem *gp)
1989 struct pci_dev *pdev = gp->pdev;
1990 u32 mif_cfg;
1992 /* On Apple's sungem, we can't rely on registers as the chip
1993 * was been powered down by the firmware. The PHY is looked
1994 * up later on.
1996 if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1997 gp->phy_type = phy_mii_mdio0;
1998 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1999 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2000 gp->swrst_base = 0;
2002 mif_cfg = readl(gp->regs + MIF_CFG);
2003 mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
2004 mif_cfg |= MIF_CFG_MDI0;
2005 writel(mif_cfg, gp->regs + MIF_CFG);
2006 writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
2007 writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
2009 /* We hard-code the PHY address so we can properly bring it out of
2010 * reset later on, we can't really probe it at this point, though
2011 * that isn't an issue.
2013 if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
2014 gp->mii_phy_addr = 1;
2015 else
2016 gp->mii_phy_addr = 0;
2018 return 0;
2021 mif_cfg = readl(gp->regs + MIF_CFG);
2023 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2024 pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2025 /* One of the MII PHYs _must_ be present
2026 * as this chip has no gigabit PHY.
2028 if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2029 printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2030 mif_cfg);
2031 return -1;
2035 /* Determine initial PHY interface type guess. MDIO1 is the
2036 * external PHY and thus takes precedence over MDIO0.
2039 if (mif_cfg & MIF_CFG_MDI1) {
2040 gp->phy_type = phy_mii_mdio1;
2041 mif_cfg |= MIF_CFG_PSELECT;
2042 writel(mif_cfg, gp->regs + MIF_CFG);
2043 } else if (mif_cfg & MIF_CFG_MDI0) {
2044 gp->phy_type = phy_mii_mdio0;
2045 mif_cfg &= ~MIF_CFG_PSELECT;
2046 writel(mif_cfg, gp->regs + MIF_CFG);
2047 } else {
2048 gp->phy_type = phy_serialink;
2050 if (gp->phy_type == phy_mii_mdio1 ||
2051 gp->phy_type == phy_mii_mdio0) {
2052 int i;
2054 for (i = 0; i < 32; i++) {
2055 gp->mii_phy_addr = i;
2056 if (phy_read(gp, MII_BMCR) != 0xffff)
2057 break;
2059 if (i == 32) {
2060 if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2061 printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
2062 return -1;
2064 gp->phy_type = phy_serdes;
2068 /* Fetch the FIFO configurations now too. */
2069 gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2070 gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2072 if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2073 if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2074 if (gp->tx_fifo_sz != (9 * 1024) ||
2075 gp->rx_fifo_sz != (20 * 1024)) {
2076 printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2077 gp->tx_fifo_sz, gp->rx_fifo_sz);
2078 return -1;
2080 gp->swrst_base = 0;
2081 } else {
2082 if (gp->tx_fifo_sz != (2 * 1024) ||
2083 gp->rx_fifo_sz != (2 * 1024)) {
2084 printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2085 gp->tx_fifo_sz, gp->rx_fifo_sz);
2086 return -1;
2088 gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2092 return 0;
2095 /* Must be invoked under gp->lock and gp->tx_lock. */
2096 static void gem_reinit_chip(struct gem *gp)
2098 /* Reset the chip */
2099 gem_reset(gp);
2101 /* Make sure ints are disabled */
2102 gem_disable_ints(gp);
2104 /* Allocate & setup ring buffers */
2105 gem_init_rings(gp);
2107 /* Configure pause thresholds */
2108 gem_init_pause_thresholds(gp);
2110 /* Init DMA & MAC engines */
2111 gem_init_dma(gp);
2112 gem_init_mac(gp);
2116 /* Must be invoked with no lock held. */
2117 static void gem_stop_phy(struct gem *gp, int wol)
2119 u32 mifcfg;
2120 unsigned long flags;
2122 /* Let the chip settle down a bit, it seems that helps
2123 * for sleep mode on some models
2125 msleep(10);
2127 /* Make sure we aren't polling PHY status change. We
2128 * don't currently use that feature though
2130 mifcfg = readl(gp->regs + MIF_CFG);
2131 mifcfg &= ~MIF_CFG_POLL;
2132 writel(mifcfg, gp->regs + MIF_CFG);
2134 if (wol && gp->has_wol) {
2135 unsigned char *e = &gp->dev->dev_addr[0];
2136 u32 csr;
2138 /* Setup wake-on-lan for MAGIC packet */
2139 writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2140 gp->regs + MAC_RXCFG);
2141 writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2142 writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2143 writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2145 writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2146 csr = WOL_WAKECSR_ENABLE;
2147 if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2148 csr |= WOL_WAKECSR_MII;
2149 writel(csr, gp->regs + WOL_WAKECSR);
2150 } else {
2151 writel(0, gp->regs + MAC_RXCFG);
2152 (void)readl(gp->regs + MAC_RXCFG);
2153 /* Machine sleep will die in strange ways if we
2154 * dont wait a bit here, looks like the chip takes
2155 * some time to really shut down
2157 msleep(10);
2160 writel(0, gp->regs + MAC_TXCFG);
2161 writel(0, gp->regs + MAC_XIFCFG);
2162 writel(0, gp->regs + TXDMA_CFG);
2163 writel(0, gp->regs + RXDMA_CFG);
2165 if (!wol) {
2166 spin_lock_irqsave(&gp->lock, flags);
2167 spin_lock(&gp->tx_lock);
2168 gem_reset(gp);
2169 writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2170 writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2171 spin_unlock(&gp->tx_lock);
2172 spin_unlock_irqrestore(&gp->lock, flags);
2174 /* No need to take the lock here */
2176 if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2177 gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2179 /* According to Apple, we must set the MDIO pins to this begnign
2180 * state or we may 1) eat more current, 2) damage some PHYs
2182 writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2183 writel(0, gp->regs + MIF_BBCLK);
2184 writel(0, gp->regs + MIF_BBDATA);
2185 writel(0, gp->regs + MIF_BBOENAB);
2186 writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2187 (void) readl(gp->regs + MAC_XIFCFG);
2192 static int gem_do_start(struct net_device *dev)
2194 struct gem *gp = dev->priv;
2195 unsigned long flags;
2197 spin_lock_irqsave(&gp->lock, flags);
2198 spin_lock(&gp->tx_lock);
2200 /* Enable the cell */
2201 gem_get_cell(gp);
2203 /* Init & setup chip hardware */
2204 gem_reinit_chip(gp);
2206 gp->running = 1;
2208 if (gp->lstate == link_up) {
2209 netif_carrier_on(gp->dev);
2210 gem_set_link_modes(gp);
2213 netif_wake_queue(gp->dev);
2215 spin_unlock(&gp->tx_lock);
2216 spin_unlock_irqrestore(&gp->lock, flags);
2218 if (request_irq(gp->pdev->irq, gem_interrupt,
2219 IRQF_SHARED, dev->name, (void *)dev)) {
2220 printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
2222 spin_lock_irqsave(&gp->lock, flags);
2223 spin_lock(&gp->tx_lock);
2225 gp->running = 0;
2226 gem_reset(gp);
2227 gem_clean_rings(gp);
2228 gem_put_cell(gp);
2230 spin_unlock(&gp->tx_lock);
2231 spin_unlock_irqrestore(&gp->lock, flags);
2233 return -EAGAIN;
2236 return 0;
2239 static void gem_do_stop(struct net_device *dev, int wol)
2241 struct gem *gp = dev->priv;
2242 unsigned long flags;
2244 spin_lock_irqsave(&gp->lock, flags);
2245 spin_lock(&gp->tx_lock);
2247 gp->running = 0;
2249 /* Stop netif queue */
2250 netif_stop_queue(dev);
2252 /* Make sure ints are disabled */
2253 gem_disable_ints(gp);
2255 /* We can drop the lock now */
2256 spin_unlock(&gp->tx_lock);
2257 spin_unlock_irqrestore(&gp->lock, flags);
2259 /* If we are going to sleep with WOL */
2260 gem_stop_dma(gp);
2261 msleep(10);
2262 if (!wol)
2263 gem_reset(gp);
2264 msleep(10);
2266 /* Get rid of rings */
2267 gem_clean_rings(gp);
2269 /* No irq needed anymore */
2270 free_irq(gp->pdev->irq, (void *) dev);
2272 /* Cell not needed neither if no WOL */
2273 if (!wol) {
2274 spin_lock_irqsave(&gp->lock, flags);
2275 gem_put_cell(gp);
2276 spin_unlock_irqrestore(&gp->lock, flags);
2280 static void gem_reset_task(struct work_struct *work)
2282 struct gem *gp = container_of(work, struct gem, reset_task);
2284 mutex_lock(&gp->pm_mutex);
2286 if (gp->opened)
2287 napi_disable(&gp->napi);
2289 spin_lock_irq(&gp->lock);
2290 spin_lock(&gp->tx_lock);
2292 if (gp->running) {
2293 netif_stop_queue(gp->dev);
2295 /* Reset the chip & rings */
2296 gem_reinit_chip(gp);
2297 if (gp->lstate == link_up)
2298 gem_set_link_modes(gp);
2299 netif_wake_queue(gp->dev);
2302 gp->reset_task_pending = 0;
2304 spin_unlock(&gp->tx_lock);
2305 spin_unlock_irq(&gp->lock);
2307 if (gp->opened)
2308 napi_enable(&gp->napi);
2310 mutex_unlock(&gp->pm_mutex);
2314 static int gem_open(struct net_device *dev)
2316 struct gem *gp = dev->priv;
2317 int rc = 0;
2319 mutex_lock(&gp->pm_mutex);
2321 /* We need the cell enabled */
2322 if (!gp->asleep)
2323 rc = gem_do_start(dev);
2324 gp->opened = (rc == 0);
2325 if (gp->opened)
2326 napi_enable(&gp->napi);
2328 mutex_unlock(&gp->pm_mutex);
2330 return rc;
2333 static int gem_close(struct net_device *dev)
2335 struct gem *gp = dev->priv;
2337 mutex_lock(&gp->pm_mutex);
2339 napi_disable(&gp->napi);
2341 gp->opened = 0;
2342 if (!gp->asleep)
2343 gem_do_stop(dev, 0);
2345 mutex_unlock(&gp->pm_mutex);
2347 return 0;
2350 #ifdef CONFIG_PM
2351 static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2353 struct net_device *dev = pci_get_drvdata(pdev);
2354 struct gem *gp = dev->priv;
2355 unsigned long flags;
2357 mutex_lock(&gp->pm_mutex);
2359 printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
2360 dev->name,
2361 (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
2363 /* Keep the cell enabled during the entire operation */
2364 spin_lock_irqsave(&gp->lock, flags);
2365 spin_lock(&gp->tx_lock);
2366 gem_get_cell(gp);
2367 spin_unlock(&gp->tx_lock);
2368 spin_unlock_irqrestore(&gp->lock, flags);
2370 /* If the driver is opened, we stop the MAC */
2371 if (gp->opened) {
2372 napi_disable(&gp->napi);
2374 /* Stop traffic, mark us closed */
2375 netif_device_detach(dev);
2377 /* Switch off MAC, remember WOL setting */
2378 gp->asleep_wol = gp->wake_on_lan;
2379 gem_do_stop(dev, gp->asleep_wol);
2380 } else
2381 gp->asleep_wol = 0;
2383 /* Mark us asleep */
2384 gp->asleep = 1;
2385 wmb();
2387 /* Stop the link timer */
2388 del_timer_sync(&gp->link_timer);
2390 /* Now we release the mutex to not block the reset task who
2391 * can take it too. We are marked asleep, so there will be no
2392 * conflict here
2394 mutex_unlock(&gp->pm_mutex);
2396 /* Wait for a pending reset task to complete */
2397 while (gp->reset_task_pending)
2398 yield();
2399 flush_scheduled_work();
2401 /* Shut the PHY down eventually and setup WOL */
2402 gem_stop_phy(gp, gp->asleep_wol);
2404 /* Make sure bus master is disabled */
2405 pci_disable_device(gp->pdev);
2407 /* Release the cell, no need to take a lock at this point since
2408 * nothing else can happen now
2410 gem_put_cell(gp);
2412 return 0;
2415 static int gem_resume(struct pci_dev *pdev)
2417 struct net_device *dev = pci_get_drvdata(pdev);
2418 struct gem *gp = dev->priv;
2419 unsigned long flags;
2421 printk(KERN_INFO "%s: resuming\n", dev->name);
2423 mutex_lock(&gp->pm_mutex);
2425 /* Keep the cell enabled during the entire operation, no need to
2426 * take a lock here tho since nothing else can happen while we are
2427 * marked asleep
2429 gem_get_cell(gp);
2431 /* Make sure PCI access and bus master are enabled */
2432 if (pci_enable_device(gp->pdev)) {
2433 printk(KERN_ERR "%s: Can't re-enable chip !\n",
2434 dev->name);
2435 /* Put cell and forget it for now, it will be considered as
2436 * still asleep, a new sleep cycle may bring it back
2438 gem_put_cell(gp);
2439 mutex_unlock(&gp->pm_mutex);
2440 return 0;
2442 pci_set_master(gp->pdev);
2444 /* Reset everything */
2445 gem_reset(gp);
2447 /* Mark us woken up */
2448 gp->asleep = 0;
2449 wmb();
2451 /* Bring the PHY back. Again, lock is useless at this point as
2452 * nothing can be happening until we restart the whole thing
2454 gem_init_phy(gp);
2456 /* If we were opened, bring everything back */
2457 if (gp->opened) {
2458 /* Restart MAC */
2459 gem_do_start(dev);
2461 /* Re-attach net device */
2462 netif_device_attach(dev);
2464 napi_enable(&gp->napi);
2467 spin_lock_irqsave(&gp->lock, flags);
2468 spin_lock(&gp->tx_lock);
2470 /* If we had WOL enabled, the cell clock was never turned off during
2471 * sleep, so we end up beeing unbalanced. Fix that here
2473 if (gp->asleep_wol)
2474 gem_put_cell(gp);
2476 /* This function doesn't need to hold the cell, it will be held if the
2477 * driver is open by gem_do_start().
2479 gem_put_cell(gp);
2481 spin_unlock(&gp->tx_lock);
2482 spin_unlock_irqrestore(&gp->lock, flags);
2484 mutex_unlock(&gp->pm_mutex);
2486 return 0;
2488 #endif /* CONFIG_PM */
2490 static struct net_device_stats *gem_get_stats(struct net_device *dev)
2492 struct gem *gp = dev->priv;
2493 struct net_device_stats *stats = &gp->net_stats;
2495 spin_lock_irq(&gp->lock);
2496 spin_lock(&gp->tx_lock);
2498 /* I have seen this being called while the PM was in progress,
2499 * so we shield against this
2501 if (gp->running) {
2502 stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2503 writel(0, gp->regs + MAC_FCSERR);
2505 stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
2506 writel(0, gp->regs + MAC_AERR);
2508 stats->rx_length_errors += readl(gp->regs + MAC_LERR);
2509 writel(0, gp->regs + MAC_LERR);
2511 stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2512 stats->collisions +=
2513 (readl(gp->regs + MAC_ECOLL) +
2514 readl(gp->regs + MAC_LCOLL));
2515 writel(0, gp->regs + MAC_ECOLL);
2516 writel(0, gp->regs + MAC_LCOLL);
2519 spin_unlock(&gp->tx_lock);
2520 spin_unlock_irq(&gp->lock);
2522 return &gp->net_stats;
2525 static int gem_set_mac_address(struct net_device *dev, void *addr)
2527 struct sockaddr *macaddr = (struct sockaddr *) addr;
2528 struct gem *gp = dev->priv;
2529 unsigned char *e = &dev->dev_addr[0];
2531 if (!is_valid_ether_addr(macaddr->sa_data))
2532 return -EADDRNOTAVAIL;
2534 if (!netif_running(dev) || !netif_device_present(dev)) {
2535 /* We'll just catch it later when the
2536 * device is up'd or resumed.
2538 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2539 return 0;
2542 mutex_lock(&gp->pm_mutex);
2543 memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2544 if (gp->running) {
2545 writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2546 writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2547 writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2549 mutex_unlock(&gp->pm_mutex);
2551 return 0;
2554 static void gem_set_multicast(struct net_device *dev)
2556 struct gem *gp = dev->priv;
2557 u32 rxcfg, rxcfg_new;
2558 int limit = 10000;
2561 spin_lock_irq(&gp->lock);
2562 spin_lock(&gp->tx_lock);
2564 if (!gp->running)
2565 goto bail;
2567 netif_stop_queue(dev);
2569 rxcfg = readl(gp->regs + MAC_RXCFG);
2570 rxcfg_new = gem_setup_multicast(gp);
2571 #ifdef STRIP_FCS
2572 rxcfg_new |= MAC_RXCFG_SFCS;
2573 #endif
2574 gp->mac_rx_cfg = rxcfg_new;
2576 writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2577 while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2578 if (!limit--)
2579 break;
2580 udelay(10);
2583 rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2584 rxcfg |= rxcfg_new;
2586 writel(rxcfg, gp->regs + MAC_RXCFG);
2588 netif_wake_queue(dev);
2590 bail:
2591 spin_unlock(&gp->tx_lock);
2592 spin_unlock_irq(&gp->lock);
2595 /* Jumbo-grams don't seem to work :-( */
2596 #define GEM_MIN_MTU 68
2597 #if 1
2598 #define GEM_MAX_MTU 1500
2599 #else
2600 #define GEM_MAX_MTU 9000
2601 #endif
2603 static int gem_change_mtu(struct net_device *dev, int new_mtu)
2605 struct gem *gp = dev->priv;
2607 if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2608 return -EINVAL;
2610 if (!netif_running(dev) || !netif_device_present(dev)) {
2611 /* We'll just catch it later when the
2612 * device is up'd or resumed.
2614 dev->mtu = new_mtu;
2615 return 0;
2618 mutex_lock(&gp->pm_mutex);
2619 spin_lock_irq(&gp->lock);
2620 spin_lock(&gp->tx_lock);
2621 dev->mtu = new_mtu;
2622 if (gp->running) {
2623 gem_reinit_chip(gp);
2624 if (gp->lstate == link_up)
2625 gem_set_link_modes(gp);
2627 spin_unlock(&gp->tx_lock);
2628 spin_unlock_irq(&gp->lock);
2629 mutex_unlock(&gp->pm_mutex);
2631 return 0;
2634 static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2636 struct gem *gp = dev->priv;
2638 strcpy(info->driver, DRV_NAME);
2639 strcpy(info->version, DRV_VERSION);
2640 strcpy(info->bus_info, pci_name(gp->pdev));
2643 static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2645 struct gem *gp = dev->priv;
2647 if (gp->phy_type == phy_mii_mdio0 ||
2648 gp->phy_type == phy_mii_mdio1) {
2649 if (gp->phy_mii.def)
2650 cmd->supported = gp->phy_mii.def->features;
2651 else
2652 cmd->supported = (SUPPORTED_10baseT_Half |
2653 SUPPORTED_10baseT_Full);
2655 /* XXX hardcoded stuff for now */
2656 cmd->port = PORT_MII;
2657 cmd->transceiver = XCVR_EXTERNAL;
2658 cmd->phy_address = 0; /* XXX fixed PHYAD */
2660 /* Return current PHY settings */
2661 spin_lock_irq(&gp->lock);
2662 cmd->autoneg = gp->want_autoneg;
2663 cmd->speed = gp->phy_mii.speed;
2664 cmd->duplex = gp->phy_mii.duplex;
2665 cmd->advertising = gp->phy_mii.advertising;
2667 /* If we started with a forced mode, we don't have a default
2668 * advertise set, we need to return something sensible so
2669 * userland can re-enable autoneg properly.
2671 if (cmd->advertising == 0)
2672 cmd->advertising = cmd->supported;
2673 spin_unlock_irq(&gp->lock);
2674 } else { // XXX PCS ?
2675 cmd->supported =
2676 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2677 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2678 SUPPORTED_Autoneg);
2679 cmd->advertising = cmd->supported;
2680 cmd->speed = 0;
2681 cmd->duplex = cmd->port = cmd->phy_address =
2682 cmd->transceiver = cmd->autoneg = 0;
2684 cmd->maxtxpkt = cmd->maxrxpkt = 0;
2686 return 0;
2689 static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2691 struct gem *gp = dev->priv;
2693 /* Verify the settings we care about. */
2694 if (cmd->autoneg != AUTONEG_ENABLE &&
2695 cmd->autoneg != AUTONEG_DISABLE)
2696 return -EINVAL;
2698 if (cmd->autoneg == AUTONEG_ENABLE &&
2699 cmd->advertising == 0)
2700 return -EINVAL;
2702 if (cmd->autoneg == AUTONEG_DISABLE &&
2703 ((cmd->speed != SPEED_1000 &&
2704 cmd->speed != SPEED_100 &&
2705 cmd->speed != SPEED_10) ||
2706 (cmd->duplex != DUPLEX_HALF &&
2707 cmd->duplex != DUPLEX_FULL)))
2708 return -EINVAL;
2710 /* Apply settings and restart link process. */
2711 spin_lock_irq(&gp->lock);
2712 gem_get_cell(gp);
2713 gem_begin_auto_negotiation(gp, cmd);
2714 gem_put_cell(gp);
2715 spin_unlock_irq(&gp->lock);
2717 return 0;
2720 static int gem_nway_reset(struct net_device *dev)
2722 struct gem *gp = dev->priv;
2724 if (!gp->want_autoneg)
2725 return -EINVAL;
2727 /* Restart link process. */
2728 spin_lock_irq(&gp->lock);
2729 gem_get_cell(gp);
2730 gem_begin_auto_negotiation(gp, NULL);
2731 gem_put_cell(gp);
2732 spin_unlock_irq(&gp->lock);
2734 return 0;
2737 static u32 gem_get_msglevel(struct net_device *dev)
2739 struct gem *gp = dev->priv;
2740 return gp->msg_enable;
2743 static void gem_set_msglevel(struct net_device *dev, u32 value)
2745 struct gem *gp = dev->priv;
2746 gp->msg_enable = value;
2750 /* Add more when I understand how to program the chip */
2751 /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2753 #define WOL_SUPPORTED_MASK (WAKE_MAGIC)
2755 static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2757 struct gem *gp = dev->priv;
2759 /* Add more when I understand how to program the chip */
2760 if (gp->has_wol) {
2761 wol->supported = WOL_SUPPORTED_MASK;
2762 wol->wolopts = gp->wake_on_lan;
2763 } else {
2764 wol->supported = 0;
2765 wol->wolopts = 0;
2769 static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2771 struct gem *gp = dev->priv;
2773 if (!gp->has_wol)
2774 return -EOPNOTSUPP;
2775 gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2776 return 0;
2779 static const struct ethtool_ops gem_ethtool_ops = {
2780 .get_drvinfo = gem_get_drvinfo,
2781 .get_link = ethtool_op_get_link,
2782 .get_settings = gem_get_settings,
2783 .set_settings = gem_set_settings,
2784 .nway_reset = gem_nway_reset,
2785 .get_msglevel = gem_get_msglevel,
2786 .set_msglevel = gem_set_msglevel,
2787 .get_wol = gem_get_wol,
2788 .set_wol = gem_set_wol,
2791 static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2793 struct gem *gp = dev->priv;
2794 struct mii_ioctl_data *data = if_mii(ifr);
2795 int rc = -EOPNOTSUPP;
2796 unsigned long flags;
2798 /* Hold the PM mutex while doing ioctl's or we may collide
2799 * with power management.
2801 mutex_lock(&gp->pm_mutex);
2803 spin_lock_irqsave(&gp->lock, flags);
2804 gem_get_cell(gp);
2805 spin_unlock_irqrestore(&gp->lock, flags);
2807 switch (cmd) {
2808 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2809 data->phy_id = gp->mii_phy_addr;
2810 /* Fallthrough... */
2812 case SIOCGMIIREG: /* Read MII PHY register. */
2813 if (!gp->running)
2814 rc = -EAGAIN;
2815 else {
2816 data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2817 data->reg_num & 0x1f);
2818 rc = 0;
2820 break;
2822 case SIOCSMIIREG: /* Write MII PHY register. */
2823 if (!capable(CAP_NET_ADMIN))
2824 rc = -EPERM;
2825 else if (!gp->running)
2826 rc = -EAGAIN;
2827 else {
2828 __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2829 data->val_in);
2830 rc = 0;
2832 break;
2835 spin_lock_irqsave(&gp->lock, flags);
2836 gem_put_cell(gp);
2837 spin_unlock_irqrestore(&gp->lock, flags);
2839 mutex_unlock(&gp->pm_mutex);
2841 return rc;
2844 #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2845 /* Fetch MAC address from vital product data of PCI ROM. */
2846 static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2848 int this_offset;
2850 for (this_offset = 0x20; this_offset < len; this_offset++) {
2851 void __iomem *p = rom_base + this_offset;
2852 int i;
2854 if (readb(p + 0) != 0x90 ||
2855 readb(p + 1) != 0x00 ||
2856 readb(p + 2) != 0x09 ||
2857 readb(p + 3) != 0x4e ||
2858 readb(p + 4) != 0x41 ||
2859 readb(p + 5) != 0x06)
2860 continue;
2862 this_offset += 6;
2863 p += 6;
2865 for (i = 0; i < 6; i++)
2866 dev_addr[i] = readb(p + i);
2867 return 1;
2869 return 0;
2872 static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2874 size_t size;
2875 void __iomem *p = pci_map_rom(pdev, &size);
2877 if (p) {
2878 int found;
2880 found = readb(p) == 0x55 &&
2881 readb(p + 1) == 0xaa &&
2882 find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2883 pci_unmap_rom(pdev, p);
2884 if (found)
2885 return;
2888 /* Sun MAC prefix then 3 random bytes. */
2889 dev_addr[0] = 0x08;
2890 dev_addr[1] = 0x00;
2891 dev_addr[2] = 0x20;
2892 get_random_bytes(dev_addr + 3, 3);
2893 return;
2895 #endif /* not Sparc and not PPC */
2897 static int __devinit gem_get_device_address(struct gem *gp)
2899 #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2900 struct net_device *dev = gp->dev;
2901 const unsigned char *addr;
2903 addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2904 if (addr == NULL) {
2905 #ifdef CONFIG_SPARC
2906 addr = idprom->id_ethaddr;
2907 #else
2908 printk("\n");
2909 printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
2910 return -1;
2911 #endif
2913 memcpy(dev->dev_addr, addr, 6);
2914 #else
2915 get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2916 #endif
2917 return 0;
2920 static void gem_remove_one(struct pci_dev *pdev)
2922 struct net_device *dev = pci_get_drvdata(pdev);
2924 if (dev) {
2925 struct gem *gp = dev->priv;
2927 unregister_netdev(dev);
2929 /* Stop the link timer */
2930 del_timer_sync(&gp->link_timer);
2932 /* We shouldn't need any locking here */
2933 gem_get_cell(gp);
2935 /* Wait for a pending reset task to complete */
2936 while (gp->reset_task_pending)
2937 yield();
2938 flush_scheduled_work();
2940 /* Shut the PHY down */
2941 gem_stop_phy(gp, 0);
2943 gem_put_cell(gp);
2945 /* Make sure bus master is disabled */
2946 pci_disable_device(gp->pdev);
2948 /* Free resources */
2949 pci_free_consistent(pdev,
2950 sizeof(struct gem_init_block),
2951 gp->init_block,
2952 gp->gblock_dvma);
2953 iounmap(gp->regs);
2954 pci_release_regions(pdev);
2955 free_netdev(dev);
2957 pci_set_drvdata(pdev, NULL);
2961 static int __devinit gem_init_one(struct pci_dev *pdev,
2962 const struct pci_device_id *ent)
2964 static int gem_version_printed = 0;
2965 unsigned long gemreg_base, gemreg_len;
2966 struct net_device *dev;
2967 struct gem *gp;
2968 int err, pci_using_dac;
2969 DECLARE_MAC_BUF(mac);
2971 if (gem_version_printed++ == 0)
2972 printk(KERN_INFO "%s", version);
2974 /* Apple gmac note: during probe, the chip is powered up by
2975 * the arch code to allow the code below to work (and to let
2976 * the chip be probed on the config space. It won't stay powered
2977 * up until the interface is brought up however, so we can't rely
2978 * on register configuration done at this point.
2980 err = pci_enable_device(pdev);
2981 if (err) {
2982 printk(KERN_ERR PFX "Cannot enable MMIO operation, "
2983 "aborting.\n");
2984 return err;
2986 pci_set_master(pdev);
2988 /* Configure DMA attributes. */
2990 /* All of the GEM documentation states that 64-bit DMA addressing
2991 * is fully supported and should work just fine. However the
2992 * front end for RIO based GEMs is different and only supports
2993 * 32-bit addressing.
2995 * For now we assume the various PPC GEMs are 32-bit only as well.
2997 if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2998 pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2999 !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
3000 pci_using_dac = 1;
3001 } else {
3002 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3003 if (err) {
3004 printk(KERN_ERR PFX "No usable DMA configuration, "
3005 "aborting.\n");
3006 goto err_disable_device;
3008 pci_using_dac = 0;
3011 gemreg_base = pci_resource_start(pdev, 0);
3012 gemreg_len = pci_resource_len(pdev, 0);
3014 if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3015 printk(KERN_ERR PFX "Cannot find proper PCI device "
3016 "base address, aborting.\n");
3017 err = -ENODEV;
3018 goto err_disable_device;
3021 dev = alloc_etherdev(sizeof(*gp));
3022 if (!dev) {
3023 printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
3024 err = -ENOMEM;
3025 goto err_disable_device;
3027 SET_NETDEV_DEV(dev, &pdev->dev);
3029 gp = dev->priv;
3031 err = pci_request_regions(pdev, DRV_NAME);
3032 if (err) {
3033 printk(KERN_ERR PFX "Cannot obtain PCI resources, "
3034 "aborting.\n");
3035 goto err_out_free_netdev;
3038 gp->pdev = pdev;
3039 dev->base_addr = (long) pdev;
3040 gp->dev = dev;
3042 gp->msg_enable = DEFAULT_MSG;
3044 spin_lock_init(&gp->lock);
3045 spin_lock_init(&gp->tx_lock);
3046 mutex_init(&gp->pm_mutex);
3048 init_timer(&gp->link_timer);
3049 gp->link_timer.function = gem_link_timer;
3050 gp->link_timer.data = (unsigned long) gp;
3052 INIT_WORK(&gp->reset_task, gem_reset_task);
3054 gp->lstate = link_down;
3055 gp->timer_ticks = 0;
3056 netif_carrier_off(dev);
3058 gp->regs = ioremap(gemreg_base, gemreg_len);
3059 if (!gp->regs) {
3060 printk(KERN_ERR PFX "Cannot map device registers, "
3061 "aborting.\n");
3062 err = -EIO;
3063 goto err_out_free_res;
3066 /* On Apple, we want a reference to the Open Firmware device-tree
3067 * node. We use it for clock control.
3069 #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3070 gp->of_node = pci_device_to_OF_node(pdev);
3071 #endif
3073 /* Only Apple version supports WOL afaik */
3074 if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3075 gp->has_wol = 1;
3077 /* Make sure cell is enabled */
3078 gem_get_cell(gp);
3080 /* Make sure everything is stopped and in init state */
3081 gem_reset(gp);
3083 /* Fill up the mii_phy structure (even if we won't use it) */
3084 gp->phy_mii.dev = dev;
3085 gp->phy_mii.mdio_read = _phy_read;
3086 gp->phy_mii.mdio_write = _phy_write;
3087 #ifdef CONFIG_PPC_PMAC
3088 gp->phy_mii.platform_data = gp->of_node;
3089 #endif
3090 /* By default, we start with autoneg */
3091 gp->want_autoneg = 1;
3093 /* Check fifo sizes, PHY type, etc... */
3094 if (gem_check_invariants(gp)) {
3095 err = -ENODEV;
3096 goto err_out_iounmap;
3099 /* It is guaranteed that the returned buffer will be at least
3100 * PAGE_SIZE aligned.
3102 gp->init_block = (struct gem_init_block *)
3103 pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3104 &gp->gblock_dvma);
3105 if (!gp->init_block) {
3106 printk(KERN_ERR PFX "Cannot allocate init block, "
3107 "aborting.\n");
3108 err = -ENOMEM;
3109 goto err_out_iounmap;
3112 if (gem_get_device_address(gp))
3113 goto err_out_free_consistent;
3115 dev->open = gem_open;
3116 dev->stop = gem_close;
3117 dev->hard_start_xmit = gem_start_xmit;
3118 dev->get_stats = gem_get_stats;
3119 dev->set_multicast_list = gem_set_multicast;
3120 dev->do_ioctl = gem_ioctl;
3121 netif_napi_add(dev, &gp->napi, gem_poll, 64);
3122 dev->ethtool_ops = &gem_ethtool_ops;
3123 dev->tx_timeout = gem_tx_timeout;
3124 dev->watchdog_timeo = 5 * HZ;
3125 dev->change_mtu = gem_change_mtu;
3126 dev->irq = pdev->irq;
3127 dev->dma = 0;
3128 dev->set_mac_address = gem_set_mac_address;
3129 #ifdef CONFIG_NET_POLL_CONTROLLER
3130 dev->poll_controller = gem_poll_controller;
3131 #endif
3133 /* Set that now, in case PM kicks in now */
3134 pci_set_drvdata(pdev, dev);
3136 /* Detect & init PHY, start autoneg, we release the cell now
3137 * too, it will be managed by whoever needs it
3139 gem_init_phy(gp);
3141 spin_lock_irq(&gp->lock);
3142 gem_put_cell(gp);
3143 spin_unlock_irq(&gp->lock);
3145 /* Register with kernel */
3146 if (register_netdev(dev)) {
3147 printk(KERN_ERR PFX "Cannot register net device, "
3148 "aborting.\n");
3149 err = -ENOMEM;
3150 goto err_out_free_consistent;
3153 printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet "
3154 "%s\n",
3155 dev->name, print_mac(mac, dev->dev_addr));
3157 if (gp->phy_type == phy_mii_mdio0 ||
3158 gp->phy_type == phy_mii_mdio1)
3159 printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
3160 gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3162 /* GEM can do it all... */
3163 dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
3164 if (pci_using_dac)
3165 dev->features |= NETIF_F_HIGHDMA;
3167 return 0;
3169 err_out_free_consistent:
3170 gem_remove_one(pdev);
3171 err_out_iounmap:
3172 gem_put_cell(gp);
3173 iounmap(gp->regs);
3175 err_out_free_res:
3176 pci_release_regions(pdev);
3178 err_out_free_netdev:
3179 free_netdev(dev);
3180 err_disable_device:
3181 pci_disable_device(pdev);
3182 return err;
3187 static struct pci_driver gem_driver = {
3188 .name = GEM_MODULE_NAME,
3189 .id_table = gem_pci_tbl,
3190 .probe = gem_init_one,
3191 .remove = gem_remove_one,
3192 #ifdef CONFIG_PM
3193 .suspend = gem_suspend,
3194 .resume = gem_resume,
3195 #endif /* CONFIG_PM */
3198 static int __init gem_init(void)
3200 return pci_register_driver(&gem_driver);
3203 static void __exit gem_cleanup(void)
3205 pci_unregister_driver(&gem_driver);
3208 module_init(gem_init);
3209 module_exit(gem_cleanup);