e1000: allow VLAN devices to use TSO and CSUM offload
[linux-2.6/mini2440.git] / drivers / net / e1000 / e1000_main.c
blobfac82152e4c8795287fc5c2b7dc10481cc994093
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
32 char e1000_driver_name[] = "e1000";
33 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
34 #define DRV_VERSION "7.3.20-k3-NAPI"
35 const char e1000_driver_version[] = DRV_VERSION;
36 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
38 /* e1000_pci_tbl - PCI Device ID Table
40 * Last entry must be all 0s
42 * Macro expands to...
43 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
45 static struct pci_device_id e1000_pci_tbl[] = {
46 INTEL_E1000_ETHERNET_DEVICE(0x1000),
47 INTEL_E1000_ETHERNET_DEVICE(0x1001),
48 INTEL_E1000_ETHERNET_DEVICE(0x1004),
49 INTEL_E1000_ETHERNET_DEVICE(0x1008),
50 INTEL_E1000_ETHERNET_DEVICE(0x1009),
51 INTEL_E1000_ETHERNET_DEVICE(0x100C),
52 INTEL_E1000_ETHERNET_DEVICE(0x100D),
53 INTEL_E1000_ETHERNET_DEVICE(0x100E),
54 INTEL_E1000_ETHERNET_DEVICE(0x100F),
55 INTEL_E1000_ETHERNET_DEVICE(0x1010),
56 INTEL_E1000_ETHERNET_DEVICE(0x1011),
57 INTEL_E1000_ETHERNET_DEVICE(0x1012),
58 INTEL_E1000_ETHERNET_DEVICE(0x1013),
59 INTEL_E1000_ETHERNET_DEVICE(0x1014),
60 INTEL_E1000_ETHERNET_DEVICE(0x1015),
61 INTEL_E1000_ETHERNET_DEVICE(0x1016),
62 INTEL_E1000_ETHERNET_DEVICE(0x1017),
63 INTEL_E1000_ETHERNET_DEVICE(0x1018),
64 INTEL_E1000_ETHERNET_DEVICE(0x1019),
65 INTEL_E1000_ETHERNET_DEVICE(0x101A),
66 INTEL_E1000_ETHERNET_DEVICE(0x101D),
67 INTEL_E1000_ETHERNET_DEVICE(0x101E),
68 INTEL_E1000_ETHERNET_DEVICE(0x1026),
69 INTEL_E1000_ETHERNET_DEVICE(0x1027),
70 INTEL_E1000_ETHERNET_DEVICE(0x1028),
71 INTEL_E1000_ETHERNET_DEVICE(0x1075),
72 INTEL_E1000_ETHERNET_DEVICE(0x1076),
73 INTEL_E1000_ETHERNET_DEVICE(0x1077),
74 INTEL_E1000_ETHERNET_DEVICE(0x1078),
75 INTEL_E1000_ETHERNET_DEVICE(0x1079),
76 INTEL_E1000_ETHERNET_DEVICE(0x107A),
77 INTEL_E1000_ETHERNET_DEVICE(0x107B),
78 INTEL_E1000_ETHERNET_DEVICE(0x107C),
79 INTEL_E1000_ETHERNET_DEVICE(0x108A),
80 INTEL_E1000_ETHERNET_DEVICE(0x1099),
81 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
82 /* required last entry */
83 {0,}
86 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
88 int e1000_up(struct e1000_adapter *adapter);
89 void e1000_down(struct e1000_adapter *adapter);
90 void e1000_reinit_locked(struct e1000_adapter *adapter);
91 void e1000_reset(struct e1000_adapter *adapter);
92 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx);
93 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
94 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
95 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
96 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
97 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *txdr);
99 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rxdr);
101 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *tx_ring);
103 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rx_ring);
105 void e1000_update_stats(struct e1000_adapter *adapter);
107 static int e1000_init_module(void);
108 static void e1000_exit_module(void);
109 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
110 static void __devexit e1000_remove(struct pci_dev *pdev);
111 static int e1000_alloc_queues(struct e1000_adapter *adapter);
112 static int e1000_sw_init(struct e1000_adapter *adapter);
113 static int e1000_open(struct net_device *netdev);
114 static int e1000_close(struct net_device *netdev);
115 static void e1000_configure_tx(struct e1000_adapter *adapter);
116 static void e1000_configure_rx(struct e1000_adapter *adapter);
117 static void e1000_setup_rctl(struct e1000_adapter *adapter);
118 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
120 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
121 struct e1000_tx_ring *tx_ring);
122 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
123 struct e1000_rx_ring *rx_ring);
124 static void e1000_set_rx_mode(struct net_device *netdev);
125 static void e1000_update_phy_info(unsigned long data);
126 static void e1000_watchdog(unsigned long data);
127 static void e1000_82547_tx_fifo_stall(unsigned long data);
128 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
129 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
130 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
131 static int e1000_set_mac(struct net_device *netdev, void *p);
132 static irqreturn_t e1000_intr(int irq, void *data);
133 static irqreturn_t e1000_intr_msi(int irq, void *data);
134 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
135 struct e1000_tx_ring *tx_ring);
136 static int e1000_clean(struct napi_struct *napi, int budget);
137 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
138 struct e1000_rx_ring *rx_ring,
139 int *work_done, int work_to_do);
140 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
141 struct e1000_rx_ring *rx_ring,
142 int cleaned_count);
143 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
144 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
145 int cmd);
146 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
147 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
148 static void e1000_tx_timeout(struct net_device *dev);
149 static void e1000_reset_task(struct work_struct *work);
150 static void e1000_smartspeed(struct e1000_adapter *adapter);
151 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
152 struct sk_buff *skb);
154 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
155 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
156 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
157 static void e1000_restore_vlan(struct e1000_adapter *adapter);
159 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
160 #ifdef CONFIG_PM
161 static int e1000_resume(struct pci_dev *pdev);
162 #endif
163 static void e1000_shutdown(struct pci_dev *pdev);
165 #ifdef CONFIG_NET_POLL_CONTROLLER
166 /* for netdump / net console */
167 static void e1000_netpoll (struct net_device *netdev);
168 #endif
170 #define COPYBREAK_DEFAULT 256
171 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
172 module_param(copybreak, uint, 0644);
173 MODULE_PARM_DESC(copybreak,
174 "Maximum size of packet that is copied to a new buffer on receive");
176 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
177 pci_channel_state_t state);
178 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
179 static void e1000_io_resume(struct pci_dev *pdev);
181 static struct pci_error_handlers e1000_err_handler = {
182 .error_detected = e1000_io_error_detected,
183 .slot_reset = e1000_io_slot_reset,
184 .resume = e1000_io_resume,
187 static struct pci_driver e1000_driver = {
188 .name = e1000_driver_name,
189 .id_table = e1000_pci_tbl,
190 .probe = e1000_probe,
191 .remove = __devexit_p(e1000_remove),
192 #ifdef CONFIG_PM
193 /* Power Managment Hooks */
194 .suspend = e1000_suspend,
195 .resume = e1000_resume,
196 #endif
197 .shutdown = e1000_shutdown,
198 .err_handler = &e1000_err_handler
201 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
202 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
203 MODULE_LICENSE("GPL");
204 MODULE_VERSION(DRV_VERSION);
206 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
207 module_param(debug, int, 0);
208 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
211 * e1000_init_module - Driver Registration Routine
213 * e1000_init_module is the first routine called when the driver is
214 * loaded. All it does is register with the PCI subsystem.
217 static int __init e1000_init_module(void)
219 int ret;
220 printk(KERN_INFO "%s - version %s\n",
221 e1000_driver_string, e1000_driver_version);
223 printk(KERN_INFO "%s\n", e1000_copyright);
225 ret = pci_register_driver(&e1000_driver);
226 if (copybreak != COPYBREAK_DEFAULT) {
227 if (copybreak == 0)
228 printk(KERN_INFO "e1000: copybreak disabled\n");
229 else
230 printk(KERN_INFO "e1000: copybreak enabled for "
231 "packets <= %u bytes\n", copybreak);
233 return ret;
236 module_init(e1000_init_module);
239 * e1000_exit_module - Driver Exit Cleanup Routine
241 * e1000_exit_module is called just before the driver is removed
242 * from memory.
245 static void __exit e1000_exit_module(void)
247 pci_unregister_driver(&e1000_driver);
250 module_exit(e1000_exit_module);
252 static int e1000_request_irq(struct e1000_adapter *adapter)
254 struct e1000_hw *hw = &adapter->hw;
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
258 int err;
260 if (hw->mac_type >= e1000_82571) {
261 adapter->have_msi = !pci_enable_msi(adapter->pdev);
262 if (adapter->have_msi) {
263 handler = e1000_intr_msi;
264 irq_flags = 0;
268 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
269 netdev);
270 if (err) {
271 if (adapter->have_msi)
272 pci_disable_msi(adapter->pdev);
273 DPRINTK(PROBE, ERR,
274 "Unable to allocate interrupt Error: %d\n", err);
277 return err;
280 static void e1000_free_irq(struct e1000_adapter *adapter)
282 struct net_device *netdev = adapter->netdev;
284 free_irq(adapter->pdev->irq, netdev);
286 if (adapter->have_msi)
287 pci_disable_msi(adapter->pdev);
291 * e1000_irq_disable - Mask off interrupt generation on the NIC
292 * @adapter: board private structure
295 static void e1000_irq_disable(struct e1000_adapter *adapter)
297 struct e1000_hw *hw = &adapter->hw;
299 ew32(IMC, ~0);
300 E1000_WRITE_FLUSH();
301 synchronize_irq(adapter->pdev->irq);
305 * e1000_irq_enable - Enable default interrupt generation settings
306 * @adapter: board private structure
309 static void e1000_irq_enable(struct e1000_adapter *adapter)
311 struct e1000_hw *hw = &adapter->hw;
313 ew32(IMS, IMS_ENABLE_MASK);
314 E1000_WRITE_FLUSH();
317 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
319 struct e1000_hw *hw = &adapter->hw;
320 struct net_device *netdev = adapter->netdev;
321 u16 vid = hw->mng_cookie.vlan_id;
322 u16 old_vid = adapter->mng_vlan_id;
323 if (adapter->vlgrp) {
324 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
325 if (hw->mng_cookie.status &
326 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
327 e1000_vlan_rx_add_vid(netdev, vid);
328 adapter->mng_vlan_id = vid;
329 } else
330 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
332 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
333 (vid != old_vid) &&
334 !vlan_group_get_device(adapter->vlgrp, old_vid))
335 e1000_vlan_rx_kill_vid(netdev, old_vid);
336 } else
337 adapter->mng_vlan_id = vid;
342 * e1000_release_hw_control - release control of the h/w to f/w
343 * @adapter: address of board private structure
345 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
346 * For ASF and Pass Through versions of f/w this means that the
347 * driver is no longer loaded. For AMT version (only with 82573) i
348 * of the f/w this means that the network i/f is closed.
352 static void e1000_release_hw_control(struct e1000_adapter *adapter)
354 u32 ctrl_ext;
355 u32 swsm;
356 struct e1000_hw *hw = &adapter->hw;
358 /* Let firmware taken over control of h/w */
359 switch (hw->mac_type) {
360 case e1000_82573:
361 swsm = er32(SWSM);
362 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
363 break;
364 case e1000_82571:
365 case e1000_82572:
366 case e1000_80003es2lan:
367 case e1000_ich8lan:
368 ctrl_ext = er32(CTRL_EXT);
369 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
370 break;
371 default:
372 break;
377 * e1000_get_hw_control - get control of the h/w from f/w
378 * @adapter: address of board private structure
380 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
381 * For ASF and Pass Through versions of f/w this means that
382 * the driver is loaded. For AMT version (only with 82573)
383 * of the f/w this means that the network i/f is open.
387 static void e1000_get_hw_control(struct e1000_adapter *adapter)
389 u32 ctrl_ext;
390 u32 swsm;
391 struct e1000_hw *hw = &adapter->hw;
393 /* Let firmware know the driver has taken over */
394 switch (hw->mac_type) {
395 case e1000_82573:
396 swsm = er32(SWSM);
397 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
398 break;
399 case e1000_82571:
400 case e1000_82572:
401 case e1000_80003es2lan:
402 case e1000_ich8lan:
403 ctrl_ext = er32(CTRL_EXT);
404 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
405 break;
406 default:
407 break;
411 static void e1000_init_manageability(struct e1000_adapter *adapter)
413 struct e1000_hw *hw = &adapter->hw;
415 if (adapter->en_mng_pt) {
416 u32 manc = er32(MANC);
418 /* disable hardware interception of ARP */
419 manc &= ~(E1000_MANC_ARP_EN);
421 /* enable receiving management packets to the host */
422 /* this will probably generate destination unreachable messages
423 * from the host OS, but the packets will be handled on SMBUS */
424 if (hw->has_manc2h) {
425 u32 manc2h = er32(MANC2H);
427 manc |= E1000_MANC_EN_MNG2HOST;
428 #define E1000_MNG2HOST_PORT_623 (1 << 5)
429 #define E1000_MNG2HOST_PORT_664 (1 << 6)
430 manc2h |= E1000_MNG2HOST_PORT_623;
431 manc2h |= E1000_MNG2HOST_PORT_664;
432 ew32(MANC2H, manc2h);
435 ew32(MANC, manc);
439 static void e1000_release_manageability(struct e1000_adapter *adapter)
441 struct e1000_hw *hw = &adapter->hw;
443 if (adapter->en_mng_pt) {
444 u32 manc = er32(MANC);
446 /* re-enable hardware interception of ARP */
447 manc |= E1000_MANC_ARP_EN;
449 if (hw->has_manc2h)
450 manc &= ~E1000_MANC_EN_MNG2HOST;
452 /* don't explicitly have to mess with MANC2H since
453 * MANC has an enable disable that gates MANC2H */
455 ew32(MANC, manc);
460 * e1000_configure - configure the hardware for RX and TX
461 * @adapter = private board structure
463 static void e1000_configure(struct e1000_adapter *adapter)
465 struct net_device *netdev = adapter->netdev;
466 int i;
468 e1000_set_rx_mode(netdev);
470 e1000_restore_vlan(adapter);
471 e1000_init_manageability(adapter);
473 e1000_configure_tx(adapter);
474 e1000_setup_rctl(adapter);
475 e1000_configure_rx(adapter);
476 /* call E1000_DESC_UNUSED which always leaves
477 * at least 1 descriptor unused to make sure
478 * next_to_use != next_to_clean */
479 for (i = 0; i < adapter->num_rx_queues; i++) {
480 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
481 adapter->alloc_rx_buf(adapter, ring,
482 E1000_DESC_UNUSED(ring));
485 adapter->tx_queue_len = netdev->tx_queue_len;
488 int e1000_up(struct e1000_adapter *adapter)
490 struct e1000_hw *hw = &adapter->hw;
492 /* hardware has been reset, we need to reload some things */
493 e1000_configure(adapter);
495 clear_bit(__E1000_DOWN, &adapter->flags);
497 napi_enable(&adapter->napi);
499 e1000_irq_enable(adapter);
501 /* fire a link change interrupt to start the watchdog */
502 ew32(ICS, E1000_ICS_LSC);
503 return 0;
507 * e1000_power_up_phy - restore link in case the phy was powered down
508 * @adapter: address of board private structure
510 * The phy may be powered down to save power and turn off link when the
511 * driver is unloaded and wake on lan is not enabled (among others)
512 * *** this routine MUST be followed by a call to e1000_reset ***
516 void e1000_power_up_phy(struct e1000_adapter *adapter)
518 struct e1000_hw *hw = &adapter->hw;
519 u16 mii_reg = 0;
521 /* Just clear the power down bit to wake the phy back up */
522 if (hw->media_type == e1000_media_type_copper) {
523 /* according to the manual, the phy will retain its
524 * settings across a power-down/up cycle */
525 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
526 mii_reg &= ~MII_CR_POWER_DOWN;
527 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
531 static void e1000_power_down_phy(struct e1000_adapter *adapter)
533 struct e1000_hw *hw = &adapter->hw;
535 /* Power down the PHY so no link is implied when interface is down *
536 * The PHY cannot be powered down if any of the following is true *
537 * (a) WoL is enabled
538 * (b) AMT is active
539 * (c) SoL/IDER session is active */
540 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
541 hw->media_type == e1000_media_type_copper) {
542 u16 mii_reg = 0;
544 switch (hw->mac_type) {
545 case e1000_82540:
546 case e1000_82545:
547 case e1000_82545_rev_3:
548 case e1000_82546:
549 case e1000_82546_rev_3:
550 case e1000_82541:
551 case e1000_82541_rev_2:
552 case e1000_82547:
553 case e1000_82547_rev_2:
554 if (er32(MANC) & E1000_MANC_SMBUS_EN)
555 goto out;
556 break;
557 case e1000_82571:
558 case e1000_82572:
559 case e1000_82573:
560 case e1000_80003es2lan:
561 case e1000_ich8lan:
562 if (e1000_check_mng_mode(hw) ||
563 e1000_check_phy_reset_block(hw))
564 goto out;
565 break;
566 default:
567 goto out;
569 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
570 mii_reg |= MII_CR_POWER_DOWN;
571 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
572 mdelay(1);
574 out:
575 return;
578 void e1000_down(struct e1000_adapter *adapter)
580 struct net_device *netdev = adapter->netdev;
582 /* signal that we're down so the interrupt handler does not
583 * reschedule our watchdog timer */
584 set_bit(__E1000_DOWN, &adapter->flags);
586 napi_disable(&adapter->napi);
588 e1000_irq_disable(adapter);
590 del_timer_sync(&adapter->tx_fifo_stall_timer);
591 del_timer_sync(&adapter->watchdog_timer);
592 del_timer_sync(&adapter->phy_info_timer);
594 netdev->tx_queue_len = adapter->tx_queue_len;
595 adapter->link_speed = 0;
596 adapter->link_duplex = 0;
597 netif_carrier_off(netdev);
598 netif_stop_queue(netdev);
600 e1000_reset(adapter);
601 e1000_clean_all_tx_rings(adapter);
602 e1000_clean_all_rx_rings(adapter);
605 void e1000_reinit_locked(struct e1000_adapter *adapter)
607 WARN_ON(in_interrupt());
608 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
609 msleep(1);
610 e1000_down(adapter);
611 e1000_up(adapter);
612 clear_bit(__E1000_RESETTING, &adapter->flags);
615 void e1000_reset(struct e1000_adapter *adapter)
617 struct e1000_hw *hw = &adapter->hw;
618 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
619 u16 fc_high_water_mark = E1000_FC_HIGH_DIFF;
620 bool legacy_pba_adjust = false;
622 /* Repartition Pba for greater than 9k mtu
623 * To take effect CTRL.RST is required.
626 switch (hw->mac_type) {
627 case e1000_82542_rev2_0:
628 case e1000_82542_rev2_1:
629 case e1000_82543:
630 case e1000_82544:
631 case e1000_82540:
632 case e1000_82541:
633 case e1000_82541_rev_2:
634 legacy_pba_adjust = true;
635 pba = E1000_PBA_48K;
636 break;
637 case e1000_82545:
638 case e1000_82545_rev_3:
639 case e1000_82546:
640 case e1000_82546_rev_3:
641 pba = E1000_PBA_48K;
642 break;
643 case e1000_82547:
644 case e1000_82547_rev_2:
645 legacy_pba_adjust = true;
646 pba = E1000_PBA_30K;
647 break;
648 case e1000_82571:
649 case e1000_82572:
650 case e1000_80003es2lan:
651 pba = E1000_PBA_38K;
652 break;
653 case e1000_82573:
654 pba = E1000_PBA_20K;
655 break;
656 case e1000_ich8lan:
657 pba = E1000_PBA_8K;
658 case e1000_undefined:
659 case e1000_num_macs:
660 break;
663 if (legacy_pba_adjust) {
664 if (adapter->netdev->mtu > E1000_RXBUFFER_8192)
665 pba -= 8; /* allocate more FIFO for Tx */
667 if (hw->mac_type == e1000_82547) {
668 adapter->tx_fifo_head = 0;
669 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
670 adapter->tx_fifo_size =
671 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
672 atomic_set(&adapter->tx_fifo_stall, 0);
674 } else if (hw->max_frame_size > MAXIMUM_ETHERNET_FRAME_SIZE) {
675 /* adjust PBA for jumbo frames */
676 ew32(PBA, pba);
678 /* To maintain wire speed transmits, the Tx FIFO should be
679 * large enough to accomodate two full transmit packets,
680 * rounded up to the next 1KB and expressed in KB. Likewise,
681 * the Rx FIFO should be large enough to accomodate at least
682 * one full receive packet and is similarly rounded up and
683 * expressed in KB. */
684 pba = er32(PBA);
685 /* upper 16 bits has Tx packet buffer allocation size in KB */
686 tx_space = pba >> 16;
687 /* lower 16 bits has Rx packet buffer allocation size in KB */
688 pba &= 0xffff;
689 /* don't include ethernet FCS because hardware appends/strips */
690 min_rx_space = adapter->netdev->mtu + ENET_HEADER_SIZE +
691 VLAN_TAG_SIZE;
692 min_tx_space = min_rx_space;
693 min_tx_space *= 2;
694 min_tx_space = ALIGN(min_tx_space, 1024);
695 min_tx_space >>= 10;
696 min_rx_space = ALIGN(min_rx_space, 1024);
697 min_rx_space >>= 10;
699 /* If current Tx allocation is less than the min Tx FIFO size,
700 * and the min Tx FIFO size is less than the current Rx FIFO
701 * allocation, take space away from current Rx allocation */
702 if (tx_space < min_tx_space &&
703 ((min_tx_space - tx_space) < pba)) {
704 pba = pba - (min_tx_space - tx_space);
706 /* PCI/PCIx hardware has PBA alignment constraints */
707 switch (hw->mac_type) {
708 case e1000_82545 ... e1000_82546_rev_3:
709 pba &= ~(E1000_PBA_8K - 1);
710 break;
711 default:
712 break;
715 /* if short on rx space, rx wins and must trump tx
716 * adjustment or use Early Receive if available */
717 if (pba < min_rx_space) {
718 switch (hw->mac_type) {
719 case e1000_82573:
720 /* ERT enabled in e1000_configure_rx */
721 break;
722 default:
723 pba = min_rx_space;
724 break;
730 ew32(PBA, pba);
732 /* flow control settings */
733 /* Set the FC high water mark to 90% of the FIFO size.
734 * Required to clear last 3 LSB */
735 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
736 /* We can't use 90% on small FIFOs because the remainder
737 * would be less than 1 full frame. In this case, we size
738 * it to allow at least a full frame above the high water
739 * mark. */
740 if (pba < E1000_PBA_16K)
741 fc_high_water_mark = (pba * 1024) - 1600;
743 hw->fc_high_water = fc_high_water_mark;
744 hw->fc_low_water = fc_high_water_mark - 8;
745 if (hw->mac_type == e1000_80003es2lan)
746 hw->fc_pause_time = 0xFFFF;
747 else
748 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
749 hw->fc_send_xon = 1;
750 hw->fc = hw->original_fc;
752 /* Allow time for pending master requests to run */
753 e1000_reset_hw(hw);
754 if (hw->mac_type >= e1000_82544)
755 ew32(WUC, 0);
757 if (e1000_init_hw(hw))
758 DPRINTK(PROBE, ERR, "Hardware Error\n");
759 e1000_update_mng_vlan(adapter);
761 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
762 if (hw->mac_type >= e1000_82544 &&
763 hw->mac_type <= e1000_82547_rev_2 &&
764 hw->autoneg == 1 &&
765 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
766 u32 ctrl = er32(CTRL);
767 /* clear phy power management bit if we are in gig only mode,
768 * which if enabled will attempt negotiation to 100Mb, which
769 * can cause a loss of link at power off or driver unload */
770 ctrl &= ~E1000_CTRL_SWDPIN3;
771 ew32(CTRL, ctrl);
774 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
775 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
777 e1000_reset_adaptive(hw);
778 e1000_phy_get_info(hw, &adapter->phy_info);
780 if (!adapter->smart_power_down &&
781 (hw->mac_type == e1000_82571 ||
782 hw->mac_type == e1000_82572)) {
783 u16 phy_data = 0;
784 /* speed up time to link by disabling smart power down, ignore
785 * the return value of this function because there is nothing
786 * different we would do if it failed */
787 e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
788 &phy_data);
789 phy_data &= ~IGP02E1000_PM_SPD;
790 e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT,
791 phy_data);
794 e1000_release_manageability(adapter);
798 * Dump the eeprom for users having checksum issues
800 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
802 struct net_device *netdev = adapter->netdev;
803 struct ethtool_eeprom eeprom;
804 const struct ethtool_ops *ops = netdev->ethtool_ops;
805 u8 *data;
806 int i;
807 u16 csum_old, csum_new = 0;
809 eeprom.len = ops->get_eeprom_len(netdev);
810 eeprom.offset = 0;
812 data = kmalloc(eeprom.len, GFP_KERNEL);
813 if (!data) {
814 printk(KERN_ERR "Unable to allocate memory to dump EEPROM"
815 " data\n");
816 return;
819 ops->get_eeprom(netdev, &eeprom, data);
821 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
822 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
823 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
824 csum_new += data[i] + (data[i + 1] << 8);
825 csum_new = EEPROM_SUM - csum_new;
827 printk(KERN_ERR "/*********************/\n");
828 printk(KERN_ERR "Current EEPROM Checksum : 0x%04x\n", csum_old);
829 printk(KERN_ERR "Calculated : 0x%04x\n", csum_new);
831 printk(KERN_ERR "Offset Values\n");
832 printk(KERN_ERR "======== ======\n");
833 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
835 printk(KERN_ERR "Include this output when contacting your support "
836 "provider.\n");
837 printk(KERN_ERR "This is not a software error! Something bad "
838 "happened to your hardware or\n");
839 printk(KERN_ERR "EEPROM image. Ignoring this "
840 "problem could result in further problems,\n");
841 printk(KERN_ERR "possibly loss of data, corruption or system hangs!\n");
842 printk(KERN_ERR "The MAC Address will be reset to 00:00:00:00:00:00, "
843 "which is invalid\n");
844 printk(KERN_ERR "and requires you to set the proper MAC "
845 "address manually before continuing\n");
846 printk(KERN_ERR "to enable this network device.\n");
847 printk(KERN_ERR "Please inspect the EEPROM dump and report the issue "
848 "to your hardware vendor\n");
849 printk(KERN_ERR "or Intel Customer Support.\n");
850 printk(KERN_ERR "/*********************/\n");
852 kfree(data);
856 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
857 * @pdev: PCI device information struct
859 * Return true if an adapter needs ioport resources
861 static int e1000_is_need_ioport(struct pci_dev *pdev)
863 switch (pdev->device) {
864 case E1000_DEV_ID_82540EM:
865 case E1000_DEV_ID_82540EM_LOM:
866 case E1000_DEV_ID_82540EP:
867 case E1000_DEV_ID_82540EP_LOM:
868 case E1000_DEV_ID_82540EP_LP:
869 case E1000_DEV_ID_82541EI:
870 case E1000_DEV_ID_82541EI_MOBILE:
871 case E1000_DEV_ID_82541ER:
872 case E1000_DEV_ID_82541ER_LOM:
873 case E1000_DEV_ID_82541GI:
874 case E1000_DEV_ID_82541GI_LF:
875 case E1000_DEV_ID_82541GI_MOBILE:
876 case E1000_DEV_ID_82544EI_COPPER:
877 case E1000_DEV_ID_82544EI_FIBER:
878 case E1000_DEV_ID_82544GC_COPPER:
879 case E1000_DEV_ID_82544GC_LOM:
880 case E1000_DEV_ID_82545EM_COPPER:
881 case E1000_DEV_ID_82545EM_FIBER:
882 case E1000_DEV_ID_82546EB_COPPER:
883 case E1000_DEV_ID_82546EB_FIBER:
884 case E1000_DEV_ID_82546EB_QUAD_COPPER:
885 return true;
886 default:
887 return false;
892 * e1000_probe - Device Initialization Routine
893 * @pdev: PCI device information struct
894 * @ent: entry in e1000_pci_tbl
896 * Returns 0 on success, negative on failure
898 * e1000_probe initializes an adapter identified by a pci_dev structure.
899 * The OS initialization, configuring of the adapter private structure,
900 * and a hardware reset occur.
902 static int __devinit e1000_probe(struct pci_dev *pdev,
903 const struct pci_device_id *ent)
905 struct net_device *netdev;
906 struct e1000_adapter *adapter;
907 struct e1000_hw *hw;
909 static int cards_found = 0;
910 static int global_quad_port_a = 0; /* global ksp3 port a indication */
911 int i, err, pci_using_dac;
912 u16 eeprom_data = 0;
913 u16 eeprom_apme_mask = E1000_EEPROM_APME;
914 int bars, need_ioport;
915 DECLARE_MAC_BUF(mac);
917 /* do not allocate ioport bars when not needed */
918 need_ioport = e1000_is_need_ioport(pdev);
919 if (need_ioport) {
920 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
921 err = pci_enable_device(pdev);
922 } else {
923 bars = pci_select_bars(pdev, IORESOURCE_MEM);
924 err = pci_enable_device(pdev);
926 if (err)
927 return err;
929 if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK) &&
930 !pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK)) {
931 pci_using_dac = 1;
932 } else {
933 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
934 if (err) {
935 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
936 if (err) {
937 E1000_ERR("No usable DMA configuration, "
938 "aborting\n");
939 goto err_dma;
942 pci_using_dac = 0;
945 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
946 if (err)
947 goto err_pci_reg;
949 pci_set_master(pdev);
951 err = -ENOMEM;
952 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
953 if (!netdev)
954 goto err_alloc_etherdev;
956 SET_NETDEV_DEV(netdev, &pdev->dev);
958 pci_set_drvdata(pdev, netdev);
959 adapter = netdev_priv(netdev);
960 adapter->netdev = netdev;
961 adapter->pdev = pdev;
962 adapter->msg_enable = (1 << debug) - 1;
963 adapter->bars = bars;
964 adapter->need_ioport = need_ioport;
966 hw = &adapter->hw;
967 hw->back = adapter;
969 err = -EIO;
970 hw->hw_addr = ioremap(pci_resource_start(pdev, BAR_0),
971 pci_resource_len(pdev, BAR_0));
972 if (!hw->hw_addr)
973 goto err_ioremap;
975 if (adapter->need_ioport) {
976 for (i = BAR_1; i <= BAR_5; i++) {
977 if (pci_resource_len(pdev, i) == 0)
978 continue;
979 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
980 hw->io_base = pci_resource_start(pdev, i);
981 break;
986 netdev->open = &e1000_open;
987 netdev->stop = &e1000_close;
988 netdev->hard_start_xmit = &e1000_xmit_frame;
989 netdev->get_stats = &e1000_get_stats;
990 netdev->set_rx_mode = &e1000_set_rx_mode;
991 netdev->set_mac_address = &e1000_set_mac;
992 netdev->change_mtu = &e1000_change_mtu;
993 netdev->do_ioctl = &e1000_ioctl;
994 e1000_set_ethtool_ops(netdev);
995 netdev->tx_timeout = &e1000_tx_timeout;
996 netdev->watchdog_timeo = 5 * HZ;
997 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
998 netdev->vlan_rx_register = e1000_vlan_rx_register;
999 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
1000 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
1001 #ifdef CONFIG_NET_POLL_CONTROLLER
1002 netdev->poll_controller = e1000_netpoll;
1003 #endif
1004 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1006 adapter->bd_number = cards_found;
1008 /* setup the private structure */
1010 err = e1000_sw_init(adapter);
1011 if (err)
1012 goto err_sw_init;
1014 err = -EIO;
1015 /* Flash BAR mapping must happen after e1000_sw_init
1016 * because it depends on mac_type */
1017 if ((hw->mac_type == e1000_ich8lan) &&
1018 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
1019 hw->flash_address =
1020 ioremap(pci_resource_start(pdev, 1),
1021 pci_resource_len(pdev, 1));
1022 if (!hw->flash_address)
1023 goto err_flashmap;
1026 if (e1000_check_phy_reset_block(hw))
1027 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
1029 if (hw->mac_type >= e1000_82543) {
1030 netdev->features = NETIF_F_SG |
1031 NETIF_F_HW_CSUM |
1032 NETIF_F_HW_VLAN_TX |
1033 NETIF_F_HW_VLAN_RX |
1034 NETIF_F_HW_VLAN_FILTER;
1035 if (hw->mac_type == e1000_ich8lan)
1036 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
1039 if ((hw->mac_type >= e1000_82544) &&
1040 (hw->mac_type != e1000_82547))
1041 netdev->features |= NETIF_F_TSO;
1043 if (hw->mac_type > e1000_82547_rev_2)
1044 netdev->features |= NETIF_F_TSO6;
1045 if (pci_using_dac)
1046 netdev->features |= NETIF_F_HIGHDMA;
1048 netdev->features |= NETIF_F_LLTX;
1050 netdev->vlan_features |= NETIF_F_TSO;
1051 netdev->vlan_features |= NETIF_F_TSO6;
1052 netdev->vlan_features |= NETIF_F_HW_CSUM;
1053 netdev->vlan_features |= NETIF_F_SG;
1055 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1057 /* initialize eeprom parameters */
1058 if (e1000_init_eeprom_params(hw)) {
1059 E1000_ERR("EEPROM initialization failed\n");
1060 goto err_eeprom;
1063 /* before reading the EEPROM, reset the controller to
1064 * put the device in a known good starting state */
1066 e1000_reset_hw(hw);
1068 /* make sure the EEPROM is good */
1069 if (e1000_validate_eeprom_checksum(hw) < 0) {
1070 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
1071 e1000_dump_eeprom(adapter);
1073 * set MAC address to all zeroes to invalidate and temporary
1074 * disable this device for the user. This blocks regular
1075 * traffic while still permitting ethtool ioctls from reaching
1076 * the hardware as well as allowing the user to run the
1077 * interface after manually setting a hw addr using
1078 * `ip set address`
1080 memset(hw->mac_addr, 0, netdev->addr_len);
1081 } else {
1082 /* copy the MAC address out of the EEPROM */
1083 if (e1000_read_mac_addr(hw))
1084 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
1086 /* don't block initalization here due to bad MAC address */
1087 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1088 memcpy(netdev->perm_addr, hw->mac_addr, netdev->addr_len);
1090 if (!is_valid_ether_addr(netdev->perm_addr))
1091 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
1093 e1000_get_bus_info(hw);
1095 init_timer(&adapter->tx_fifo_stall_timer);
1096 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
1097 adapter->tx_fifo_stall_timer.data = (unsigned long)adapter;
1099 init_timer(&adapter->watchdog_timer);
1100 adapter->watchdog_timer.function = &e1000_watchdog;
1101 adapter->watchdog_timer.data = (unsigned long) adapter;
1103 init_timer(&adapter->phy_info_timer);
1104 adapter->phy_info_timer.function = &e1000_update_phy_info;
1105 adapter->phy_info_timer.data = (unsigned long)adapter;
1107 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1109 e1000_check_options(adapter);
1111 /* Initial Wake on LAN setting
1112 * If APM wake is enabled in the EEPROM,
1113 * enable the ACPI Magic Packet filter
1116 switch (hw->mac_type) {
1117 case e1000_82542_rev2_0:
1118 case e1000_82542_rev2_1:
1119 case e1000_82543:
1120 break;
1121 case e1000_82544:
1122 e1000_read_eeprom(hw,
1123 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1124 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1125 break;
1126 case e1000_ich8lan:
1127 e1000_read_eeprom(hw,
1128 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
1129 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
1130 break;
1131 case e1000_82546:
1132 case e1000_82546_rev_3:
1133 case e1000_82571:
1134 case e1000_80003es2lan:
1135 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1136 e1000_read_eeprom(hw,
1137 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1138 break;
1140 /* Fall Through */
1141 default:
1142 e1000_read_eeprom(hw,
1143 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1144 break;
1146 if (eeprom_data & eeprom_apme_mask)
1147 adapter->eeprom_wol |= E1000_WUFC_MAG;
1149 /* now that we have the eeprom settings, apply the special cases
1150 * where the eeprom may be wrong or the board simply won't support
1151 * wake on lan on a particular port */
1152 switch (pdev->device) {
1153 case E1000_DEV_ID_82546GB_PCIE:
1154 adapter->eeprom_wol = 0;
1155 break;
1156 case E1000_DEV_ID_82546EB_FIBER:
1157 case E1000_DEV_ID_82546GB_FIBER:
1158 case E1000_DEV_ID_82571EB_FIBER:
1159 /* Wake events only supported on port A for dual fiber
1160 * regardless of eeprom setting */
1161 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1162 adapter->eeprom_wol = 0;
1163 break;
1164 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1165 case E1000_DEV_ID_82571EB_QUAD_COPPER:
1166 case E1000_DEV_ID_82571EB_QUAD_FIBER:
1167 case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE:
1168 case E1000_DEV_ID_82571PT_QUAD_COPPER:
1169 /* if quad port adapter, disable WoL on all but port A */
1170 if (global_quad_port_a != 0)
1171 adapter->eeprom_wol = 0;
1172 else
1173 adapter->quad_port_a = 1;
1174 /* Reset for multiple quad port adapters */
1175 if (++global_quad_port_a == 4)
1176 global_quad_port_a = 0;
1177 break;
1180 /* initialize the wol settings based on the eeprom settings */
1181 adapter->wol = adapter->eeprom_wol;
1183 /* print bus type/speed/width info */
1184 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
1185 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
1186 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
1187 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
1188 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
1189 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
1190 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
1191 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
1192 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
1193 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
1194 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1195 "32-bit"));
1197 printk("%s\n", print_mac(mac, netdev->dev_addr));
1199 if (hw->bus_type == e1000_bus_type_pci_express) {
1200 DPRINTK(PROBE, WARNING, "This device (id %04x:%04x) will no "
1201 "longer be supported by this driver in the future.\n",
1202 pdev->vendor, pdev->device);
1203 DPRINTK(PROBE, WARNING, "please use the \"e1000e\" "
1204 "driver instead.\n");
1207 /* reset the hardware with the new settings */
1208 e1000_reset(adapter);
1210 /* If the controller is 82573 and f/w is AMT, do not set
1211 * DRV_LOAD until the interface is up. For all other cases,
1212 * let the f/w know that the h/w is now under the control
1213 * of the driver. */
1214 if (hw->mac_type != e1000_82573 ||
1215 !e1000_check_mng_mode(hw))
1216 e1000_get_hw_control(adapter);
1218 /* tell the stack to leave us alone until e1000_open() is called */
1219 netif_carrier_off(netdev);
1220 netif_stop_queue(netdev);
1222 strcpy(netdev->name, "eth%d");
1223 err = register_netdev(netdev);
1224 if (err)
1225 goto err_register;
1227 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1229 cards_found++;
1230 return 0;
1232 err_register:
1233 e1000_release_hw_control(adapter);
1234 err_eeprom:
1235 if (!e1000_check_phy_reset_block(hw))
1236 e1000_phy_hw_reset(hw);
1238 if (hw->flash_address)
1239 iounmap(hw->flash_address);
1240 err_flashmap:
1241 for (i = 0; i < adapter->num_rx_queues; i++)
1242 dev_put(&adapter->polling_netdev[i]);
1244 kfree(adapter->tx_ring);
1245 kfree(adapter->rx_ring);
1246 kfree(adapter->polling_netdev);
1247 err_sw_init:
1248 iounmap(hw->hw_addr);
1249 err_ioremap:
1250 free_netdev(netdev);
1251 err_alloc_etherdev:
1252 pci_release_selected_regions(pdev, bars);
1253 err_pci_reg:
1254 err_dma:
1255 pci_disable_device(pdev);
1256 return err;
1260 * e1000_remove - Device Removal Routine
1261 * @pdev: PCI device information struct
1263 * e1000_remove is called by the PCI subsystem to alert the driver
1264 * that it should release a PCI device. The could be caused by a
1265 * Hot-Plug event, or because the driver is going to be removed from
1266 * memory.
1269 static void __devexit e1000_remove(struct pci_dev *pdev)
1271 struct net_device *netdev = pci_get_drvdata(pdev);
1272 struct e1000_adapter *adapter = netdev_priv(netdev);
1273 struct e1000_hw *hw = &adapter->hw;
1274 int i;
1276 cancel_work_sync(&adapter->reset_task);
1278 e1000_release_manageability(adapter);
1280 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1281 * would have already happened in close and is redundant. */
1282 e1000_release_hw_control(adapter);
1284 for (i = 0; i < adapter->num_rx_queues; i++)
1285 dev_put(&adapter->polling_netdev[i]);
1287 unregister_netdev(netdev);
1289 if (!e1000_check_phy_reset_block(hw))
1290 e1000_phy_hw_reset(hw);
1292 kfree(adapter->tx_ring);
1293 kfree(adapter->rx_ring);
1294 kfree(adapter->polling_netdev);
1296 iounmap(hw->hw_addr);
1297 if (hw->flash_address)
1298 iounmap(hw->flash_address);
1299 pci_release_selected_regions(pdev, adapter->bars);
1301 free_netdev(netdev);
1303 pci_disable_device(pdev);
1307 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1308 * @adapter: board private structure to initialize
1310 * e1000_sw_init initializes the Adapter private data structure.
1311 * Fields are initialized based on PCI device information and
1312 * OS network device settings (MTU size).
1315 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
1317 struct e1000_hw *hw = &adapter->hw;
1318 struct net_device *netdev = adapter->netdev;
1319 struct pci_dev *pdev = adapter->pdev;
1320 int i;
1322 /* PCI config space info */
1324 hw->vendor_id = pdev->vendor;
1325 hw->device_id = pdev->device;
1326 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1327 hw->subsystem_id = pdev->subsystem_device;
1328 hw->revision_id = pdev->revision;
1330 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1332 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1333 hw->max_frame_size = netdev->mtu +
1334 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1335 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1337 /* identify the MAC */
1339 if (e1000_set_mac_type(hw)) {
1340 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1341 return -EIO;
1344 switch (hw->mac_type) {
1345 default:
1346 break;
1347 case e1000_82541:
1348 case e1000_82547:
1349 case e1000_82541_rev_2:
1350 case e1000_82547_rev_2:
1351 hw->phy_init_script = 1;
1352 break;
1355 e1000_set_media_type(hw);
1357 hw->wait_autoneg_complete = false;
1358 hw->tbi_compatibility_en = true;
1359 hw->adaptive_ifs = true;
1361 /* Copper options */
1363 if (hw->media_type == e1000_media_type_copper) {
1364 hw->mdix = AUTO_ALL_MODES;
1365 hw->disable_polarity_correction = false;
1366 hw->master_slave = E1000_MASTER_SLAVE;
1369 adapter->num_tx_queues = 1;
1370 adapter->num_rx_queues = 1;
1372 if (e1000_alloc_queues(adapter)) {
1373 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1374 return -ENOMEM;
1377 for (i = 0; i < adapter->num_rx_queues; i++) {
1378 adapter->polling_netdev[i].priv = adapter;
1379 dev_hold(&adapter->polling_netdev[i]);
1380 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1382 spin_lock_init(&adapter->tx_queue_lock);
1384 /* Explicitly disable IRQ since the NIC can be in any state. */
1385 e1000_irq_disable(adapter);
1387 spin_lock_init(&adapter->stats_lock);
1389 set_bit(__E1000_DOWN, &adapter->flags);
1391 return 0;
1395 * e1000_alloc_queues - Allocate memory for all rings
1396 * @adapter: board private structure to initialize
1398 * We allocate one ring per queue at run-time since we don't know the
1399 * number of queues at compile-time. The polling_netdev array is
1400 * intended for Multiqueue, but should work fine with a single queue.
1403 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1405 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1406 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1407 if (!adapter->tx_ring)
1408 return -ENOMEM;
1410 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1411 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1412 if (!adapter->rx_ring) {
1413 kfree(adapter->tx_ring);
1414 return -ENOMEM;
1417 adapter->polling_netdev = kcalloc(adapter->num_rx_queues,
1418 sizeof(struct net_device),
1419 GFP_KERNEL);
1420 if (!adapter->polling_netdev) {
1421 kfree(adapter->tx_ring);
1422 kfree(adapter->rx_ring);
1423 return -ENOMEM;
1426 return E1000_SUCCESS;
1430 * e1000_open - Called when a network interface is made active
1431 * @netdev: network interface device structure
1433 * Returns 0 on success, negative value on failure
1435 * The open entry point is called when a network interface is made
1436 * active by the system (IFF_UP). At this point all resources needed
1437 * for transmit and receive operations are allocated, the interrupt
1438 * handler is registered with the OS, the watchdog timer is started,
1439 * and the stack is notified that the interface is ready.
1442 static int e1000_open(struct net_device *netdev)
1444 struct e1000_adapter *adapter = netdev_priv(netdev);
1445 struct e1000_hw *hw = &adapter->hw;
1446 int err;
1448 /* disallow open during test */
1449 if (test_bit(__E1000_TESTING, &adapter->flags))
1450 return -EBUSY;
1452 /* allocate transmit descriptors */
1453 err = e1000_setup_all_tx_resources(adapter);
1454 if (err)
1455 goto err_setup_tx;
1457 /* allocate receive descriptors */
1458 err = e1000_setup_all_rx_resources(adapter);
1459 if (err)
1460 goto err_setup_rx;
1462 e1000_power_up_phy(adapter);
1464 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1465 if ((hw->mng_cookie.status &
1466 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1467 e1000_update_mng_vlan(adapter);
1470 /* If AMT is enabled, let the firmware know that the network
1471 * interface is now open */
1472 if (hw->mac_type == e1000_82573 &&
1473 e1000_check_mng_mode(hw))
1474 e1000_get_hw_control(adapter);
1476 /* before we allocate an interrupt, we must be ready to handle it.
1477 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1478 * as soon as we call pci_request_irq, so we have to setup our
1479 * clean_rx handler before we do so. */
1480 e1000_configure(adapter);
1482 err = e1000_request_irq(adapter);
1483 if (err)
1484 goto err_req_irq;
1486 /* From here on the code is the same as e1000_up() */
1487 clear_bit(__E1000_DOWN, &adapter->flags);
1489 napi_enable(&adapter->napi);
1491 e1000_irq_enable(adapter);
1493 netif_start_queue(netdev);
1495 /* fire a link status change interrupt to start the watchdog */
1496 ew32(ICS, E1000_ICS_LSC);
1498 return E1000_SUCCESS;
1500 err_req_irq:
1501 e1000_release_hw_control(adapter);
1502 e1000_power_down_phy(adapter);
1503 e1000_free_all_rx_resources(adapter);
1504 err_setup_rx:
1505 e1000_free_all_tx_resources(adapter);
1506 err_setup_tx:
1507 e1000_reset(adapter);
1509 return err;
1513 * e1000_close - Disables a network interface
1514 * @netdev: network interface device structure
1516 * Returns 0, this is not allowed to fail
1518 * The close entry point is called when an interface is de-activated
1519 * by the OS. The hardware is still under the drivers control, but
1520 * needs to be disabled. A global MAC reset is issued to stop the
1521 * hardware, and all transmit and receive resources are freed.
1524 static int e1000_close(struct net_device *netdev)
1526 struct e1000_adapter *adapter = netdev_priv(netdev);
1527 struct e1000_hw *hw = &adapter->hw;
1529 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1530 e1000_down(adapter);
1531 e1000_power_down_phy(adapter);
1532 e1000_free_irq(adapter);
1534 e1000_free_all_tx_resources(adapter);
1535 e1000_free_all_rx_resources(adapter);
1537 /* kill manageability vlan ID if supported, but not if a vlan with
1538 * the same ID is registered on the host OS (let 8021q kill it) */
1539 if ((hw->mng_cookie.status &
1540 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1541 !(adapter->vlgrp &&
1542 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id))) {
1543 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1546 /* If AMT is enabled, let the firmware know that the network
1547 * interface is now closed */
1548 if (hw->mac_type == e1000_82573 &&
1549 e1000_check_mng_mode(hw))
1550 e1000_release_hw_control(adapter);
1552 return 0;
1556 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1557 * @adapter: address of board private structure
1558 * @start: address of beginning of memory
1559 * @len: length of memory
1561 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1562 unsigned long len)
1564 struct e1000_hw *hw = &adapter->hw;
1565 unsigned long begin = (unsigned long)start;
1566 unsigned long end = begin + len;
1568 /* First rev 82545 and 82546 need to not allow any memory
1569 * write location to cross 64k boundary due to errata 23 */
1570 if (hw->mac_type == e1000_82545 ||
1571 hw->mac_type == e1000_82546) {
1572 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1575 return true;
1579 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1580 * @adapter: board private structure
1581 * @txdr: tx descriptor ring (for a specific queue) to setup
1583 * Return 0 on success, negative on failure
1586 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1587 struct e1000_tx_ring *txdr)
1589 struct pci_dev *pdev = adapter->pdev;
1590 int size;
1592 size = sizeof(struct e1000_buffer) * txdr->count;
1593 txdr->buffer_info = vmalloc(size);
1594 if (!txdr->buffer_info) {
1595 DPRINTK(PROBE, ERR,
1596 "Unable to allocate memory for the transmit descriptor ring\n");
1597 return -ENOMEM;
1599 memset(txdr->buffer_info, 0, size);
1601 /* round up to nearest 4K */
1603 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1604 txdr->size = ALIGN(txdr->size, 4096);
1606 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1607 if (!txdr->desc) {
1608 setup_tx_desc_die:
1609 vfree(txdr->buffer_info);
1610 DPRINTK(PROBE, ERR,
1611 "Unable to allocate memory for the transmit descriptor ring\n");
1612 return -ENOMEM;
1615 /* Fix for errata 23, can't cross 64kB boundary */
1616 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1617 void *olddesc = txdr->desc;
1618 dma_addr_t olddma = txdr->dma;
1619 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1620 "at %p\n", txdr->size, txdr->desc);
1621 /* Try again, without freeing the previous */
1622 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1623 /* Failed allocation, critical failure */
1624 if (!txdr->desc) {
1625 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1626 goto setup_tx_desc_die;
1629 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1630 /* give up */
1631 pci_free_consistent(pdev, txdr->size, txdr->desc,
1632 txdr->dma);
1633 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1634 DPRINTK(PROBE, ERR,
1635 "Unable to allocate aligned memory "
1636 "for the transmit descriptor ring\n");
1637 vfree(txdr->buffer_info);
1638 return -ENOMEM;
1639 } else {
1640 /* Free old allocation, new allocation was successful */
1641 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1644 memset(txdr->desc, 0, txdr->size);
1646 txdr->next_to_use = 0;
1647 txdr->next_to_clean = 0;
1648 spin_lock_init(&txdr->tx_lock);
1650 return 0;
1654 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1655 * (Descriptors) for all queues
1656 * @adapter: board private structure
1658 * Return 0 on success, negative on failure
1661 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1663 int i, err = 0;
1665 for (i = 0; i < adapter->num_tx_queues; i++) {
1666 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1667 if (err) {
1668 DPRINTK(PROBE, ERR,
1669 "Allocation for Tx Queue %u failed\n", i);
1670 for (i-- ; i >= 0; i--)
1671 e1000_free_tx_resources(adapter,
1672 &adapter->tx_ring[i]);
1673 break;
1677 return err;
1681 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1682 * @adapter: board private structure
1684 * Configure the Tx unit of the MAC after a reset.
1687 static void e1000_configure_tx(struct e1000_adapter *adapter)
1689 u64 tdba;
1690 struct e1000_hw *hw = &adapter->hw;
1691 u32 tdlen, tctl, tipg, tarc;
1692 u32 ipgr1, ipgr2;
1694 /* Setup the HW Tx Head and Tail descriptor pointers */
1696 switch (adapter->num_tx_queues) {
1697 case 1:
1698 default:
1699 tdba = adapter->tx_ring[0].dma;
1700 tdlen = adapter->tx_ring[0].count *
1701 sizeof(struct e1000_tx_desc);
1702 ew32(TDLEN, tdlen);
1703 ew32(TDBAH, (tdba >> 32));
1704 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1705 ew32(TDT, 0);
1706 ew32(TDH, 0);
1707 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1708 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1709 break;
1712 /* Set the default values for the Tx Inter Packet Gap timer */
1713 if (hw->mac_type <= e1000_82547_rev_2 &&
1714 (hw->media_type == e1000_media_type_fiber ||
1715 hw->media_type == e1000_media_type_internal_serdes))
1716 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1717 else
1718 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1720 switch (hw->mac_type) {
1721 case e1000_82542_rev2_0:
1722 case e1000_82542_rev2_1:
1723 tipg = DEFAULT_82542_TIPG_IPGT;
1724 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1725 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1726 break;
1727 case e1000_80003es2lan:
1728 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1729 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1730 break;
1731 default:
1732 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1733 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1734 break;
1736 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1737 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1738 ew32(TIPG, tipg);
1740 /* Set the Tx Interrupt Delay register */
1742 ew32(TIDV, adapter->tx_int_delay);
1743 if (hw->mac_type >= e1000_82540)
1744 ew32(TADV, adapter->tx_abs_int_delay);
1746 /* Program the Transmit Control Register */
1748 tctl = er32(TCTL);
1749 tctl &= ~E1000_TCTL_CT;
1750 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1751 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1753 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1754 tarc = er32(TARC0);
1755 /* set the speed mode bit, we'll clear it if we're not at
1756 * gigabit link later */
1757 tarc |= (1 << 21);
1758 ew32(TARC0, tarc);
1759 } else if (hw->mac_type == e1000_80003es2lan) {
1760 tarc = er32(TARC0);
1761 tarc |= 1;
1762 ew32(TARC0, tarc);
1763 tarc = er32(TARC1);
1764 tarc |= 1;
1765 ew32(TARC1, tarc);
1768 e1000_config_collision_dist(hw);
1770 /* Setup Transmit Descriptor Settings for eop descriptor */
1771 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1773 /* only set IDE if we are delaying interrupts using the timers */
1774 if (adapter->tx_int_delay)
1775 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1777 if (hw->mac_type < e1000_82543)
1778 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1779 else
1780 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1782 /* Cache if we're 82544 running in PCI-X because we'll
1783 * need this to apply a workaround later in the send path. */
1784 if (hw->mac_type == e1000_82544 &&
1785 hw->bus_type == e1000_bus_type_pcix)
1786 adapter->pcix_82544 = 1;
1788 ew32(TCTL, tctl);
1793 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1794 * @adapter: board private structure
1795 * @rxdr: rx descriptor ring (for a specific queue) to setup
1797 * Returns 0 on success, negative on failure
1800 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1801 struct e1000_rx_ring *rxdr)
1803 struct e1000_hw *hw = &adapter->hw;
1804 struct pci_dev *pdev = adapter->pdev;
1805 int size, desc_len;
1807 size = sizeof(struct e1000_buffer) * rxdr->count;
1808 rxdr->buffer_info = vmalloc(size);
1809 if (!rxdr->buffer_info) {
1810 DPRINTK(PROBE, ERR,
1811 "Unable to allocate memory for the receive descriptor ring\n");
1812 return -ENOMEM;
1814 memset(rxdr->buffer_info, 0, size);
1816 if (hw->mac_type <= e1000_82547_rev_2)
1817 desc_len = sizeof(struct e1000_rx_desc);
1818 else
1819 desc_len = sizeof(union e1000_rx_desc_packet_split);
1821 /* Round up to nearest 4K */
1823 rxdr->size = rxdr->count * desc_len;
1824 rxdr->size = ALIGN(rxdr->size, 4096);
1826 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1828 if (!rxdr->desc) {
1829 DPRINTK(PROBE, ERR,
1830 "Unable to allocate memory for the receive descriptor ring\n");
1831 setup_rx_desc_die:
1832 vfree(rxdr->buffer_info);
1833 return -ENOMEM;
1836 /* Fix for errata 23, can't cross 64kB boundary */
1837 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1838 void *olddesc = rxdr->desc;
1839 dma_addr_t olddma = rxdr->dma;
1840 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1841 "at %p\n", rxdr->size, rxdr->desc);
1842 /* Try again, without freeing the previous */
1843 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1844 /* Failed allocation, critical failure */
1845 if (!rxdr->desc) {
1846 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1847 DPRINTK(PROBE, ERR,
1848 "Unable to allocate memory "
1849 "for the receive descriptor ring\n");
1850 goto setup_rx_desc_die;
1853 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1854 /* give up */
1855 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1856 rxdr->dma);
1857 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1858 DPRINTK(PROBE, ERR,
1859 "Unable to allocate aligned memory "
1860 "for the receive descriptor ring\n");
1861 goto setup_rx_desc_die;
1862 } else {
1863 /* Free old allocation, new allocation was successful */
1864 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1867 memset(rxdr->desc, 0, rxdr->size);
1869 rxdr->next_to_clean = 0;
1870 rxdr->next_to_use = 0;
1872 return 0;
1876 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1877 * (Descriptors) for all queues
1878 * @adapter: board private structure
1880 * Return 0 on success, negative on failure
1883 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1885 int i, err = 0;
1887 for (i = 0; i < adapter->num_rx_queues; i++) {
1888 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1889 if (err) {
1890 DPRINTK(PROBE, ERR,
1891 "Allocation for Rx Queue %u failed\n", i);
1892 for (i-- ; i >= 0; i--)
1893 e1000_free_rx_resources(adapter,
1894 &adapter->rx_ring[i]);
1895 break;
1899 return err;
1903 * e1000_setup_rctl - configure the receive control registers
1904 * @adapter: Board private structure
1906 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1907 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1908 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1910 struct e1000_hw *hw = &adapter->hw;
1911 u32 rctl;
1913 rctl = er32(RCTL);
1915 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1917 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1918 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1919 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1921 if (hw->tbi_compatibility_on == 1)
1922 rctl |= E1000_RCTL_SBP;
1923 else
1924 rctl &= ~E1000_RCTL_SBP;
1926 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1927 rctl &= ~E1000_RCTL_LPE;
1928 else
1929 rctl |= E1000_RCTL_LPE;
1931 /* Setup buffer sizes */
1932 rctl &= ~E1000_RCTL_SZ_4096;
1933 rctl |= E1000_RCTL_BSEX;
1934 switch (adapter->rx_buffer_len) {
1935 case E1000_RXBUFFER_256:
1936 rctl |= E1000_RCTL_SZ_256;
1937 rctl &= ~E1000_RCTL_BSEX;
1938 break;
1939 case E1000_RXBUFFER_512:
1940 rctl |= E1000_RCTL_SZ_512;
1941 rctl &= ~E1000_RCTL_BSEX;
1942 break;
1943 case E1000_RXBUFFER_1024:
1944 rctl |= E1000_RCTL_SZ_1024;
1945 rctl &= ~E1000_RCTL_BSEX;
1946 break;
1947 case E1000_RXBUFFER_2048:
1948 default:
1949 rctl |= E1000_RCTL_SZ_2048;
1950 rctl &= ~E1000_RCTL_BSEX;
1951 break;
1952 case E1000_RXBUFFER_4096:
1953 rctl |= E1000_RCTL_SZ_4096;
1954 break;
1955 case E1000_RXBUFFER_8192:
1956 rctl |= E1000_RCTL_SZ_8192;
1957 break;
1958 case E1000_RXBUFFER_16384:
1959 rctl |= E1000_RCTL_SZ_16384;
1960 break;
1963 ew32(RCTL, rctl);
1967 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1968 * @adapter: board private structure
1970 * Configure the Rx unit of the MAC after a reset.
1973 static void e1000_configure_rx(struct e1000_adapter *adapter)
1975 u64 rdba;
1976 struct e1000_hw *hw = &adapter->hw;
1977 u32 rdlen, rctl, rxcsum, ctrl_ext;
1979 rdlen = adapter->rx_ring[0].count *
1980 sizeof(struct e1000_rx_desc);
1981 adapter->clean_rx = e1000_clean_rx_irq;
1982 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1984 /* disable receives while setting up the descriptors */
1985 rctl = er32(RCTL);
1986 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1988 /* set the Receive Delay Timer Register */
1989 ew32(RDTR, adapter->rx_int_delay);
1991 if (hw->mac_type >= e1000_82540) {
1992 ew32(RADV, adapter->rx_abs_int_delay);
1993 if (adapter->itr_setting != 0)
1994 ew32(ITR, 1000000000 / (adapter->itr * 256));
1997 if (hw->mac_type >= e1000_82571) {
1998 ctrl_ext = er32(CTRL_EXT);
1999 /* Reset delay timers after every interrupt */
2000 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2001 /* Auto-Mask interrupts upon ICR access */
2002 ctrl_ext |= E1000_CTRL_EXT_IAME;
2003 ew32(IAM, 0xffffffff);
2004 ew32(CTRL_EXT, ctrl_ext);
2005 E1000_WRITE_FLUSH();
2008 /* Setup the HW Rx Head and Tail Descriptor Pointers and
2009 * the Base and Length of the Rx Descriptor Ring */
2010 switch (adapter->num_rx_queues) {
2011 case 1:
2012 default:
2013 rdba = adapter->rx_ring[0].dma;
2014 ew32(RDLEN, rdlen);
2015 ew32(RDBAH, (rdba >> 32));
2016 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
2017 ew32(RDT, 0);
2018 ew32(RDH, 0);
2019 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
2020 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
2021 break;
2024 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
2025 if (hw->mac_type >= e1000_82543) {
2026 rxcsum = er32(RXCSUM);
2027 if (adapter->rx_csum)
2028 rxcsum |= E1000_RXCSUM_TUOFL;
2029 else
2030 /* don't need to clear IPPCSE as it defaults to 0 */
2031 rxcsum &= ~E1000_RXCSUM_TUOFL;
2032 ew32(RXCSUM, rxcsum);
2035 /* Enable Receives */
2036 ew32(RCTL, rctl);
2040 * e1000_free_tx_resources - Free Tx Resources per Queue
2041 * @adapter: board private structure
2042 * @tx_ring: Tx descriptor ring for a specific queue
2044 * Free all transmit software resources
2047 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
2048 struct e1000_tx_ring *tx_ring)
2050 struct pci_dev *pdev = adapter->pdev;
2052 e1000_clean_tx_ring(adapter, tx_ring);
2054 vfree(tx_ring->buffer_info);
2055 tx_ring->buffer_info = NULL;
2057 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
2059 tx_ring->desc = NULL;
2063 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
2064 * @adapter: board private structure
2066 * Free all transmit software resources
2069 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
2071 int i;
2073 for (i = 0; i < adapter->num_tx_queues; i++)
2074 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
2077 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
2078 struct e1000_buffer *buffer_info)
2080 if (buffer_info->dma) {
2081 pci_unmap_page(adapter->pdev,
2082 buffer_info->dma,
2083 buffer_info->length,
2084 PCI_DMA_TODEVICE);
2085 buffer_info->dma = 0;
2087 if (buffer_info->skb) {
2088 dev_kfree_skb_any(buffer_info->skb);
2089 buffer_info->skb = NULL;
2091 /* buffer_info must be completely set up in the transmit path */
2095 * e1000_clean_tx_ring - Free Tx Buffers
2096 * @adapter: board private structure
2097 * @tx_ring: ring to be cleaned
2100 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2101 struct e1000_tx_ring *tx_ring)
2103 struct e1000_hw *hw = &adapter->hw;
2104 struct e1000_buffer *buffer_info;
2105 unsigned long size;
2106 unsigned int i;
2108 /* Free all the Tx ring sk_buffs */
2110 for (i = 0; i < tx_ring->count; i++) {
2111 buffer_info = &tx_ring->buffer_info[i];
2112 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2115 size = sizeof(struct e1000_buffer) * tx_ring->count;
2116 memset(tx_ring->buffer_info, 0, size);
2118 /* Zero out the descriptor ring */
2120 memset(tx_ring->desc, 0, tx_ring->size);
2122 tx_ring->next_to_use = 0;
2123 tx_ring->next_to_clean = 0;
2124 tx_ring->last_tx_tso = 0;
2126 writel(0, hw->hw_addr + tx_ring->tdh);
2127 writel(0, hw->hw_addr + tx_ring->tdt);
2131 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2132 * @adapter: board private structure
2135 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2137 int i;
2139 for (i = 0; i < adapter->num_tx_queues; i++)
2140 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2144 * e1000_free_rx_resources - Free Rx Resources
2145 * @adapter: board private structure
2146 * @rx_ring: ring to clean the resources from
2148 * Free all receive software resources
2151 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2152 struct e1000_rx_ring *rx_ring)
2154 struct pci_dev *pdev = adapter->pdev;
2156 e1000_clean_rx_ring(adapter, rx_ring);
2158 vfree(rx_ring->buffer_info);
2159 rx_ring->buffer_info = NULL;
2161 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2163 rx_ring->desc = NULL;
2167 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2168 * @adapter: board private structure
2170 * Free all receive software resources
2173 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2175 int i;
2177 for (i = 0; i < adapter->num_rx_queues; i++)
2178 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2182 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2183 * @adapter: board private structure
2184 * @rx_ring: ring to free buffers from
2187 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2188 struct e1000_rx_ring *rx_ring)
2190 struct e1000_hw *hw = &adapter->hw;
2191 struct e1000_buffer *buffer_info;
2192 struct pci_dev *pdev = adapter->pdev;
2193 unsigned long size;
2194 unsigned int i;
2196 /* Free all the Rx ring sk_buffs */
2197 for (i = 0; i < rx_ring->count; i++) {
2198 buffer_info = &rx_ring->buffer_info[i];
2199 if (buffer_info->skb) {
2200 pci_unmap_single(pdev,
2201 buffer_info->dma,
2202 buffer_info->length,
2203 PCI_DMA_FROMDEVICE);
2205 dev_kfree_skb(buffer_info->skb);
2206 buffer_info->skb = NULL;
2210 size = sizeof(struct e1000_buffer) * rx_ring->count;
2211 memset(rx_ring->buffer_info, 0, size);
2213 /* Zero out the descriptor ring */
2215 memset(rx_ring->desc, 0, rx_ring->size);
2217 rx_ring->next_to_clean = 0;
2218 rx_ring->next_to_use = 0;
2220 writel(0, hw->hw_addr + rx_ring->rdh);
2221 writel(0, hw->hw_addr + rx_ring->rdt);
2225 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2226 * @adapter: board private structure
2229 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2231 int i;
2233 for (i = 0; i < adapter->num_rx_queues; i++)
2234 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2237 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2238 * and memory write and invalidate disabled for certain operations
2240 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2242 struct e1000_hw *hw = &adapter->hw;
2243 struct net_device *netdev = adapter->netdev;
2244 u32 rctl;
2246 e1000_pci_clear_mwi(hw);
2248 rctl = er32(RCTL);
2249 rctl |= E1000_RCTL_RST;
2250 ew32(RCTL, rctl);
2251 E1000_WRITE_FLUSH();
2252 mdelay(5);
2254 if (netif_running(netdev))
2255 e1000_clean_all_rx_rings(adapter);
2258 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2260 struct e1000_hw *hw = &adapter->hw;
2261 struct net_device *netdev = adapter->netdev;
2262 u32 rctl;
2264 rctl = er32(RCTL);
2265 rctl &= ~E1000_RCTL_RST;
2266 ew32(RCTL, rctl);
2267 E1000_WRITE_FLUSH();
2268 mdelay(5);
2270 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2271 e1000_pci_set_mwi(hw);
2273 if (netif_running(netdev)) {
2274 /* No need to loop, because 82542 supports only 1 queue */
2275 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2276 e1000_configure_rx(adapter);
2277 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2282 * e1000_set_mac - Change the Ethernet Address of the NIC
2283 * @netdev: network interface device structure
2284 * @p: pointer to an address structure
2286 * Returns 0 on success, negative on failure
2289 static int e1000_set_mac(struct net_device *netdev, void *p)
2291 struct e1000_adapter *adapter = netdev_priv(netdev);
2292 struct e1000_hw *hw = &adapter->hw;
2293 struct sockaddr *addr = p;
2295 if (!is_valid_ether_addr(addr->sa_data))
2296 return -EADDRNOTAVAIL;
2298 /* 82542 2.0 needs to be in reset to write receive address registers */
2300 if (hw->mac_type == e1000_82542_rev2_0)
2301 e1000_enter_82542_rst(adapter);
2303 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2304 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2306 e1000_rar_set(hw, hw->mac_addr, 0);
2308 /* With 82571 controllers, LAA may be overwritten (with the default)
2309 * due to controller reset from the other port. */
2310 if (hw->mac_type == e1000_82571) {
2311 /* activate the work around */
2312 hw->laa_is_present = 1;
2314 /* Hold a copy of the LAA in RAR[14] This is done so that
2315 * between the time RAR[0] gets clobbered and the time it
2316 * gets fixed (in e1000_watchdog), the actual LAA is in one
2317 * of the RARs and no incoming packets directed to this port
2318 * are dropped. Eventaully the LAA will be in RAR[0] and
2319 * RAR[14] */
2320 e1000_rar_set(hw, hw->mac_addr,
2321 E1000_RAR_ENTRIES - 1);
2324 if (hw->mac_type == e1000_82542_rev2_0)
2325 e1000_leave_82542_rst(adapter);
2327 return 0;
2331 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2332 * @netdev: network interface device structure
2334 * The set_rx_mode entry point is called whenever the unicast or multicast
2335 * address lists or the network interface flags are updated. This routine is
2336 * responsible for configuring the hardware for proper unicast, multicast,
2337 * promiscuous mode, and all-multi behavior.
2340 static void e1000_set_rx_mode(struct net_device *netdev)
2342 struct e1000_adapter *adapter = netdev_priv(netdev);
2343 struct e1000_hw *hw = &adapter->hw;
2344 struct dev_addr_list *uc_ptr;
2345 struct dev_addr_list *mc_ptr;
2346 u32 rctl;
2347 u32 hash_value;
2348 int i, rar_entries = E1000_RAR_ENTRIES;
2349 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2350 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2351 E1000_NUM_MTA_REGISTERS;
2353 if (hw->mac_type == e1000_ich8lan)
2354 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2356 /* reserve RAR[14] for LAA over-write work-around */
2357 if (hw->mac_type == e1000_82571)
2358 rar_entries--;
2360 /* Check for Promiscuous and All Multicast modes */
2362 rctl = er32(RCTL);
2364 if (netdev->flags & IFF_PROMISC) {
2365 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2366 rctl &= ~E1000_RCTL_VFE;
2367 } else {
2368 if (netdev->flags & IFF_ALLMULTI) {
2369 rctl |= E1000_RCTL_MPE;
2370 } else {
2371 rctl &= ~E1000_RCTL_MPE;
2373 if (adapter->hw.mac_type != e1000_ich8lan)
2374 rctl |= E1000_RCTL_VFE;
2377 uc_ptr = NULL;
2378 if (netdev->uc_count > rar_entries - 1) {
2379 rctl |= E1000_RCTL_UPE;
2380 } else if (!(netdev->flags & IFF_PROMISC)) {
2381 rctl &= ~E1000_RCTL_UPE;
2382 uc_ptr = netdev->uc_list;
2385 ew32(RCTL, rctl);
2387 /* 82542 2.0 needs to be in reset to write receive address registers */
2389 if (hw->mac_type == e1000_82542_rev2_0)
2390 e1000_enter_82542_rst(adapter);
2392 /* load the first 14 addresses into the exact filters 1-14. Unicast
2393 * addresses take precedence to avoid disabling unicast filtering
2394 * when possible.
2396 * RAR 0 is used for the station MAC adddress
2397 * if there are not 14 addresses, go ahead and clear the filters
2398 * -- with 82571 controllers only 0-13 entries are filled here
2400 mc_ptr = netdev->mc_list;
2402 for (i = 1; i < rar_entries; i++) {
2403 if (uc_ptr) {
2404 e1000_rar_set(hw, uc_ptr->da_addr, i);
2405 uc_ptr = uc_ptr->next;
2406 } else if (mc_ptr) {
2407 e1000_rar_set(hw, mc_ptr->da_addr, i);
2408 mc_ptr = mc_ptr->next;
2409 } else {
2410 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2411 E1000_WRITE_FLUSH();
2412 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2413 E1000_WRITE_FLUSH();
2416 WARN_ON(uc_ptr != NULL);
2418 /* clear the old settings from the multicast hash table */
2420 for (i = 0; i < mta_reg_count; i++) {
2421 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2422 E1000_WRITE_FLUSH();
2425 /* load any remaining addresses into the hash table */
2427 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2428 hash_value = e1000_hash_mc_addr(hw, mc_ptr->da_addr);
2429 e1000_mta_set(hw, hash_value);
2432 if (hw->mac_type == e1000_82542_rev2_0)
2433 e1000_leave_82542_rst(adapter);
2436 /* Need to wait a few seconds after link up to get diagnostic information from
2437 * the phy */
2439 static void e1000_update_phy_info(unsigned long data)
2441 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2442 struct e1000_hw *hw = &adapter->hw;
2443 e1000_phy_get_info(hw, &adapter->phy_info);
2447 * e1000_82547_tx_fifo_stall - Timer Call-back
2448 * @data: pointer to adapter cast into an unsigned long
2451 static void e1000_82547_tx_fifo_stall(unsigned long data)
2453 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2454 struct e1000_hw *hw = &adapter->hw;
2455 struct net_device *netdev = adapter->netdev;
2456 u32 tctl;
2458 if (atomic_read(&adapter->tx_fifo_stall)) {
2459 if ((er32(TDT) == er32(TDH)) &&
2460 (er32(TDFT) == er32(TDFH)) &&
2461 (er32(TDFTS) == er32(TDFHS))) {
2462 tctl = er32(TCTL);
2463 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2464 ew32(TDFT, adapter->tx_head_addr);
2465 ew32(TDFH, adapter->tx_head_addr);
2466 ew32(TDFTS, adapter->tx_head_addr);
2467 ew32(TDFHS, adapter->tx_head_addr);
2468 ew32(TCTL, tctl);
2469 E1000_WRITE_FLUSH();
2471 adapter->tx_fifo_head = 0;
2472 atomic_set(&adapter->tx_fifo_stall, 0);
2473 netif_wake_queue(netdev);
2474 } else {
2475 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2481 * e1000_watchdog - Timer Call-back
2482 * @data: pointer to adapter cast into an unsigned long
2484 static void e1000_watchdog(unsigned long data)
2486 struct e1000_adapter *adapter = (struct e1000_adapter *)data;
2487 struct e1000_hw *hw = &adapter->hw;
2488 struct net_device *netdev = adapter->netdev;
2489 struct e1000_tx_ring *txdr = adapter->tx_ring;
2490 u32 link, tctl;
2491 s32 ret_val;
2493 ret_val = e1000_check_for_link(hw);
2494 if ((ret_val == E1000_ERR_PHY) &&
2495 (hw->phy_type == e1000_phy_igp_3) &&
2496 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2497 /* See e1000_kumeran_lock_loss_workaround() */
2498 DPRINTK(LINK, INFO,
2499 "Gigabit has been disabled, downgrading speed\n");
2502 if (hw->mac_type == e1000_82573) {
2503 e1000_enable_tx_pkt_filtering(hw);
2504 if (adapter->mng_vlan_id != hw->mng_cookie.vlan_id)
2505 e1000_update_mng_vlan(adapter);
2508 if ((hw->media_type == e1000_media_type_internal_serdes) &&
2509 !(er32(TXCW) & E1000_TXCW_ANE))
2510 link = !hw->serdes_link_down;
2511 else
2512 link = er32(STATUS) & E1000_STATUS_LU;
2514 if (link) {
2515 if (!netif_carrier_ok(netdev)) {
2516 u32 ctrl;
2517 bool txb2b = true;
2518 e1000_get_speed_and_duplex(hw,
2519 &adapter->link_speed,
2520 &adapter->link_duplex);
2522 ctrl = er32(CTRL);
2523 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s, "
2524 "Flow Control: %s\n",
2525 adapter->link_speed,
2526 adapter->link_duplex == FULL_DUPLEX ?
2527 "Full Duplex" : "Half Duplex",
2528 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2529 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2530 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2531 E1000_CTRL_TFCE) ? "TX" : "None" )));
2533 /* tweak tx_queue_len according to speed/duplex
2534 * and adjust the timeout factor */
2535 netdev->tx_queue_len = adapter->tx_queue_len;
2536 adapter->tx_timeout_factor = 1;
2537 switch (adapter->link_speed) {
2538 case SPEED_10:
2539 txb2b = false;
2540 netdev->tx_queue_len = 10;
2541 adapter->tx_timeout_factor = 8;
2542 break;
2543 case SPEED_100:
2544 txb2b = false;
2545 netdev->tx_queue_len = 100;
2546 /* maybe add some timeout factor ? */
2547 break;
2550 if ((hw->mac_type == e1000_82571 ||
2551 hw->mac_type == e1000_82572) &&
2552 !txb2b) {
2553 u32 tarc0;
2554 tarc0 = er32(TARC0);
2555 tarc0 &= ~(1 << 21);
2556 ew32(TARC0, tarc0);
2559 /* disable TSO for pcie and 10/100 speeds, to avoid
2560 * some hardware issues */
2561 if (!adapter->tso_force &&
2562 hw->bus_type == e1000_bus_type_pci_express){
2563 switch (adapter->link_speed) {
2564 case SPEED_10:
2565 case SPEED_100:
2566 DPRINTK(PROBE,INFO,
2567 "10/100 speed: disabling TSO\n");
2568 netdev->features &= ~NETIF_F_TSO;
2569 netdev->features &= ~NETIF_F_TSO6;
2570 break;
2571 case SPEED_1000:
2572 netdev->features |= NETIF_F_TSO;
2573 netdev->features |= NETIF_F_TSO6;
2574 break;
2575 default:
2576 /* oops */
2577 break;
2581 /* enable transmits in the hardware, need to do this
2582 * after setting TARC0 */
2583 tctl = er32(TCTL);
2584 tctl |= E1000_TCTL_EN;
2585 ew32(TCTL, tctl);
2587 netif_carrier_on(netdev);
2588 netif_wake_queue(netdev);
2589 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2590 adapter->smartspeed = 0;
2591 } else {
2592 /* make sure the receive unit is started */
2593 if (hw->rx_needs_kicking) {
2594 u32 rctl = er32(RCTL);
2595 ew32(RCTL, rctl | E1000_RCTL_EN);
2598 } else {
2599 if (netif_carrier_ok(netdev)) {
2600 adapter->link_speed = 0;
2601 adapter->link_duplex = 0;
2602 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2603 netif_carrier_off(netdev);
2604 netif_stop_queue(netdev);
2605 mod_timer(&adapter->phy_info_timer, round_jiffies(jiffies + 2 * HZ));
2607 /* 80003ES2LAN workaround--
2608 * For packet buffer work-around on link down event;
2609 * disable receives in the ISR and
2610 * reset device here in the watchdog
2612 if (hw->mac_type == e1000_80003es2lan)
2613 /* reset device */
2614 schedule_work(&adapter->reset_task);
2617 e1000_smartspeed(adapter);
2620 e1000_update_stats(adapter);
2622 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2623 adapter->tpt_old = adapter->stats.tpt;
2624 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2625 adapter->colc_old = adapter->stats.colc;
2627 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2628 adapter->gorcl_old = adapter->stats.gorcl;
2629 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2630 adapter->gotcl_old = adapter->stats.gotcl;
2632 e1000_update_adaptive(hw);
2634 if (!netif_carrier_ok(netdev)) {
2635 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2636 /* We've lost link, so the controller stops DMA,
2637 * but we've got queued Tx work that's never going
2638 * to get done, so reset controller to flush Tx.
2639 * (Do the reset outside of interrupt context). */
2640 adapter->tx_timeout_count++;
2641 schedule_work(&adapter->reset_task);
2645 /* Cause software interrupt to ensure rx ring is cleaned */
2646 ew32(ICS, E1000_ICS_RXDMT0);
2648 /* Force detection of hung controller every watchdog period */
2649 adapter->detect_tx_hung = true;
2651 /* With 82571 controllers, LAA may be overwritten due to controller
2652 * reset from the other port. Set the appropriate LAA in RAR[0] */
2653 if (hw->mac_type == e1000_82571 && hw->laa_is_present)
2654 e1000_rar_set(hw, hw->mac_addr, 0);
2656 /* Reset the timer */
2657 mod_timer(&adapter->watchdog_timer, round_jiffies(jiffies + 2 * HZ));
2660 enum latency_range {
2661 lowest_latency = 0,
2662 low_latency = 1,
2663 bulk_latency = 2,
2664 latency_invalid = 255
2668 * e1000_update_itr - update the dynamic ITR value based on statistics
2669 * Stores a new ITR value based on packets and byte
2670 * counts during the last interrupt. The advantage of per interrupt
2671 * computation is faster updates and more accurate ITR for the current
2672 * traffic pattern. Constants in this function were computed
2673 * based on theoretical maximum wire speed and thresholds were set based
2674 * on testing data as well as attempting to minimize response time
2675 * while increasing bulk throughput.
2676 * this functionality is controlled by the InterruptThrottleRate module
2677 * parameter (see e1000_param.c)
2678 * @adapter: pointer to adapter
2679 * @itr_setting: current adapter->itr
2680 * @packets: the number of packets during this measurement interval
2681 * @bytes: the number of bytes during this measurement interval
2683 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2684 u16 itr_setting, int packets, int bytes)
2686 unsigned int retval = itr_setting;
2687 struct e1000_hw *hw = &adapter->hw;
2689 if (unlikely(hw->mac_type < e1000_82540))
2690 goto update_itr_done;
2692 if (packets == 0)
2693 goto update_itr_done;
2695 switch (itr_setting) {
2696 case lowest_latency:
2697 /* jumbo frames get bulk treatment*/
2698 if (bytes/packets > 8000)
2699 retval = bulk_latency;
2700 else if ((packets < 5) && (bytes > 512))
2701 retval = low_latency;
2702 break;
2703 case low_latency: /* 50 usec aka 20000 ints/s */
2704 if (bytes > 10000) {
2705 /* jumbo frames need bulk latency setting */
2706 if (bytes/packets > 8000)
2707 retval = bulk_latency;
2708 else if ((packets < 10) || ((bytes/packets) > 1200))
2709 retval = bulk_latency;
2710 else if ((packets > 35))
2711 retval = lowest_latency;
2712 } else if (bytes/packets > 2000)
2713 retval = bulk_latency;
2714 else if (packets <= 2 && bytes < 512)
2715 retval = lowest_latency;
2716 break;
2717 case bulk_latency: /* 250 usec aka 4000 ints/s */
2718 if (bytes > 25000) {
2719 if (packets > 35)
2720 retval = low_latency;
2721 } else if (bytes < 6000) {
2722 retval = low_latency;
2724 break;
2727 update_itr_done:
2728 return retval;
2731 static void e1000_set_itr(struct e1000_adapter *adapter)
2733 struct e1000_hw *hw = &adapter->hw;
2734 u16 current_itr;
2735 u32 new_itr = adapter->itr;
2737 if (unlikely(hw->mac_type < e1000_82540))
2738 return;
2740 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2741 if (unlikely(adapter->link_speed != SPEED_1000)) {
2742 current_itr = 0;
2743 new_itr = 4000;
2744 goto set_itr_now;
2747 adapter->tx_itr = e1000_update_itr(adapter,
2748 adapter->tx_itr,
2749 adapter->total_tx_packets,
2750 adapter->total_tx_bytes);
2751 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2752 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2753 adapter->tx_itr = low_latency;
2755 adapter->rx_itr = e1000_update_itr(adapter,
2756 adapter->rx_itr,
2757 adapter->total_rx_packets,
2758 adapter->total_rx_bytes);
2759 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2760 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2761 adapter->rx_itr = low_latency;
2763 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2765 switch (current_itr) {
2766 /* counts and packets in update_itr are dependent on these numbers */
2767 case lowest_latency:
2768 new_itr = 70000;
2769 break;
2770 case low_latency:
2771 new_itr = 20000; /* aka hwitr = ~200 */
2772 break;
2773 case bulk_latency:
2774 new_itr = 4000;
2775 break;
2776 default:
2777 break;
2780 set_itr_now:
2781 if (new_itr != adapter->itr) {
2782 /* this attempts to bias the interrupt rate towards Bulk
2783 * by adding intermediate steps when interrupt rate is
2784 * increasing */
2785 new_itr = new_itr > adapter->itr ?
2786 min(adapter->itr + (new_itr >> 2), new_itr) :
2787 new_itr;
2788 adapter->itr = new_itr;
2789 ew32(ITR, 1000000000 / (new_itr * 256));
2792 return;
2795 #define E1000_TX_FLAGS_CSUM 0x00000001
2796 #define E1000_TX_FLAGS_VLAN 0x00000002
2797 #define E1000_TX_FLAGS_TSO 0x00000004
2798 #define E1000_TX_FLAGS_IPV4 0x00000008
2799 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2800 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2802 static int e1000_tso(struct e1000_adapter *adapter,
2803 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2805 struct e1000_context_desc *context_desc;
2806 struct e1000_buffer *buffer_info;
2807 unsigned int i;
2808 u32 cmd_length = 0;
2809 u16 ipcse = 0, tucse, mss;
2810 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2811 int err;
2813 if (skb_is_gso(skb)) {
2814 if (skb_header_cloned(skb)) {
2815 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2816 if (err)
2817 return err;
2820 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2821 mss = skb_shinfo(skb)->gso_size;
2822 if (skb->protocol == htons(ETH_P_IP)) {
2823 struct iphdr *iph = ip_hdr(skb);
2824 iph->tot_len = 0;
2825 iph->check = 0;
2826 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2827 iph->daddr, 0,
2828 IPPROTO_TCP,
2830 cmd_length = E1000_TXD_CMD_IP;
2831 ipcse = skb_transport_offset(skb) - 1;
2832 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2833 ipv6_hdr(skb)->payload_len = 0;
2834 tcp_hdr(skb)->check =
2835 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2836 &ipv6_hdr(skb)->daddr,
2837 0, IPPROTO_TCP, 0);
2838 ipcse = 0;
2840 ipcss = skb_network_offset(skb);
2841 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2842 tucss = skb_transport_offset(skb);
2843 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2844 tucse = 0;
2846 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2847 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2849 i = tx_ring->next_to_use;
2850 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2851 buffer_info = &tx_ring->buffer_info[i];
2853 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2854 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2855 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2856 context_desc->upper_setup.tcp_fields.tucss = tucss;
2857 context_desc->upper_setup.tcp_fields.tucso = tucso;
2858 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2859 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2860 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2861 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2863 buffer_info->time_stamp = jiffies;
2864 buffer_info->next_to_watch = i;
2866 if (++i == tx_ring->count) i = 0;
2867 tx_ring->next_to_use = i;
2869 return true;
2871 return false;
2874 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2875 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2877 struct e1000_context_desc *context_desc;
2878 struct e1000_buffer *buffer_info;
2879 unsigned int i;
2880 u8 css;
2881 u32 cmd_len = E1000_TXD_CMD_DEXT;
2883 if (skb->ip_summed != CHECKSUM_PARTIAL)
2884 return false;
2886 switch (skb->protocol) {
2887 case __constant_htons(ETH_P_IP):
2888 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2889 cmd_len |= E1000_TXD_CMD_TCP;
2890 break;
2891 case __constant_htons(ETH_P_IPV6):
2892 /* XXX not handling all IPV6 headers */
2893 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2894 cmd_len |= E1000_TXD_CMD_TCP;
2895 break;
2896 default:
2897 if (unlikely(net_ratelimit()))
2898 DPRINTK(DRV, WARNING,
2899 "checksum_partial proto=%x!\n", skb->protocol);
2900 break;
2903 css = skb_transport_offset(skb);
2905 i = tx_ring->next_to_use;
2906 buffer_info = &tx_ring->buffer_info[i];
2907 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2909 context_desc->lower_setup.ip_config = 0;
2910 context_desc->upper_setup.tcp_fields.tucss = css;
2911 context_desc->upper_setup.tcp_fields.tucso =
2912 css + skb->csum_offset;
2913 context_desc->upper_setup.tcp_fields.tucse = 0;
2914 context_desc->tcp_seg_setup.data = 0;
2915 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2917 buffer_info->time_stamp = jiffies;
2918 buffer_info->next_to_watch = i;
2920 if (unlikely(++i == tx_ring->count)) i = 0;
2921 tx_ring->next_to_use = i;
2923 return true;
2926 #define E1000_MAX_TXD_PWR 12
2927 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2929 static int e1000_tx_map(struct e1000_adapter *adapter,
2930 struct e1000_tx_ring *tx_ring,
2931 struct sk_buff *skb, unsigned int first,
2932 unsigned int max_per_txd, unsigned int nr_frags,
2933 unsigned int mss)
2935 struct e1000_hw *hw = &adapter->hw;
2936 struct e1000_buffer *buffer_info;
2937 unsigned int len = skb->len;
2938 unsigned int offset = 0, size, count = 0, i;
2939 unsigned int f;
2940 len -= skb->data_len;
2942 i = tx_ring->next_to_use;
2944 while (len) {
2945 buffer_info = &tx_ring->buffer_info[i];
2946 size = min(len, max_per_txd);
2947 /* Workaround for Controller erratum --
2948 * descriptor for non-tso packet in a linear SKB that follows a
2949 * tso gets written back prematurely before the data is fully
2950 * DMA'd to the controller */
2951 if (!skb->data_len && tx_ring->last_tx_tso &&
2952 !skb_is_gso(skb)) {
2953 tx_ring->last_tx_tso = 0;
2954 size -= 4;
2957 /* Workaround for premature desc write-backs
2958 * in TSO mode. Append 4-byte sentinel desc */
2959 if (unlikely(mss && !nr_frags && size == len && size > 8))
2960 size -= 4;
2961 /* work-around for errata 10 and it applies
2962 * to all controllers in PCI-X mode
2963 * The fix is to make sure that the first descriptor of a
2964 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2966 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2967 (size > 2015) && count == 0))
2968 size = 2015;
2970 /* Workaround for potential 82544 hang in PCI-X. Avoid
2971 * terminating buffers within evenly-aligned dwords. */
2972 if (unlikely(adapter->pcix_82544 &&
2973 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2974 size > 4))
2975 size -= 4;
2977 buffer_info->length = size;
2978 buffer_info->dma =
2979 pci_map_single(adapter->pdev,
2980 skb->data + offset,
2981 size,
2982 PCI_DMA_TODEVICE);
2983 buffer_info->time_stamp = jiffies;
2984 buffer_info->next_to_watch = i;
2986 len -= size;
2987 offset += size;
2988 count++;
2989 if (unlikely(++i == tx_ring->count)) i = 0;
2992 for (f = 0; f < nr_frags; f++) {
2993 struct skb_frag_struct *frag;
2995 frag = &skb_shinfo(skb)->frags[f];
2996 len = frag->size;
2997 offset = frag->page_offset;
2999 while (len) {
3000 buffer_info = &tx_ring->buffer_info[i];
3001 size = min(len, max_per_txd);
3002 /* Workaround for premature desc write-backs
3003 * in TSO mode. Append 4-byte sentinel desc */
3004 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
3005 size -= 4;
3006 /* Workaround for potential 82544 hang in PCI-X.
3007 * Avoid terminating buffers within evenly-aligned
3008 * dwords. */
3009 if (unlikely(adapter->pcix_82544 &&
3010 !((unsigned long)(frag->page+offset+size-1) & 4) &&
3011 size > 4))
3012 size -= 4;
3014 buffer_info->length = size;
3015 buffer_info->dma =
3016 pci_map_page(adapter->pdev,
3017 frag->page,
3018 offset,
3019 size,
3020 PCI_DMA_TODEVICE);
3021 buffer_info->time_stamp = jiffies;
3022 buffer_info->next_to_watch = i;
3024 len -= size;
3025 offset += size;
3026 count++;
3027 if (unlikely(++i == tx_ring->count)) i = 0;
3031 i = (i == 0) ? tx_ring->count - 1 : i - 1;
3032 tx_ring->buffer_info[i].skb = skb;
3033 tx_ring->buffer_info[first].next_to_watch = i;
3035 return count;
3038 static void e1000_tx_queue(struct e1000_adapter *adapter,
3039 struct e1000_tx_ring *tx_ring, int tx_flags,
3040 int count)
3042 struct e1000_hw *hw = &adapter->hw;
3043 struct e1000_tx_desc *tx_desc = NULL;
3044 struct e1000_buffer *buffer_info;
3045 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3046 unsigned int i;
3048 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3049 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3050 E1000_TXD_CMD_TSE;
3051 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3053 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3054 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3057 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3058 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3059 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3062 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3063 txd_lower |= E1000_TXD_CMD_VLE;
3064 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3067 i = tx_ring->next_to_use;
3069 while (count--) {
3070 buffer_info = &tx_ring->buffer_info[i];
3071 tx_desc = E1000_TX_DESC(*tx_ring, i);
3072 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3073 tx_desc->lower.data =
3074 cpu_to_le32(txd_lower | buffer_info->length);
3075 tx_desc->upper.data = cpu_to_le32(txd_upper);
3076 if (unlikely(++i == tx_ring->count)) i = 0;
3079 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3081 /* Force memory writes to complete before letting h/w
3082 * know there are new descriptors to fetch. (Only
3083 * applicable for weak-ordered memory model archs,
3084 * such as IA-64). */
3085 wmb();
3087 tx_ring->next_to_use = i;
3088 writel(i, hw->hw_addr + tx_ring->tdt);
3089 /* we need this if more than one processor can write to our tail
3090 * at a time, it syncronizes IO on IA64/Altix systems */
3091 mmiowb();
3095 * 82547 workaround to avoid controller hang in half-duplex environment.
3096 * The workaround is to avoid queuing a large packet that would span
3097 * the internal Tx FIFO ring boundary by notifying the stack to resend
3098 * the packet at a later time. This gives the Tx FIFO an opportunity to
3099 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3100 * to the beginning of the Tx FIFO.
3103 #define E1000_FIFO_HDR 0x10
3104 #define E1000_82547_PAD_LEN 0x3E0
3106 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3107 struct sk_buff *skb)
3109 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3110 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3112 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3114 if (adapter->link_duplex != HALF_DUPLEX)
3115 goto no_fifo_stall_required;
3117 if (atomic_read(&adapter->tx_fifo_stall))
3118 return 1;
3120 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3121 atomic_set(&adapter->tx_fifo_stall, 1);
3122 return 1;
3125 no_fifo_stall_required:
3126 adapter->tx_fifo_head += skb_fifo_len;
3127 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3128 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3129 return 0;
3132 #define MINIMUM_DHCP_PACKET_SIZE 282
3133 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3134 struct sk_buff *skb)
3136 struct e1000_hw *hw = &adapter->hw;
3137 u16 length, offset;
3138 if (vlan_tx_tag_present(skb)) {
3139 if (!((vlan_tx_tag_get(skb) == hw->mng_cookie.vlan_id) &&
3140 ( hw->mng_cookie.status &
3141 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
3142 return 0;
3144 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
3145 struct ethhdr *eth = (struct ethhdr *)skb->data;
3146 if ((htons(ETH_P_IP) == eth->h_proto)) {
3147 const struct iphdr *ip =
3148 (struct iphdr *)((u8 *)skb->data+14);
3149 if (IPPROTO_UDP == ip->protocol) {
3150 struct udphdr *udp =
3151 (struct udphdr *)((u8 *)ip +
3152 (ip->ihl << 2));
3153 if (ntohs(udp->dest) == 67) {
3154 offset = (u8 *)udp + 8 - skb->data;
3155 length = skb->len - offset;
3157 return e1000_mng_write_dhcp_info(hw,
3158 (u8 *)udp + 8,
3159 length);
3164 return 0;
3167 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3169 struct e1000_adapter *adapter = netdev_priv(netdev);
3170 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3172 netif_stop_queue(netdev);
3173 /* Herbert's original patch had:
3174 * smp_mb__after_netif_stop_queue();
3175 * but since that doesn't exist yet, just open code it. */
3176 smp_mb();
3178 /* We need to check again in a case another CPU has just
3179 * made room available. */
3180 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3181 return -EBUSY;
3183 /* A reprieve! */
3184 netif_start_queue(netdev);
3185 ++adapter->restart_queue;
3186 return 0;
3189 static int e1000_maybe_stop_tx(struct net_device *netdev,
3190 struct e1000_tx_ring *tx_ring, int size)
3192 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3193 return 0;
3194 return __e1000_maybe_stop_tx(netdev, size);
3197 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3198 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3200 struct e1000_adapter *adapter = netdev_priv(netdev);
3201 struct e1000_hw *hw = &adapter->hw;
3202 struct e1000_tx_ring *tx_ring;
3203 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3204 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3205 unsigned int tx_flags = 0;
3206 unsigned int len = skb->len - skb->data_len;
3207 unsigned long flags;
3208 unsigned int nr_frags;
3209 unsigned int mss;
3210 int count = 0;
3211 int tso;
3212 unsigned int f;
3214 /* This goes back to the question of how to logically map a tx queue
3215 * to a flow. Right now, performance is impacted slightly negatively
3216 * if using multiple tx queues. If the stack breaks away from a
3217 * single qdisc implementation, we can look at this again. */
3218 tx_ring = adapter->tx_ring;
3220 if (unlikely(skb->len <= 0)) {
3221 dev_kfree_skb_any(skb);
3222 return NETDEV_TX_OK;
3225 /* 82571 and newer doesn't need the workaround that limited descriptor
3226 * length to 4kB */
3227 if (hw->mac_type >= e1000_82571)
3228 max_per_txd = 8192;
3230 mss = skb_shinfo(skb)->gso_size;
3231 /* The controller does a simple calculation to
3232 * make sure there is enough room in the FIFO before
3233 * initiating the DMA for each buffer. The calc is:
3234 * 4 = ceil(buffer len/mss). To make sure we don't
3235 * overrun the FIFO, adjust the max buffer len if mss
3236 * drops. */
3237 if (mss) {
3238 u8 hdr_len;
3239 max_per_txd = min(mss << 2, max_per_txd);
3240 max_txd_pwr = fls(max_per_txd) - 1;
3242 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3243 * points to just header, pull a few bytes of payload from
3244 * frags into skb->data */
3245 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3246 if (skb->data_len && hdr_len == len) {
3247 switch (hw->mac_type) {
3248 unsigned int pull_size;
3249 case e1000_82544:
3250 /* Make sure we have room to chop off 4 bytes,
3251 * and that the end alignment will work out to
3252 * this hardware's requirements
3253 * NOTE: this is a TSO only workaround
3254 * if end byte alignment not correct move us
3255 * into the next dword */
3256 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3257 break;
3258 /* fall through */
3259 case e1000_82571:
3260 case e1000_82572:
3261 case e1000_82573:
3262 case e1000_ich8lan:
3263 pull_size = min((unsigned int)4, skb->data_len);
3264 if (!__pskb_pull_tail(skb, pull_size)) {
3265 DPRINTK(DRV, ERR,
3266 "__pskb_pull_tail failed.\n");
3267 dev_kfree_skb_any(skb);
3268 return NETDEV_TX_OK;
3270 len = skb->len - skb->data_len;
3271 break;
3272 default:
3273 /* do nothing */
3274 break;
3279 /* reserve a descriptor for the offload context */
3280 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3281 count++;
3282 count++;
3284 /* Controller Erratum workaround */
3285 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3286 count++;
3288 count += TXD_USE_COUNT(len, max_txd_pwr);
3290 if (adapter->pcix_82544)
3291 count++;
3293 /* work-around for errata 10 and it applies to all controllers
3294 * in PCI-X mode, so add one more descriptor to the count
3296 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3297 (len > 2015)))
3298 count++;
3300 nr_frags = skb_shinfo(skb)->nr_frags;
3301 for (f = 0; f < nr_frags; f++)
3302 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3303 max_txd_pwr);
3304 if (adapter->pcix_82544)
3305 count += nr_frags;
3308 if (hw->tx_pkt_filtering &&
3309 (hw->mac_type == e1000_82573))
3310 e1000_transfer_dhcp_info(adapter, skb);
3312 if (!spin_trylock_irqsave(&tx_ring->tx_lock, flags))
3313 /* Collision - tell upper layer to requeue */
3314 return NETDEV_TX_LOCKED;
3316 /* need: count + 2 desc gap to keep tail from touching
3317 * head, otherwise try next time */
3318 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3319 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3320 return NETDEV_TX_BUSY;
3323 if (unlikely(hw->mac_type == e1000_82547)) {
3324 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3325 netif_stop_queue(netdev);
3326 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3327 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3328 return NETDEV_TX_BUSY;
3332 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3333 tx_flags |= E1000_TX_FLAGS_VLAN;
3334 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3337 first = tx_ring->next_to_use;
3339 tso = e1000_tso(adapter, tx_ring, skb);
3340 if (tso < 0) {
3341 dev_kfree_skb_any(skb);
3342 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3343 return NETDEV_TX_OK;
3346 if (likely(tso)) {
3347 tx_ring->last_tx_tso = 1;
3348 tx_flags |= E1000_TX_FLAGS_TSO;
3349 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3350 tx_flags |= E1000_TX_FLAGS_CSUM;
3352 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3353 * 82571 hardware supports TSO capabilities for IPv6 as well...
3354 * no longer assume, we must. */
3355 if (likely(skb->protocol == htons(ETH_P_IP)))
3356 tx_flags |= E1000_TX_FLAGS_IPV4;
3358 e1000_tx_queue(adapter, tx_ring, tx_flags,
3359 e1000_tx_map(adapter, tx_ring, skb, first,
3360 max_per_txd, nr_frags, mss));
3362 netdev->trans_start = jiffies;
3364 /* Make sure there is space in the ring for the next send. */
3365 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3367 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3368 return NETDEV_TX_OK;
3372 * e1000_tx_timeout - Respond to a Tx Hang
3373 * @netdev: network interface device structure
3376 static void e1000_tx_timeout(struct net_device *netdev)
3378 struct e1000_adapter *adapter = netdev_priv(netdev);
3380 /* Do the reset outside of interrupt context */
3381 adapter->tx_timeout_count++;
3382 schedule_work(&adapter->reset_task);
3385 static void e1000_reset_task(struct work_struct *work)
3387 struct e1000_adapter *adapter =
3388 container_of(work, struct e1000_adapter, reset_task);
3390 e1000_reinit_locked(adapter);
3394 * e1000_get_stats - Get System Network Statistics
3395 * @netdev: network interface device structure
3397 * Returns the address of the device statistics structure.
3398 * The statistics are actually updated from the timer callback.
3401 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3403 struct e1000_adapter *adapter = netdev_priv(netdev);
3405 /* only return the current stats */
3406 return &adapter->net_stats;
3410 * e1000_change_mtu - Change the Maximum Transfer Unit
3411 * @netdev: network interface device structure
3412 * @new_mtu: new value for maximum frame size
3414 * Returns 0 on success, negative on failure
3417 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3419 struct e1000_adapter *adapter = netdev_priv(netdev);
3420 struct e1000_hw *hw = &adapter->hw;
3421 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3422 u16 eeprom_data = 0;
3424 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3425 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3426 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3427 return -EINVAL;
3430 /* Adapter-specific max frame size limits. */
3431 switch (hw->mac_type) {
3432 case e1000_undefined ... e1000_82542_rev2_1:
3433 case e1000_ich8lan:
3434 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3435 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3436 return -EINVAL;
3438 break;
3439 case e1000_82573:
3440 /* Jumbo Frames not supported if:
3441 * - this is not an 82573L device
3442 * - ASPM is enabled in any way (0x1A bits 3:2) */
3443 e1000_read_eeprom(hw, EEPROM_INIT_3GIO_3, 1,
3444 &eeprom_data);
3445 if ((hw->device_id != E1000_DEV_ID_82573L) ||
3446 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3447 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3448 DPRINTK(PROBE, ERR,
3449 "Jumbo Frames not supported.\n");
3450 return -EINVAL;
3452 break;
3454 /* ERT will be enabled later to enable wire speed receives */
3456 /* fall through to get support */
3457 case e1000_82571:
3458 case e1000_82572:
3459 case e1000_80003es2lan:
3460 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3461 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3462 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3463 return -EINVAL;
3465 break;
3466 default:
3467 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3468 break;
3471 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3472 * means we reserve 2 more, this pushes us to allocate from the next
3473 * larger slab size
3474 * i.e. RXBUFFER_2048 --> size-4096 slab */
3476 if (max_frame <= E1000_RXBUFFER_256)
3477 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3478 else if (max_frame <= E1000_RXBUFFER_512)
3479 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3480 else if (max_frame <= E1000_RXBUFFER_1024)
3481 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3482 else if (max_frame <= E1000_RXBUFFER_2048)
3483 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3484 else if (max_frame <= E1000_RXBUFFER_4096)
3485 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3486 else if (max_frame <= E1000_RXBUFFER_8192)
3487 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3488 else if (max_frame <= E1000_RXBUFFER_16384)
3489 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3491 /* adjust allocation if LPE protects us, and we aren't using SBP */
3492 if (!hw->tbi_compatibility_on &&
3493 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3494 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3495 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3497 netdev->mtu = new_mtu;
3498 hw->max_frame_size = max_frame;
3500 if (netif_running(netdev))
3501 e1000_reinit_locked(adapter);
3503 return 0;
3507 * e1000_update_stats - Update the board statistics counters
3508 * @adapter: board private structure
3511 void e1000_update_stats(struct e1000_adapter *adapter)
3513 struct e1000_hw *hw = &adapter->hw;
3514 struct pci_dev *pdev = adapter->pdev;
3515 unsigned long flags;
3516 u16 phy_tmp;
3518 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3521 * Prevent stats update while adapter is being reset, or if the pci
3522 * connection is down.
3524 if (adapter->link_speed == 0)
3525 return;
3526 if (pci_channel_offline(pdev))
3527 return;
3529 spin_lock_irqsave(&adapter->stats_lock, flags);
3531 /* these counters are modified from e1000_tbi_adjust_stats,
3532 * called from the interrupt context, so they must only
3533 * be written while holding adapter->stats_lock
3536 adapter->stats.crcerrs += er32(CRCERRS);
3537 adapter->stats.gprc += er32(GPRC);
3538 adapter->stats.gorcl += er32(GORCL);
3539 adapter->stats.gorch += er32(GORCH);
3540 adapter->stats.bprc += er32(BPRC);
3541 adapter->stats.mprc += er32(MPRC);
3542 adapter->stats.roc += er32(ROC);
3544 if (hw->mac_type != e1000_ich8lan) {
3545 adapter->stats.prc64 += er32(PRC64);
3546 adapter->stats.prc127 += er32(PRC127);
3547 adapter->stats.prc255 += er32(PRC255);
3548 adapter->stats.prc511 += er32(PRC511);
3549 adapter->stats.prc1023 += er32(PRC1023);
3550 adapter->stats.prc1522 += er32(PRC1522);
3553 adapter->stats.symerrs += er32(SYMERRS);
3554 adapter->stats.mpc += er32(MPC);
3555 adapter->stats.scc += er32(SCC);
3556 adapter->stats.ecol += er32(ECOL);
3557 adapter->stats.mcc += er32(MCC);
3558 adapter->stats.latecol += er32(LATECOL);
3559 adapter->stats.dc += er32(DC);
3560 adapter->stats.sec += er32(SEC);
3561 adapter->stats.rlec += er32(RLEC);
3562 adapter->stats.xonrxc += er32(XONRXC);
3563 adapter->stats.xontxc += er32(XONTXC);
3564 adapter->stats.xoffrxc += er32(XOFFRXC);
3565 adapter->stats.xofftxc += er32(XOFFTXC);
3566 adapter->stats.fcruc += er32(FCRUC);
3567 adapter->stats.gptc += er32(GPTC);
3568 adapter->stats.gotcl += er32(GOTCL);
3569 adapter->stats.gotch += er32(GOTCH);
3570 adapter->stats.rnbc += er32(RNBC);
3571 adapter->stats.ruc += er32(RUC);
3572 adapter->stats.rfc += er32(RFC);
3573 adapter->stats.rjc += er32(RJC);
3574 adapter->stats.torl += er32(TORL);
3575 adapter->stats.torh += er32(TORH);
3576 adapter->stats.totl += er32(TOTL);
3577 adapter->stats.toth += er32(TOTH);
3578 adapter->stats.tpr += er32(TPR);
3580 if (hw->mac_type != e1000_ich8lan) {
3581 adapter->stats.ptc64 += er32(PTC64);
3582 adapter->stats.ptc127 += er32(PTC127);
3583 adapter->stats.ptc255 += er32(PTC255);
3584 adapter->stats.ptc511 += er32(PTC511);
3585 adapter->stats.ptc1023 += er32(PTC1023);
3586 adapter->stats.ptc1522 += er32(PTC1522);
3589 adapter->stats.mptc += er32(MPTC);
3590 adapter->stats.bptc += er32(BPTC);
3592 /* used for adaptive IFS */
3594 hw->tx_packet_delta = er32(TPT);
3595 adapter->stats.tpt += hw->tx_packet_delta;
3596 hw->collision_delta = er32(COLC);
3597 adapter->stats.colc += hw->collision_delta;
3599 if (hw->mac_type >= e1000_82543) {
3600 adapter->stats.algnerrc += er32(ALGNERRC);
3601 adapter->stats.rxerrc += er32(RXERRC);
3602 adapter->stats.tncrs += er32(TNCRS);
3603 adapter->stats.cexterr += er32(CEXTERR);
3604 adapter->stats.tsctc += er32(TSCTC);
3605 adapter->stats.tsctfc += er32(TSCTFC);
3607 if (hw->mac_type > e1000_82547_rev_2) {
3608 adapter->stats.iac += er32(IAC);
3609 adapter->stats.icrxoc += er32(ICRXOC);
3611 if (hw->mac_type != e1000_ich8lan) {
3612 adapter->stats.icrxptc += er32(ICRXPTC);
3613 adapter->stats.icrxatc += er32(ICRXATC);
3614 adapter->stats.ictxptc += er32(ICTXPTC);
3615 adapter->stats.ictxatc += er32(ICTXATC);
3616 adapter->stats.ictxqec += er32(ICTXQEC);
3617 adapter->stats.ictxqmtc += er32(ICTXQMTC);
3618 adapter->stats.icrxdmtc += er32(ICRXDMTC);
3622 /* Fill out the OS statistics structure */
3623 adapter->net_stats.multicast = adapter->stats.mprc;
3624 adapter->net_stats.collisions = adapter->stats.colc;
3626 /* Rx Errors */
3628 /* RLEC on some newer hardware can be incorrect so build
3629 * our own version based on RUC and ROC */
3630 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3631 adapter->stats.crcerrs + adapter->stats.algnerrc +
3632 adapter->stats.ruc + adapter->stats.roc +
3633 adapter->stats.cexterr;
3634 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3635 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3636 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3637 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3638 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3640 /* Tx Errors */
3641 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3642 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3643 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3644 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3645 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3646 if (hw->bad_tx_carr_stats_fd &&
3647 adapter->link_duplex == FULL_DUPLEX) {
3648 adapter->net_stats.tx_carrier_errors = 0;
3649 adapter->stats.tncrs = 0;
3652 /* Tx Dropped needs to be maintained elsewhere */
3654 /* Phy Stats */
3655 if (hw->media_type == e1000_media_type_copper) {
3656 if ((adapter->link_speed == SPEED_1000) &&
3657 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3658 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3659 adapter->phy_stats.idle_errors += phy_tmp;
3662 if ((hw->mac_type <= e1000_82546) &&
3663 (hw->phy_type == e1000_phy_m88) &&
3664 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3665 adapter->phy_stats.receive_errors += phy_tmp;
3668 /* Management Stats */
3669 if (hw->has_smbus) {
3670 adapter->stats.mgptc += er32(MGTPTC);
3671 adapter->stats.mgprc += er32(MGTPRC);
3672 adapter->stats.mgpdc += er32(MGTPDC);
3675 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3679 * e1000_intr_msi - Interrupt Handler
3680 * @irq: interrupt number
3681 * @data: pointer to a network interface device structure
3684 static irqreturn_t e1000_intr_msi(int irq, void *data)
3686 struct net_device *netdev = data;
3687 struct e1000_adapter *adapter = netdev_priv(netdev);
3688 struct e1000_hw *hw = &adapter->hw;
3689 u32 icr = er32(ICR);
3691 /* in NAPI mode read ICR disables interrupts using IAM */
3693 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
3694 hw->get_link_status = 1;
3695 /* 80003ES2LAN workaround-- For packet buffer work-around on
3696 * link down event; disable receives here in the ISR and reset
3697 * adapter in watchdog */
3698 if (netif_carrier_ok(netdev) &&
3699 (hw->mac_type == e1000_80003es2lan)) {
3700 /* disable receives */
3701 u32 rctl = er32(RCTL);
3702 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3704 /* guard against interrupt when we're going down */
3705 if (!test_bit(__E1000_DOWN, &adapter->flags))
3706 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3709 if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3710 adapter->total_tx_bytes = 0;
3711 adapter->total_tx_packets = 0;
3712 adapter->total_rx_bytes = 0;
3713 adapter->total_rx_packets = 0;
3714 __netif_rx_schedule(netdev, &adapter->napi);
3715 } else
3716 e1000_irq_enable(adapter);
3718 return IRQ_HANDLED;
3722 * e1000_intr - Interrupt Handler
3723 * @irq: interrupt number
3724 * @data: pointer to a network interface device structure
3727 static irqreturn_t e1000_intr(int irq, void *data)
3729 struct net_device *netdev = data;
3730 struct e1000_adapter *adapter = netdev_priv(netdev);
3731 struct e1000_hw *hw = &adapter->hw;
3732 u32 rctl, icr = er32(ICR);
3734 if (unlikely(!icr))
3735 return IRQ_NONE; /* Not our interrupt */
3737 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3738 * not set, then the adapter didn't send an interrupt */
3739 if (unlikely(hw->mac_type >= e1000_82571 &&
3740 !(icr & E1000_ICR_INT_ASSERTED)))
3741 return IRQ_NONE;
3743 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3744 * need for the IMC write */
3746 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3747 hw->get_link_status = 1;
3748 /* 80003ES2LAN workaround--
3749 * For packet buffer work-around on link down event;
3750 * disable receives here in the ISR and
3751 * reset adapter in watchdog
3753 if (netif_carrier_ok(netdev) &&
3754 (hw->mac_type == e1000_80003es2lan)) {
3755 /* disable receives */
3756 rctl = er32(RCTL);
3757 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3759 /* guard against interrupt when we're going down */
3760 if (!test_bit(__E1000_DOWN, &adapter->flags))
3761 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3764 if (unlikely(hw->mac_type < e1000_82571)) {
3765 /* disable interrupts, without the synchronize_irq bit */
3766 ew32(IMC, ~0);
3767 E1000_WRITE_FLUSH();
3769 if (likely(netif_rx_schedule_prep(netdev, &adapter->napi))) {
3770 adapter->total_tx_bytes = 0;
3771 adapter->total_tx_packets = 0;
3772 adapter->total_rx_bytes = 0;
3773 adapter->total_rx_packets = 0;
3774 __netif_rx_schedule(netdev, &adapter->napi);
3775 } else
3776 /* this really should not happen! if it does it is basically a
3777 * bug, but not a hard error, so enable ints and continue */
3778 e1000_irq_enable(adapter);
3780 return IRQ_HANDLED;
3784 * e1000_clean - NAPI Rx polling callback
3785 * @adapter: board private structure
3787 static int e1000_clean(struct napi_struct *napi, int budget)
3789 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3790 struct net_device *poll_dev = adapter->netdev;
3791 int tx_cleaned = 0, work_done = 0;
3793 /* Must NOT use netdev_priv macro here. */
3794 adapter = poll_dev->priv;
3796 /* e1000_clean is called per-cpu. This lock protects
3797 * tx_ring[0] from being cleaned by multiple cpus
3798 * simultaneously. A failure obtaining the lock means
3799 * tx_ring[0] is currently being cleaned anyway. */
3800 if (spin_trylock(&adapter->tx_queue_lock)) {
3801 tx_cleaned = e1000_clean_tx_irq(adapter,
3802 &adapter->tx_ring[0]);
3803 spin_unlock(&adapter->tx_queue_lock);
3806 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3807 &work_done, budget);
3809 if (tx_cleaned)
3810 work_done = budget;
3812 /* If budget not fully consumed, exit the polling mode */
3813 if (work_done < budget) {
3814 if (likely(adapter->itr_setting & 3))
3815 e1000_set_itr(adapter);
3816 netif_rx_complete(poll_dev, napi);
3817 e1000_irq_enable(adapter);
3820 return work_done;
3824 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3825 * @adapter: board private structure
3827 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3828 struct e1000_tx_ring *tx_ring)
3830 struct e1000_hw *hw = &adapter->hw;
3831 struct net_device *netdev = adapter->netdev;
3832 struct e1000_tx_desc *tx_desc, *eop_desc;
3833 struct e1000_buffer *buffer_info;
3834 unsigned int i, eop;
3835 unsigned int count = 0;
3836 bool cleaned = false;
3837 unsigned int total_tx_bytes=0, total_tx_packets=0;
3839 i = tx_ring->next_to_clean;
3840 eop = tx_ring->buffer_info[i].next_to_watch;
3841 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3843 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3844 for (cleaned = false; !cleaned; ) {
3845 tx_desc = E1000_TX_DESC(*tx_ring, i);
3846 buffer_info = &tx_ring->buffer_info[i];
3847 cleaned = (i == eop);
3849 if (cleaned) {
3850 struct sk_buff *skb = buffer_info->skb;
3851 unsigned int segs, bytecount;
3852 segs = skb_shinfo(skb)->gso_segs ?: 1;
3853 /* multiply data chunks by size of headers */
3854 bytecount = ((segs - 1) * skb_headlen(skb)) +
3855 skb->len;
3856 total_tx_packets += segs;
3857 total_tx_bytes += bytecount;
3859 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3860 tx_desc->upper.data = 0;
3862 if (unlikely(++i == tx_ring->count)) i = 0;
3865 eop = tx_ring->buffer_info[i].next_to_watch;
3866 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3867 #define E1000_TX_WEIGHT 64
3868 /* weight of a sort for tx, to avoid endless transmit cleanup */
3869 if (count++ == E1000_TX_WEIGHT)
3870 break;
3873 tx_ring->next_to_clean = i;
3875 #define TX_WAKE_THRESHOLD 32
3876 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3877 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3878 /* Make sure that anybody stopping the queue after this
3879 * sees the new next_to_clean.
3881 smp_mb();
3882 if (netif_queue_stopped(netdev)) {
3883 netif_wake_queue(netdev);
3884 ++adapter->restart_queue;
3888 if (adapter->detect_tx_hung) {
3889 /* Detect a transmit hang in hardware, this serializes the
3890 * check with the clearing of time_stamp and movement of i */
3891 adapter->detect_tx_hung = false;
3892 if (tx_ring->buffer_info[eop].dma &&
3893 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3894 (adapter->tx_timeout_factor * HZ))
3895 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3897 /* detected Tx unit hang */
3898 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3899 " Tx Queue <%lu>\n"
3900 " TDH <%x>\n"
3901 " TDT <%x>\n"
3902 " next_to_use <%x>\n"
3903 " next_to_clean <%x>\n"
3904 "buffer_info[next_to_clean]\n"
3905 " time_stamp <%lx>\n"
3906 " next_to_watch <%x>\n"
3907 " jiffies <%lx>\n"
3908 " next_to_watch.status <%x>\n",
3909 (unsigned long)((tx_ring - adapter->tx_ring) /
3910 sizeof(struct e1000_tx_ring)),
3911 readl(hw->hw_addr + tx_ring->tdh),
3912 readl(hw->hw_addr + tx_ring->tdt),
3913 tx_ring->next_to_use,
3914 tx_ring->next_to_clean,
3915 tx_ring->buffer_info[eop].time_stamp,
3916 eop,
3917 jiffies,
3918 eop_desc->upper.fields.status);
3919 netif_stop_queue(netdev);
3922 adapter->total_tx_bytes += total_tx_bytes;
3923 adapter->total_tx_packets += total_tx_packets;
3924 adapter->net_stats.tx_bytes += total_tx_bytes;
3925 adapter->net_stats.tx_packets += total_tx_packets;
3926 return cleaned;
3930 * e1000_rx_checksum - Receive Checksum Offload for 82543
3931 * @adapter: board private structure
3932 * @status_err: receive descriptor status and error fields
3933 * @csum: receive descriptor csum field
3934 * @sk_buff: socket buffer with received data
3937 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3938 u32 csum, struct sk_buff *skb)
3940 struct e1000_hw *hw = &adapter->hw;
3941 u16 status = (u16)status_err;
3942 u8 errors = (u8)(status_err >> 24);
3943 skb->ip_summed = CHECKSUM_NONE;
3945 /* 82543 or newer only */
3946 if (unlikely(hw->mac_type < e1000_82543)) return;
3947 /* Ignore Checksum bit is set */
3948 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3949 /* TCP/UDP checksum error bit is set */
3950 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3951 /* let the stack verify checksum errors */
3952 adapter->hw_csum_err++;
3953 return;
3955 /* TCP/UDP Checksum has not been calculated */
3956 if (hw->mac_type <= e1000_82547_rev_2) {
3957 if (!(status & E1000_RXD_STAT_TCPCS))
3958 return;
3959 } else {
3960 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3961 return;
3963 /* It must be a TCP or UDP packet with a valid checksum */
3964 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3965 /* TCP checksum is good */
3966 skb->ip_summed = CHECKSUM_UNNECESSARY;
3967 } else if (hw->mac_type > e1000_82547_rev_2) {
3968 /* IP fragment with UDP payload */
3969 /* Hardware complements the payload checksum, so we undo it
3970 * and then put the value in host order for further stack use.
3972 __sum16 sum = (__force __sum16)htons(csum);
3973 skb->csum = csum_unfold(~sum);
3974 skb->ip_summed = CHECKSUM_COMPLETE;
3976 adapter->hw_csum_good++;
3980 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3981 * @adapter: board private structure
3983 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
3984 struct e1000_rx_ring *rx_ring,
3985 int *work_done, int work_to_do)
3987 struct e1000_hw *hw = &adapter->hw;
3988 struct net_device *netdev = adapter->netdev;
3989 struct pci_dev *pdev = adapter->pdev;
3990 struct e1000_rx_desc *rx_desc, *next_rxd;
3991 struct e1000_buffer *buffer_info, *next_buffer;
3992 unsigned long flags;
3993 u32 length;
3994 u8 last_byte;
3995 unsigned int i;
3996 int cleaned_count = 0;
3997 bool cleaned = false;
3998 unsigned int total_rx_bytes=0, total_rx_packets=0;
4000 i = rx_ring->next_to_clean;
4001 rx_desc = E1000_RX_DESC(*rx_ring, i);
4002 buffer_info = &rx_ring->buffer_info[i];
4004 while (rx_desc->status & E1000_RXD_STAT_DD) {
4005 struct sk_buff *skb;
4006 u8 status;
4008 if (*work_done >= work_to_do)
4009 break;
4010 (*work_done)++;
4012 status = rx_desc->status;
4013 skb = buffer_info->skb;
4014 buffer_info->skb = NULL;
4016 prefetch(skb->data - NET_IP_ALIGN);
4018 if (++i == rx_ring->count) i = 0;
4019 next_rxd = E1000_RX_DESC(*rx_ring, i);
4020 prefetch(next_rxd);
4022 next_buffer = &rx_ring->buffer_info[i];
4024 cleaned = true;
4025 cleaned_count++;
4026 pci_unmap_single(pdev,
4027 buffer_info->dma,
4028 buffer_info->length,
4029 PCI_DMA_FROMDEVICE);
4031 length = le16_to_cpu(rx_desc->length);
4033 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
4034 /* All receives must fit into a single buffer */
4035 E1000_DBG("%s: Receive packet consumed multiple"
4036 " buffers\n", netdev->name);
4037 /* recycle */
4038 buffer_info->skb = skb;
4039 goto next_desc;
4042 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4043 last_byte = *(skb->data + length - 1);
4044 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4045 last_byte)) {
4046 spin_lock_irqsave(&adapter->stats_lock, flags);
4047 e1000_tbi_adjust_stats(hw, &adapter->stats,
4048 length, skb->data);
4049 spin_unlock_irqrestore(&adapter->stats_lock,
4050 flags);
4051 length--;
4052 } else {
4053 /* recycle */
4054 buffer_info->skb = skb;
4055 goto next_desc;
4059 /* adjust length to remove Ethernet CRC, this must be
4060 * done after the TBI_ACCEPT workaround above */
4061 length -= 4;
4063 /* probably a little skewed due to removing CRC */
4064 total_rx_bytes += length;
4065 total_rx_packets++;
4067 /* code added for copybreak, this should improve
4068 * performance for small packets with large amounts
4069 * of reassembly being done in the stack */
4070 if (length < copybreak) {
4071 struct sk_buff *new_skb =
4072 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
4073 if (new_skb) {
4074 skb_reserve(new_skb, NET_IP_ALIGN);
4075 skb_copy_to_linear_data_offset(new_skb,
4076 -NET_IP_ALIGN,
4077 (skb->data -
4078 NET_IP_ALIGN),
4079 (length +
4080 NET_IP_ALIGN));
4081 /* save the skb in buffer_info as good */
4082 buffer_info->skb = skb;
4083 skb = new_skb;
4085 /* else just continue with the old one */
4087 /* end copybreak code */
4088 skb_put(skb, length);
4090 /* Receive Checksum Offload */
4091 e1000_rx_checksum(adapter,
4092 (u32)(status) |
4093 ((u32)(rx_desc->errors) << 24),
4094 le16_to_cpu(rx_desc->csum), skb);
4096 skb->protocol = eth_type_trans(skb, netdev);
4098 if (unlikely(adapter->vlgrp &&
4099 (status & E1000_RXD_STAT_VP))) {
4100 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4101 le16_to_cpu(rx_desc->special));
4102 } else {
4103 netif_receive_skb(skb);
4106 netdev->last_rx = jiffies;
4108 next_desc:
4109 rx_desc->status = 0;
4111 /* return some buffers to hardware, one at a time is too slow */
4112 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4113 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4114 cleaned_count = 0;
4117 /* use prefetched values */
4118 rx_desc = next_rxd;
4119 buffer_info = next_buffer;
4121 rx_ring->next_to_clean = i;
4123 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4124 if (cleaned_count)
4125 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4127 adapter->total_rx_packets += total_rx_packets;
4128 adapter->total_rx_bytes += total_rx_bytes;
4129 adapter->net_stats.rx_bytes += total_rx_bytes;
4130 adapter->net_stats.rx_packets += total_rx_packets;
4131 return cleaned;
4135 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4136 * @adapter: address of board private structure
4139 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4140 struct e1000_rx_ring *rx_ring,
4141 int cleaned_count)
4143 struct e1000_hw *hw = &adapter->hw;
4144 struct net_device *netdev = adapter->netdev;
4145 struct pci_dev *pdev = adapter->pdev;
4146 struct e1000_rx_desc *rx_desc;
4147 struct e1000_buffer *buffer_info;
4148 struct sk_buff *skb;
4149 unsigned int i;
4150 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4152 i = rx_ring->next_to_use;
4153 buffer_info = &rx_ring->buffer_info[i];
4155 while (cleaned_count--) {
4156 skb = buffer_info->skb;
4157 if (skb) {
4158 skb_trim(skb, 0);
4159 goto map_skb;
4162 skb = netdev_alloc_skb(netdev, bufsz);
4163 if (unlikely(!skb)) {
4164 /* Better luck next round */
4165 adapter->alloc_rx_buff_failed++;
4166 break;
4169 /* Fix for errata 23, can't cross 64kB boundary */
4170 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4171 struct sk_buff *oldskb = skb;
4172 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4173 "at %p\n", bufsz, skb->data);
4174 /* Try again, without freeing the previous */
4175 skb = netdev_alloc_skb(netdev, bufsz);
4176 /* Failed allocation, critical failure */
4177 if (!skb) {
4178 dev_kfree_skb(oldskb);
4179 break;
4182 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4183 /* give up */
4184 dev_kfree_skb(skb);
4185 dev_kfree_skb(oldskb);
4186 break; /* while !buffer_info->skb */
4189 /* Use new allocation */
4190 dev_kfree_skb(oldskb);
4192 /* Make buffer alignment 2 beyond a 16 byte boundary
4193 * this will result in a 16 byte aligned IP header after
4194 * the 14 byte MAC header is removed
4196 skb_reserve(skb, NET_IP_ALIGN);
4198 buffer_info->skb = skb;
4199 buffer_info->length = adapter->rx_buffer_len;
4200 map_skb:
4201 buffer_info->dma = pci_map_single(pdev,
4202 skb->data,
4203 adapter->rx_buffer_len,
4204 PCI_DMA_FROMDEVICE);
4206 /* Fix for errata 23, can't cross 64kB boundary */
4207 if (!e1000_check_64k_bound(adapter,
4208 (void *)(unsigned long)buffer_info->dma,
4209 adapter->rx_buffer_len)) {
4210 DPRINTK(RX_ERR, ERR,
4211 "dma align check failed: %u bytes at %p\n",
4212 adapter->rx_buffer_len,
4213 (void *)(unsigned long)buffer_info->dma);
4214 dev_kfree_skb(skb);
4215 buffer_info->skb = NULL;
4217 pci_unmap_single(pdev, buffer_info->dma,
4218 adapter->rx_buffer_len,
4219 PCI_DMA_FROMDEVICE);
4221 break; /* while !buffer_info->skb */
4223 rx_desc = E1000_RX_DESC(*rx_ring, i);
4224 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4226 if (unlikely(++i == rx_ring->count))
4227 i = 0;
4228 buffer_info = &rx_ring->buffer_info[i];
4231 if (likely(rx_ring->next_to_use != i)) {
4232 rx_ring->next_to_use = i;
4233 if (unlikely(i-- == 0))
4234 i = (rx_ring->count - 1);
4236 /* Force memory writes to complete before letting h/w
4237 * know there are new descriptors to fetch. (Only
4238 * applicable for weak-ordered memory model archs,
4239 * such as IA-64). */
4240 wmb();
4241 writel(i, hw->hw_addr + rx_ring->rdt);
4246 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4247 * @adapter:
4250 static void e1000_smartspeed(struct e1000_adapter *adapter)
4252 struct e1000_hw *hw = &adapter->hw;
4253 u16 phy_status;
4254 u16 phy_ctrl;
4256 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4257 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4258 return;
4260 if (adapter->smartspeed == 0) {
4261 /* If Master/Slave config fault is asserted twice,
4262 * we assume back-to-back */
4263 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4264 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4265 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4266 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4267 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4268 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4269 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4270 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4271 phy_ctrl);
4272 adapter->smartspeed++;
4273 if (!e1000_phy_setup_autoneg(hw) &&
4274 !e1000_read_phy_reg(hw, PHY_CTRL,
4275 &phy_ctrl)) {
4276 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4277 MII_CR_RESTART_AUTO_NEG);
4278 e1000_write_phy_reg(hw, PHY_CTRL,
4279 phy_ctrl);
4282 return;
4283 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4284 /* If still no link, perhaps using 2/3 pair cable */
4285 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4286 phy_ctrl |= CR_1000T_MS_ENABLE;
4287 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4288 if (!e1000_phy_setup_autoneg(hw) &&
4289 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4290 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4291 MII_CR_RESTART_AUTO_NEG);
4292 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4295 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4296 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4297 adapter->smartspeed = 0;
4301 * e1000_ioctl -
4302 * @netdev:
4303 * @ifreq:
4304 * @cmd:
4307 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4309 switch (cmd) {
4310 case SIOCGMIIPHY:
4311 case SIOCGMIIREG:
4312 case SIOCSMIIREG:
4313 return e1000_mii_ioctl(netdev, ifr, cmd);
4314 default:
4315 return -EOPNOTSUPP;
4320 * e1000_mii_ioctl -
4321 * @netdev:
4322 * @ifreq:
4323 * @cmd:
4326 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4327 int cmd)
4329 struct e1000_adapter *adapter = netdev_priv(netdev);
4330 struct e1000_hw *hw = &adapter->hw;
4331 struct mii_ioctl_data *data = if_mii(ifr);
4332 int retval;
4333 u16 mii_reg;
4334 u16 spddplx;
4335 unsigned long flags;
4337 if (hw->media_type != e1000_media_type_copper)
4338 return -EOPNOTSUPP;
4340 switch (cmd) {
4341 case SIOCGMIIPHY:
4342 data->phy_id = hw->phy_addr;
4343 break;
4344 case SIOCGMIIREG:
4345 if (!capable(CAP_NET_ADMIN))
4346 return -EPERM;
4347 spin_lock_irqsave(&adapter->stats_lock, flags);
4348 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4349 &data->val_out)) {
4350 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4351 return -EIO;
4353 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4354 break;
4355 case SIOCSMIIREG:
4356 if (!capable(CAP_NET_ADMIN))
4357 return -EPERM;
4358 if (data->reg_num & ~(0x1F))
4359 return -EFAULT;
4360 mii_reg = data->val_in;
4361 spin_lock_irqsave(&adapter->stats_lock, flags);
4362 if (e1000_write_phy_reg(hw, data->reg_num,
4363 mii_reg)) {
4364 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4365 return -EIO;
4367 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4368 if (hw->media_type == e1000_media_type_copper) {
4369 switch (data->reg_num) {
4370 case PHY_CTRL:
4371 if (mii_reg & MII_CR_POWER_DOWN)
4372 break;
4373 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4374 hw->autoneg = 1;
4375 hw->autoneg_advertised = 0x2F;
4376 } else {
4377 if (mii_reg & 0x40)
4378 spddplx = SPEED_1000;
4379 else if (mii_reg & 0x2000)
4380 spddplx = SPEED_100;
4381 else
4382 spddplx = SPEED_10;
4383 spddplx += (mii_reg & 0x100)
4384 ? DUPLEX_FULL :
4385 DUPLEX_HALF;
4386 retval = e1000_set_spd_dplx(adapter,
4387 spddplx);
4388 if (retval)
4389 return retval;
4391 if (netif_running(adapter->netdev))
4392 e1000_reinit_locked(adapter);
4393 else
4394 e1000_reset(adapter);
4395 break;
4396 case M88E1000_PHY_SPEC_CTRL:
4397 case M88E1000_EXT_PHY_SPEC_CTRL:
4398 if (e1000_phy_reset(hw))
4399 return -EIO;
4400 break;
4402 } else {
4403 switch (data->reg_num) {
4404 case PHY_CTRL:
4405 if (mii_reg & MII_CR_POWER_DOWN)
4406 break;
4407 if (netif_running(adapter->netdev))
4408 e1000_reinit_locked(adapter);
4409 else
4410 e1000_reset(adapter);
4411 break;
4414 break;
4415 default:
4416 return -EOPNOTSUPP;
4418 return E1000_SUCCESS;
4421 void e1000_pci_set_mwi(struct e1000_hw *hw)
4423 struct e1000_adapter *adapter = hw->back;
4424 int ret_val = pci_set_mwi(adapter->pdev);
4426 if (ret_val)
4427 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4430 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4432 struct e1000_adapter *adapter = hw->back;
4434 pci_clear_mwi(adapter->pdev);
4437 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4439 struct e1000_adapter *adapter = hw->back;
4440 return pcix_get_mmrbc(adapter->pdev);
4443 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4445 struct e1000_adapter *adapter = hw->back;
4446 pcix_set_mmrbc(adapter->pdev, mmrbc);
4449 s32 e1000_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
4451 struct e1000_adapter *adapter = hw->back;
4452 u16 cap_offset;
4454 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4455 if (!cap_offset)
4456 return -E1000_ERR_CONFIG;
4458 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4460 return E1000_SUCCESS;
4463 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4465 outl(value, port);
4468 static void e1000_vlan_rx_register(struct net_device *netdev,
4469 struct vlan_group *grp)
4471 struct e1000_adapter *adapter = netdev_priv(netdev);
4472 struct e1000_hw *hw = &adapter->hw;
4473 u32 ctrl, rctl;
4475 if (!test_bit(__E1000_DOWN, &adapter->flags))
4476 e1000_irq_disable(adapter);
4477 adapter->vlgrp = grp;
4479 if (grp) {
4480 /* enable VLAN tag insert/strip */
4481 ctrl = er32(CTRL);
4482 ctrl |= E1000_CTRL_VME;
4483 ew32(CTRL, ctrl);
4485 if (adapter->hw.mac_type != e1000_ich8lan) {
4486 /* enable VLAN receive filtering */
4487 rctl = er32(RCTL);
4488 rctl &= ~E1000_RCTL_CFIEN;
4489 ew32(RCTL, rctl);
4490 e1000_update_mng_vlan(adapter);
4492 } else {
4493 /* disable VLAN tag insert/strip */
4494 ctrl = er32(CTRL);
4495 ctrl &= ~E1000_CTRL_VME;
4496 ew32(CTRL, ctrl);
4498 if (adapter->hw.mac_type != e1000_ich8lan) {
4499 if (adapter->mng_vlan_id !=
4500 (u16)E1000_MNG_VLAN_NONE) {
4501 e1000_vlan_rx_kill_vid(netdev,
4502 adapter->mng_vlan_id);
4503 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4508 if (!test_bit(__E1000_DOWN, &adapter->flags))
4509 e1000_irq_enable(adapter);
4512 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4514 struct e1000_adapter *adapter = netdev_priv(netdev);
4515 struct e1000_hw *hw = &adapter->hw;
4516 u32 vfta, index;
4518 if ((hw->mng_cookie.status &
4519 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4520 (vid == adapter->mng_vlan_id))
4521 return;
4522 /* add VID to filter table */
4523 index = (vid >> 5) & 0x7F;
4524 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4525 vfta |= (1 << (vid & 0x1F));
4526 e1000_write_vfta(hw, index, vfta);
4529 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4531 struct e1000_adapter *adapter = netdev_priv(netdev);
4532 struct e1000_hw *hw = &adapter->hw;
4533 u32 vfta, index;
4535 if (!test_bit(__E1000_DOWN, &adapter->flags))
4536 e1000_irq_disable(adapter);
4537 vlan_group_set_device(adapter->vlgrp, vid, NULL);
4538 if (!test_bit(__E1000_DOWN, &adapter->flags))
4539 e1000_irq_enable(adapter);
4541 if ((hw->mng_cookie.status &
4542 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4543 (vid == adapter->mng_vlan_id)) {
4544 /* release control to f/w */
4545 e1000_release_hw_control(adapter);
4546 return;
4549 /* remove VID from filter table */
4550 index = (vid >> 5) & 0x7F;
4551 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4552 vfta &= ~(1 << (vid & 0x1F));
4553 e1000_write_vfta(hw, index, vfta);
4556 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4558 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4560 if (adapter->vlgrp) {
4561 u16 vid;
4562 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4563 if (!vlan_group_get_device(adapter->vlgrp, vid))
4564 continue;
4565 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4570 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u16 spddplx)
4572 struct e1000_hw *hw = &adapter->hw;
4574 hw->autoneg = 0;
4576 /* Fiber NICs only allow 1000 gbps Full duplex */
4577 if ((hw->media_type == e1000_media_type_fiber) &&
4578 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4579 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4580 return -EINVAL;
4583 switch (spddplx) {
4584 case SPEED_10 + DUPLEX_HALF:
4585 hw->forced_speed_duplex = e1000_10_half;
4586 break;
4587 case SPEED_10 + DUPLEX_FULL:
4588 hw->forced_speed_duplex = e1000_10_full;
4589 break;
4590 case SPEED_100 + DUPLEX_HALF:
4591 hw->forced_speed_duplex = e1000_100_half;
4592 break;
4593 case SPEED_100 + DUPLEX_FULL:
4594 hw->forced_speed_duplex = e1000_100_full;
4595 break;
4596 case SPEED_1000 + DUPLEX_FULL:
4597 hw->autoneg = 1;
4598 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4599 break;
4600 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4601 default:
4602 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4603 return -EINVAL;
4605 return 0;
4608 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4610 struct net_device *netdev = pci_get_drvdata(pdev);
4611 struct e1000_adapter *adapter = netdev_priv(netdev);
4612 struct e1000_hw *hw = &adapter->hw;
4613 u32 ctrl, ctrl_ext, rctl, status;
4614 u32 wufc = adapter->wol;
4615 #ifdef CONFIG_PM
4616 int retval = 0;
4617 #endif
4619 netif_device_detach(netdev);
4621 if (netif_running(netdev)) {
4622 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4623 e1000_down(adapter);
4626 #ifdef CONFIG_PM
4627 retval = pci_save_state(pdev);
4628 if (retval)
4629 return retval;
4630 #endif
4632 status = er32(STATUS);
4633 if (status & E1000_STATUS_LU)
4634 wufc &= ~E1000_WUFC_LNKC;
4636 if (wufc) {
4637 e1000_setup_rctl(adapter);
4638 e1000_set_rx_mode(netdev);
4640 /* turn on all-multi mode if wake on multicast is enabled */
4641 if (wufc & E1000_WUFC_MC) {
4642 rctl = er32(RCTL);
4643 rctl |= E1000_RCTL_MPE;
4644 ew32(RCTL, rctl);
4647 if (hw->mac_type >= e1000_82540) {
4648 ctrl = er32(CTRL);
4649 /* advertise wake from D3Cold */
4650 #define E1000_CTRL_ADVD3WUC 0x00100000
4651 /* phy power management enable */
4652 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4653 ctrl |= E1000_CTRL_ADVD3WUC |
4654 E1000_CTRL_EN_PHY_PWR_MGMT;
4655 ew32(CTRL, ctrl);
4658 if (hw->media_type == e1000_media_type_fiber ||
4659 hw->media_type == e1000_media_type_internal_serdes) {
4660 /* keep the laser running in D3 */
4661 ctrl_ext = er32(CTRL_EXT);
4662 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4663 ew32(CTRL_EXT, ctrl_ext);
4666 /* Allow time for pending master requests to run */
4667 e1000_disable_pciex_master(hw);
4669 ew32(WUC, E1000_WUC_PME_EN);
4670 ew32(WUFC, wufc);
4671 pci_enable_wake(pdev, PCI_D3hot, 1);
4672 pci_enable_wake(pdev, PCI_D3cold, 1);
4673 } else {
4674 ew32(WUC, 0);
4675 ew32(WUFC, 0);
4676 pci_enable_wake(pdev, PCI_D3hot, 0);
4677 pci_enable_wake(pdev, PCI_D3cold, 0);
4680 e1000_release_manageability(adapter);
4682 /* make sure adapter isn't asleep if manageability is enabled */
4683 if (adapter->en_mng_pt) {
4684 pci_enable_wake(pdev, PCI_D3hot, 1);
4685 pci_enable_wake(pdev, PCI_D3cold, 1);
4688 if (hw->phy_type == e1000_phy_igp_3)
4689 e1000_phy_powerdown_workaround(hw);
4691 if (netif_running(netdev))
4692 e1000_free_irq(adapter);
4694 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4695 * would have already happened in close and is redundant. */
4696 e1000_release_hw_control(adapter);
4698 pci_disable_device(pdev);
4700 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4702 return 0;
4705 #ifdef CONFIG_PM
4706 static int e1000_resume(struct pci_dev *pdev)
4708 struct net_device *netdev = pci_get_drvdata(pdev);
4709 struct e1000_adapter *adapter = netdev_priv(netdev);
4710 struct e1000_hw *hw = &adapter->hw;
4711 u32 err;
4713 pci_set_power_state(pdev, PCI_D0);
4714 pci_restore_state(pdev);
4716 if (adapter->need_ioport)
4717 err = pci_enable_device(pdev);
4718 else
4719 err = pci_enable_device_mem(pdev);
4720 if (err) {
4721 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4722 return err;
4724 pci_set_master(pdev);
4726 pci_enable_wake(pdev, PCI_D3hot, 0);
4727 pci_enable_wake(pdev, PCI_D3cold, 0);
4729 if (netif_running(netdev)) {
4730 err = e1000_request_irq(adapter);
4731 if (err)
4732 return err;
4735 e1000_power_up_phy(adapter);
4736 e1000_reset(adapter);
4737 ew32(WUS, ~0);
4739 e1000_init_manageability(adapter);
4741 if (netif_running(netdev))
4742 e1000_up(adapter);
4744 netif_device_attach(netdev);
4746 /* If the controller is 82573 and f/w is AMT, do not set
4747 * DRV_LOAD until the interface is up. For all other cases,
4748 * let the f/w know that the h/w is now under the control
4749 * of the driver. */
4750 if (hw->mac_type != e1000_82573 ||
4751 !e1000_check_mng_mode(hw))
4752 e1000_get_hw_control(adapter);
4754 return 0;
4756 #endif
4758 static void e1000_shutdown(struct pci_dev *pdev)
4760 e1000_suspend(pdev, PMSG_SUSPEND);
4763 #ifdef CONFIG_NET_POLL_CONTROLLER
4765 * Polling 'interrupt' - used by things like netconsole to send skbs
4766 * without having to re-enable interrupts. It's not called while
4767 * the interrupt routine is executing.
4769 static void e1000_netpoll(struct net_device *netdev)
4771 struct e1000_adapter *adapter = netdev_priv(netdev);
4773 disable_irq(adapter->pdev->irq);
4774 e1000_intr(adapter->pdev->irq, netdev);
4775 enable_irq(adapter->pdev->irq);
4777 #endif
4780 * e1000_io_error_detected - called when PCI error is detected
4781 * @pdev: Pointer to PCI device
4782 * @state: The current pci conneection state
4784 * This function is called after a PCI bus error affecting
4785 * this device has been detected.
4787 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4788 pci_channel_state_t state)
4790 struct net_device *netdev = pci_get_drvdata(pdev);
4791 struct e1000_adapter *adapter = netdev->priv;
4793 netif_device_detach(netdev);
4795 if (netif_running(netdev))
4796 e1000_down(adapter);
4797 pci_disable_device(pdev);
4799 /* Request a slot slot reset. */
4800 return PCI_ERS_RESULT_NEED_RESET;
4804 * e1000_io_slot_reset - called after the pci bus has been reset.
4805 * @pdev: Pointer to PCI device
4807 * Restart the card from scratch, as if from a cold-boot. Implementation
4808 * resembles the first-half of the e1000_resume routine.
4810 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4812 struct net_device *netdev = pci_get_drvdata(pdev);
4813 struct e1000_adapter *adapter = netdev->priv;
4814 struct e1000_hw *hw = &adapter->hw;
4815 int err;
4817 if (adapter->need_ioport)
4818 err = pci_enable_device(pdev);
4819 else
4820 err = pci_enable_device_mem(pdev);
4821 if (err) {
4822 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4823 return PCI_ERS_RESULT_DISCONNECT;
4825 pci_set_master(pdev);
4827 pci_enable_wake(pdev, PCI_D3hot, 0);
4828 pci_enable_wake(pdev, PCI_D3cold, 0);
4830 e1000_reset(adapter);
4831 ew32(WUS, ~0);
4833 return PCI_ERS_RESULT_RECOVERED;
4837 * e1000_io_resume - called when traffic can start flowing again.
4838 * @pdev: Pointer to PCI device
4840 * This callback is called when the error recovery driver tells us that
4841 * its OK to resume normal operation. Implementation resembles the
4842 * second-half of the e1000_resume routine.
4844 static void e1000_io_resume(struct pci_dev *pdev)
4846 struct net_device *netdev = pci_get_drvdata(pdev);
4847 struct e1000_adapter *adapter = netdev->priv;
4848 struct e1000_hw *hw = &adapter->hw;
4850 e1000_init_manageability(adapter);
4852 if (netif_running(netdev)) {
4853 if (e1000_up(adapter)) {
4854 printk("e1000: can't bring device back up after reset\n");
4855 return;
4859 netif_device_attach(netdev);
4861 /* If the controller is 82573 and f/w is AMT, do not set
4862 * DRV_LOAD until the interface is up. For all other cases,
4863 * let the f/w know that the h/w is now under the control
4864 * of the driver. */
4865 if (hw->mac_type != e1000_82573 ||
4866 !e1000_check_mng_mode(hw))
4867 e1000_get_hw_control(adapter);
4871 /* e1000_main.c */