2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes: Pedro Roque : Retransmit queue handled by TCP.
23 * : Fragmentation on mtu decrease
24 * : Segment collapse on retransmit
27 * Linus Torvalds : send_delayed_ack
28 * David S. Miller : Charge memory using the right skb
29 * during syn/ack processing.
30 * David S. Miller : Output engine completely rewritten.
31 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
32 * Cacophonix Gaul : draft-minshall-nagle-01
33 * J Hadi Salim : ECN support
39 #include <linux/compiler.h>
40 #include <linux/module.h>
42 /* People can turn this off for buggy TCP's found in printers etc. */
43 int sysctl_tcp_retrans_collapse __read_mostly
= 1;
45 /* People can turn this on to work with those rare, broken TCPs that
46 * interpret the window field as a signed quantity.
48 int sysctl_tcp_workaround_signed_windows __read_mostly
= 0;
50 /* This limits the percentage of the congestion window which we
51 * will allow a single TSO frame to consume. Building TSO frames
52 * which are too large can cause TCP streams to be bursty.
54 int sysctl_tcp_tso_win_divisor __read_mostly
= 3;
56 int sysctl_tcp_mtu_probing __read_mostly
= 0;
57 int sysctl_tcp_base_mss __read_mostly
= 512;
59 /* By default, RFC2861 behavior. */
60 int sysctl_tcp_slow_start_after_idle __read_mostly
= 1;
62 static void tcp_event_new_data_sent(struct sock
*sk
, struct sk_buff
*skb
)
64 struct tcp_sock
*tp
= tcp_sk(sk
);
65 unsigned int prior_packets
= tp
->packets_out
;
67 tcp_advance_send_head(sk
, skb
);
68 tp
->snd_nxt
= TCP_SKB_CB(skb
)->end_seq
;
70 /* Don't override Nagle indefinately with F-RTO */
71 if (tp
->frto_counter
== 2)
74 tp
->packets_out
+= tcp_skb_pcount(skb
);
76 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
77 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
80 /* SND.NXT, if window was not shrunk.
81 * If window has been shrunk, what should we make? It is not clear at all.
82 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
83 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
84 * invalid. OK, let's make this for now:
86 static inline __u32
tcp_acceptable_seq(struct sock
*sk
)
88 struct tcp_sock
*tp
= tcp_sk(sk
);
90 if (!before(tcp_wnd_end(tp
), tp
->snd_nxt
))
93 return tcp_wnd_end(tp
);
96 /* Calculate mss to advertise in SYN segment.
97 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
99 * 1. It is independent of path mtu.
100 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
101 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
102 * attached devices, because some buggy hosts are confused by
104 * 4. We do not make 3, we advertise MSS, calculated from first
105 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
106 * This may be overridden via information stored in routing table.
107 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
108 * probably even Jumbo".
110 static __u16
tcp_advertise_mss(struct sock
*sk
)
112 struct tcp_sock
*tp
= tcp_sk(sk
);
113 struct dst_entry
*dst
= __sk_dst_get(sk
);
114 int mss
= tp
->advmss
;
116 if (dst
&& dst_metric(dst
, RTAX_ADVMSS
) < mss
) {
117 mss
= dst_metric(dst
, RTAX_ADVMSS
);
124 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
125 * This is the first part of cwnd validation mechanism. */
126 static void tcp_cwnd_restart(struct sock
*sk
, struct dst_entry
*dst
)
128 struct tcp_sock
*tp
= tcp_sk(sk
);
129 s32 delta
= tcp_time_stamp
- tp
->lsndtime
;
130 u32 restart_cwnd
= tcp_init_cwnd(tp
, dst
);
131 u32 cwnd
= tp
->snd_cwnd
;
133 tcp_ca_event(sk
, CA_EVENT_CWND_RESTART
);
135 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
136 restart_cwnd
= min(restart_cwnd
, cwnd
);
138 while ((delta
-= inet_csk(sk
)->icsk_rto
) > 0 && cwnd
> restart_cwnd
)
140 tp
->snd_cwnd
= max(cwnd
, restart_cwnd
);
141 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
142 tp
->snd_cwnd_used
= 0;
145 static void tcp_event_data_sent(struct tcp_sock
*tp
,
146 struct sk_buff
*skb
, struct sock
*sk
)
148 struct inet_connection_sock
*icsk
= inet_csk(sk
);
149 const u32 now
= tcp_time_stamp
;
151 if (sysctl_tcp_slow_start_after_idle
&&
152 (!tp
->packets_out
&& (s32
)(now
- tp
->lsndtime
) > icsk
->icsk_rto
))
153 tcp_cwnd_restart(sk
, __sk_dst_get(sk
));
157 /* If it is a reply for ato after last received
158 * packet, enter pingpong mode.
160 if ((u32
)(now
- icsk
->icsk_ack
.lrcvtime
) < icsk
->icsk_ack
.ato
)
161 icsk
->icsk_ack
.pingpong
= 1;
164 static inline void tcp_event_ack_sent(struct sock
*sk
, unsigned int pkts
)
166 tcp_dec_quickack_mode(sk
, pkts
);
167 inet_csk_clear_xmit_timer(sk
, ICSK_TIME_DACK
);
170 /* Determine a window scaling and initial window to offer.
171 * Based on the assumption that the given amount of space
172 * will be offered. Store the results in the tp structure.
173 * NOTE: for smooth operation initial space offering should
174 * be a multiple of mss if possible. We assume here that mss >= 1.
175 * This MUST be enforced by all callers.
177 void tcp_select_initial_window(int __space
, __u32 mss
,
178 __u32
*rcv_wnd
, __u32
*window_clamp
,
179 int wscale_ok
, __u8
*rcv_wscale
)
181 unsigned int space
= (__space
< 0 ? 0 : __space
);
183 /* If no clamp set the clamp to the max possible scaled window */
184 if (*window_clamp
== 0)
185 (*window_clamp
) = (65535 << 14);
186 space
= min(*window_clamp
, space
);
188 /* Quantize space offering to a multiple of mss if possible. */
190 space
= (space
/ mss
) * mss
;
192 /* NOTE: offering an initial window larger than 32767
193 * will break some buggy TCP stacks. If the admin tells us
194 * it is likely we could be speaking with such a buggy stack
195 * we will truncate our initial window offering to 32K-1
196 * unless the remote has sent us a window scaling option,
197 * which we interpret as a sign the remote TCP is not
198 * misinterpreting the window field as a signed quantity.
200 if (sysctl_tcp_workaround_signed_windows
)
201 (*rcv_wnd
) = min(space
, MAX_TCP_WINDOW
);
207 /* Set window scaling on max possible window
208 * See RFC1323 for an explanation of the limit to 14
210 space
= max_t(u32
, sysctl_tcp_rmem
[2], sysctl_rmem_max
);
211 space
= min_t(u32
, space
, *window_clamp
);
212 while (space
> 65535 && (*rcv_wscale
) < 14) {
218 /* Set initial window to value enough for senders,
219 * following RFC2414. Senders, not following this RFC,
220 * will be satisfied with 2.
222 if (mss
> (1 << *rcv_wscale
)) {
228 if (*rcv_wnd
> init_cwnd
* mss
)
229 *rcv_wnd
= init_cwnd
* mss
;
232 /* Set the clamp no higher than max representable value */
233 (*window_clamp
) = min(65535U << (*rcv_wscale
), *window_clamp
);
236 /* Chose a new window to advertise, update state in tcp_sock for the
237 * socket, and return result with RFC1323 scaling applied. The return
238 * value can be stuffed directly into th->window for an outgoing
241 static u16
tcp_select_window(struct sock
*sk
)
243 struct tcp_sock
*tp
= tcp_sk(sk
);
244 u32 cur_win
= tcp_receive_window(tp
);
245 u32 new_win
= __tcp_select_window(sk
);
247 /* Never shrink the offered window */
248 if (new_win
< cur_win
) {
249 /* Danger Will Robinson!
250 * Don't update rcv_wup/rcv_wnd here or else
251 * we will not be able to advertise a zero
252 * window in time. --DaveM
254 * Relax Will Robinson.
256 new_win
= ALIGN(cur_win
, 1 << tp
->rx_opt
.rcv_wscale
);
258 tp
->rcv_wnd
= new_win
;
259 tp
->rcv_wup
= tp
->rcv_nxt
;
261 /* Make sure we do not exceed the maximum possible
264 if (!tp
->rx_opt
.rcv_wscale
&& sysctl_tcp_workaround_signed_windows
)
265 new_win
= min(new_win
, MAX_TCP_WINDOW
);
267 new_win
= min(new_win
, (65535U << tp
->rx_opt
.rcv_wscale
));
269 /* RFC1323 scaling applied */
270 new_win
>>= tp
->rx_opt
.rcv_wscale
;
272 /* If we advertise zero window, disable fast path. */
279 static inline void TCP_ECN_send_synack(struct tcp_sock
*tp
, struct sk_buff
*skb
)
281 TCP_SKB_CB(skb
)->flags
&= ~TCPCB_FLAG_CWR
;
282 if (!(tp
->ecn_flags
& TCP_ECN_OK
))
283 TCP_SKB_CB(skb
)->flags
&= ~TCPCB_FLAG_ECE
;
286 static inline void TCP_ECN_send_syn(struct sock
*sk
, struct sk_buff
*skb
)
288 struct tcp_sock
*tp
= tcp_sk(sk
);
291 if (sysctl_tcp_ecn
) {
292 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_ECE
| TCPCB_FLAG_CWR
;
293 tp
->ecn_flags
= TCP_ECN_OK
;
297 static __inline__
void
298 TCP_ECN_make_synack(struct request_sock
*req
, struct tcphdr
*th
)
300 if (inet_rsk(req
)->ecn_ok
)
304 static inline void TCP_ECN_send(struct sock
*sk
, struct sk_buff
*skb
,
307 struct tcp_sock
*tp
= tcp_sk(sk
);
309 if (tp
->ecn_flags
& TCP_ECN_OK
) {
310 /* Not-retransmitted data segment: set ECT and inject CWR. */
311 if (skb
->len
!= tcp_header_len
&&
312 !before(TCP_SKB_CB(skb
)->seq
, tp
->snd_nxt
)) {
314 if (tp
->ecn_flags
& TCP_ECN_QUEUE_CWR
) {
315 tp
->ecn_flags
&= ~TCP_ECN_QUEUE_CWR
;
316 tcp_hdr(skb
)->cwr
= 1;
317 skb_shinfo(skb
)->gso_type
|= SKB_GSO_TCP_ECN
;
320 /* ACK or retransmitted segment: clear ECT|CE */
321 INET_ECN_dontxmit(sk
);
323 if (tp
->ecn_flags
& TCP_ECN_DEMAND_CWR
)
324 tcp_hdr(skb
)->ece
= 1;
328 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
329 * auto increment end seqno.
331 static void tcp_init_nondata_skb(struct sk_buff
*skb
, u32 seq
, u8 flags
)
335 TCP_SKB_CB(skb
)->flags
= flags
;
336 TCP_SKB_CB(skb
)->sacked
= 0;
338 skb_shinfo(skb
)->gso_segs
= 1;
339 skb_shinfo(skb
)->gso_size
= 0;
340 skb_shinfo(skb
)->gso_type
= 0;
342 TCP_SKB_CB(skb
)->seq
= seq
;
343 if (flags
& (TCPCB_FLAG_SYN
| TCPCB_FLAG_FIN
))
345 TCP_SKB_CB(skb
)->end_seq
= seq
;
348 static inline int tcp_urg_mode(const struct tcp_sock
*tp
)
350 return tp
->snd_una
!= tp
->snd_up
;
353 #define OPTION_SACK_ADVERTISE (1 << 0)
354 #define OPTION_TS (1 << 1)
355 #define OPTION_MD5 (1 << 2)
357 struct tcp_out_options
{
358 u8 options
; /* bit field of OPTION_* */
359 u8 ws
; /* window scale, 0 to disable */
360 u8 num_sack_blocks
; /* number of SACK blocks to include */
361 u16 mss
; /* 0 to disable */
362 __u32 tsval
, tsecr
; /* need to include OPTION_TS */
365 static void tcp_options_write(__be32
*ptr
, struct tcp_sock
*tp
,
366 const struct tcp_out_options
*opts
,
368 if (unlikely(OPTION_MD5
& opts
->options
)) {
369 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
371 (TCPOPT_MD5SIG
<< 8) |
373 *md5_hash
= (__u8
*)ptr
;
379 if (likely(OPTION_TS
& opts
->options
)) {
380 if (unlikely(OPTION_SACK_ADVERTISE
& opts
->options
)) {
381 *ptr
++ = htonl((TCPOPT_SACK_PERM
<< 24) |
382 (TCPOLEN_SACK_PERM
<< 16) |
383 (TCPOPT_TIMESTAMP
<< 8) |
386 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
388 (TCPOPT_TIMESTAMP
<< 8) |
391 *ptr
++ = htonl(opts
->tsval
);
392 *ptr
++ = htonl(opts
->tsecr
);
395 if (unlikely(opts
->mss
)) {
396 *ptr
++ = htonl((TCPOPT_MSS
<< 24) |
397 (TCPOLEN_MSS
<< 16) |
401 if (unlikely(OPTION_SACK_ADVERTISE
& opts
->options
&&
402 !(OPTION_TS
& opts
->options
))) {
403 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
405 (TCPOPT_SACK_PERM
<< 8) |
409 if (unlikely(opts
->ws
)) {
410 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
411 (TCPOPT_WINDOW
<< 16) |
412 (TCPOLEN_WINDOW
<< 8) |
416 if (unlikely(opts
->num_sack_blocks
)) {
417 struct tcp_sack_block
*sp
= tp
->rx_opt
.dsack
?
418 tp
->duplicate_sack
: tp
->selective_acks
;
421 *ptr
++ = htonl((TCPOPT_NOP
<< 24) |
424 (TCPOLEN_SACK_BASE
+ (opts
->num_sack_blocks
*
425 TCPOLEN_SACK_PERBLOCK
)));
427 for (this_sack
= 0; this_sack
< opts
->num_sack_blocks
;
429 *ptr
++ = htonl(sp
[this_sack
].start_seq
);
430 *ptr
++ = htonl(sp
[this_sack
].end_seq
);
433 if (tp
->rx_opt
.dsack
) {
434 tp
->rx_opt
.dsack
= 0;
435 tp
->rx_opt
.eff_sacks
--;
440 static unsigned tcp_syn_options(struct sock
*sk
, struct sk_buff
*skb
,
441 struct tcp_out_options
*opts
,
442 struct tcp_md5sig_key
**md5
) {
443 struct tcp_sock
*tp
= tcp_sk(sk
);
446 #ifdef CONFIG_TCP_MD5SIG
447 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
449 opts
->options
|= OPTION_MD5
;
450 size
+= TCPOLEN_MD5SIG_ALIGNED
;
456 /* We always get an MSS option. The option bytes which will be seen in
457 * normal data packets should timestamps be used, must be in the MSS
458 * advertised. But we subtract them from tp->mss_cache so that
459 * calculations in tcp_sendmsg are simpler etc. So account for this
460 * fact here if necessary. If we don't do this correctly, as a
461 * receiver we won't recognize data packets as being full sized when we
462 * should, and thus we won't abide by the delayed ACK rules correctly.
463 * SACKs don't matter, we never delay an ACK when we have any of those
465 opts
->mss
= tcp_advertise_mss(sk
);
466 size
+= TCPOLEN_MSS_ALIGNED
;
468 if (likely(sysctl_tcp_timestamps
&& *md5
== NULL
)) {
469 opts
->options
|= OPTION_TS
;
470 opts
->tsval
= TCP_SKB_CB(skb
)->when
;
471 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
472 size
+= TCPOLEN_TSTAMP_ALIGNED
;
474 if (likely(sysctl_tcp_window_scaling
)) {
475 opts
->ws
= tp
->rx_opt
.rcv_wscale
;
477 size
+= TCPOLEN_WSCALE_ALIGNED
;
479 if (likely(sysctl_tcp_sack
)) {
480 opts
->options
|= OPTION_SACK_ADVERTISE
;
481 if (unlikely(!(OPTION_TS
& opts
->options
)))
482 size
+= TCPOLEN_SACKPERM_ALIGNED
;
488 static unsigned tcp_synack_options(struct sock
*sk
,
489 struct request_sock
*req
,
490 unsigned mss
, struct sk_buff
*skb
,
491 struct tcp_out_options
*opts
,
492 struct tcp_md5sig_key
**md5
) {
494 struct inet_request_sock
*ireq
= inet_rsk(req
);
497 #ifdef CONFIG_TCP_MD5SIG
498 *md5
= tcp_rsk(req
)->af_specific
->md5_lookup(sk
, req
);
500 opts
->options
|= OPTION_MD5
;
501 size
+= TCPOLEN_MD5SIG_ALIGNED
;
507 /* we can't fit any SACK blocks in a packet with MD5 + TS
508 options. There was discussion about disabling SACK rather than TS in
509 order to fit in better with old, buggy kernels, but that was deemed
510 to be unnecessary. */
511 doing_ts
= ireq
->tstamp_ok
&& !(*md5
&& ireq
->sack_ok
);
514 size
+= TCPOLEN_MSS_ALIGNED
;
516 if (likely(ireq
->wscale_ok
)) {
517 opts
->ws
= ireq
->rcv_wscale
;
519 size
+= TCPOLEN_WSCALE_ALIGNED
;
521 if (likely(doing_ts
)) {
522 opts
->options
|= OPTION_TS
;
523 opts
->tsval
= TCP_SKB_CB(skb
)->when
;
524 opts
->tsecr
= req
->ts_recent
;
525 size
+= TCPOLEN_TSTAMP_ALIGNED
;
527 if (likely(ireq
->sack_ok
)) {
528 opts
->options
|= OPTION_SACK_ADVERTISE
;
529 if (unlikely(!doing_ts
))
530 size
+= TCPOLEN_SACKPERM_ALIGNED
;
536 static unsigned tcp_established_options(struct sock
*sk
, struct sk_buff
*skb
,
537 struct tcp_out_options
*opts
,
538 struct tcp_md5sig_key
**md5
) {
539 struct tcp_skb_cb
*tcb
= skb
? TCP_SKB_CB(skb
) : NULL
;
540 struct tcp_sock
*tp
= tcp_sk(sk
);
543 #ifdef CONFIG_TCP_MD5SIG
544 *md5
= tp
->af_specific
->md5_lookup(sk
, sk
);
545 if (unlikely(*md5
)) {
546 opts
->options
|= OPTION_MD5
;
547 size
+= TCPOLEN_MD5SIG_ALIGNED
;
553 if (likely(tp
->rx_opt
.tstamp_ok
)) {
554 opts
->options
|= OPTION_TS
;
555 opts
->tsval
= tcb
? tcb
->when
: 0;
556 opts
->tsecr
= tp
->rx_opt
.ts_recent
;
557 size
+= TCPOLEN_TSTAMP_ALIGNED
;
560 if (unlikely(tp
->rx_opt
.eff_sacks
)) {
561 const unsigned remaining
= MAX_TCP_OPTION_SPACE
- size
;
562 opts
->num_sack_blocks
=
563 min_t(unsigned, tp
->rx_opt
.eff_sacks
,
564 (remaining
- TCPOLEN_SACK_BASE_ALIGNED
) /
565 TCPOLEN_SACK_PERBLOCK
);
566 size
+= TCPOLEN_SACK_BASE_ALIGNED
+
567 opts
->num_sack_blocks
* TCPOLEN_SACK_PERBLOCK
;
573 /* This routine actually transmits TCP packets queued in by
574 * tcp_do_sendmsg(). This is used by both the initial
575 * transmission and possible later retransmissions.
576 * All SKB's seen here are completely headerless. It is our
577 * job to build the TCP header, and pass the packet down to
578 * IP so it can do the same plus pass the packet off to the
581 * We are working here with either a clone of the original
582 * SKB, or a fresh unique copy made by the retransmit engine.
584 static int tcp_transmit_skb(struct sock
*sk
, struct sk_buff
*skb
, int clone_it
,
587 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
588 struct inet_sock
*inet
;
590 struct tcp_skb_cb
*tcb
;
591 struct tcp_out_options opts
;
592 unsigned tcp_options_size
, tcp_header_size
;
593 struct tcp_md5sig_key
*md5
;
594 __u8
*md5_hash_location
;
598 BUG_ON(!skb
|| !tcp_skb_pcount(skb
));
600 /* If congestion control is doing timestamping, we must
601 * take such a timestamp before we potentially clone/copy.
603 if (icsk
->icsk_ca_ops
->flags
& TCP_CONG_RTT_STAMP
)
604 __net_timestamp(skb
);
606 if (likely(clone_it
)) {
607 if (unlikely(skb_cloned(skb
)))
608 skb
= pskb_copy(skb
, gfp_mask
);
610 skb
= skb_clone(skb
, gfp_mask
);
617 tcb
= TCP_SKB_CB(skb
);
618 memset(&opts
, 0, sizeof(opts
));
620 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
))
621 tcp_options_size
= tcp_syn_options(sk
, skb
, &opts
, &md5
);
623 tcp_options_size
= tcp_established_options(sk
, skb
, &opts
,
625 tcp_header_size
= tcp_options_size
+ sizeof(struct tcphdr
);
627 if (tcp_packets_in_flight(tp
) == 0)
628 tcp_ca_event(sk
, CA_EVENT_TX_START
);
630 skb_push(skb
, tcp_header_size
);
631 skb_reset_transport_header(skb
);
632 skb_set_owner_w(skb
, sk
);
634 /* Build TCP header and checksum it. */
636 th
->source
= inet
->sport
;
637 th
->dest
= inet
->dport
;
638 th
->seq
= htonl(tcb
->seq
);
639 th
->ack_seq
= htonl(tp
->rcv_nxt
);
640 *(((__be16
*)th
) + 6) = htons(((tcp_header_size
>> 2) << 12) |
643 if (unlikely(tcb
->flags
& TCPCB_FLAG_SYN
)) {
644 /* RFC1323: The window in SYN & SYN/ACK segments
647 th
->window
= htons(min(tp
->rcv_wnd
, 65535U));
649 th
->window
= htons(tcp_select_window(sk
));
654 /* The urg_mode check is necessary during a below snd_una win probe */
655 if (unlikely(tcp_urg_mode(tp
) &&
656 between(tp
->snd_up
, tcb
->seq
+ 1, tcb
->seq
+ 0xFFFF))) {
657 th
->urg_ptr
= htons(tp
->snd_up
- tcb
->seq
);
661 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
, &md5_hash_location
);
662 if (likely((tcb
->flags
& TCPCB_FLAG_SYN
) == 0))
663 TCP_ECN_send(sk
, skb
, tcp_header_size
);
665 #ifdef CONFIG_TCP_MD5SIG
666 /* Calculate the MD5 hash, as we have all we need now */
668 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
669 tp
->af_specific
->calc_md5_hash(md5_hash_location
,
674 icsk
->icsk_af_ops
->send_check(sk
, skb
->len
, skb
);
676 if (likely(tcb
->flags
& TCPCB_FLAG_ACK
))
677 tcp_event_ack_sent(sk
, tcp_skb_pcount(skb
));
679 if (skb
->len
!= tcp_header_size
)
680 tcp_event_data_sent(tp
, skb
, sk
);
682 if (after(tcb
->end_seq
, tp
->snd_nxt
) || tcb
->seq
== tcb
->end_seq
)
683 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
685 err
= icsk
->icsk_af_ops
->queue_xmit(skb
, 0);
686 if (likely(err
<= 0))
689 tcp_enter_cwr(sk
, 1);
691 return net_xmit_eval(err
);
694 /* This routine just queue's the buffer
696 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
697 * otherwise socket can stall.
699 static void tcp_queue_skb(struct sock
*sk
, struct sk_buff
*skb
)
701 struct tcp_sock
*tp
= tcp_sk(sk
);
703 /* Advance write_seq and place onto the write_queue. */
704 tp
->write_seq
= TCP_SKB_CB(skb
)->end_seq
;
705 skb_header_release(skb
);
706 tcp_add_write_queue_tail(sk
, skb
);
707 sk
->sk_wmem_queued
+= skb
->truesize
;
708 sk_mem_charge(sk
, skb
->truesize
);
711 static void tcp_set_skb_tso_segs(struct sock
*sk
, struct sk_buff
*skb
,
712 unsigned int mss_now
)
714 if (skb
->len
<= mss_now
|| !sk_can_gso(sk
)) {
715 /* Avoid the costly divide in the normal
718 skb_shinfo(skb
)->gso_segs
= 1;
719 skb_shinfo(skb
)->gso_size
= 0;
720 skb_shinfo(skb
)->gso_type
= 0;
722 skb_shinfo(skb
)->gso_segs
= DIV_ROUND_UP(skb
->len
, mss_now
);
723 skb_shinfo(skb
)->gso_size
= mss_now
;
724 skb_shinfo(skb
)->gso_type
= sk
->sk_gso_type
;
728 /* When a modification to fackets out becomes necessary, we need to check
729 * skb is counted to fackets_out or not.
731 static void tcp_adjust_fackets_out(struct sock
*sk
, struct sk_buff
*skb
,
734 struct tcp_sock
*tp
= tcp_sk(sk
);
736 if (!tp
->sacked_out
|| tcp_is_reno(tp
))
739 if (after(tcp_highest_sack_seq(tp
), TCP_SKB_CB(skb
)->seq
))
740 tp
->fackets_out
-= decr
;
743 /* Function to create two new TCP segments. Shrinks the given segment
744 * to the specified size and appends a new segment with the rest of the
745 * packet to the list. This won't be called frequently, I hope.
746 * Remember, these are still headerless SKBs at this point.
748 int tcp_fragment(struct sock
*sk
, struct sk_buff
*skb
, u32 len
,
749 unsigned int mss_now
)
751 struct tcp_sock
*tp
= tcp_sk(sk
);
752 struct sk_buff
*buff
;
753 int nsize
, old_factor
;
757 BUG_ON(len
> skb
->len
);
759 tcp_clear_retrans_hints_partial(tp
);
760 nsize
= skb_headlen(skb
) - len
;
764 if (skb_cloned(skb
) &&
765 skb_is_nonlinear(skb
) &&
766 pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
769 /* Get a new skb... force flag on. */
770 buff
= sk_stream_alloc_skb(sk
, nsize
, GFP_ATOMIC
);
772 return -ENOMEM
; /* We'll just try again later. */
774 sk
->sk_wmem_queued
+= buff
->truesize
;
775 sk_mem_charge(sk
, buff
->truesize
);
776 nlen
= skb
->len
- len
- nsize
;
777 buff
->truesize
+= nlen
;
778 skb
->truesize
-= nlen
;
780 /* Correct the sequence numbers. */
781 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
782 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
783 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
785 /* PSH and FIN should only be set in the second packet. */
786 flags
= TCP_SKB_CB(skb
)->flags
;
787 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
| TCPCB_FLAG_PSH
);
788 TCP_SKB_CB(buff
)->flags
= flags
;
789 TCP_SKB_CB(buff
)->sacked
= TCP_SKB_CB(skb
)->sacked
;
791 if (!skb_shinfo(skb
)->nr_frags
&& skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
792 /* Copy and checksum data tail into the new buffer. */
793 buff
->csum
= csum_partial_copy_nocheck(skb
->data
+ len
,
794 skb_put(buff
, nsize
),
799 skb
->csum
= csum_block_sub(skb
->csum
, buff
->csum
, len
);
801 skb
->ip_summed
= CHECKSUM_PARTIAL
;
802 skb_split(skb
, buff
, len
);
805 buff
->ip_summed
= skb
->ip_summed
;
807 /* Looks stupid, but our code really uses when of
808 * skbs, which it never sent before. --ANK
810 TCP_SKB_CB(buff
)->when
= TCP_SKB_CB(skb
)->when
;
811 buff
->tstamp
= skb
->tstamp
;
813 old_factor
= tcp_skb_pcount(skb
);
815 /* Fix up tso_factor for both original and new SKB. */
816 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
817 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
819 /* If this packet has been sent out already, we must
820 * adjust the various packet counters.
822 if (!before(tp
->snd_nxt
, TCP_SKB_CB(buff
)->end_seq
)) {
823 int diff
= old_factor
- tcp_skb_pcount(skb
) -
824 tcp_skb_pcount(buff
);
826 tp
->packets_out
-= diff
;
828 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)
829 tp
->sacked_out
-= diff
;
830 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
)
831 tp
->retrans_out
-= diff
;
833 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
834 tp
->lost_out
-= diff
;
836 /* Adjust Reno SACK estimate. */
837 if (tcp_is_reno(tp
) && diff
> 0) {
838 tcp_dec_pcount_approx_int(&tp
->sacked_out
, diff
);
839 tcp_verify_left_out(tp
);
841 tcp_adjust_fackets_out(sk
, skb
, diff
);
844 /* Link BUFF into the send queue. */
845 skb_header_release(buff
);
846 tcp_insert_write_queue_after(skb
, buff
, sk
);
851 /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c
852 * eventually). The difference is that pulled data not copied, but
853 * immediately discarded.
855 static void __pskb_trim_head(struct sk_buff
*skb
, int len
)
861 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
862 if (skb_shinfo(skb
)->frags
[i
].size
<= eat
) {
863 put_page(skb_shinfo(skb
)->frags
[i
].page
);
864 eat
-= skb_shinfo(skb
)->frags
[i
].size
;
866 skb_shinfo(skb
)->frags
[k
] = skb_shinfo(skb
)->frags
[i
];
868 skb_shinfo(skb
)->frags
[k
].page_offset
+= eat
;
869 skb_shinfo(skb
)->frags
[k
].size
-= eat
;
875 skb_shinfo(skb
)->nr_frags
= k
;
877 skb_reset_tail_pointer(skb
);
878 skb
->data_len
-= len
;
879 skb
->len
= skb
->data_len
;
882 int tcp_trim_head(struct sock
*sk
, struct sk_buff
*skb
, u32 len
)
884 if (skb_cloned(skb
) && pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
))
887 /* If len == headlen, we avoid __skb_pull to preserve alignment. */
888 if (unlikely(len
< skb_headlen(skb
)))
889 __skb_pull(skb
, len
);
891 __pskb_trim_head(skb
, len
- skb_headlen(skb
));
893 TCP_SKB_CB(skb
)->seq
+= len
;
894 skb
->ip_summed
= CHECKSUM_PARTIAL
;
896 skb
->truesize
-= len
;
897 sk
->sk_wmem_queued
-= len
;
898 sk_mem_uncharge(sk
, len
);
899 sock_set_flag(sk
, SOCK_QUEUE_SHRUNK
);
901 /* Any change of skb->len requires recalculation of tso
904 if (tcp_skb_pcount(skb
) > 1)
905 tcp_set_skb_tso_segs(sk
, skb
, tcp_current_mss(sk
, 1));
910 /* Not accounting for SACKs here. */
911 int tcp_mtu_to_mss(struct sock
*sk
, int pmtu
)
913 struct tcp_sock
*tp
= tcp_sk(sk
);
914 struct inet_connection_sock
*icsk
= inet_csk(sk
);
917 /* Calculate base mss without TCP options:
918 It is MMS_S - sizeof(tcphdr) of rfc1122
920 mss_now
= pmtu
- icsk
->icsk_af_ops
->net_header_len
- sizeof(struct tcphdr
);
922 /* Clamp it (mss_clamp does not include tcp options) */
923 if (mss_now
> tp
->rx_opt
.mss_clamp
)
924 mss_now
= tp
->rx_opt
.mss_clamp
;
926 /* Now subtract optional transport overhead */
927 mss_now
-= icsk
->icsk_ext_hdr_len
;
929 /* Then reserve room for full set of TCP options and 8 bytes of data */
933 /* Now subtract TCP options size, not including SACKs */
934 mss_now
-= tp
->tcp_header_len
- sizeof(struct tcphdr
);
939 /* Inverse of above */
940 int tcp_mss_to_mtu(struct sock
*sk
, int mss
)
942 struct tcp_sock
*tp
= tcp_sk(sk
);
943 struct inet_connection_sock
*icsk
= inet_csk(sk
);
948 icsk
->icsk_ext_hdr_len
+
949 icsk
->icsk_af_ops
->net_header_len
;
954 void tcp_mtup_init(struct sock
*sk
)
956 struct tcp_sock
*tp
= tcp_sk(sk
);
957 struct inet_connection_sock
*icsk
= inet_csk(sk
);
959 icsk
->icsk_mtup
.enabled
= sysctl_tcp_mtu_probing
> 1;
960 icsk
->icsk_mtup
.search_high
= tp
->rx_opt
.mss_clamp
+ sizeof(struct tcphdr
) +
961 icsk
->icsk_af_ops
->net_header_len
;
962 icsk
->icsk_mtup
.search_low
= tcp_mss_to_mtu(sk
, sysctl_tcp_base_mss
);
963 icsk
->icsk_mtup
.probe_size
= 0;
966 /* Bound MSS / TSO packet size with the half of the window */
967 static int tcp_bound_to_half_wnd(struct tcp_sock
*tp
, int pktsize
)
969 if (tp
->max_window
&& pktsize
> (tp
->max_window
>> 1))
970 return max(tp
->max_window
>> 1, 68U - tp
->tcp_header_len
);
975 /* This function synchronize snd mss to current pmtu/exthdr set.
977 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
978 for TCP options, but includes only bare TCP header.
980 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
981 It is minimum of user_mss and mss received with SYN.
982 It also does not include TCP options.
984 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
986 tp->mss_cache is current effective sending mss, including
987 all tcp options except for SACKs. It is evaluated,
988 taking into account current pmtu, but never exceeds
989 tp->rx_opt.mss_clamp.
991 NOTE1. rfc1122 clearly states that advertised MSS
992 DOES NOT include either tcp or ip options.
994 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
995 are READ ONLY outside this function. --ANK (980731)
997 unsigned int tcp_sync_mss(struct sock
*sk
, u32 pmtu
)
999 struct tcp_sock
*tp
= tcp_sk(sk
);
1000 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1003 if (icsk
->icsk_mtup
.search_high
> pmtu
)
1004 icsk
->icsk_mtup
.search_high
= pmtu
;
1006 mss_now
= tcp_mtu_to_mss(sk
, pmtu
);
1007 mss_now
= tcp_bound_to_half_wnd(tp
, mss_now
);
1009 /* And store cached results */
1010 icsk
->icsk_pmtu_cookie
= pmtu
;
1011 if (icsk
->icsk_mtup
.enabled
)
1012 mss_now
= min(mss_now
, tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_low
));
1013 tp
->mss_cache
= mss_now
;
1018 /* Compute the current effective MSS, taking SACKs and IP options,
1019 * and even PMTU discovery events into account.
1021 * LARGESEND note: !tcp_urg_mode is overkill, only frames up to snd_up
1022 * cannot be large. However, taking into account rare use of URG, this
1023 * is not a big flaw.
1025 unsigned int tcp_current_mss(struct sock
*sk
, int large_allowed
)
1027 struct tcp_sock
*tp
= tcp_sk(sk
);
1028 struct dst_entry
*dst
= __sk_dst_get(sk
);
1032 unsigned header_len
;
1033 struct tcp_out_options opts
;
1034 struct tcp_md5sig_key
*md5
;
1036 mss_now
= tp
->mss_cache
;
1038 if (large_allowed
&& sk_can_gso(sk
) && !tcp_urg_mode(tp
))
1042 u32 mtu
= dst_mtu(dst
);
1043 if (mtu
!= inet_csk(sk
)->icsk_pmtu_cookie
)
1044 mss_now
= tcp_sync_mss(sk
, mtu
);
1047 header_len
= tcp_established_options(sk
, NULL
, &opts
, &md5
) +
1048 sizeof(struct tcphdr
);
1049 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1050 * some common options. If this is an odd packet (because we have SACK
1051 * blocks etc) then our calculated header_len will be different, and
1052 * we have to adjust mss_now correspondingly */
1053 if (header_len
!= tp
->tcp_header_len
) {
1054 int delta
= (int) header_len
- tp
->tcp_header_len
;
1058 xmit_size_goal
= mss_now
;
1061 xmit_size_goal
= ((sk
->sk_gso_max_size
- 1) -
1062 inet_csk(sk
)->icsk_af_ops
->net_header_len
-
1063 inet_csk(sk
)->icsk_ext_hdr_len
-
1064 tp
->tcp_header_len
);
1066 xmit_size_goal
= tcp_bound_to_half_wnd(tp
, xmit_size_goal
);
1067 xmit_size_goal
-= (xmit_size_goal
% mss_now
);
1069 tp
->xmit_size_goal
= xmit_size_goal
;
1074 /* Congestion window validation. (RFC2861) */
1075 static void tcp_cwnd_validate(struct sock
*sk
)
1077 struct tcp_sock
*tp
= tcp_sk(sk
);
1079 if (tp
->packets_out
>= tp
->snd_cwnd
) {
1080 /* Network is feed fully. */
1081 tp
->snd_cwnd_used
= 0;
1082 tp
->snd_cwnd_stamp
= tcp_time_stamp
;
1084 /* Network starves. */
1085 if (tp
->packets_out
> tp
->snd_cwnd_used
)
1086 tp
->snd_cwnd_used
= tp
->packets_out
;
1088 if (sysctl_tcp_slow_start_after_idle
&&
1089 (s32
)(tcp_time_stamp
- tp
->snd_cwnd_stamp
) >= inet_csk(sk
)->icsk_rto
)
1090 tcp_cwnd_application_limited(sk
);
1094 /* Returns the portion of skb which can be sent right away without
1095 * introducing MSS oddities to segment boundaries. In rare cases where
1096 * mss_now != mss_cache, we will request caller to create a small skb
1097 * per input skb which could be mostly avoided here (if desired).
1099 * We explicitly want to create a request for splitting write queue tail
1100 * to a small skb for Nagle purposes while avoiding unnecessary modulos,
1101 * thus all the complexity (cwnd_len is always MSS multiple which we
1102 * return whenever allowed by the other factors). Basically we need the
1103 * modulo only when the receiver window alone is the limiting factor or
1104 * when we would be allowed to send the split-due-to-Nagle skb fully.
1106 static unsigned int tcp_mss_split_point(struct sock
*sk
, struct sk_buff
*skb
,
1107 unsigned int mss_now
, unsigned int cwnd
)
1109 struct tcp_sock
*tp
= tcp_sk(sk
);
1110 u32 needed
, window
, cwnd_len
;
1112 window
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1113 cwnd_len
= mss_now
* cwnd
;
1115 if (likely(cwnd_len
<= window
&& skb
!= tcp_write_queue_tail(sk
)))
1118 needed
= min(skb
->len
, window
);
1120 if (cwnd_len
<= needed
)
1123 return needed
- needed
% mss_now
;
1126 /* Can at least one segment of SKB be sent right now, according to the
1127 * congestion window rules? If so, return how many segments are allowed.
1129 static inline unsigned int tcp_cwnd_test(struct tcp_sock
*tp
,
1130 struct sk_buff
*skb
)
1132 u32 in_flight
, cwnd
;
1134 /* Don't be strict about the congestion window for the final FIN. */
1135 if ((TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
) &&
1136 tcp_skb_pcount(skb
) == 1)
1139 in_flight
= tcp_packets_in_flight(tp
);
1140 cwnd
= tp
->snd_cwnd
;
1141 if (in_flight
< cwnd
)
1142 return (cwnd
- in_flight
);
1147 /* This must be invoked the first time we consider transmitting
1148 * SKB onto the wire.
1150 static int tcp_init_tso_segs(struct sock
*sk
, struct sk_buff
*skb
,
1151 unsigned int mss_now
)
1153 int tso_segs
= tcp_skb_pcount(skb
);
1155 if (!tso_segs
|| (tso_segs
> 1 && tcp_skb_mss(skb
) != mss_now
)) {
1156 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1157 tso_segs
= tcp_skb_pcount(skb
);
1162 static inline int tcp_minshall_check(const struct tcp_sock
*tp
)
1164 return after(tp
->snd_sml
,tp
->snd_una
) &&
1165 !after(tp
->snd_sml
, tp
->snd_nxt
);
1168 /* Return 0, if packet can be sent now without violation Nagle's rules:
1169 * 1. It is full sized.
1170 * 2. Or it contains FIN. (already checked by caller)
1171 * 3. Or TCP_NODELAY was set.
1172 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1173 * With Minshall's modification: all sent small packets are ACKed.
1175 static inline int tcp_nagle_check(const struct tcp_sock
*tp
,
1176 const struct sk_buff
*skb
,
1177 unsigned mss_now
, int nonagle
)
1179 return (skb
->len
< mss_now
&&
1180 ((nonagle
& TCP_NAGLE_CORK
) ||
1181 (!nonagle
&& tp
->packets_out
&& tcp_minshall_check(tp
))));
1184 /* Return non-zero if the Nagle test allows this packet to be
1187 static inline int tcp_nagle_test(struct tcp_sock
*tp
, struct sk_buff
*skb
,
1188 unsigned int cur_mss
, int nonagle
)
1190 /* Nagle rule does not apply to frames, which sit in the middle of the
1191 * write_queue (they have no chances to get new data).
1193 * This is implemented in the callers, where they modify the 'nonagle'
1194 * argument based upon the location of SKB in the send queue.
1196 if (nonagle
& TCP_NAGLE_PUSH
)
1199 /* Don't use the nagle rule for urgent data (or for the final FIN).
1200 * Nagle can be ignored during F-RTO too (see RFC4138).
1202 if (tcp_urg_mode(tp
) || (tp
->frto_counter
== 2) ||
1203 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
))
1206 if (!tcp_nagle_check(tp
, skb
, cur_mss
, nonagle
))
1212 /* Does at least the first segment of SKB fit into the send window? */
1213 static inline int tcp_snd_wnd_test(struct tcp_sock
*tp
, struct sk_buff
*skb
,
1214 unsigned int cur_mss
)
1216 u32 end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1218 if (skb
->len
> cur_mss
)
1219 end_seq
= TCP_SKB_CB(skb
)->seq
+ cur_mss
;
1221 return !after(end_seq
, tcp_wnd_end(tp
));
1224 /* This checks if the data bearing packet SKB (usually tcp_send_head(sk))
1225 * should be put on the wire right now. If so, it returns the number of
1226 * packets allowed by the congestion window.
1228 static unsigned int tcp_snd_test(struct sock
*sk
, struct sk_buff
*skb
,
1229 unsigned int cur_mss
, int nonagle
)
1231 struct tcp_sock
*tp
= tcp_sk(sk
);
1232 unsigned int cwnd_quota
;
1234 tcp_init_tso_segs(sk
, skb
, cur_mss
);
1236 if (!tcp_nagle_test(tp
, skb
, cur_mss
, nonagle
))
1239 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1240 if (cwnd_quota
&& !tcp_snd_wnd_test(tp
, skb
, cur_mss
))
1246 int tcp_may_send_now(struct sock
*sk
)
1248 struct tcp_sock
*tp
= tcp_sk(sk
);
1249 struct sk_buff
*skb
= tcp_send_head(sk
);
1252 tcp_snd_test(sk
, skb
, tcp_current_mss(sk
, 1),
1253 (tcp_skb_is_last(sk
, skb
) ?
1254 tp
->nonagle
: TCP_NAGLE_PUSH
)));
1257 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
1258 * which is put after SKB on the list. It is very much like
1259 * tcp_fragment() except that it may make several kinds of assumptions
1260 * in order to speed up the splitting operation. In particular, we
1261 * know that all the data is in scatter-gather pages, and that the
1262 * packet has never been sent out before (and thus is not cloned).
1264 static int tso_fragment(struct sock
*sk
, struct sk_buff
*skb
, unsigned int len
,
1265 unsigned int mss_now
)
1267 struct sk_buff
*buff
;
1268 int nlen
= skb
->len
- len
;
1271 /* All of a TSO frame must be composed of paged data. */
1272 if (skb
->len
!= skb
->data_len
)
1273 return tcp_fragment(sk
, skb
, len
, mss_now
);
1275 buff
= sk_stream_alloc_skb(sk
, 0, GFP_ATOMIC
);
1276 if (unlikely(buff
== NULL
))
1279 sk
->sk_wmem_queued
+= buff
->truesize
;
1280 sk_mem_charge(sk
, buff
->truesize
);
1281 buff
->truesize
+= nlen
;
1282 skb
->truesize
-= nlen
;
1284 /* Correct the sequence numbers. */
1285 TCP_SKB_CB(buff
)->seq
= TCP_SKB_CB(skb
)->seq
+ len
;
1286 TCP_SKB_CB(buff
)->end_seq
= TCP_SKB_CB(skb
)->end_seq
;
1287 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(buff
)->seq
;
1289 /* PSH and FIN should only be set in the second packet. */
1290 flags
= TCP_SKB_CB(skb
)->flags
;
1291 TCP_SKB_CB(skb
)->flags
= flags
& ~(TCPCB_FLAG_FIN
| TCPCB_FLAG_PSH
);
1292 TCP_SKB_CB(buff
)->flags
= flags
;
1294 /* This packet was never sent out yet, so no SACK bits. */
1295 TCP_SKB_CB(buff
)->sacked
= 0;
1297 buff
->ip_summed
= skb
->ip_summed
= CHECKSUM_PARTIAL
;
1298 skb_split(skb
, buff
, len
);
1300 /* Fix up tso_factor for both original and new SKB. */
1301 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1302 tcp_set_skb_tso_segs(sk
, buff
, mss_now
);
1304 /* Link BUFF into the send queue. */
1305 skb_header_release(buff
);
1306 tcp_insert_write_queue_after(skb
, buff
, sk
);
1311 /* Try to defer sending, if possible, in order to minimize the amount
1312 * of TSO splitting we do. View it as a kind of TSO Nagle test.
1314 * This algorithm is from John Heffner.
1316 static int tcp_tso_should_defer(struct sock
*sk
, struct sk_buff
*skb
)
1318 struct tcp_sock
*tp
= tcp_sk(sk
);
1319 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1320 u32 send_win
, cong_win
, limit
, in_flight
;
1322 if (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
)
1325 if (icsk
->icsk_ca_state
!= TCP_CA_Open
)
1328 /* Defer for less than two clock ticks. */
1329 if (tp
->tso_deferred
&&
1330 ((jiffies
<< 1) >> 1) - (tp
->tso_deferred
>> 1) > 1)
1333 in_flight
= tcp_packets_in_flight(tp
);
1335 BUG_ON(tcp_skb_pcount(skb
) <= 1 || (tp
->snd_cwnd
<= in_flight
));
1337 send_win
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
1339 /* From in_flight test above, we know that cwnd > in_flight. */
1340 cong_win
= (tp
->snd_cwnd
- in_flight
) * tp
->mss_cache
;
1342 limit
= min(send_win
, cong_win
);
1344 /* If a full-sized TSO skb can be sent, do it. */
1345 if (limit
>= sk
->sk_gso_max_size
)
1348 if (sysctl_tcp_tso_win_divisor
) {
1349 u32 chunk
= min(tp
->snd_wnd
, tp
->snd_cwnd
* tp
->mss_cache
);
1351 /* If at least some fraction of a window is available,
1354 chunk
/= sysctl_tcp_tso_win_divisor
;
1358 /* Different approach, try not to defer past a single
1359 * ACK. Receiver should ACK every other full sized
1360 * frame, so if we have space for more than 3 frames
1363 if (limit
> tcp_max_burst(tp
) * tp
->mss_cache
)
1367 /* Ok, it looks like it is advisable to defer. */
1368 tp
->tso_deferred
= 1 | (jiffies
<< 1);
1373 tp
->tso_deferred
= 0;
1377 /* Create a new MTU probe if we are ready.
1378 * Returns 0 if we should wait to probe (no cwnd available),
1379 * 1 if a probe was sent,
1382 static int tcp_mtu_probe(struct sock
*sk
)
1384 struct tcp_sock
*tp
= tcp_sk(sk
);
1385 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1386 struct sk_buff
*skb
, *nskb
, *next
;
1393 /* Not currently probing/verifying,
1395 * have enough cwnd, and
1396 * not SACKing (the variable headers throw things off) */
1397 if (!icsk
->icsk_mtup
.enabled
||
1398 icsk
->icsk_mtup
.probe_size
||
1399 inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Open
||
1400 tp
->snd_cwnd
< 11 ||
1401 tp
->rx_opt
.eff_sacks
)
1404 /* Very simple search strategy: just double the MSS. */
1405 mss_now
= tcp_current_mss(sk
, 0);
1406 probe_size
= 2 * tp
->mss_cache
;
1407 size_needed
= probe_size
+ (tp
->reordering
+ 1) * tp
->mss_cache
;
1408 if (probe_size
> tcp_mtu_to_mss(sk
, icsk
->icsk_mtup
.search_high
)) {
1409 /* TODO: set timer for probe_converge_event */
1413 /* Have enough data in the send queue to probe? */
1414 if (tp
->write_seq
- tp
->snd_nxt
< size_needed
)
1417 if (tp
->snd_wnd
< size_needed
)
1419 if (after(tp
->snd_nxt
+ size_needed
, tcp_wnd_end(tp
)))
1422 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
1423 if (tcp_packets_in_flight(tp
) + 2 > tp
->snd_cwnd
) {
1424 if (!tcp_packets_in_flight(tp
))
1430 /* We're allowed to probe. Build it now. */
1431 if ((nskb
= sk_stream_alloc_skb(sk
, probe_size
, GFP_ATOMIC
)) == NULL
)
1433 sk
->sk_wmem_queued
+= nskb
->truesize
;
1434 sk_mem_charge(sk
, nskb
->truesize
);
1436 skb
= tcp_send_head(sk
);
1438 TCP_SKB_CB(nskb
)->seq
= TCP_SKB_CB(skb
)->seq
;
1439 TCP_SKB_CB(nskb
)->end_seq
= TCP_SKB_CB(skb
)->seq
+ probe_size
;
1440 TCP_SKB_CB(nskb
)->flags
= TCPCB_FLAG_ACK
;
1441 TCP_SKB_CB(nskb
)->sacked
= 0;
1443 nskb
->ip_summed
= skb
->ip_summed
;
1445 tcp_insert_write_queue_before(nskb
, skb
, sk
);
1448 tcp_for_write_queue_from_safe(skb
, next
, sk
) {
1449 copy
= min_t(int, skb
->len
, probe_size
- len
);
1450 if (nskb
->ip_summed
)
1451 skb_copy_bits(skb
, 0, skb_put(nskb
, copy
), copy
);
1453 nskb
->csum
= skb_copy_and_csum_bits(skb
, 0,
1454 skb_put(nskb
, copy
),
1457 if (skb
->len
<= copy
) {
1458 /* We've eaten all the data from this skb.
1460 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
;
1461 tcp_unlink_write_queue(skb
, sk
);
1462 sk_wmem_free_skb(sk
, skb
);
1464 TCP_SKB_CB(nskb
)->flags
|= TCP_SKB_CB(skb
)->flags
&
1465 ~(TCPCB_FLAG_FIN
|TCPCB_FLAG_PSH
);
1466 if (!skb_shinfo(skb
)->nr_frags
) {
1467 skb_pull(skb
, copy
);
1468 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1469 skb
->csum
= csum_partial(skb
->data
,
1472 __pskb_trim_head(skb
, copy
);
1473 tcp_set_skb_tso_segs(sk
, skb
, mss_now
);
1475 TCP_SKB_CB(skb
)->seq
+= copy
;
1480 if (len
>= probe_size
)
1483 tcp_init_tso_segs(sk
, nskb
, nskb
->len
);
1485 /* We're ready to send. If this fails, the probe will
1486 * be resegmented into mss-sized pieces by tcp_write_xmit(). */
1487 TCP_SKB_CB(nskb
)->when
= tcp_time_stamp
;
1488 if (!tcp_transmit_skb(sk
, nskb
, 1, GFP_ATOMIC
)) {
1489 /* Decrement cwnd here because we are sending
1490 * effectively two packets. */
1492 tcp_event_new_data_sent(sk
, nskb
);
1494 icsk
->icsk_mtup
.probe_size
= tcp_mss_to_mtu(sk
, nskb
->len
);
1495 tp
->mtu_probe
.probe_seq_start
= TCP_SKB_CB(nskb
)->seq
;
1496 tp
->mtu_probe
.probe_seq_end
= TCP_SKB_CB(nskb
)->end_seq
;
1504 /* This routine writes packets to the network. It advances the
1505 * send_head. This happens as incoming acks open up the remote
1508 * Returns 1, if no segments are in flight and we have queued segments, but
1509 * cannot send anything now because of SWS or another problem.
1511 static int tcp_write_xmit(struct sock
*sk
, unsigned int mss_now
, int nonagle
)
1513 struct tcp_sock
*tp
= tcp_sk(sk
);
1514 struct sk_buff
*skb
;
1515 unsigned int tso_segs
, sent_pkts
;
1519 /* If we are closed, the bytes will have to remain here.
1520 * In time closedown will finish, we empty the write queue and all
1523 if (unlikely(sk
->sk_state
== TCP_CLOSE
))
1528 /* Do MTU probing. */
1529 if ((result
= tcp_mtu_probe(sk
)) == 0) {
1531 } else if (result
> 0) {
1535 while ((skb
= tcp_send_head(sk
))) {
1538 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
1541 cwnd_quota
= tcp_cwnd_test(tp
, skb
);
1545 if (unlikely(!tcp_snd_wnd_test(tp
, skb
, mss_now
)))
1548 if (tso_segs
== 1) {
1549 if (unlikely(!tcp_nagle_test(tp
, skb
, mss_now
,
1550 (tcp_skb_is_last(sk
, skb
) ?
1551 nonagle
: TCP_NAGLE_PUSH
))))
1554 if (tcp_tso_should_defer(sk
, skb
))
1560 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
1563 if (skb
->len
> limit
&&
1564 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
)))
1567 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1569 if (unlikely(tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
)))
1572 /* Advance the send_head. This one is sent out.
1573 * This call will increment packets_out.
1575 tcp_event_new_data_sent(sk
, skb
);
1577 tcp_minshall_update(tp
, mss_now
, skb
);
1581 if (likely(sent_pkts
)) {
1582 tcp_cwnd_validate(sk
);
1585 return !tp
->packets_out
&& tcp_send_head(sk
);
1588 /* Push out any pending frames which were held back due to
1589 * TCP_CORK or attempt at coalescing tiny packets.
1590 * The socket must be locked by the caller.
1592 void __tcp_push_pending_frames(struct sock
*sk
, unsigned int cur_mss
,
1595 struct sk_buff
*skb
= tcp_send_head(sk
);
1598 if (tcp_write_xmit(sk
, cur_mss
, nonagle
))
1599 tcp_check_probe_timer(sk
);
1603 /* Send _single_ skb sitting at the send head. This function requires
1604 * true push pending frames to setup probe timer etc.
1606 void tcp_push_one(struct sock
*sk
, unsigned int mss_now
)
1608 struct sk_buff
*skb
= tcp_send_head(sk
);
1609 unsigned int tso_segs
, cwnd_quota
;
1611 BUG_ON(!skb
|| skb
->len
< mss_now
);
1613 tso_segs
= tcp_init_tso_segs(sk
, skb
, mss_now
);
1614 cwnd_quota
= tcp_snd_test(sk
, skb
, mss_now
, TCP_NAGLE_PUSH
);
1616 if (likely(cwnd_quota
)) {
1623 limit
= tcp_mss_split_point(sk
, skb
, mss_now
,
1626 if (skb
->len
> limit
&&
1627 unlikely(tso_fragment(sk
, skb
, limit
, mss_now
)))
1630 /* Send it out now. */
1631 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1633 if (likely(!tcp_transmit_skb(sk
, skb
, 1, sk
->sk_allocation
))) {
1634 tcp_event_new_data_sent(sk
, skb
);
1635 tcp_cwnd_validate(sk
);
1641 /* This function returns the amount that we can raise the
1642 * usable window based on the following constraints
1644 * 1. The window can never be shrunk once it is offered (RFC 793)
1645 * 2. We limit memory per socket
1648 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
1649 * RECV.NEXT + RCV.WIN fixed until:
1650 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
1652 * i.e. don't raise the right edge of the window until you can raise
1653 * it at least MSS bytes.
1655 * Unfortunately, the recommended algorithm breaks header prediction,
1656 * since header prediction assumes th->window stays fixed.
1658 * Strictly speaking, keeping th->window fixed violates the receiver
1659 * side SWS prevention criteria. The problem is that under this rule
1660 * a stream of single byte packets will cause the right side of the
1661 * window to always advance by a single byte.
1663 * Of course, if the sender implements sender side SWS prevention
1664 * then this will not be a problem.
1666 * BSD seems to make the following compromise:
1668 * If the free space is less than the 1/4 of the maximum
1669 * space available and the free space is less than 1/2 mss,
1670 * then set the window to 0.
1671 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
1672 * Otherwise, just prevent the window from shrinking
1673 * and from being larger than the largest representable value.
1675 * This prevents incremental opening of the window in the regime
1676 * where TCP is limited by the speed of the reader side taking
1677 * data out of the TCP receive queue. It does nothing about
1678 * those cases where the window is constrained on the sender side
1679 * because the pipeline is full.
1681 * BSD also seems to "accidentally" limit itself to windows that are a
1682 * multiple of MSS, at least until the free space gets quite small.
1683 * This would appear to be a side effect of the mbuf implementation.
1684 * Combining these two algorithms results in the observed behavior
1685 * of having a fixed window size at almost all times.
1687 * Below we obtain similar behavior by forcing the offered window to
1688 * a multiple of the mss when it is feasible to do so.
1690 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
1691 * Regular options like TIMESTAMP are taken into account.
1693 u32
__tcp_select_window(struct sock
*sk
)
1695 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1696 struct tcp_sock
*tp
= tcp_sk(sk
);
1697 /* MSS for the peer's data. Previous versions used mss_clamp
1698 * here. I don't know if the value based on our guesses
1699 * of peer's MSS is better for the performance. It's more correct
1700 * but may be worse for the performance because of rcv_mss
1701 * fluctuations. --SAW 1998/11/1
1703 int mss
= icsk
->icsk_ack
.rcv_mss
;
1704 int free_space
= tcp_space(sk
);
1705 int full_space
= min_t(int, tp
->window_clamp
, tcp_full_space(sk
));
1708 if (mss
> full_space
)
1711 if (free_space
< (full_space
>> 1)) {
1712 icsk
->icsk_ack
.quick
= 0;
1714 if (tcp_memory_pressure
)
1715 tp
->rcv_ssthresh
= min(tp
->rcv_ssthresh
,
1718 if (free_space
< mss
)
1722 if (free_space
> tp
->rcv_ssthresh
)
1723 free_space
= tp
->rcv_ssthresh
;
1725 /* Don't do rounding if we are using window scaling, since the
1726 * scaled window will not line up with the MSS boundary anyway.
1728 window
= tp
->rcv_wnd
;
1729 if (tp
->rx_opt
.rcv_wscale
) {
1730 window
= free_space
;
1732 /* Advertise enough space so that it won't get scaled away.
1733 * Import case: prevent zero window announcement if
1734 * 1<<rcv_wscale > mss.
1736 if (((window
>> tp
->rx_opt
.rcv_wscale
) << tp
->rx_opt
.rcv_wscale
) != window
)
1737 window
= (((window
>> tp
->rx_opt
.rcv_wscale
) + 1)
1738 << tp
->rx_opt
.rcv_wscale
);
1740 /* Get the largest window that is a nice multiple of mss.
1741 * Window clamp already applied above.
1742 * If our current window offering is within 1 mss of the
1743 * free space we just keep it. This prevents the divide
1744 * and multiply from happening most of the time.
1745 * We also don't do any window rounding when the free space
1748 if (window
<= free_space
- mss
|| window
> free_space
)
1749 window
= (free_space
/ mss
) * mss
;
1750 else if (mss
== full_space
&&
1751 free_space
> window
+ (full_space
>> 1))
1752 window
= free_space
;
1758 /* Attempt to collapse two adjacent SKB's during retransmission. */
1759 static void tcp_retrans_try_collapse(struct sock
*sk
, struct sk_buff
*skb
,
1762 struct tcp_sock
*tp
= tcp_sk(sk
);
1763 struct sk_buff
*next_skb
= tcp_write_queue_next(sk
, skb
);
1764 int skb_size
, next_skb_size
;
1767 /* The first test we must make is that neither of these two
1768 * SKB's are still referenced by someone else.
1770 if (skb_cloned(skb
) || skb_cloned(next_skb
))
1773 skb_size
= skb
->len
;
1774 next_skb_size
= next_skb
->len
;
1775 flags
= TCP_SKB_CB(skb
)->flags
;
1777 /* Also punt if next skb has been SACK'd. */
1778 if (TCP_SKB_CB(next_skb
)->sacked
& TCPCB_SACKED_ACKED
)
1781 /* Next skb is out of window. */
1782 if (after(TCP_SKB_CB(next_skb
)->end_seq
, tcp_wnd_end(tp
)))
1785 /* Punt if not enough space exists in the first SKB for
1786 * the data in the second, or the total combined payload
1787 * would exceed the MSS.
1789 if ((next_skb_size
> skb_tailroom(skb
)) ||
1790 ((skb_size
+ next_skb_size
) > mss_now
))
1793 BUG_ON(tcp_skb_pcount(skb
) != 1 || tcp_skb_pcount(next_skb
) != 1);
1795 tcp_highest_sack_combine(sk
, next_skb
, skb
);
1797 /* Ok. We will be able to collapse the packet. */
1798 tcp_unlink_write_queue(next_skb
, sk
);
1800 skb_copy_from_linear_data(next_skb
, skb_put(skb
, next_skb_size
),
1803 if (next_skb
->ip_summed
== CHECKSUM_PARTIAL
)
1804 skb
->ip_summed
= CHECKSUM_PARTIAL
;
1806 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
1807 skb
->csum
= csum_block_add(skb
->csum
, next_skb
->csum
, skb_size
);
1809 /* Update sequence range on original skb. */
1810 TCP_SKB_CB(skb
)->end_seq
= TCP_SKB_CB(next_skb
)->end_seq
;
1812 /* Merge over control information. */
1813 flags
|= TCP_SKB_CB(next_skb
)->flags
; /* This moves PSH/FIN etc. over */
1814 TCP_SKB_CB(skb
)->flags
= flags
;
1816 /* All done, get rid of second SKB and account for it so
1817 * packet counting does not break.
1819 TCP_SKB_CB(skb
)->sacked
|= TCP_SKB_CB(next_skb
)->sacked
& TCPCB_EVER_RETRANS
;
1820 if (TCP_SKB_CB(next_skb
)->sacked
& TCPCB_SACKED_RETRANS
)
1821 tp
->retrans_out
-= tcp_skb_pcount(next_skb
);
1822 if (TCP_SKB_CB(next_skb
)->sacked
& TCPCB_LOST
)
1823 tp
->lost_out
-= tcp_skb_pcount(next_skb
);
1824 /* Reno case is special. Sigh... */
1825 if (tcp_is_reno(tp
) && tp
->sacked_out
)
1826 tcp_dec_pcount_approx(&tp
->sacked_out
, next_skb
);
1828 tcp_adjust_fackets_out(sk
, next_skb
, tcp_skb_pcount(next_skb
));
1829 tp
->packets_out
-= tcp_skb_pcount(next_skb
);
1831 /* changed transmit queue under us so clear hints */
1832 tcp_clear_retrans_hints_partial(tp
);
1833 if (next_skb
== tp
->retransmit_skb_hint
)
1834 tp
->retransmit_skb_hint
= skb
;
1836 sk_wmem_free_skb(sk
, next_skb
);
1839 /* Do a simple retransmit without using the backoff mechanisms in
1840 * tcp_timer. This is used for path mtu discovery.
1841 * The socket is already locked here.
1843 void tcp_simple_retransmit(struct sock
*sk
)
1845 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
1846 struct tcp_sock
*tp
= tcp_sk(sk
);
1847 struct sk_buff
*skb
;
1848 unsigned int mss
= tcp_current_mss(sk
, 0);
1849 u32 prior_lost
= tp
->lost_out
;
1851 tcp_for_write_queue(skb
, sk
) {
1852 if (skb
== tcp_send_head(sk
))
1854 if (skb
->len
> mss
&&
1855 !(TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_ACKED
)) {
1856 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
1857 TCP_SKB_CB(skb
)->sacked
&= ~TCPCB_SACKED_RETRANS
;
1858 tp
->retrans_out
-= tcp_skb_pcount(skb
);
1860 tcp_skb_mark_lost_uncond_verify(tp
, skb
);
1864 tcp_clear_retrans_hints_partial(tp
);
1866 if (prior_lost
== tp
->lost_out
)
1869 if (tcp_is_reno(tp
))
1870 tcp_limit_reno_sacked(tp
);
1872 tcp_verify_left_out(tp
);
1874 /* Don't muck with the congestion window here.
1875 * Reason is that we do not increase amount of _data_
1876 * in network, but units changed and effective
1877 * cwnd/ssthresh really reduced now.
1879 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
) {
1880 tp
->high_seq
= tp
->snd_nxt
;
1881 tp
->snd_ssthresh
= tcp_current_ssthresh(sk
);
1882 tp
->prior_ssthresh
= 0;
1883 tp
->undo_marker
= 0;
1884 tcp_set_ca_state(sk
, TCP_CA_Loss
);
1886 tcp_xmit_retransmit_queue(sk
);
1889 /* This retransmits one SKB. Policy decisions and retransmit queue
1890 * state updates are done by the caller. Returns non-zero if an
1891 * error occurred which prevented the send.
1893 int tcp_retransmit_skb(struct sock
*sk
, struct sk_buff
*skb
)
1895 struct tcp_sock
*tp
= tcp_sk(sk
);
1896 struct inet_connection_sock
*icsk
= inet_csk(sk
);
1897 unsigned int cur_mss
;
1900 /* Inconslusive MTU probe */
1901 if (icsk
->icsk_mtup
.probe_size
) {
1902 icsk
->icsk_mtup
.probe_size
= 0;
1905 /* Do not sent more than we queued. 1/4 is reserved for possible
1906 * copying overhead: fragmentation, tunneling, mangling etc.
1908 if (atomic_read(&sk
->sk_wmem_alloc
) >
1909 min(sk
->sk_wmem_queued
+ (sk
->sk_wmem_queued
>> 2), sk
->sk_sndbuf
))
1912 if (before(TCP_SKB_CB(skb
)->seq
, tp
->snd_una
)) {
1913 if (before(TCP_SKB_CB(skb
)->end_seq
, tp
->snd_una
))
1915 if (tcp_trim_head(sk
, skb
, tp
->snd_una
- TCP_SKB_CB(skb
)->seq
))
1919 if (inet_csk(sk
)->icsk_af_ops
->rebuild_header(sk
))
1920 return -EHOSTUNREACH
; /* Routing failure or similar. */
1922 cur_mss
= tcp_current_mss(sk
, 0);
1924 /* If receiver has shrunk his window, and skb is out of
1925 * new window, do not retransmit it. The exception is the
1926 * case, when window is shrunk to zero. In this case
1927 * our retransmit serves as a zero window probe.
1929 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))
1930 && TCP_SKB_CB(skb
)->seq
!= tp
->snd_una
)
1933 if (skb
->len
> cur_mss
) {
1934 if (tcp_fragment(sk
, skb
, cur_mss
, cur_mss
))
1935 return -ENOMEM
; /* We'll try again later. */
1938 /* Collapse two adjacent packets if worthwhile and we can. */
1939 if (!(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_SYN
) &&
1940 (skb
->len
< (cur_mss
>> 1)) &&
1941 (!tcp_skb_is_last(sk
, skb
)) &&
1942 (tcp_write_queue_next(sk
, skb
) != tcp_send_head(sk
)) &&
1943 (skb_shinfo(skb
)->nr_frags
== 0 &&
1944 skb_shinfo(tcp_write_queue_next(sk
, skb
))->nr_frags
== 0) &&
1945 (tcp_skb_pcount(skb
) == 1 &&
1946 tcp_skb_pcount(tcp_write_queue_next(sk
, skb
)) == 1) &&
1947 (sysctl_tcp_retrans_collapse
!= 0))
1948 tcp_retrans_try_collapse(sk
, skb
, cur_mss
);
1950 /* Some Solaris stacks overoptimize and ignore the FIN on a
1951 * retransmit when old data is attached. So strip it off
1952 * since it is cheap to do so and saves bytes on the network.
1955 (TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_FIN
) &&
1956 tp
->snd_una
== (TCP_SKB_CB(skb
)->end_seq
- 1)) {
1957 if (!pskb_trim(skb
, 0)) {
1958 /* Reuse, even though it does some unnecessary work */
1959 tcp_init_nondata_skb(skb
, TCP_SKB_CB(skb
)->end_seq
- 1,
1960 TCP_SKB_CB(skb
)->flags
);
1961 skb
->ip_summed
= CHECKSUM_NONE
;
1965 /* Make a copy, if the first transmission SKB clone we made
1966 * is still in somebody's hands, else make a clone.
1968 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
1970 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
1973 /* Update global TCP statistics. */
1974 TCP_INC_STATS(sock_net(sk
), TCP_MIB_RETRANSSEGS
);
1976 tp
->total_retrans
++;
1978 #if FASTRETRANS_DEBUG > 0
1979 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_SACKED_RETRANS
) {
1980 if (net_ratelimit())
1981 printk(KERN_DEBUG
"retrans_out leaked.\n");
1984 if (!tp
->retrans_out
)
1985 tp
->lost_retrans_low
= tp
->snd_nxt
;
1986 TCP_SKB_CB(skb
)->sacked
|= TCPCB_RETRANS
;
1987 tp
->retrans_out
+= tcp_skb_pcount(skb
);
1989 /* Save stamp of the first retransmit. */
1990 if (!tp
->retrans_stamp
)
1991 tp
->retrans_stamp
= TCP_SKB_CB(skb
)->when
;
1995 /* snd_nxt is stored to detect loss of retransmitted segment,
1996 * see tcp_input.c tcp_sacktag_write_queue().
1998 TCP_SKB_CB(skb
)->ack_seq
= tp
->snd_nxt
;
2003 static int tcp_can_forward_retransmit(struct sock
*sk
)
2005 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2006 struct tcp_sock
*tp
= tcp_sk(sk
);
2008 /* Forward retransmissions are possible only during Recovery. */
2009 if (icsk
->icsk_ca_state
!= TCP_CA_Recovery
)
2012 /* No forward retransmissions in Reno are possible. */
2013 if (tcp_is_reno(tp
))
2016 /* Yeah, we have to make difficult choice between forward transmission
2017 * and retransmission... Both ways have their merits...
2019 * For now we do not retransmit anything, while we have some new
2020 * segments to send. In the other cases, follow rule 3 for
2021 * NextSeg() specified in RFC3517.
2024 if (tcp_may_send_now(sk
))
2030 /* This gets called after a retransmit timeout, and the initially
2031 * retransmitted data is acknowledged. It tries to continue
2032 * resending the rest of the retransmit queue, until either
2033 * we've sent it all or the congestion window limit is reached.
2034 * If doing SACK, the first ACK which comes back for a timeout
2035 * based retransmit packet might feed us FACK information again.
2036 * If so, we use it to avoid unnecessarily retransmissions.
2038 void tcp_xmit_retransmit_queue(struct sock
*sk
)
2040 const struct inet_connection_sock
*icsk
= inet_csk(sk
);
2041 struct tcp_sock
*tp
= tcp_sk(sk
);
2042 struct sk_buff
*skb
;
2043 struct sk_buff
*hole
= NULL
;
2046 int fwd_rexmitting
= 0;
2049 tp
->retransmit_high
= tp
->snd_una
;
2051 if (tp
->retransmit_skb_hint
) {
2052 skb
= tp
->retransmit_skb_hint
;
2053 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2054 if (after(last_lost
, tp
->retransmit_high
))
2055 last_lost
= tp
->retransmit_high
;
2057 skb
= tcp_write_queue_head(sk
);
2058 last_lost
= tp
->snd_una
;
2061 /* First pass: retransmit lost packets. */
2062 tcp_for_write_queue_from(skb
, sk
) {
2063 __u8 sacked
= TCP_SKB_CB(skb
)->sacked
;
2065 if (skb
== tcp_send_head(sk
))
2067 /* we could do better than to assign each time */
2069 tp
->retransmit_skb_hint
= skb
;
2071 /* Assume this retransmit will generate
2072 * only one packet for congestion window
2073 * calculation purposes. This works because
2074 * tcp_retransmit_skb() will chop up the
2075 * packet to be MSS sized and all the
2076 * packet counting works out.
2078 if (tcp_packets_in_flight(tp
) >= tp
->snd_cwnd
)
2081 if (fwd_rexmitting
) {
2083 if (!before(TCP_SKB_CB(skb
)->seq
, tcp_highest_sack_seq(tp
)))
2085 mib_idx
= LINUX_MIB_TCPFORWARDRETRANS
;
2087 } else if (!before(TCP_SKB_CB(skb
)->seq
, tp
->retransmit_high
)) {
2088 tp
->retransmit_high
= last_lost
;
2089 if (!tcp_can_forward_retransmit(sk
))
2091 /* Backtrack if necessary to non-L'ed skb */
2099 } else if (!(sacked
& TCPCB_LOST
)) {
2100 if (hole
== NULL
&& !(sacked
& TCPCB_SACKED_RETRANS
))
2105 last_lost
= TCP_SKB_CB(skb
)->end_seq
;
2106 if (icsk
->icsk_ca_state
!= TCP_CA_Loss
)
2107 mib_idx
= LINUX_MIB_TCPFASTRETRANS
;
2109 mib_idx
= LINUX_MIB_TCPSLOWSTARTRETRANS
;
2112 if (sacked
& (TCPCB_SACKED_ACKED
|TCPCB_SACKED_RETRANS
))
2115 if (tcp_retransmit_skb(sk
, skb
))
2117 NET_INC_STATS_BH(sock_net(sk
), mib_idx
);
2119 if (skb
== tcp_write_queue_head(sk
))
2120 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2121 inet_csk(sk
)->icsk_rto
,
2126 /* Send a fin. The caller locks the socket for us. This cannot be
2127 * allowed to fail queueing a FIN frame under any circumstances.
2129 void tcp_send_fin(struct sock
*sk
)
2131 struct tcp_sock
*tp
= tcp_sk(sk
);
2132 struct sk_buff
*skb
= tcp_write_queue_tail(sk
);
2135 /* Optimization, tack on the FIN if we have a queue of
2136 * unsent frames. But be careful about outgoing SACKS
2139 mss_now
= tcp_current_mss(sk
, 1);
2141 if (tcp_send_head(sk
) != NULL
) {
2142 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_FIN
;
2143 TCP_SKB_CB(skb
)->end_seq
++;
2146 /* Socket is locked, keep trying until memory is available. */
2148 skb
= alloc_skb_fclone(MAX_TCP_HEADER
, GFP_KERNEL
);
2154 /* Reserve space for headers and prepare control bits. */
2155 skb_reserve(skb
, MAX_TCP_HEADER
);
2156 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
2157 tcp_init_nondata_skb(skb
, tp
->write_seq
,
2158 TCPCB_FLAG_ACK
| TCPCB_FLAG_FIN
);
2159 tcp_queue_skb(sk
, skb
);
2161 __tcp_push_pending_frames(sk
, mss_now
, TCP_NAGLE_OFF
);
2164 /* We get here when a process closes a file descriptor (either due to
2165 * an explicit close() or as a byproduct of exit()'ing) and there
2166 * was unread data in the receive queue. This behavior is recommended
2167 * by RFC 2525, section 2.17. -DaveM
2169 void tcp_send_active_reset(struct sock
*sk
, gfp_t priority
)
2171 struct sk_buff
*skb
;
2173 /* NOTE: No TCP options attached and we never retransmit this. */
2174 skb
= alloc_skb(MAX_TCP_HEADER
, priority
);
2176 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2180 /* Reserve space for headers and prepare control bits. */
2181 skb_reserve(skb
, MAX_TCP_HEADER
);
2182 tcp_init_nondata_skb(skb
, tcp_acceptable_seq(sk
),
2183 TCPCB_FLAG_ACK
| TCPCB_FLAG_RST
);
2185 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2186 if (tcp_transmit_skb(sk
, skb
, 0, priority
))
2187 NET_INC_STATS(sock_net(sk
), LINUX_MIB_TCPABORTFAILED
);
2189 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTRSTS
);
2192 /* WARNING: This routine must only be called when we have already sent
2193 * a SYN packet that crossed the incoming SYN that caused this routine
2194 * to get called. If this assumption fails then the initial rcv_wnd
2195 * and rcv_wscale values will not be correct.
2197 int tcp_send_synack(struct sock
*sk
)
2199 struct sk_buff
*skb
;
2201 skb
= tcp_write_queue_head(sk
);
2202 if (skb
== NULL
|| !(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_SYN
)) {
2203 printk(KERN_DEBUG
"tcp_send_synack: wrong queue state\n");
2206 if (!(TCP_SKB_CB(skb
)->flags
& TCPCB_FLAG_ACK
)) {
2207 if (skb_cloned(skb
)) {
2208 struct sk_buff
*nskb
= skb_copy(skb
, GFP_ATOMIC
);
2211 tcp_unlink_write_queue(skb
, sk
);
2212 skb_header_release(nskb
);
2213 __tcp_add_write_queue_head(sk
, nskb
);
2214 sk_wmem_free_skb(sk
, skb
);
2215 sk
->sk_wmem_queued
+= nskb
->truesize
;
2216 sk_mem_charge(sk
, nskb
->truesize
);
2220 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_ACK
;
2221 TCP_ECN_send_synack(tcp_sk(sk
), skb
);
2223 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2224 return tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2228 * Prepare a SYN-ACK.
2230 struct sk_buff
*tcp_make_synack(struct sock
*sk
, struct dst_entry
*dst
,
2231 struct request_sock
*req
)
2233 struct inet_request_sock
*ireq
= inet_rsk(req
);
2234 struct tcp_sock
*tp
= tcp_sk(sk
);
2236 int tcp_header_size
;
2237 struct tcp_out_options opts
;
2238 struct sk_buff
*skb
;
2239 struct tcp_md5sig_key
*md5
;
2240 __u8
*md5_hash_location
;
2243 skb
= sock_wmalloc(sk
, MAX_TCP_HEADER
+ 15, 1, GFP_ATOMIC
);
2247 /* Reserve space for headers. */
2248 skb_reserve(skb
, MAX_TCP_HEADER
);
2250 skb
->dst
= dst_clone(dst
);
2252 mss
= dst_metric(dst
, RTAX_ADVMSS
);
2253 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< mss
)
2254 mss
= tp
->rx_opt
.user_mss
;
2256 if (req
->rcv_wnd
== 0) { /* ignored for retransmitted syns */
2258 /* Set this up on the first call only */
2259 req
->window_clamp
= tp
->window_clamp
? : dst_metric(dst
, RTAX_WINDOW
);
2260 /* tcp_full_space because it is guaranteed to be the first packet */
2261 tcp_select_initial_window(tcp_full_space(sk
),
2262 mss
- (ireq
->tstamp_ok
? TCPOLEN_TSTAMP_ALIGNED
: 0),
2267 ireq
->rcv_wscale
= rcv_wscale
;
2270 memset(&opts
, 0, sizeof(opts
));
2271 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2272 tcp_header_size
= tcp_synack_options(sk
, req
, mss
,
2274 sizeof(struct tcphdr
);
2276 skb_push(skb
, tcp_header_size
);
2277 skb_reset_transport_header(skb
);
2280 memset(th
, 0, sizeof(struct tcphdr
));
2283 TCP_ECN_make_synack(req
, th
);
2284 th
->source
= ireq
->loc_port
;
2285 th
->dest
= ireq
->rmt_port
;
2286 /* Setting of flags are superfluous here for callers (and ECE is
2287 * not even correctly set)
2289 tcp_init_nondata_skb(skb
, tcp_rsk(req
)->snt_isn
,
2290 TCPCB_FLAG_SYN
| TCPCB_FLAG_ACK
);
2291 th
->seq
= htonl(TCP_SKB_CB(skb
)->seq
);
2292 th
->ack_seq
= htonl(tcp_rsk(req
)->rcv_isn
+ 1);
2294 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
2295 th
->window
= htons(min(req
->rcv_wnd
, 65535U));
2296 #ifdef CONFIG_SYN_COOKIES
2297 if (unlikely(req
->cookie_ts
))
2298 TCP_SKB_CB(skb
)->when
= cookie_init_timestamp(req
);
2301 tcp_options_write((__be32
*)(th
+ 1), tp
, &opts
, &md5_hash_location
);
2302 th
->doff
= (tcp_header_size
>> 2);
2303 TCP_INC_STATS(sock_net(sk
), TCP_MIB_OUTSEGS
);
2305 #ifdef CONFIG_TCP_MD5SIG
2306 /* Okay, we have all we need - do the md5 hash if needed */
2308 tp
->af_specific
->calc_md5_hash(md5_hash_location
,
2309 md5
, NULL
, req
, skb
);
2317 * Do all connect socket setups that can be done AF independent.
2319 static void tcp_connect_init(struct sock
*sk
)
2321 struct dst_entry
*dst
= __sk_dst_get(sk
);
2322 struct tcp_sock
*tp
= tcp_sk(sk
);
2325 /* We'll fix this up when we get a response from the other end.
2326 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
2328 tp
->tcp_header_len
= sizeof(struct tcphdr
) +
2329 (sysctl_tcp_timestamps
? TCPOLEN_TSTAMP_ALIGNED
: 0);
2331 #ifdef CONFIG_TCP_MD5SIG
2332 if (tp
->af_specific
->md5_lookup(sk
, sk
) != NULL
)
2333 tp
->tcp_header_len
+= TCPOLEN_MD5SIG_ALIGNED
;
2336 /* If user gave his TCP_MAXSEG, record it to clamp */
2337 if (tp
->rx_opt
.user_mss
)
2338 tp
->rx_opt
.mss_clamp
= tp
->rx_opt
.user_mss
;
2341 tcp_sync_mss(sk
, dst_mtu(dst
));
2343 if (!tp
->window_clamp
)
2344 tp
->window_clamp
= dst_metric(dst
, RTAX_WINDOW
);
2345 tp
->advmss
= dst_metric(dst
, RTAX_ADVMSS
);
2346 if (tp
->rx_opt
.user_mss
&& tp
->rx_opt
.user_mss
< tp
->advmss
)
2347 tp
->advmss
= tp
->rx_opt
.user_mss
;
2349 tcp_initialize_rcv_mss(sk
);
2351 tcp_select_initial_window(tcp_full_space(sk
),
2352 tp
->advmss
- (tp
->rx_opt
.ts_recent_stamp
? tp
->tcp_header_len
- sizeof(struct tcphdr
) : 0),
2355 sysctl_tcp_window_scaling
,
2358 tp
->rx_opt
.rcv_wscale
= rcv_wscale
;
2359 tp
->rcv_ssthresh
= tp
->rcv_wnd
;
2362 sock_reset_flag(sk
, SOCK_DONE
);
2364 tcp_init_wl(tp
, tp
->write_seq
, 0);
2365 tp
->snd_una
= tp
->write_seq
;
2366 tp
->snd_sml
= tp
->write_seq
;
2367 tp
->snd_up
= tp
->write_seq
;
2372 inet_csk(sk
)->icsk_rto
= TCP_TIMEOUT_INIT
;
2373 inet_csk(sk
)->icsk_retransmits
= 0;
2374 tcp_clear_retrans(tp
);
2378 * Build a SYN and send it off.
2380 int tcp_connect(struct sock
*sk
)
2382 struct tcp_sock
*tp
= tcp_sk(sk
);
2383 struct sk_buff
*buff
;
2385 tcp_connect_init(sk
);
2387 buff
= alloc_skb_fclone(MAX_TCP_HEADER
+ 15, sk
->sk_allocation
);
2388 if (unlikely(buff
== NULL
))
2391 /* Reserve space for headers. */
2392 skb_reserve(buff
, MAX_TCP_HEADER
);
2394 tp
->snd_nxt
= tp
->write_seq
;
2395 tcp_init_nondata_skb(buff
, tp
->write_seq
++, TCPCB_FLAG_SYN
);
2396 TCP_ECN_send_syn(sk
, buff
);
2399 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2400 tp
->retrans_stamp
= TCP_SKB_CB(buff
)->when
;
2401 skb_header_release(buff
);
2402 __tcp_add_write_queue_tail(sk
, buff
);
2403 sk
->sk_wmem_queued
+= buff
->truesize
;
2404 sk_mem_charge(sk
, buff
->truesize
);
2405 tp
->packets_out
+= tcp_skb_pcount(buff
);
2406 tcp_transmit_skb(sk
, buff
, 1, GFP_KERNEL
);
2408 /* We change tp->snd_nxt after the tcp_transmit_skb() call
2409 * in order to make this packet get counted in tcpOutSegs.
2411 tp
->snd_nxt
= tp
->write_seq
;
2412 tp
->pushed_seq
= tp
->write_seq
;
2413 TCP_INC_STATS(sock_net(sk
), TCP_MIB_ACTIVEOPENS
);
2415 /* Timer for repeating the SYN until an answer. */
2416 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_RETRANS
,
2417 inet_csk(sk
)->icsk_rto
, TCP_RTO_MAX
);
2421 /* Send out a delayed ack, the caller does the policy checking
2422 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
2425 void tcp_send_delayed_ack(struct sock
*sk
)
2427 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2428 int ato
= icsk
->icsk_ack
.ato
;
2429 unsigned long timeout
;
2431 if (ato
> TCP_DELACK_MIN
) {
2432 const struct tcp_sock
*tp
= tcp_sk(sk
);
2433 int max_ato
= HZ
/ 2;
2435 if (icsk
->icsk_ack
.pingpong
||
2436 (icsk
->icsk_ack
.pending
& ICSK_ACK_PUSHED
))
2437 max_ato
= TCP_DELACK_MAX
;
2439 /* Slow path, intersegment interval is "high". */
2441 /* If some rtt estimate is known, use it to bound delayed ack.
2442 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
2446 int rtt
= max(tp
->srtt
>> 3, TCP_DELACK_MIN
);
2452 ato
= min(ato
, max_ato
);
2455 /* Stay within the limit we were given */
2456 timeout
= jiffies
+ ato
;
2458 /* Use new timeout only if there wasn't a older one earlier. */
2459 if (icsk
->icsk_ack
.pending
& ICSK_ACK_TIMER
) {
2460 /* If delack timer was blocked or is about to expire,
2463 if (icsk
->icsk_ack
.blocked
||
2464 time_before_eq(icsk
->icsk_ack
.timeout
, jiffies
+ (ato
>> 2))) {
2469 if (!time_before(timeout
, icsk
->icsk_ack
.timeout
))
2470 timeout
= icsk
->icsk_ack
.timeout
;
2472 icsk
->icsk_ack
.pending
|= ICSK_ACK_SCHED
| ICSK_ACK_TIMER
;
2473 icsk
->icsk_ack
.timeout
= timeout
;
2474 sk_reset_timer(sk
, &icsk
->icsk_delack_timer
, timeout
);
2477 /* This routine sends an ack and also updates the window. */
2478 void tcp_send_ack(struct sock
*sk
)
2480 struct sk_buff
*buff
;
2482 /* If we have been reset, we may not send again. */
2483 if (sk
->sk_state
== TCP_CLOSE
)
2486 /* We are not putting this on the write queue, so
2487 * tcp_transmit_skb() will set the ownership to this
2490 buff
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2492 inet_csk_schedule_ack(sk
);
2493 inet_csk(sk
)->icsk_ack
.ato
= TCP_ATO_MIN
;
2494 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_DACK
,
2495 TCP_DELACK_MAX
, TCP_RTO_MAX
);
2499 /* Reserve space for headers and prepare control bits. */
2500 skb_reserve(buff
, MAX_TCP_HEADER
);
2501 tcp_init_nondata_skb(buff
, tcp_acceptable_seq(sk
), TCPCB_FLAG_ACK
);
2503 /* Send it off, this clears delayed acks for us. */
2504 TCP_SKB_CB(buff
)->when
= tcp_time_stamp
;
2505 tcp_transmit_skb(sk
, buff
, 0, GFP_ATOMIC
);
2508 /* This routine sends a packet with an out of date sequence
2509 * number. It assumes the other end will try to ack it.
2511 * Question: what should we make while urgent mode?
2512 * 4.4BSD forces sending single byte of data. We cannot send
2513 * out of window data, because we have SND.NXT==SND.MAX...
2515 * Current solution: to send TWO zero-length segments in urgent mode:
2516 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
2517 * out-of-date with SND.UNA-1 to probe window.
2519 static int tcp_xmit_probe_skb(struct sock
*sk
, int urgent
)
2521 struct tcp_sock
*tp
= tcp_sk(sk
);
2522 struct sk_buff
*skb
;
2524 /* We don't queue it, tcp_transmit_skb() sets ownership. */
2525 skb
= alloc_skb(MAX_TCP_HEADER
, GFP_ATOMIC
);
2529 /* Reserve space for headers and set control bits. */
2530 skb_reserve(skb
, MAX_TCP_HEADER
);
2531 /* Use a previous sequence. This should cause the other
2532 * end to send an ack. Don't queue or clone SKB, just
2535 tcp_init_nondata_skb(skb
, tp
->snd_una
- !urgent
, TCPCB_FLAG_ACK
);
2536 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2537 return tcp_transmit_skb(sk
, skb
, 0, GFP_ATOMIC
);
2540 int tcp_write_wakeup(struct sock
*sk
)
2542 struct tcp_sock
*tp
= tcp_sk(sk
);
2543 struct sk_buff
*skb
;
2545 if (sk
->sk_state
== TCP_CLOSE
)
2548 if ((skb
= tcp_send_head(sk
)) != NULL
&&
2549 before(TCP_SKB_CB(skb
)->seq
, tcp_wnd_end(tp
))) {
2551 unsigned int mss
= tcp_current_mss(sk
, 0);
2552 unsigned int seg_size
= tcp_wnd_end(tp
) - TCP_SKB_CB(skb
)->seq
;
2554 if (before(tp
->pushed_seq
, TCP_SKB_CB(skb
)->end_seq
))
2555 tp
->pushed_seq
= TCP_SKB_CB(skb
)->end_seq
;
2557 /* We are probing the opening of a window
2558 * but the window size is != 0
2559 * must have been a result SWS avoidance ( sender )
2561 if (seg_size
< TCP_SKB_CB(skb
)->end_seq
- TCP_SKB_CB(skb
)->seq
||
2563 seg_size
= min(seg_size
, mss
);
2564 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2565 if (tcp_fragment(sk
, skb
, seg_size
, mss
))
2567 } else if (!tcp_skb_pcount(skb
))
2568 tcp_set_skb_tso_segs(sk
, skb
, mss
);
2570 TCP_SKB_CB(skb
)->flags
|= TCPCB_FLAG_PSH
;
2571 TCP_SKB_CB(skb
)->when
= tcp_time_stamp
;
2572 err
= tcp_transmit_skb(sk
, skb
, 1, GFP_ATOMIC
);
2574 tcp_event_new_data_sent(sk
, skb
);
2577 if (between(tp
->snd_up
, tp
->snd_una
+ 1, tp
->snd_una
+ 0xFFFF))
2578 tcp_xmit_probe_skb(sk
, 1);
2579 return tcp_xmit_probe_skb(sk
, 0);
2583 /* A window probe timeout has occurred. If window is not closed send
2584 * a partial packet else a zero probe.
2586 void tcp_send_probe0(struct sock
*sk
)
2588 struct inet_connection_sock
*icsk
= inet_csk(sk
);
2589 struct tcp_sock
*tp
= tcp_sk(sk
);
2592 err
= tcp_write_wakeup(sk
);
2594 if (tp
->packets_out
|| !tcp_send_head(sk
)) {
2595 /* Cancel probe timer, if it is not required. */
2596 icsk
->icsk_probes_out
= 0;
2597 icsk
->icsk_backoff
= 0;
2602 if (icsk
->icsk_backoff
< sysctl_tcp_retries2
)
2603 icsk
->icsk_backoff
++;
2604 icsk
->icsk_probes_out
++;
2605 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2606 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
, TCP_RTO_MAX
),
2609 /* If packet was not sent due to local congestion,
2610 * do not backoff and do not remember icsk_probes_out.
2611 * Let local senders to fight for local resources.
2613 * Use accumulated backoff yet.
2615 if (!icsk
->icsk_probes_out
)
2616 icsk
->icsk_probes_out
= 1;
2617 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_PROBE0
,
2618 min(icsk
->icsk_rto
<< icsk
->icsk_backoff
,
2619 TCP_RESOURCE_PROBE_INTERVAL
),
2624 EXPORT_SYMBOL(tcp_select_initial_window
);
2625 EXPORT_SYMBOL(tcp_connect
);
2626 EXPORT_SYMBOL(tcp_make_synack
);
2627 EXPORT_SYMBOL(tcp_simple_retransmit
);
2628 EXPORT_SYMBOL(tcp_sync_mss
);
2629 EXPORT_SYMBOL(tcp_mtup_init
);