ACPI: GPE enabling should happen after EC installation
[linux-2.6/mini2440.git] / drivers / net / via-velocity.c
blobed1afaf683a4bb96481325165929542bf04e6db8
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
10 * TODO
11 * rx_copybreak/alignment
12 * Scatter gather
13 * More testing
15 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@redhat.com>
16 * Additional fixes and clean up: Francois Romieu
18 * This source has not been verified for use in safety critical systems.
20 * Please direct queries about the revamped driver to the linux-kernel
21 * list not VIA.
23 * Original code:
25 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
26 * All rights reserved.
28 * This software may be redistributed and/or modified under
29 * the terms of the GNU General Public License as published by the Free
30 * Software Foundation; either version 2 of the License, or
31 * any later version.
33 * This program is distributed in the hope that it will be useful, but
34 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
35 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
36 * for more details.
38 * Author: Chuang Liang-Shing, AJ Jiang
40 * Date: Jan 24, 2003
42 * MODULE_LICENSE("GPL");
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/init.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <asm/io.h>
65 #include <linux/if.h>
66 #include <asm/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/inetdevice.h>
69 #include <linux/reboot.h>
70 #include <linux/ethtool.h>
71 #include <linux/mii.h>
72 #include <linux/in.h>
73 #include <linux/if_arp.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <linux/udp.h>
78 #include <linux/crc-ccitt.h>
79 #include <linux/crc32.h>
81 #include "via-velocity.h"
84 static int velocity_nics = 0;
85 static int msglevel = MSG_LEVEL_INFO;
87 /**
88 * mac_get_cam_mask - Read a CAM mask
89 * @regs: register block for this velocity
90 * @mask: buffer to store mask
92 * Fetch the mask bits of the selected CAM and store them into the
93 * provided mask buffer.
96 static void mac_get_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
98 int i;
100 /* Select CAM mask */
101 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
103 writeb(0, &regs->CAMADDR);
105 /* read mask */
106 for (i = 0; i < 8; i++)
107 *mask++ = readb(&(regs->MARCAM[i]));
109 /* disable CAMEN */
110 writeb(0, &regs->CAMADDR);
112 /* Select mar */
113 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119 * mac_set_cam_mask - Set a CAM mask
120 * @regs: register block for this velocity
121 * @mask: CAM mask to load
123 * Store a new mask into a CAM
126 static void mac_set_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
128 int i;
129 /* Select CAM mask */
130 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
132 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
134 for (i = 0; i < 8; i++) {
135 writeb(*mask++, &(regs->MARCAM[i]));
137 /* disable CAMEN */
138 writeb(0, &regs->CAMADDR);
140 /* Select mar */
141 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
144 static void mac_set_vlan_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
146 int i;
147 /* Select CAM mask */
148 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
150 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
152 for (i = 0; i < 8; i++) {
153 writeb(*mask++, &(regs->MARCAM[i]));
155 /* disable CAMEN */
156 writeb(0, &regs->CAMADDR);
158 /* Select mar */
159 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163 * mac_set_cam - set CAM data
164 * @regs: register block of this velocity
165 * @idx: Cam index
166 * @addr: 2 or 6 bytes of CAM data
168 * Load an address or vlan tag into a CAM
171 static void mac_set_cam(struct mac_regs __iomem * regs, int idx, const u8 *addr)
173 int i;
175 /* Select CAM mask */
176 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
178 idx &= (64 - 1);
180 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
182 for (i = 0; i < 6; i++) {
183 writeb(*addr++, &(regs->MARCAM[i]));
185 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
187 udelay(10);
189 writeb(0, &regs->CAMADDR);
191 /* Select mar */
192 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
195 static void mac_set_vlan_cam(struct mac_regs __iomem * regs, int idx,
196 const u8 *addr)
199 /* Select CAM mask */
200 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
202 idx &= (64 - 1);
204 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
205 writew(*((u16 *) addr), &regs->MARCAM[0]);
207 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
209 udelay(10);
211 writeb(0, &regs->CAMADDR);
213 /* Select mar */
214 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
219 * mac_wol_reset - reset WOL after exiting low power
220 * @regs: register block of this velocity
222 * Called after we drop out of wake on lan mode in order to
223 * reset the Wake on lan features. This function doesn't restore
224 * the rest of the logic from the result of sleep/wakeup
227 static void mac_wol_reset(struct mac_regs __iomem * regs)
230 /* Turn off SWPTAG right after leaving power mode */
231 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
232 /* clear sticky bits */
233 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
235 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
236 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
237 /* disable force PME-enable */
238 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
239 /* disable power-event config bit */
240 writew(0xFFFF, &regs->WOLCRClr);
241 /* clear power status */
242 writew(0xFFFF, &regs->WOLSRClr);
245 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
246 static const struct ethtool_ops velocity_ethtool_ops;
249 Define module options
252 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
253 MODULE_LICENSE("GPL");
254 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
256 #define VELOCITY_PARAM(N,D) \
257 static int N[MAX_UNITS]=OPTION_DEFAULT;\
258 module_param_array(N, int, NULL, 0); \
259 MODULE_PARM_DESC(N, D);
261 #define RX_DESC_MIN 64
262 #define RX_DESC_MAX 255
263 #define RX_DESC_DEF 64
264 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
266 #define TX_DESC_MIN 16
267 #define TX_DESC_MAX 256
268 #define TX_DESC_DEF 64
269 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
271 #define RX_THRESH_MIN 0
272 #define RX_THRESH_MAX 3
273 #define RX_THRESH_DEF 0
274 /* rx_thresh[] is used for controlling the receive fifo threshold.
275 0: indicate the rxfifo threshold is 128 bytes.
276 1: indicate the rxfifo threshold is 512 bytes.
277 2: indicate the rxfifo threshold is 1024 bytes.
278 3: indicate the rxfifo threshold is store & forward.
280 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
282 #define DMA_LENGTH_MIN 0
283 #define DMA_LENGTH_MAX 7
284 #define DMA_LENGTH_DEF 0
286 /* DMA_length[] is used for controlling the DMA length
287 0: 8 DWORDs
288 1: 16 DWORDs
289 2: 32 DWORDs
290 3: 64 DWORDs
291 4: 128 DWORDs
292 5: 256 DWORDs
293 6: SF(flush till emply)
294 7: SF(flush till emply)
296 VELOCITY_PARAM(DMA_length, "DMA length");
298 #define IP_ALIG_DEF 0
299 /* IP_byte_align[] is used for IP header DWORD byte aligned
300 0: indicate the IP header won't be DWORD byte aligned.(Default) .
301 1: indicate the IP header will be DWORD byte aligned.
302 In some enviroment, the IP header should be DWORD byte aligned,
303 or the packet will be droped when we receive it. (eg: IPVS)
305 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
307 #define TX_CSUM_DEF 1
308 /* txcsum_offload[] is used for setting the checksum offload ability of NIC.
309 (We only support RX checksum offload now)
310 0: disable csum_offload[checksum offload
311 1: enable checksum offload. (Default)
313 VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
315 #define FLOW_CNTL_DEF 1
316 #define FLOW_CNTL_MIN 1
317 #define FLOW_CNTL_MAX 5
319 /* flow_control[] is used for setting the flow control ability of NIC.
320 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
321 2: enable TX flow control.
322 3: enable RX flow control.
323 4: enable RX/TX flow control.
324 5: disable
326 VELOCITY_PARAM(flow_control, "Enable flow control ability");
328 #define MED_LNK_DEF 0
329 #define MED_LNK_MIN 0
330 #define MED_LNK_MAX 4
331 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
332 0: indicate autonegotiation for both speed and duplex mode
333 1: indicate 100Mbps half duplex mode
334 2: indicate 100Mbps full duplex mode
335 3: indicate 10Mbps half duplex mode
336 4: indicate 10Mbps full duplex mode
338 Note:
339 if EEPROM have been set to the force mode, this option is ignored
340 by driver.
342 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
344 #define VAL_PKT_LEN_DEF 0
345 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
346 0: Receive frame with invalid layer 2 length (Default)
347 1: Drop frame with invalid layer 2 length
349 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
351 #define WOL_OPT_DEF 0
352 #define WOL_OPT_MIN 0
353 #define WOL_OPT_MAX 7
354 /* wol_opts[] is used for controlling wake on lan behavior.
355 0: Wake up if recevied a magic packet. (Default)
356 1: Wake up if link status is on/off.
357 2: Wake up if recevied an arp packet.
358 4: Wake up if recevied any unicast packet.
359 Those value can be sumed up to support more than one option.
361 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
363 #define INT_WORKS_DEF 20
364 #define INT_WORKS_MIN 10
365 #define INT_WORKS_MAX 64
367 VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
369 static int rx_copybreak = 200;
370 module_param(rx_copybreak, int, 0644);
371 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
373 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
374 const struct velocity_info_tbl *info);
375 static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
376 static void velocity_print_info(struct velocity_info *vptr);
377 static int velocity_open(struct net_device *dev);
378 static int velocity_change_mtu(struct net_device *dev, int mtu);
379 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
380 static int velocity_intr(int irq, void *dev_instance);
381 static void velocity_set_multi(struct net_device *dev);
382 static struct net_device_stats *velocity_get_stats(struct net_device *dev);
383 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
384 static int velocity_close(struct net_device *dev);
385 static int velocity_receive_frame(struct velocity_info *, int idx);
386 static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
387 static void velocity_free_rd_ring(struct velocity_info *vptr);
388 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
389 static int velocity_soft_reset(struct velocity_info *vptr);
390 static void mii_init(struct velocity_info *vptr, u32 mii_status);
391 static u32 velocity_get_link(struct net_device *dev);
392 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
393 static void velocity_print_link_status(struct velocity_info *vptr);
394 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
395 static void velocity_shutdown(struct velocity_info *vptr);
396 static void enable_flow_control_ability(struct velocity_info *vptr);
397 static void enable_mii_autopoll(struct mac_regs __iomem * regs);
398 static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
399 static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
400 static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
401 static u32 check_connection_type(struct mac_regs __iomem * regs);
402 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
404 #ifdef CONFIG_PM
406 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
407 static int velocity_resume(struct pci_dev *pdev);
409 static DEFINE_SPINLOCK(velocity_dev_list_lock);
410 static LIST_HEAD(velocity_dev_list);
412 #endif
414 #if defined(CONFIG_PM) && defined(CONFIG_INET)
416 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
418 static struct notifier_block velocity_inetaddr_notifier = {
419 .notifier_call = velocity_netdev_event,
422 static void velocity_register_notifier(void)
424 register_inetaddr_notifier(&velocity_inetaddr_notifier);
427 static void velocity_unregister_notifier(void)
429 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
432 #else
434 #define velocity_register_notifier() do {} while (0)
435 #define velocity_unregister_notifier() do {} while (0)
437 #endif
440 * Internal board variants. At the moment we have only one
443 static struct velocity_info_tbl chip_info_table[] = {
444 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
449 * Describe the PCI device identifiers that we support in this
450 * device driver. Used for hotplug autoloading.
453 static const struct pci_device_id velocity_id_table[] __devinitdata = {
454 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
458 MODULE_DEVICE_TABLE(pci, velocity_id_table);
461 * get_chip_name - identifier to name
462 * @id: chip identifier
464 * Given a chip identifier return a suitable description. Returns
465 * a pointer a static string valid while the driver is loaded.
468 static const char __devinit *get_chip_name(enum chip_type chip_id)
470 int i;
471 for (i = 0; chip_info_table[i].name != NULL; i++)
472 if (chip_info_table[i].chip_id == chip_id)
473 break;
474 return chip_info_table[i].name;
478 * velocity_remove1 - device unplug
479 * @pdev: PCI device being removed
481 * Device unload callback. Called on an unplug or on module
482 * unload for each active device that is present. Disconnects
483 * the device from the network layer and frees all the resources
486 static void __devexit velocity_remove1(struct pci_dev *pdev)
488 struct net_device *dev = pci_get_drvdata(pdev);
489 struct velocity_info *vptr = netdev_priv(dev);
491 #ifdef CONFIG_PM
492 unsigned long flags;
494 spin_lock_irqsave(&velocity_dev_list_lock, flags);
495 if (!list_empty(&velocity_dev_list))
496 list_del(&vptr->list);
497 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
498 #endif
499 unregister_netdev(dev);
500 iounmap(vptr->mac_regs);
501 pci_release_regions(pdev);
502 pci_disable_device(pdev);
503 pci_set_drvdata(pdev, NULL);
504 free_netdev(dev);
506 velocity_nics--;
510 * velocity_set_int_opt - parser for integer options
511 * @opt: pointer to option value
512 * @val: value the user requested (or -1 for default)
513 * @min: lowest value allowed
514 * @max: highest value allowed
515 * @def: default value
516 * @name: property name
517 * @dev: device name
519 * Set an integer property in the module options. This function does
520 * all the verification and checking as well as reporting so that
521 * we don't duplicate code for each option.
524 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, char *devname)
526 if (val == -1)
527 *opt = def;
528 else if (val < min || val > max) {
529 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
530 devname, name, min, max);
531 *opt = def;
532 } else {
533 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
534 devname, name, val);
535 *opt = val;
540 * velocity_set_bool_opt - parser for boolean options
541 * @opt: pointer to option value
542 * @val: value the user requested (or -1 for default)
543 * @def: default value (yes/no)
544 * @flag: numeric value to set for true.
545 * @name: property name
546 * @dev: device name
548 * Set a boolean property in the module options. This function does
549 * all the verification and checking as well as reporting so that
550 * we don't duplicate code for each option.
553 static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, char *devname)
555 (*opt) &= (~flag);
556 if (val == -1)
557 *opt |= (def ? flag : 0);
558 else if (val < 0 || val > 1) {
559 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
560 devname, name);
561 *opt |= (def ? flag : 0);
562 } else {
563 printk(KERN_INFO "%s: set parameter %s to %s\n",
564 devname, name, val ? "TRUE" : "FALSE");
565 *opt |= (val ? flag : 0);
570 * velocity_get_options - set options on device
571 * @opts: option structure for the device
572 * @index: index of option to use in module options array
573 * @devname: device name
575 * Turn the module and command options into a single structure
576 * for the current device
579 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, char *devname)
582 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
583 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
584 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
585 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
587 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
588 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
589 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
590 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
591 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
592 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
593 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
594 opts->numrx = (opts->numrx & ~3);
598 * velocity_init_cam_filter - initialise CAM
599 * @vptr: velocity to program
601 * Initialize the content addressable memory used for filters. Load
602 * appropriately according to the presence of VLAN
605 static void velocity_init_cam_filter(struct velocity_info *vptr)
607 struct mac_regs __iomem * regs = vptr->mac_regs;
608 unsigned short vid;
610 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
611 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
612 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
614 /* Disable all CAMs */
615 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
616 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
617 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
618 mac_set_cam_mask(regs, vptr->mCAMmask);
620 /* Enable first VCAM */
621 if (vptr->vlgrp) {
622 for (vid = 0; vid < VLAN_VID_MASK; vid++) {
623 if (vlan_group_get_device(vptr->vlgrp, vid)) {
624 /* If Tagging option is enabled and
625 VLAN ID is not zero, then
626 turn on MCFG_RTGOPT also */
627 if (vid != 0)
628 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
630 mac_set_vlan_cam(regs, 0, (u8 *) &vid);
633 vptr->vCAMmask[0] |= 1;
634 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
635 } else {
636 u16 temp = 0;
637 mac_set_vlan_cam(regs, 0, (u8 *) &temp);
638 temp = 1;
639 mac_set_vlan_cam_mask(regs, (u8 *) &temp);
643 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
645 struct velocity_info *vptr = netdev_priv(dev);
647 spin_lock_irq(&vptr->lock);
648 velocity_init_cam_filter(vptr);
649 spin_unlock_irq(&vptr->lock);
652 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
654 struct velocity_info *vptr = netdev_priv(dev);
656 spin_lock_irq(&vptr->lock);
657 vlan_group_set_device(vptr->vlgrp, vid, NULL);
658 velocity_init_cam_filter(vptr);
659 spin_unlock_irq(&vptr->lock);
664 * velocity_rx_reset - handle a receive reset
665 * @vptr: velocity we are resetting
667 * Reset the ownership and status for the receive ring side.
668 * Hand all the receive queue to the NIC.
671 static void velocity_rx_reset(struct velocity_info *vptr)
674 struct mac_regs __iomem * regs = vptr->mac_regs;
675 int i;
677 vptr->rd_dirty = vptr->rd_filled = vptr->rd_curr = 0;
680 * Init state, all RD entries belong to the NIC
682 for (i = 0; i < vptr->options.numrx; ++i)
683 vptr->rd_ring[i].rdesc0.len |= OWNED_BY_NIC;
685 writew(vptr->options.numrx, &regs->RBRDU);
686 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
687 writew(0, &regs->RDIdx);
688 writew(vptr->options.numrx - 1, &regs->RDCSize);
692 * velocity_init_registers - initialise MAC registers
693 * @vptr: velocity to init
694 * @type: type of initialisation (hot or cold)
696 * Initialise the MAC on a reset or on first set up on the
697 * hardware.
700 static void velocity_init_registers(struct velocity_info *vptr,
701 enum velocity_init_type type)
703 struct mac_regs __iomem * regs = vptr->mac_regs;
704 int i, mii_status;
706 mac_wol_reset(regs);
708 switch (type) {
709 case VELOCITY_INIT_RESET:
710 case VELOCITY_INIT_WOL:
712 netif_stop_queue(vptr->dev);
715 * Reset RX to prevent RX pointer not on the 4X location
717 velocity_rx_reset(vptr);
718 mac_rx_queue_run(regs);
719 mac_rx_queue_wake(regs);
721 mii_status = velocity_get_opt_media_mode(vptr);
722 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
723 velocity_print_link_status(vptr);
724 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
725 netif_wake_queue(vptr->dev);
728 enable_flow_control_ability(vptr);
730 mac_clear_isr(regs);
731 writel(CR0_STOP, &regs->CR0Clr);
732 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
733 &regs->CR0Set);
735 break;
737 case VELOCITY_INIT_COLD:
738 default:
740 * Do reset
742 velocity_soft_reset(vptr);
743 mdelay(5);
745 mac_eeprom_reload(regs);
746 for (i = 0; i < 6; i++) {
747 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
750 * clear Pre_ACPI bit.
752 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
753 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
754 mac_set_dma_length(regs, vptr->options.DMA_length);
756 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
758 * Back off algorithm use original IEEE standard
760 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
763 * Init CAM filter
765 velocity_init_cam_filter(vptr);
768 * Set packet filter: Receive directed and broadcast address
770 velocity_set_multi(vptr->dev);
773 * Enable MII auto-polling
775 enable_mii_autopoll(regs);
777 vptr->int_mask = INT_MASK_DEF;
779 writel(vptr->rd_pool_dma, &regs->RDBaseLo);
780 writew(vptr->options.numrx - 1, &regs->RDCSize);
781 mac_rx_queue_run(regs);
782 mac_rx_queue_wake(regs);
784 writew(vptr->options.numtx - 1, &regs->TDCSize);
786 for (i = 0; i < vptr->num_txq; i++) {
787 writel(vptr->td_pool_dma[i], &regs->TDBaseLo[i]);
788 mac_tx_queue_run(regs, i);
791 init_flow_control_register(vptr);
793 writel(CR0_STOP, &regs->CR0Clr);
794 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
796 mii_status = velocity_get_opt_media_mode(vptr);
797 netif_stop_queue(vptr->dev);
799 mii_init(vptr, mii_status);
801 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
802 velocity_print_link_status(vptr);
803 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
804 netif_wake_queue(vptr->dev);
807 enable_flow_control_ability(vptr);
808 mac_hw_mibs_init(regs);
809 mac_write_int_mask(vptr->int_mask, regs);
810 mac_clear_isr(regs);
816 * velocity_soft_reset - soft reset
817 * @vptr: velocity to reset
819 * Kick off a soft reset of the velocity adapter and then poll
820 * until the reset sequence has completed before returning.
823 static int velocity_soft_reset(struct velocity_info *vptr)
825 struct mac_regs __iomem * regs = vptr->mac_regs;
826 int i = 0;
828 writel(CR0_SFRST, &regs->CR0Set);
830 for (i = 0; i < W_MAX_TIMEOUT; i++) {
831 udelay(5);
832 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
833 break;
836 if (i == W_MAX_TIMEOUT) {
837 writel(CR0_FORSRST, &regs->CR0Set);
838 /* FIXME: PCI POSTING */
839 /* delay 2ms */
840 mdelay(2);
842 return 0;
846 * velocity_found1 - set up discovered velocity card
847 * @pdev: PCI device
848 * @ent: PCI device table entry that matched
850 * Configure a discovered adapter from scratch. Return a negative
851 * errno error code on failure paths.
854 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
856 static int first = 1;
857 struct net_device *dev;
858 int i;
859 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
860 struct velocity_info *vptr;
861 struct mac_regs __iomem * regs;
862 int ret = -ENOMEM;
864 /* FIXME: this driver, like almost all other ethernet drivers,
865 * can support more than MAX_UNITS.
867 if (velocity_nics >= MAX_UNITS) {
868 dev_notice(&pdev->dev, "already found %d NICs.\n",
869 velocity_nics);
870 return -ENODEV;
873 dev = alloc_etherdev(sizeof(struct velocity_info));
874 if (!dev) {
875 dev_err(&pdev->dev, "allocate net device failed.\n");
876 goto out;
879 /* Chain it all together */
881 SET_NETDEV_DEV(dev, &pdev->dev);
882 vptr = netdev_priv(dev);
885 if (first) {
886 printk(KERN_INFO "%s Ver. %s\n",
887 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
888 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
889 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
890 first = 0;
893 velocity_init_info(pdev, vptr, info);
895 vptr->dev = dev;
897 dev->irq = pdev->irq;
899 ret = pci_enable_device(pdev);
900 if (ret < 0)
901 goto err_free_dev;
903 ret = velocity_get_pci_info(vptr, pdev);
904 if (ret < 0) {
905 /* error message already printed */
906 goto err_disable;
909 ret = pci_request_regions(pdev, VELOCITY_NAME);
910 if (ret < 0) {
911 dev_err(&pdev->dev, "No PCI resources.\n");
912 goto err_disable;
915 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
916 if (regs == NULL) {
917 ret = -EIO;
918 goto err_release_res;
921 vptr->mac_regs = regs;
923 mac_wol_reset(regs);
925 dev->base_addr = vptr->ioaddr;
927 for (i = 0; i < 6; i++)
928 dev->dev_addr[i] = readb(&regs->PAR[i]);
931 velocity_get_options(&vptr->options, velocity_nics, dev->name);
934 * Mask out the options cannot be set to the chip
937 vptr->options.flags &= info->flags;
940 * Enable the chip specified capbilities
943 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
945 vptr->wol_opts = vptr->options.wol_opts;
946 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
948 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
950 dev->irq = pdev->irq;
951 dev->open = velocity_open;
952 dev->hard_start_xmit = velocity_xmit;
953 dev->stop = velocity_close;
954 dev->get_stats = velocity_get_stats;
955 dev->set_multicast_list = velocity_set_multi;
956 dev->do_ioctl = velocity_ioctl;
957 dev->ethtool_ops = &velocity_ethtool_ops;
958 dev->change_mtu = velocity_change_mtu;
960 dev->vlan_rx_add_vid = velocity_vlan_rx_add_vid;
961 dev->vlan_rx_kill_vid = velocity_vlan_rx_kill_vid;
963 #ifdef VELOCITY_ZERO_COPY_SUPPORT
964 dev->features |= NETIF_F_SG;
965 #endif
966 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER;
968 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM)
969 dev->features |= NETIF_F_IP_CSUM;
971 ret = register_netdev(dev);
972 if (ret < 0)
973 goto err_iounmap;
975 if (velocity_get_link(dev))
976 netif_carrier_off(dev);
978 velocity_print_info(vptr);
979 pci_set_drvdata(pdev, dev);
981 /* and leave the chip powered down */
983 pci_set_power_state(pdev, PCI_D3hot);
984 #ifdef CONFIG_PM
986 unsigned long flags;
988 spin_lock_irqsave(&velocity_dev_list_lock, flags);
989 list_add(&vptr->list, &velocity_dev_list);
990 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
992 #endif
993 velocity_nics++;
994 out:
995 return ret;
997 err_iounmap:
998 iounmap(regs);
999 err_release_res:
1000 pci_release_regions(pdev);
1001 err_disable:
1002 pci_disable_device(pdev);
1003 err_free_dev:
1004 free_netdev(dev);
1005 goto out;
1009 * velocity_print_info - per driver data
1010 * @vptr: velocity
1012 * Print per driver data as the kernel driver finds Velocity
1013 * hardware
1016 static void __devinit velocity_print_info(struct velocity_info *vptr)
1018 struct net_device *dev = vptr->dev;
1020 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
1021 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
1022 dev->name,
1023 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1024 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1028 * velocity_init_info - init private data
1029 * @pdev: PCI device
1030 * @vptr: Velocity info
1031 * @info: Board type
1033 * Set up the initial velocity_info struct for the device that has been
1034 * discovered.
1037 static void __devinit velocity_init_info(struct pci_dev *pdev,
1038 struct velocity_info *vptr,
1039 const struct velocity_info_tbl *info)
1041 memset(vptr, 0, sizeof(struct velocity_info));
1043 vptr->pdev = pdev;
1044 vptr->chip_id = info->chip_id;
1045 vptr->num_txq = info->txqueue;
1046 vptr->multicast_limit = MCAM_SIZE;
1047 spin_lock_init(&vptr->lock);
1048 INIT_LIST_HEAD(&vptr->list);
1052 * velocity_get_pci_info - retrieve PCI info for device
1053 * @vptr: velocity device
1054 * @pdev: PCI device it matches
1056 * Retrieve the PCI configuration space data that interests us from
1057 * the kernel PCI layer
1060 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
1062 vptr->rev_id = pdev->revision;
1064 pci_set_master(pdev);
1066 vptr->ioaddr = pci_resource_start(pdev, 0);
1067 vptr->memaddr = pci_resource_start(pdev, 1);
1069 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
1070 dev_err(&pdev->dev,
1071 "region #0 is not an I/O resource, aborting.\n");
1072 return -EINVAL;
1075 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
1076 dev_err(&pdev->dev,
1077 "region #1 is an I/O resource, aborting.\n");
1078 return -EINVAL;
1081 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
1082 dev_err(&pdev->dev, "region #1 is too small.\n");
1083 return -EINVAL;
1085 vptr->pdev = pdev;
1087 return 0;
1091 * velocity_init_rings - set up DMA rings
1092 * @vptr: Velocity to set up
1094 * Allocate PCI mapped DMA rings for the receive and transmit layer
1095 * to use.
1098 static int velocity_init_rings(struct velocity_info *vptr)
1100 int i;
1101 unsigned int psize;
1102 unsigned int tsize;
1103 dma_addr_t pool_dma;
1104 u8 *pool;
1107 * Allocate all RD/TD rings a single pool
1110 psize = vptr->options.numrx * sizeof(struct rx_desc) +
1111 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
1114 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1115 * alignment
1117 pool = pci_alloc_consistent(vptr->pdev, psize, &pool_dma);
1119 if (pool == NULL) {
1120 printk(KERN_ERR "%s : DMA memory allocation failed.\n",
1121 vptr->dev->name);
1122 return -ENOMEM;
1125 memset(pool, 0, psize);
1127 vptr->rd_ring = (struct rx_desc *) pool;
1129 vptr->rd_pool_dma = pool_dma;
1131 tsize = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
1132 vptr->tx_bufs = pci_alloc_consistent(vptr->pdev, tsize,
1133 &vptr->tx_bufs_dma);
1135 if (vptr->tx_bufs == NULL) {
1136 printk(KERN_ERR "%s: DMA memory allocation failed.\n",
1137 vptr->dev->name);
1138 pci_free_consistent(vptr->pdev, psize, pool, pool_dma);
1139 return -ENOMEM;
1142 memset(vptr->tx_bufs, 0, vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq);
1144 i = vptr->options.numrx * sizeof(struct rx_desc);
1145 pool += i;
1146 pool_dma += i;
1147 for (i = 0; i < vptr->num_txq; i++) {
1148 int offset = vptr->options.numtx * sizeof(struct tx_desc);
1150 vptr->td_pool_dma[i] = pool_dma;
1151 vptr->td_rings[i] = (struct tx_desc *) pool;
1152 pool += offset;
1153 pool_dma += offset;
1155 return 0;
1159 * velocity_free_rings - free PCI ring pointers
1160 * @vptr: Velocity to free from
1162 * Clean up the PCI ring buffers allocated to this velocity.
1165 static void velocity_free_rings(struct velocity_info *vptr)
1167 int size;
1169 size = vptr->options.numrx * sizeof(struct rx_desc) +
1170 vptr->options.numtx * sizeof(struct tx_desc) * vptr->num_txq;
1172 pci_free_consistent(vptr->pdev, size, vptr->rd_ring, vptr->rd_pool_dma);
1174 size = vptr->options.numtx * PKT_BUF_SZ * vptr->num_txq;
1176 pci_free_consistent(vptr->pdev, size, vptr->tx_bufs, vptr->tx_bufs_dma);
1179 static inline void velocity_give_many_rx_descs(struct velocity_info *vptr)
1181 struct mac_regs __iomem *regs = vptr->mac_regs;
1182 int avail, dirty, unusable;
1185 * RD number must be equal to 4X per hardware spec
1186 * (programming guide rev 1.20, p.13)
1188 if (vptr->rd_filled < 4)
1189 return;
1191 wmb();
1193 unusable = vptr->rd_filled & 0x0003;
1194 dirty = vptr->rd_dirty - unusable;
1195 for (avail = vptr->rd_filled & 0xfffc; avail; avail--) {
1196 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1197 vptr->rd_ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1200 writew(vptr->rd_filled & 0xfffc, &regs->RBRDU);
1201 vptr->rd_filled = unusable;
1204 static int velocity_rx_refill(struct velocity_info *vptr)
1206 int dirty = vptr->rd_dirty, done = 0, ret = 0;
1208 do {
1209 struct rx_desc *rd = vptr->rd_ring + dirty;
1211 /* Fine for an all zero Rx desc at init time as well */
1212 if (rd->rdesc0.len & OWNED_BY_NIC)
1213 break;
1215 if (!vptr->rd_info[dirty].skb) {
1216 ret = velocity_alloc_rx_buf(vptr, dirty);
1217 if (ret < 0)
1218 break;
1220 done++;
1221 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1222 } while (dirty != vptr->rd_curr);
1224 if (done) {
1225 vptr->rd_dirty = dirty;
1226 vptr->rd_filled += done;
1227 velocity_give_many_rx_descs(vptr);
1230 return ret;
1234 * velocity_init_rd_ring - set up receive ring
1235 * @vptr: velocity to configure
1237 * Allocate and set up the receive buffers for each ring slot and
1238 * assign them to the network adapter.
1241 static int velocity_init_rd_ring(struct velocity_info *vptr)
1243 int ret;
1244 int mtu = vptr->dev->mtu;
1246 vptr->rx_buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1248 vptr->rd_info = kcalloc(vptr->options.numrx,
1249 sizeof(struct velocity_rd_info), GFP_KERNEL);
1250 if (!vptr->rd_info)
1251 return -ENOMEM;
1253 vptr->rd_filled = vptr->rd_dirty = vptr->rd_curr = 0;
1255 ret = velocity_rx_refill(vptr);
1256 if (ret < 0) {
1257 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1258 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1259 velocity_free_rd_ring(vptr);
1262 return ret;
1266 * velocity_free_rd_ring - free receive ring
1267 * @vptr: velocity to clean up
1269 * Free the receive buffers for each ring slot and any
1270 * attached socket buffers that need to go away.
1273 static void velocity_free_rd_ring(struct velocity_info *vptr)
1275 int i;
1277 if (vptr->rd_info == NULL)
1278 return;
1280 for (i = 0; i < vptr->options.numrx; i++) {
1281 struct velocity_rd_info *rd_info = &(vptr->rd_info[i]);
1282 struct rx_desc *rd = vptr->rd_ring + i;
1284 memset(rd, 0, sizeof(*rd));
1286 if (!rd_info->skb)
1287 continue;
1288 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1289 PCI_DMA_FROMDEVICE);
1290 rd_info->skb_dma = (dma_addr_t) NULL;
1292 dev_kfree_skb(rd_info->skb);
1293 rd_info->skb = NULL;
1296 kfree(vptr->rd_info);
1297 vptr->rd_info = NULL;
1301 * velocity_init_td_ring - set up transmit ring
1302 * @vptr: velocity
1304 * Set up the transmit ring and chain the ring pointers together.
1305 * Returns zero on success or a negative posix errno code for
1306 * failure.
1309 static int velocity_init_td_ring(struct velocity_info *vptr)
1311 int i, j;
1312 dma_addr_t curr;
1313 struct tx_desc *td;
1314 struct velocity_td_info *td_info;
1316 /* Init the TD ring entries */
1317 for (j = 0; j < vptr->num_txq; j++) {
1318 curr = vptr->td_pool_dma[j];
1320 vptr->td_infos[j] = kcalloc(vptr->options.numtx,
1321 sizeof(struct velocity_td_info),
1322 GFP_KERNEL);
1323 if (!vptr->td_infos[j]) {
1324 while(--j >= 0)
1325 kfree(vptr->td_infos[j]);
1326 return -ENOMEM;
1329 for (i = 0; i < vptr->options.numtx; i++, curr += sizeof(struct tx_desc)) {
1330 td = &(vptr->td_rings[j][i]);
1331 td_info = &(vptr->td_infos[j][i]);
1332 td_info->buf = vptr->tx_bufs +
1333 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1334 td_info->buf_dma = vptr->tx_bufs_dma +
1335 (j * vptr->options.numtx + i) * PKT_BUF_SZ;
1337 vptr->td_tail[j] = vptr->td_curr[j] = vptr->td_used[j] = 0;
1339 return 0;
1343 * FIXME: could we merge this with velocity_free_tx_buf ?
1346 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1347 int q, int n)
1349 struct velocity_td_info * td_info = &(vptr->td_infos[q][n]);
1350 int i;
1352 if (td_info == NULL)
1353 return;
1355 if (td_info->skb) {
1356 for (i = 0; i < td_info->nskb_dma; i++)
1358 if (td_info->skb_dma[i]) {
1359 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1360 td_info->skb->len, PCI_DMA_TODEVICE);
1361 td_info->skb_dma[i] = (dma_addr_t) NULL;
1364 dev_kfree_skb(td_info->skb);
1365 td_info->skb = NULL;
1370 * velocity_free_td_ring - free td ring
1371 * @vptr: velocity
1373 * Free up the transmit ring for this particular velocity adapter.
1374 * We free the ring contents but not the ring itself.
1377 static void velocity_free_td_ring(struct velocity_info *vptr)
1379 int i, j;
1381 for (j = 0; j < vptr->num_txq; j++) {
1382 if (vptr->td_infos[j] == NULL)
1383 continue;
1384 for (i = 0; i < vptr->options.numtx; i++) {
1385 velocity_free_td_ring_entry(vptr, j, i);
1388 kfree(vptr->td_infos[j]);
1389 vptr->td_infos[j] = NULL;
1394 * velocity_rx_srv - service RX interrupt
1395 * @vptr: velocity
1396 * @status: adapter status (unused)
1398 * Walk the receive ring of the velocity adapter and remove
1399 * any received packets from the receive queue. Hand the ring
1400 * slots back to the adapter for reuse.
1403 static int velocity_rx_srv(struct velocity_info *vptr, int status)
1405 struct net_device_stats *stats = &vptr->stats;
1406 int rd_curr = vptr->rd_curr;
1407 int works = 0;
1409 do {
1410 struct rx_desc *rd = vptr->rd_ring + rd_curr;
1412 if (!vptr->rd_info[rd_curr].skb)
1413 break;
1415 if (rd->rdesc0.len & OWNED_BY_NIC)
1416 break;
1418 rmb();
1421 * Don't drop CE or RL error frame although RXOK is off
1423 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
1424 if (velocity_receive_frame(vptr, rd_curr) < 0)
1425 stats->rx_dropped++;
1426 } else {
1427 if (rd->rdesc0.RSR & RSR_CRC)
1428 stats->rx_crc_errors++;
1429 if (rd->rdesc0.RSR & RSR_FAE)
1430 stats->rx_frame_errors++;
1432 stats->rx_dropped++;
1435 rd->size |= RX_INTEN;
1437 vptr->dev->last_rx = jiffies;
1439 rd_curr++;
1440 if (rd_curr >= vptr->options.numrx)
1441 rd_curr = 0;
1442 } while (++works <= 15);
1444 vptr->rd_curr = rd_curr;
1446 if (works > 0 && velocity_rx_refill(vptr) < 0) {
1447 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1448 "%s: rx buf allocation failure\n", vptr->dev->name);
1451 VAR_USED(stats);
1452 return works;
1456 * velocity_rx_csum - checksum process
1457 * @rd: receive packet descriptor
1458 * @skb: network layer packet buffer
1460 * Process the status bits for the received packet and determine
1461 * if the checksum was computed and verified by the hardware
1464 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1466 skb->ip_summed = CHECKSUM_NONE;
1468 if (rd->rdesc1.CSM & CSM_IPKT) {
1469 if (rd->rdesc1.CSM & CSM_IPOK) {
1470 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1471 (rd->rdesc1.CSM & CSM_UDPKT)) {
1472 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1473 return;
1476 skb->ip_summed = CHECKSUM_UNNECESSARY;
1482 * velocity_rx_copy - in place Rx copy for small packets
1483 * @rx_skb: network layer packet buffer candidate
1484 * @pkt_size: received data size
1485 * @rd: receive packet descriptor
1486 * @dev: network device
1488 * Replace the current skb that is scheduled for Rx processing by a
1489 * shorter, immediatly allocated skb, if the received packet is small
1490 * enough. This function returns a negative value if the received
1491 * packet is too big or if memory is exhausted.
1493 static inline int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1494 struct velocity_info *vptr)
1496 int ret = -1;
1498 if (pkt_size < rx_copybreak) {
1499 struct sk_buff *new_skb;
1501 new_skb = dev_alloc_skb(pkt_size + 2);
1502 if (new_skb) {
1503 new_skb->dev = vptr->dev;
1504 new_skb->ip_summed = rx_skb[0]->ip_summed;
1506 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN)
1507 skb_reserve(new_skb, 2);
1509 skb_copy_from_linear_data(rx_skb[0], new_skb->data,
1510 pkt_size);
1511 *rx_skb = new_skb;
1512 ret = 0;
1516 return ret;
1520 * velocity_iph_realign - IP header alignment
1521 * @vptr: velocity we are handling
1522 * @skb: network layer packet buffer
1523 * @pkt_size: received data size
1525 * Align IP header on a 2 bytes boundary. This behavior can be
1526 * configured by the user.
1528 static inline void velocity_iph_realign(struct velocity_info *vptr,
1529 struct sk_buff *skb, int pkt_size)
1531 /* FIXME - memmove ? */
1532 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1533 int i;
1535 for (i = pkt_size; i >= 0; i--)
1536 *(skb->data + i + 2) = *(skb->data + i);
1537 skb_reserve(skb, 2);
1542 * velocity_receive_frame - received packet processor
1543 * @vptr: velocity we are handling
1544 * @idx: ring index
1546 * A packet has arrived. We process the packet and if appropriate
1547 * pass the frame up the network stack
1550 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1552 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1553 struct net_device_stats *stats = &vptr->stats;
1554 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1555 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1556 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
1557 struct sk_buff *skb;
1559 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1560 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1561 stats->rx_length_errors++;
1562 return -EINVAL;
1565 if (rd->rdesc0.RSR & RSR_MAR)
1566 vptr->stats.multicast++;
1568 skb = rd_info->skb;
1570 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1571 vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1574 * Drop frame not meeting IEEE 802.3
1577 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1578 if (rd->rdesc0.RSR & RSR_RL) {
1579 stats->rx_length_errors++;
1580 return -EINVAL;
1584 pci_action = pci_dma_sync_single_for_device;
1586 velocity_rx_csum(rd, skb);
1588 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1589 velocity_iph_realign(vptr, skb, pkt_len);
1590 pci_action = pci_unmap_single;
1591 rd_info->skb = NULL;
1594 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx_buf_sz,
1595 PCI_DMA_FROMDEVICE);
1597 skb_put(skb, pkt_len - 4);
1598 skb->protocol = eth_type_trans(skb, vptr->dev);
1600 stats->rx_bytes += pkt_len;
1601 netif_rx(skb);
1603 return 0;
1607 * velocity_alloc_rx_buf - allocate aligned receive buffer
1608 * @vptr: velocity
1609 * @idx: ring index
1611 * Allocate a new full sized buffer for the reception of a frame and
1612 * map it into PCI space for the hardware to use. The hardware
1613 * requires *64* byte alignment of the buffer which makes life
1614 * less fun than would be ideal.
1617 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1619 struct rx_desc *rd = &(vptr->rd_ring[idx]);
1620 struct velocity_rd_info *rd_info = &(vptr->rd_info[idx]);
1622 rd_info->skb = dev_alloc_skb(vptr->rx_buf_sz + 64);
1623 if (rd_info->skb == NULL)
1624 return -ENOMEM;
1627 * Do the gymnastics to get the buffer head for data at
1628 * 64byte alignment.
1630 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1631 rd_info->skb->dev = vptr->dev;
1632 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data, vptr->rx_buf_sz, PCI_DMA_FROMDEVICE);
1635 * Fill in the descriptor to match
1638 *((u32 *) & (rd->rdesc0)) = 0;
1639 rd->size = cpu_to_le16(vptr->rx_buf_sz) | RX_INTEN;
1640 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1641 rd->pa_high = 0;
1642 return 0;
1646 * tx_srv - transmit interrupt service
1647 * @vptr; Velocity
1648 * @status:
1650 * Scan the queues looking for transmitted packets that
1651 * we can complete and clean up. Update any statistics as
1652 * necessary/
1655 static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1657 struct tx_desc *td;
1658 int qnum;
1659 int full = 0;
1660 int idx;
1661 int works = 0;
1662 struct velocity_td_info *tdinfo;
1663 struct net_device_stats *stats = &vptr->stats;
1665 for (qnum = 0; qnum < vptr->num_txq; qnum++) {
1666 for (idx = vptr->td_tail[qnum]; vptr->td_used[qnum] > 0;
1667 idx = (idx + 1) % vptr->options.numtx) {
1670 * Get Tx Descriptor
1672 td = &(vptr->td_rings[qnum][idx]);
1673 tdinfo = &(vptr->td_infos[qnum][idx]);
1675 if (td->tdesc0.len & OWNED_BY_NIC)
1676 break;
1678 if ((works++ > 15))
1679 break;
1681 if (td->tdesc0.TSR & TSR0_TERR) {
1682 stats->tx_errors++;
1683 stats->tx_dropped++;
1684 if (td->tdesc0.TSR & TSR0_CDH)
1685 stats->tx_heartbeat_errors++;
1686 if (td->tdesc0.TSR & TSR0_CRS)
1687 stats->tx_carrier_errors++;
1688 if (td->tdesc0.TSR & TSR0_ABT)
1689 stats->tx_aborted_errors++;
1690 if (td->tdesc0.TSR & TSR0_OWC)
1691 stats->tx_window_errors++;
1692 } else {
1693 stats->tx_packets++;
1694 stats->tx_bytes += tdinfo->skb->len;
1696 velocity_free_tx_buf(vptr, tdinfo);
1697 vptr->td_used[qnum]--;
1699 vptr->td_tail[qnum] = idx;
1701 if (AVAIL_TD(vptr, qnum) < 1) {
1702 full = 1;
1706 * Look to see if we should kick the transmit network
1707 * layer for more work.
1709 if (netif_queue_stopped(vptr->dev) && (full == 0)
1710 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1711 netif_wake_queue(vptr->dev);
1713 return works;
1717 * velocity_print_link_status - link status reporting
1718 * @vptr: velocity to report on
1720 * Turn the link status of the velocity card into a kernel log
1721 * description of the new link state, detailing speed and duplex
1722 * status
1725 static void velocity_print_link_status(struct velocity_info *vptr)
1728 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1729 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1730 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1731 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1733 if (vptr->mii_status & VELOCITY_SPEED_1000)
1734 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1735 else if (vptr->mii_status & VELOCITY_SPEED_100)
1736 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1737 else
1738 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1740 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1741 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1742 else
1743 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1744 } else {
1745 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1746 switch (vptr->options.spd_dpx) {
1747 case SPD_DPX_100_HALF:
1748 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1749 break;
1750 case SPD_DPX_100_FULL:
1751 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1752 break;
1753 case SPD_DPX_10_HALF:
1754 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1755 break;
1756 case SPD_DPX_10_FULL:
1757 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1758 break;
1759 default:
1760 break;
1766 * velocity_error - handle error from controller
1767 * @vptr: velocity
1768 * @status: card status
1770 * Process an error report from the hardware and attempt to recover
1771 * the card itself. At the moment we cannot recover from some
1772 * theoretically impossible errors but this could be fixed using
1773 * the pci_device_failed logic to bounce the hardware
1777 static void velocity_error(struct velocity_info *vptr, int status)
1780 if (status & ISR_TXSTLI) {
1781 struct mac_regs __iomem * regs = vptr->mac_regs;
1783 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1784 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1785 writew(TRDCSR_RUN, &regs->TDCSRClr);
1786 netif_stop_queue(vptr->dev);
1788 /* FIXME: port over the pci_device_failed code and use it
1789 here */
1792 if (status & ISR_SRCI) {
1793 struct mac_regs __iomem * regs = vptr->mac_regs;
1794 int linked;
1796 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1797 vptr->mii_status = check_connection_type(regs);
1800 * If it is a 3119, disable frame bursting in
1801 * halfduplex mode and enable it in fullduplex
1802 * mode
1804 if (vptr->rev_id < REV_ID_VT3216_A0) {
1805 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1806 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1807 else
1808 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1811 * Only enable CD heart beat counter in 10HD mode
1813 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1814 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1815 } else {
1816 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1820 * Get link status from PHYSR0
1822 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1824 if (linked) {
1825 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1826 netif_carrier_on(vptr->dev);
1827 } else {
1828 vptr->mii_status |= VELOCITY_LINK_FAIL;
1829 netif_carrier_off(vptr->dev);
1832 velocity_print_link_status(vptr);
1833 enable_flow_control_ability(vptr);
1836 * Re-enable auto-polling because SRCI will disable
1837 * auto-polling
1840 enable_mii_autopoll(regs);
1842 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1843 netif_stop_queue(vptr->dev);
1844 else
1845 netif_wake_queue(vptr->dev);
1848 if (status & ISR_MIBFI)
1849 velocity_update_hw_mibs(vptr);
1850 if (status & ISR_LSTEI)
1851 mac_rx_queue_wake(vptr->mac_regs);
1855 * velocity_free_tx_buf - free transmit buffer
1856 * @vptr: velocity
1857 * @tdinfo: buffer
1859 * Release an transmit buffer. If the buffer was preallocated then
1860 * recycle it, if not then unmap the buffer.
1863 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1865 struct sk_buff *skb = tdinfo->skb;
1866 int i;
1869 * Don't unmap the pre-allocated tx_bufs
1871 if (tdinfo->skb_dma && (tdinfo->skb_dma[0] != tdinfo->buf_dma)) {
1873 for (i = 0; i < tdinfo->nskb_dma; i++) {
1874 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1875 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], le16_to_cpu(td->tdesc1.len), PCI_DMA_TODEVICE);
1876 #else
1877 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1878 #endif
1879 tdinfo->skb_dma[i] = 0;
1882 dev_kfree_skb_irq(skb);
1883 tdinfo->skb = NULL;
1887 * velocity_open - interface activation callback
1888 * @dev: network layer device to open
1890 * Called when the network layer brings the interface up. Returns
1891 * a negative posix error code on failure, or zero on success.
1893 * All the ring allocation and set up is done on open for this
1894 * adapter to minimise memory usage when inactive
1897 static int velocity_open(struct net_device *dev)
1899 struct velocity_info *vptr = netdev_priv(dev);
1900 int ret;
1902 ret = velocity_init_rings(vptr);
1903 if (ret < 0)
1904 goto out;
1906 ret = velocity_init_rd_ring(vptr);
1907 if (ret < 0)
1908 goto err_free_desc_rings;
1910 ret = velocity_init_td_ring(vptr);
1911 if (ret < 0)
1912 goto err_free_rd_ring;
1914 /* Ensure chip is running */
1915 pci_set_power_state(vptr->pdev, PCI_D0);
1917 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1919 ret = request_irq(vptr->pdev->irq, &velocity_intr, IRQF_SHARED,
1920 dev->name, dev);
1921 if (ret < 0) {
1922 /* Power down the chip */
1923 pci_set_power_state(vptr->pdev, PCI_D3hot);
1924 goto err_free_td_ring;
1927 mac_enable_int(vptr->mac_regs);
1928 netif_start_queue(dev);
1929 vptr->flags |= VELOCITY_FLAGS_OPENED;
1930 out:
1931 return ret;
1933 err_free_td_ring:
1934 velocity_free_td_ring(vptr);
1935 err_free_rd_ring:
1936 velocity_free_rd_ring(vptr);
1937 err_free_desc_rings:
1938 velocity_free_rings(vptr);
1939 goto out;
1943 * velocity_change_mtu - MTU change callback
1944 * @dev: network device
1945 * @new_mtu: desired MTU
1947 * Handle requests from the networking layer for MTU change on
1948 * this interface. It gets called on a change by the network layer.
1949 * Return zero for success or negative posix error code.
1952 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1954 struct velocity_info *vptr = netdev_priv(dev);
1955 unsigned long flags;
1956 int oldmtu = dev->mtu;
1957 int ret = 0;
1959 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1960 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1961 vptr->dev->name);
1962 return -EINVAL;
1965 if (!netif_running(dev)) {
1966 dev->mtu = new_mtu;
1967 return 0;
1970 if (new_mtu != oldmtu) {
1971 spin_lock_irqsave(&vptr->lock, flags);
1973 netif_stop_queue(dev);
1974 velocity_shutdown(vptr);
1976 velocity_free_td_ring(vptr);
1977 velocity_free_rd_ring(vptr);
1979 dev->mtu = new_mtu;
1981 ret = velocity_init_rd_ring(vptr);
1982 if (ret < 0)
1983 goto out_unlock;
1985 ret = velocity_init_td_ring(vptr);
1986 if (ret < 0)
1987 goto out_unlock;
1989 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1991 mac_enable_int(vptr->mac_regs);
1992 netif_start_queue(dev);
1993 out_unlock:
1994 spin_unlock_irqrestore(&vptr->lock, flags);
1997 return ret;
2001 * velocity_shutdown - shut down the chip
2002 * @vptr: velocity to deactivate
2004 * Shuts down the internal operations of the velocity and
2005 * disables interrupts, autopolling, transmit and receive
2008 static void velocity_shutdown(struct velocity_info *vptr)
2010 struct mac_regs __iomem * regs = vptr->mac_regs;
2011 mac_disable_int(regs);
2012 writel(CR0_STOP, &regs->CR0Set);
2013 writew(0xFFFF, &regs->TDCSRClr);
2014 writeb(0xFF, &regs->RDCSRClr);
2015 safe_disable_mii_autopoll(regs);
2016 mac_clear_isr(regs);
2020 * velocity_close - close adapter callback
2021 * @dev: network device
2023 * Callback from the network layer when the velocity is being
2024 * deactivated by the network layer
2027 static int velocity_close(struct net_device *dev)
2029 struct velocity_info *vptr = netdev_priv(dev);
2031 netif_stop_queue(dev);
2032 velocity_shutdown(vptr);
2034 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2035 velocity_get_ip(vptr);
2036 if (dev->irq != 0)
2037 free_irq(dev->irq, dev);
2039 /* Power down the chip */
2040 pci_set_power_state(vptr->pdev, PCI_D3hot);
2042 /* Free the resources */
2043 velocity_free_td_ring(vptr);
2044 velocity_free_rd_ring(vptr);
2045 velocity_free_rings(vptr);
2047 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2048 return 0;
2052 * velocity_xmit - transmit packet callback
2053 * @skb: buffer to transmit
2054 * @dev: network device
2056 * Called by the networ layer to request a packet is queued to
2057 * the velocity. Returns zero on success.
2060 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
2062 struct velocity_info *vptr = netdev_priv(dev);
2063 int qnum = 0;
2064 struct tx_desc *td_ptr;
2065 struct velocity_td_info *tdinfo;
2066 unsigned long flags;
2067 int index;
2068 int pktlen = skb->len;
2069 __le16 len = cpu_to_le16(pktlen);
2071 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2072 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2073 kfree_skb(skb);
2074 return 0;
2076 #endif
2078 spin_lock_irqsave(&vptr->lock, flags);
2080 index = vptr->td_curr[qnum];
2081 td_ptr = &(vptr->td_rings[qnum][index]);
2082 tdinfo = &(vptr->td_infos[qnum][index]);
2084 td_ptr->tdesc1.TCR = TCR0_TIC;
2085 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2088 * Pad short frames.
2090 if (pktlen < ETH_ZLEN) {
2091 /* Cannot occur until ZC support */
2092 pktlen = ETH_ZLEN;
2093 len = cpu_to_le16(ETH_ZLEN);
2094 skb_copy_from_linear_data(skb, tdinfo->buf, skb->len);
2095 memset(tdinfo->buf + skb->len, 0, ETH_ZLEN - skb->len);
2096 tdinfo->skb = skb;
2097 tdinfo->skb_dma[0] = tdinfo->buf_dma;
2098 td_ptr->tdesc0.len = len;
2099 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2100 td_ptr->td_buf[0].pa_high = 0;
2101 td_ptr->td_buf[0].size = len; /* queue is 0 anyway */
2102 tdinfo->nskb_dma = 1;
2103 } else
2104 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2105 if (skb_shinfo(skb)->nr_frags > 0) {
2106 int nfrags = skb_shinfo(skb)->nr_frags;
2107 tdinfo->skb = skb;
2108 if (nfrags > 6) {
2109 skb_copy_from_linear_data(skb, tdinfo->buf, skb->len);
2110 tdinfo->skb_dma[0] = tdinfo->buf_dma;
2111 td_ptr->tdesc0.len = len;
2112 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2113 td_ptr->td_buf[0].pa_high = 0;
2114 td_ptr->td_buf[0].size = len; /* queue is 0 anyway */
2115 tdinfo->nskb_dma = 1;
2116 } else {
2117 int i = 0;
2118 tdinfo->nskb_dma = 0;
2119 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data,
2120 skb_headlen(skb), PCI_DMA_TODEVICE);
2122 td_ptr->tdesc0.len = len;
2124 /* FIXME: support 48bit DMA later */
2125 td_ptr->td_buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
2126 td_ptr->td_buf[i].pa_high = 0;
2127 td_ptr->td_buf[i].size = cpu_to_le16(skb_headlen(skb));
2129 for (i = 0; i < nfrags; i++) {
2130 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2131 void *addr = (void *)page_address(frag->page) + frag->page_offset;
2133 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
2135 td_ptr->td_buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2136 td_ptr->td_buf[i + 1].pa_high = 0;
2137 td_ptr->td_buf[i + 1].size = cpu_to_le16(frag->size);
2139 tdinfo->nskb_dma = i - 1;
2142 } else
2143 #endif
2146 * Map the linear network buffer into PCI space and
2147 * add it to the transmit ring.
2149 tdinfo->skb = skb;
2150 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2151 td_ptr->tdesc0.len = len;
2152 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2153 td_ptr->td_buf[0].pa_high = 0;
2154 td_ptr->td_buf[0].size = len;
2155 tdinfo->nskb_dma = 1;
2157 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2159 if (vptr->vlgrp && vlan_tx_tag_present(skb)) {
2160 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2161 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2165 * Handle hardware checksum
2167 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2168 && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2169 const struct iphdr *ip = ip_hdr(skb);
2170 if (ip->protocol == IPPROTO_TCP)
2171 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2172 else if (ip->protocol == IPPROTO_UDP)
2173 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2174 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2178 int prev = index - 1;
2180 if (prev < 0)
2181 prev = vptr->options.numtx - 1;
2182 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2183 vptr->td_used[qnum]++;
2184 vptr->td_curr[qnum] = (index + 1) % vptr->options.numtx;
2186 if (AVAIL_TD(vptr, qnum) < 1)
2187 netif_stop_queue(dev);
2189 td_ptr = &(vptr->td_rings[qnum][prev]);
2190 td_ptr->td_buf[0].size |= TD_QUEUE;
2191 mac_tx_queue_wake(vptr->mac_regs, qnum);
2193 dev->trans_start = jiffies;
2194 spin_unlock_irqrestore(&vptr->lock, flags);
2195 return 0;
2199 * velocity_intr - interrupt callback
2200 * @irq: interrupt number
2201 * @dev_instance: interrupting device
2203 * Called whenever an interrupt is generated by the velocity
2204 * adapter IRQ line. We may not be the source of the interrupt
2205 * and need to identify initially if we are, and if not exit as
2206 * efficiently as possible.
2209 static int velocity_intr(int irq, void *dev_instance)
2211 struct net_device *dev = dev_instance;
2212 struct velocity_info *vptr = netdev_priv(dev);
2213 u32 isr_status;
2214 int max_count = 0;
2217 spin_lock(&vptr->lock);
2218 isr_status = mac_read_isr(vptr->mac_regs);
2220 /* Not us ? */
2221 if (isr_status == 0) {
2222 spin_unlock(&vptr->lock);
2223 return IRQ_NONE;
2226 mac_disable_int(vptr->mac_regs);
2229 * Keep processing the ISR until we have completed
2230 * processing and the isr_status becomes zero
2233 while (isr_status != 0) {
2234 mac_write_isr(vptr->mac_regs, isr_status);
2235 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2236 velocity_error(vptr, isr_status);
2237 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2238 max_count += velocity_rx_srv(vptr, isr_status);
2239 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2240 max_count += velocity_tx_srv(vptr, isr_status);
2241 isr_status = mac_read_isr(vptr->mac_regs);
2242 if (max_count > vptr->options.int_works)
2244 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2245 dev->name);
2246 max_count = 0;
2249 spin_unlock(&vptr->lock);
2250 mac_enable_int(vptr->mac_regs);
2251 return IRQ_HANDLED;
2257 * velocity_set_multi - filter list change callback
2258 * @dev: network device
2260 * Called by the network layer when the filter lists need to change
2261 * for a velocity adapter. Reload the CAMs with the new address
2262 * filter ruleset.
2265 static void velocity_set_multi(struct net_device *dev)
2267 struct velocity_info *vptr = netdev_priv(dev);
2268 struct mac_regs __iomem * regs = vptr->mac_regs;
2269 u8 rx_mode;
2270 int i;
2271 struct dev_mc_list *mclist;
2273 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2274 writel(0xffffffff, &regs->MARCAM[0]);
2275 writel(0xffffffff, &regs->MARCAM[4]);
2276 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2277 } else if ((dev->mc_count > vptr->multicast_limit)
2278 || (dev->flags & IFF_ALLMULTI)) {
2279 writel(0xffffffff, &regs->MARCAM[0]);
2280 writel(0xffffffff, &regs->MARCAM[4]);
2281 rx_mode = (RCR_AM | RCR_AB);
2282 } else {
2283 int offset = MCAM_SIZE - vptr->multicast_limit;
2284 mac_get_cam_mask(regs, vptr->mCAMmask);
2286 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2287 mac_set_cam(regs, i + offset, mclist->dmi_addr);
2288 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2291 mac_set_cam_mask(regs, vptr->mCAMmask);
2292 rx_mode = (RCR_AM | RCR_AB);
2294 if (dev->mtu > 1500)
2295 rx_mode |= RCR_AL;
2297 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2302 * velocity_get_status - statistics callback
2303 * @dev: network device
2305 * Callback from the network layer to allow driver statistics
2306 * to be resynchronized with hardware collected state. In the
2307 * case of the velocity we need to pull the MIB counters from
2308 * the hardware into the counters before letting the network
2309 * layer display them.
2312 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2314 struct velocity_info *vptr = netdev_priv(dev);
2316 /* If the hardware is down, don't touch MII */
2317 if(!netif_running(dev))
2318 return &vptr->stats;
2320 spin_lock_irq(&vptr->lock);
2321 velocity_update_hw_mibs(vptr);
2322 spin_unlock_irq(&vptr->lock);
2324 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2325 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2326 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2328 // unsigned long rx_dropped; /* no space in linux buffers */
2329 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2330 /* detailed rx_errors: */
2331 // unsigned long rx_length_errors;
2332 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2333 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2334 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2335 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2336 // unsigned long rx_missed_errors; /* receiver missed packet */
2338 /* detailed tx_errors */
2339 // unsigned long tx_fifo_errors;
2341 return &vptr->stats;
2346 * velocity_ioctl - ioctl entry point
2347 * @dev: network device
2348 * @rq: interface request ioctl
2349 * @cmd: command code
2351 * Called when the user issues an ioctl request to the network
2352 * device in question. The velocity interface supports MII.
2355 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2357 struct velocity_info *vptr = netdev_priv(dev);
2358 int ret;
2360 /* If we are asked for information and the device is power
2361 saving then we need to bring the device back up to talk to it */
2363 if (!netif_running(dev))
2364 pci_set_power_state(vptr->pdev, PCI_D0);
2366 switch (cmd) {
2367 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2368 case SIOCGMIIREG: /* Read MII PHY register. */
2369 case SIOCSMIIREG: /* Write to MII PHY register. */
2370 ret = velocity_mii_ioctl(dev, rq, cmd);
2371 break;
2373 default:
2374 ret = -EOPNOTSUPP;
2376 if (!netif_running(dev))
2377 pci_set_power_state(vptr->pdev, PCI_D3hot);
2380 return ret;
2384 * Definition for our device driver. The PCI layer interface
2385 * uses this to handle all our card discover and plugging
2388 static struct pci_driver velocity_driver = {
2389 .name = VELOCITY_NAME,
2390 .id_table = velocity_id_table,
2391 .probe = velocity_found1,
2392 .remove = __devexit_p(velocity_remove1),
2393 #ifdef CONFIG_PM
2394 .suspend = velocity_suspend,
2395 .resume = velocity_resume,
2396 #endif
2400 * velocity_init_module - load time function
2402 * Called when the velocity module is loaded. The PCI driver
2403 * is registered with the PCI layer, and in turn will call
2404 * the probe functions for each velocity adapter installed
2405 * in the system.
2408 static int __init velocity_init_module(void)
2410 int ret;
2412 velocity_register_notifier();
2413 ret = pci_register_driver(&velocity_driver);
2414 if (ret < 0)
2415 velocity_unregister_notifier();
2416 return ret;
2420 * velocity_cleanup - module unload
2422 * When the velocity hardware is unloaded this function is called.
2423 * It will clean up the notifiers and the unregister the PCI
2424 * driver interface for this hardware. This in turn cleans up
2425 * all discovered interfaces before returning from the function
2428 static void __exit velocity_cleanup_module(void)
2430 velocity_unregister_notifier();
2431 pci_unregister_driver(&velocity_driver);
2434 module_init(velocity_init_module);
2435 module_exit(velocity_cleanup_module);
2439 * MII access , media link mode setting functions
2444 * mii_init - set up MII
2445 * @vptr: velocity adapter
2446 * @mii_status: links tatus
2448 * Set up the PHY for the current link state.
2451 static void mii_init(struct velocity_info *vptr, u32 mii_status)
2453 u16 BMCR;
2455 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2456 case PHYID_CICADA_CS8201:
2458 * Reset to hardware default
2460 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2462 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2463 * off it in NWay-forced half mode for NWay-forced v.s.
2464 * legacy-forced issue.
2466 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2467 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2468 else
2469 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2471 * Turn on Link/Activity LED enable bit for CIS8201
2473 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2474 break;
2475 case PHYID_VT3216_32BIT:
2476 case PHYID_VT3216_64BIT:
2478 * Reset to hardware default
2480 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2482 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2483 * off it in NWay-forced half mode for NWay-forced v.s.
2484 * legacy-forced issue
2486 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2487 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2488 else
2489 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2490 break;
2492 case PHYID_MARVELL_1000:
2493 case PHYID_MARVELL_1000S:
2495 * Assert CRS on Transmit
2497 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2499 * Reset to hardware default
2501 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2502 break;
2503 default:
2506 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2507 if (BMCR & BMCR_ISO) {
2508 BMCR &= ~BMCR_ISO;
2509 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2514 * safe_disable_mii_autopoll - autopoll off
2515 * @regs: velocity registers
2517 * Turn off the autopoll and wait for it to disable on the chip
2520 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2522 u16 ww;
2524 /* turn off MAUTO */
2525 writeb(0, &regs->MIICR);
2526 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2527 udelay(1);
2528 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2529 break;
2534 * enable_mii_autopoll - turn on autopolling
2535 * @regs: velocity registers
2537 * Enable the MII link status autopoll feature on the Velocity
2538 * hardware. Wait for it to enable.
2541 static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2543 int ii;
2545 writeb(0, &(regs->MIICR));
2546 writeb(MIIADR_SWMPL, &regs->MIIADR);
2548 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2549 udelay(1);
2550 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2551 break;
2554 writeb(MIICR_MAUTO, &regs->MIICR);
2556 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2557 udelay(1);
2558 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2559 break;
2565 * velocity_mii_read - read MII data
2566 * @regs: velocity registers
2567 * @index: MII register index
2568 * @data: buffer for received data
2570 * Perform a single read of an MII 16bit register. Returns zero
2571 * on success or -ETIMEDOUT if the PHY did not respond.
2574 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2576 u16 ww;
2579 * Disable MIICR_MAUTO, so that mii addr can be set normally
2581 safe_disable_mii_autopoll(regs);
2583 writeb(index, &regs->MIIADR);
2585 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2587 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2588 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2589 break;
2592 *data = readw(&regs->MIIDATA);
2594 enable_mii_autopoll(regs);
2595 if (ww == W_MAX_TIMEOUT)
2596 return -ETIMEDOUT;
2597 return 0;
2601 * velocity_mii_write - write MII data
2602 * @regs: velocity registers
2603 * @index: MII register index
2604 * @data: 16bit data for the MII register
2606 * Perform a single write to an MII 16bit register. Returns zero
2607 * on success or -ETIMEDOUT if the PHY did not respond.
2610 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2612 u16 ww;
2615 * Disable MIICR_MAUTO, so that mii addr can be set normally
2617 safe_disable_mii_autopoll(regs);
2619 /* MII reg offset */
2620 writeb(mii_addr, &regs->MIIADR);
2621 /* set MII data */
2622 writew(data, &regs->MIIDATA);
2624 /* turn on MIICR_WCMD */
2625 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2627 /* W_MAX_TIMEOUT is the timeout period */
2628 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2629 udelay(5);
2630 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2631 break;
2633 enable_mii_autopoll(regs);
2635 if (ww == W_MAX_TIMEOUT)
2636 return -ETIMEDOUT;
2637 return 0;
2641 * velocity_get_opt_media_mode - get media selection
2642 * @vptr: velocity adapter
2644 * Get the media mode stored in EEPROM or module options and load
2645 * mii_status accordingly. The requested link state information
2646 * is also returned.
2649 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2651 u32 status = 0;
2653 switch (vptr->options.spd_dpx) {
2654 case SPD_DPX_AUTO:
2655 status = VELOCITY_AUTONEG_ENABLE;
2656 break;
2657 case SPD_DPX_100_FULL:
2658 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2659 break;
2660 case SPD_DPX_10_FULL:
2661 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2662 break;
2663 case SPD_DPX_100_HALF:
2664 status = VELOCITY_SPEED_100;
2665 break;
2666 case SPD_DPX_10_HALF:
2667 status = VELOCITY_SPEED_10;
2668 break;
2670 vptr->mii_status = status;
2671 return status;
2675 * mii_set_auto_on - autonegotiate on
2676 * @vptr: velocity
2678 * Enable autonegotation on this interface
2681 static void mii_set_auto_on(struct velocity_info *vptr)
2683 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2684 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2685 else
2686 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2691 static void mii_set_auto_off(struct velocity_info * vptr)
2693 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2698 * set_mii_flow_control - flow control setup
2699 * @vptr: velocity interface
2701 * Set up the flow control on this interface according to
2702 * the supplied user/eeprom options.
2705 static void set_mii_flow_control(struct velocity_info *vptr)
2707 /*Enable or Disable PAUSE in ANAR */
2708 switch (vptr->options.flow_cntl) {
2709 case FLOW_CNTL_TX:
2710 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2711 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2712 break;
2714 case FLOW_CNTL_RX:
2715 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2716 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2717 break;
2719 case FLOW_CNTL_TX_RX:
2720 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2721 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2722 break;
2724 case FLOW_CNTL_DISABLE:
2725 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2726 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2727 break;
2728 default:
2729 break;
2734 * velocity_set_media_mode - set media mode
2735 * @mii_status: old MII link state
2737 * Check the media link state and configure the flow control
2738 * PHY and also velocity hardware setup accordingly. In particular
2739 * we need to set up CD polling and frame bursting.
2742 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2744 u32 curr_status;
2745 struct mac_regs __iomem * regs = vptr->mac_regs;
2747 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2748 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2750 /* Set mii link status */
2751 set_mii_flow_control(vptr);
2754 Check if new status is consisent with current status
2755 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2756 || (mii_status==curr_status)) {
2757 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2758 vptr->mii_status=check_connection_type(vptr->mac_regs);
2759 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2760 return 0;
2764 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2765 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2769 * If connection type is AUTO
2771 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2772 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2773 /* clear force MAC mode bit */
2774 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2775 /* set duplex mode of MAC according to duplex mode of MII */
2776 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2777 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2778 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2780 /* enable AUTO-NEGO mode */
2781 mii_set_auto_on(vptr);
2782 } else {
2783 u16 ANAR;
2784 u8 CHIPGCR;
2787 * 1. if it's 3119, disable frame bursting in halfduplex mode
2788 * and enable it in fullduplex mode
2789 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2790 * 3. only enable CD heart beat counter in 10HD mode
2793 /* set force MAC mode bit */
2794 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2796 CHIPGCR = readb(&regs->CHIPGCR);
2797 CHIPGCR &= ~CHIPGCR_FCGMII;
2799 if (mii_status & VELOCITY_DUPLEX_FULL) {
2800 CHIPGCR |= CHIPGCR_FCFDX;
2801 writeb(CHIPGCR, &regs->CHIPGCR);
2802 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2803 if (vptr->rev_id < REV_ID_VT3216_A0)
2804 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2805 } else {
2806 CHIPGCR &= ~CHIPGCR_FCFDX;
2807 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2808 writeb(CHIPGCR, &regs->CHIPGCR);
2809 if (vptr->rev_id < REV_ID_VT3216_A0)
2810 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2813 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2815 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2816 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2817 } else {
2818 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2820 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2821 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2822 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2823 if (mii_status & VELOCITY_SPEED_100) {
2824 if (mii_status & VELOCITY_DUPLEX_FULL)
2825 ANAR |= ANAR_TXFD;
2826 else
2827 ANAR |= ANAR_TX;
2828 } else {
2829 if (mii_status & VELOCITY_DUPLEX_FULL)
2830 ANAR |= ANAR_10FD;
2831 else
2832 ANAR |= ANAR_10;
2834 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2835 /* enable AUTO-NEGO mode */
2836 mii_set_auto_on(vptr);
2837 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2839 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2840 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2841 return VELOCITY_LINK_CHANGE;
2845 * mii_check_media_mode - check media state
2846 * @regs: velocity registers
2848 * Check the current MII status and determine the link status
2849 * accordingly
2852 static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2854 u32 status = 0;
2855 u16 ANAR;
2857 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2858 status |= VELOCITY_LINK_FAIL;
2860 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2861 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2862 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2863 status |= (VELOCITY_SPEED_1000);
2864 else {
2865 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2866 if (ANAR & ANAR_TXFD)
2867 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2868 else if (ANAR & ANAR_TX)
2869 status |= VELOCITY_SPEED_100;
2870 else if (ANAR & ANAR_10FD)
2871 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2872 else
2873 status |= (VELOCITY_SPEED_10);
2876 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2877 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2878 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2879 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2880 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2881 status |= VELOCITY_AUTONEG_ENABLE;
2885 return status;
2888 static u32 check_connection_type(struct mac_regs __iomem * regs)
2890 u32 status = 0;
2891 u8 PHYSR0;
2892 u16 ANAR;
2893 PHYSR0 = readb(&regs->PHYSR0);
2896 if (!(PHYSR0 & PHYSR0_LINKGD))
2897 status|=VELOCITY_LINK_FAIL;
2900 if (PHYSR0 & PHYSR0_FDPX)
2901 status |= VELOCITY_DUPLEX_FULL;
2903 if (PHYSR0 & PHYSR0_SPDG)
2904 status |= VELOCITY_SPEED_1000;
2905 else if (PHYSR0 & PHYSR0_SPD10)
2906 status |= VELOCITY_SPEED_10;
2907 else
2908 status |= VELOCITY_SPEED_100;
2910 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2911 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2912 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2913 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2914 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2915 status |= VELOCITY_AUTONEG_ENABLE;
2919 return status;
2923 * enable_flow_control_ability - flow control
2924 * @vptr: veloity to configure
2926 * Set up flow control according to the flow control options
2927 * determined by the eeprom/configuration.
2930 static void enable_flow_control_ability(struct velocity_info *vptr)
2933 struct mac_regs __iomem * regs = vptr->mac_regs;
2935 switch (vptr->options.flow_cntl) {
2937 case FLOW_CNTL_DEFAULT:
2938 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2939 writel(CR0_FDXRFCEN, &regs->CR0Set);
2940 else
2941 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2943 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2944 writel(CR0_FDXTFCEN, &regs->CR0Set);
2945 else
2946 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2947 break;
2949 case FLOW_CNTL_TX:
2950 writel(CR0_FDXTFCEN, &regs->CR0Set);
2951 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2952 break;
2954 case FLOW_CNTL_RX:
2955 writel(CR0_FDXRFCEN, &regs->CR0Set);
2956 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2957 break;
2959 case FLOW_CNTL_TX_RX:
2960 writel(CR0_FDXTFCEN, &regs->CR0Set);
2961 writel(CR0_FDXRFCEN, &regs->CR0Set);
2962 break;
2964 case FLOW_CNTL_DISABLE:
2965 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2966 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2967 break;
2969 default:
2970 break;
2977 * velocity_ethtool_up - pre hook for ethtool
2978 * @dev: network device
2980 * Called before an ethtool operation. We need to make sure the
2981 * chip is out of D3 state before we poke at it.
2984 static int velocity_ethtool_up(struct net_device *dev)
2986 struct velocity_info *vptr = netdev_priv(dev);
2987 if (!netif_running(dev))
2988 pci_set_power_state(vptr->pdev, PCI_D0);
2989 return 0;
2993 * velocity_ethtool_down - post hook for ethtool
2994 * @dev: network device
2996 * Called after an ethtool operation. Restore the chip back to D3
2997 * state if it isn't running.
3000 static void velocity_ethtool_down(struct net_device *dev)
3002 struct velocity_info *vptr = netdev_priv(dev);
3003 if (!netif_running(dev))
3004 pci_set_power_state(vptr->pdev, PCI_D3hot);
3007 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3009 struct velocity_info *vptr = netdev_priv(dev);
3010 struct mac_regs __iomem * regs = vptr->mac_regs;
3011 u32 status;
3012 status = check_connection_type(vptr->mac_regs);
3014 cmd->supported = SUPPORTED_TP |
3015 SUPPORTED_Autoneg |
3016 SUPPORTED_10baseT_Half |
3017 SUPPORTED_10baseT_Full |
3018 SUPPORTED_100baseT_Half |
3019 SUPPORTED_100baseT_Full |
3020 SUPPORTED_1000baseT_Half |
3021 SUPPORTED_1000baseT_Full;
3022 if (status & VELOCITY_SPEED_1000)
3023 cmd->speed = SPEED_1000;
3024 else if (status & VELOCITY_SPEED_100)
3025 cmd->speed = SPEED_100;
3026 else
3027 cmd->speed = SPEED_10;
3028 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3029 cmd->port = PORT_TP;
3030 cmd->transceiver = XCVR_INTERNAL;
3031 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3033 if (status & VELOCITY_DUPLEX_FULL)
3034 cmd->duplex = DUPLEX_FULL;
3035 else
3036 cmd->duplex = DUPLEX_HALF;
3038 return 0;
3041 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3043 struct velocity_info *vptr = netdev_priv(dev);
3044 u32 curr_status;
3045 u32 new_status = 0;
3046 int ret = 0;
3048 curr_status = check_connection_type(vptr->mac_regs);
3049 curr_status &= (~VELOCITY_LINK_FAIL);
3051 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3052 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3053 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3054 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3056 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
3057 ret = -EINVAL;
3058 else
3059 velocity_set_media_mode(vptr, new_status);
3061 return ret;
3064 static u32 velocity_get_link(struct net_device *dev)
3066 struct velocity_info *vptr = netdev_priv(dev);
3067 struct mac_regs __iomem * regs = vptr->mac_regs;
3068 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
3071 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3073 struct velocity_info *vptr = netdev_priv(dev);
3074 strcpy(info->driver, VELOCITY_NAME);
3075 strcpy(info->version, VELOCITY_VERSION);
3076 strcpy(info->bus_info, pci_name(vptr->pdev));
3079 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3081 struct velocity_info *vptr = netdev_priv(dev);
3082 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3083 wol->wolopts |= WAKE_MAGIC;
3085 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3086 wol.wolopts|=WAKE_PHY;
3088 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3089 wol->wolopts |= WAKE_UCAST;
3090 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3091 wol->wolopts |= WAKE_ARP;
3092 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3095 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3097 struct velocity_info *vptr = netdev_priv(dev);
3099 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3100 return -EFAULT;
3101 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3104 if (wol.wolopts & WAKE_PHY) {
3105 vptr->wol_opts|=VELOCITY_WOL_PHY;
3106 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3110 if (wol->wolopts & WAKE_MAGIC) {
3111 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3112 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3114 if (wol->wolopts & WAKE_UCAST) {
3115 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3116 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3118 if (wol->wolopts & WAKE_ARP) {
3119 vptr->wol_opts |= VELOCITY_WOL_ARP;
3120 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3122 memcpy(vptr->wol_passwd, wol->sopass, 6);
3123 return 0;
3126 static u32 velocity_get_msglevel(struct net_device *dev)
3128 return msglevel;
3131 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3133 msglevel = value;
3136 static const struct ethtool_ops velocity_ethtool_ops = {
3137 .get_settings = velocity_get_settings,
3138 .set_settings = velocity_set_settings,
3139 .get_drvinfo = velocity_get_drvinfo,
3140 .get_wol = velocity_ethtool_get_wol,
3141 .set_wol = velocity_ethtool_set_wol,
3142 .get_msglevel = velocity_get_msglevel,
3143 .set_msglevel = velocity_set_msglevel,
3144 .get_link = velocity_get_link,
3145 .begin = velocity_ethtool_up,
3146 .complete = velocity_ethtool_down
3150 * velocity_mii_ioctl - MII ioctl handler
3151 * @dev: network device
3152 * @ifr: the ifreq block for the ioctl
3153 * @cmd: the command
3155 * Process MII requests made via ioctl from the network layer. These
3156 * are used by tools like kudzu to interrogate the link state of the
3157 * hardware
3160 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3162 struct velocity_info *vptr = netdev_priv(dev);
3163 struct mac_regs __iomem * regs = vptr->mac_regs;
3164 unsigned long flags;
3165 struct mii_ioctl_data *miidata = if_mii(ifr);
3166 int err;
3168 switch (cmd) {
3169 case SIOCGMIIPHY:
3170 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3171 break;
3172 case SIOCGMIIREG:
3173 if (!capable(CAP_NET_ADMIN))
3174 return -EPERM;
3175 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3176 return -ETIMEDOUT;
3177 break;
3178 case SIOCSMIIREG:
3179 if (!capable(CAP_NET_ADMIN))
3180 return -EPERM;
3181 spin_lock_irqsave(&vptr->lock, flags);
3182 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3183 spin_unlock_irqrestore(&vptr->lock, flags);
3184 check_connection_type(vptr->mac_regs);
3185 if(err)
3186 return err;
3187 break;
3188 default:
3189 return -EOPNOTSUPP;
3191 return 0;
3194 #ifdef CONFIG_PM
3197 * velocity_save_context - save registers
3198 * @vptr: velocity
3199 * @context: buffer for stored context
3201 * Retrieve the current configuration from the velocity hardware
3202 * and stash it in the context structure, for use by the context
3203 * restore functions. This allows us to save things we need across
3204 * power down states
3207 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3209 struct mac_regs __iomem * regs = vptr->mac_regs;
3210 u16 i;
3211 u8 __iomem *ptr = (u8 __iomem *)regs;
3213 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3214 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3216 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3217 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3219 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3220 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3225 * velocity_restore_context - restore registers
3226 * @vptr: velocity
3227 * @context: buffer for stored context
3229 * Reload the register configuration from the velocity context
3230 * created by velocity_save_context.
3233 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3235 struct mac_regs __iomem * regs = vptr->mac_regs;
3236 int i;
3237 u8 __iomem *ptr = (u8 __iomem *)regs;
3239 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3240 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3243 /* Just skip cr0 */
3244 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3245 /* Clear */
3246 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3247 /* Set */
3248 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3251 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3252 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3255 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3256 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3259 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3260 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3266 * wol_calc_crc - WOL CRC
3267 * @pattern: data pattern
3268 * @mask_pattern: mask
3270 * Compute the wake on lan crc hashes for the packet header
3271 * we are interested in.
3274 static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3276 u16 crc = 0xFFFF;
3277 u8 mask;
3278 int i, j;
3280 for (i = 0; i < size; i++) {
3281 mask = mask_pattern[i];
3283 /* Skip this loop if the mask equals to zero */
3284 if (mask == 0x00)
3285 continue;
3287 for (j = 0; j < 8; j++) {
3288 if ((mask & 0x01) == 0) {
3289 mask >>= 1;
3290 continue;
3292 mask >>= 1;
3293 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3296 /* Finally, invert the result once to get the correct data */
3297 crc = ~crc;
3298 return bitrev32(crc) >> 16;
3302 * velocity_set_wol - set up for wake on lan
3303 * @vptr: velocity to set WOL status on
3305 * Set a card up for wake on lan either by unicast or by
3306 * ARP packet.
3308 * FIXME: check static buffer is safe here
3311 static int velocity_set_wol(struct velocity_info *vptr)
3313 struct mac_regs __iomem * regs = vptr->mac_regs;
3314 static u8 buf[256];
3315 int i;
3317 static u32 mask_pattern[2][4] = {
3318 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3319 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3322 writew(0xFFFF, &regs->WOLCRClr);
3323 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3324 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3327 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3328 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3331 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3332 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3335 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3336 struct arp_packet *arp = (struct arp_packet *) buf;
3337 u16 crc;
3338 memset(buf, 0, sizeof(struct arp_packet) + 7);
3340 for (i = 0; i < 4; i++)
3341 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3343 arp->type = htons(ETH_P_ARP);
3344 arp->ar_op = htons(1);
3346 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3348 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3349 (u8 *) & mask_pattern[0][0]);
3351 writew(crc, &regs->PatternCRC[0]);
3352 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3355 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3356 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3358 writew(0x0FFF, &regs->WOLSRClr);
3360 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3361 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3362 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3364 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3367 if (vptr->mii_status & VELOCITY_SPEED_1000)
3368 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3370 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3373 u8 GCR;
3374 GCR = readb(&regs->CHIPGCR);
3375 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3376 writeb(GCR, &regs->CHIPGCR);
3379 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3380 /* Turn on SWPTAG just before entering power mode */
3381 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3382 /* Go to bed ..... */
3383 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3385 return 0;
3388 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3390 struct net_device *dev = pci_get_drvdata(pdev);
3391 struct velocity_info *vptr = netdev_priv(dev);
3392 unsigned long flags;
3394 if(!netif_running(vptr->dev))
3395 return 0;
3397 netif_device_detach(vptr->dev);
3399 spin_lock_irqsave(&vptr->lock, flags);
3400 pci_save_state(pdev);
3401 #ifdef ETHTOOL_GWOL
3402 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3403 velocity_get_ip(vptr);
3404 velocity_save_context(vptr, &vptr->context);
3405 velocity_shutdown(vptr);
3406 velocity_set_wol(vptr);
3407 pci_enable_wake(pdev, PCI_D3hot, 1);
3408 pci_set_power_state(pdev, PCI_D3hot);
3409 } else {
3410 velocity_save_context(vptr, &vptr->context);
3411 velocity_shutdown(vptr);
3412 pci_disable_device(pdev);
3413 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3415 #else
3416 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3417 #endif
3418 spin_unlock_irqrestore(&vptr->lock, flags);
3419 return 0;
3422 static int velocity_resume(struct pci_dev *pdev)
3424 struct net_device *dev = pci_get_drvdata(pdev);
3425 struct velocity_info *vptr = netdev_priv(dev);
3426 unsigned long flags;
3427 int i;
3429 if(!netif_running(vptr->dev))
3430 return 0;
3432 pci_set_power_state(pdev, PCI_D0);
3433 pci_enable_wake(pdev, 0, 0);
3434 pci_restore_state(pdev);
3436 mac_wol_reset(vptr->mac_regs);
3438 spin_lock_irqsave(&vptr->lock, flags);
3439 velocity_restore_context(vptr, &vptr->context);
3440 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3441 mac_disable_int(vptr->mac_regs);
3443 velocity_tx_srv(vptr, 0);
3445 for (i = 0; i < vptr->num_txq; i++) {
3446 if (vptr->td_used[i]) {
3447 mac_tx_queue_wake(vptr->mac_regs, i);
3451 mac_enable_int(vptr->mac_regs);
3452 spin_unlock_irqrestore(&vptr->lock, flags);
3453 netif_device_attach(vptr->dev);
3455 return 0;
3458 #ifdef CONFIG_INET
3460 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3462 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3463 struct net_device *dev = ifa->ifa_dev->dev;
3464 struct velocity_info *vptr;
3465 unsigned long flags;
3467 if (dev_net(dev) != &init_net)
3468 return NOTIFY_DONE;
3470 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3471 list_for_each_entry(vptr, &velocity_dev_list, list) {
3472 if (vptr->dev == dev) {
3473 velocity_get_ip(vptr);
3474 break;
3477 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3479 return NOTIFY_DONE;
3482 #endif
3483 #endif