4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/freezer.h>
49 #include <linux/delayacct.h>
50 #include <linux/taskstats_kern.h>
51 #include <linux/random.h>
52 #include <linux/tty.h>
53 #include <linux/proc_fs.h>
54 #include <linux/blkdev.h>
56 #include <asm/pgtable.h>
57 #include <asm/pgalloc.h>
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/cacheflush.h>
61 #include <asm/tlbflush.h>
64 * Protected counters by write_lock_irq(&tasklist_lock)
66 unsigned long total_forks
; /* Handle normal Linux uptimes. */
67 int nr_threads
; /* The idle threads do not count.. */
69 int max_threads
; /* tunable limit on nr_threads */
71 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
73 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
75 int nr_processes(void)
80 for_each_online_cpu(cpu
)
81 total
+= per_cpu(process_counts
, cpu
);
86 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
87 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
88 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
89 static struct kmem_cache
*task_struct_cachep
;
92 /* SLAB cache for signal_struct structures (tsk->signal) */
93 static struct kmem_cache
*signal_cachep
;
95 /* SLAB cache for sighand_struct structures (tsk->sighand) */
96 struct kmem_cache
*sighand_cachep
;
98 /* SLAB cache for files_struct structures (tsk->files) */
99 struct kmem_cache
*files_cachep
;
101 /* SLAB cache for fs_struct structures (tsk->fs) */
102 struct kmem_cache
*fs_cachep
;
104 /* SLAB cache for vm_area_struct structures */
105 struct kmem_cache
*vm_area_cachep
;
107 /* SLAB cache for mm_struct structures (tsk->mm) */
108 static struct kmem_cache
*mm_cachep
;
110 void free_task(struct task_struct
*tsk
)
112 prop_local_destroy_single(&tsk
->dirties
);
113 free_thread_info(tsk
->stack
);
114 rt_mutex_debug_task_free(tsk
);
115 free_task_struct(tsk
);
117 EXPORT_SYMBOL(free_task
);
119 void __put_task_struct(struct task_struct
*tsk
)
121 WARN_ON(!tsk
->exit_state
);
122 WARN_ON(atomic_read(&tsk
->usage
));
123 WARN_ON(tsk
== current
);
125 security_task_free(tsk
);
127 put_group_info(tsk
->group_info
);
128 delayacct_tsk_free(tsk
);
130 if (!profile_handoff_task(tsk
))
134 void __init
fork_init(unsigned long mempages
)
136 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
137 #ifndef ARCH_MIN_TASKALIGN
138 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
140 /* create a slab on which task_structs can be allocated */
142 kmem_cache_create("task_struct", sizeof(struct task_struct
),
143 ARCH_MIN_TASKALIGN
, SLAB_PANIC
, NULL
);
147 * The default maximum number of threads is set to a safe
148 * value: the thread structures can take up at most half
151 max_threads
= mempages
/ (8 * THREAD_SIZE
/ PAGE_SIZE
);
154 * we need to allow at least 20 threads to boot a system
159 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
160 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
161 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
162 init_task
.signal
->rlim
[RLIMIT_NPROC
];
165 static struct task_struct
*dup_task_struct(struct task_struct
*orig
)
167 struct task_struct
*tsk
;
168 struct thread_info
*ti
;
171 prepare_to_copy(orig
);
173 tsk
= alloc_task_struct();
177 ti
= alloc_thread_info(tsk
);
179 free_task_struct(tsk
);
186 err
= prop_local_init_single(&tsk
->dirties
);
188 free_thread_info(ti
);
189 free_task_struct(tsk
);
193 setup_thread_stack(tsk
, orig
);
195 #ifdef CONFIG_CC_STACKPROTECTOR
196 tsk
->stack_canary
= get_random_int();
199 /* One for us, one for whoever does the "release_task()" (usually parent) */
200 atomic_set(&tsk
->usage
,2);
201 atomic_set(&tsk
->fs_excl
, 0);
202 #ifdef CONFIG_BLK_DEV_IO_TRACE
205 tsk
->splice_pipe
= NULL
;
210 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
212 struct vm_area_struct
*mpnt
, *tmp
, **pprev
;
213 struct rb_node
**rb_link
, *rb_parent
;
215 unsigned long charge
;
216 struct mempolicy
*pol
;
218 down_write(&oldmm
->mmap_sem
);
219 flush_cache_dup_mm(oldmm
);
221 * Not linked in yet - no deadlock potential:
223 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
227 mm
->mmap_cache
= NULL
;
228 mm
->free_area_cache
= oldmm
->mmap_base
;
229 mm
->cached_hole_size
= ~0UL;
231 cpus_clear(mm
->cpu_vm_mask
);
233 rb_link
= &mm
->mm_rb
.rb_node
;
237 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
240 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
241 long pages
= vma_pages(mpnt
);
242 mm
->total_vm
-= pages
;
243 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
248 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
249 unsigned int len
= (mpnt
->vm_end
- mpnt
->vm_start
) >> PAGE_SHIFT
;
250 if (security_vm_enough_memory(len
))
254 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
258 pol
= mpol_copy(vma_policy(mpnt
));
259 retval
= PTR_ERR(pol
);
261 goto fail_nomem_policy
;
262 vma_set_policy(tmp
, pol
);
263 tmp
->vm_flags
&= ~VM_LOCKED
;
269 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
271 if (tmp
->vm_flags
& VM_DENYWRITE
)
272 atomic_dec(&inode
->i_writecount
);
274 /* insert tmp into the share list, just after mpnt */
275 spin_lock(&file
->f_mapping
->i_mmap_lock
);
276 tmp
->vm_truncate_count
= mpnt
->vm_truncate_count
;
277 flush_dcache_mmap_lock(file
->f_mapping
);
278 vma_prio_tree_add(tmp
, mpnt
);
279 flush_dcache_mmap_unlock(file
->f_mapping
);
280 spin_unlock(&file
->f_mapping
->i_mmap_lock
);
284 * Link in the new vma and copy the page table entries.
287 pprev
= &tmp
->vm_next
;
289 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
290 rb_link
= &tmp
->vm_rb
.rb_right
;
291 rb_parent
= &tmp
->vm_rb
;
294 retval
= copy_page_range(mm
, oldmm
, mpnt
);
296 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
297 tmp
->vm_ops
->open(tmp
);
302 /* a new mm has just been created */
303 arch_dup_mmap(oldmm
, mm
);
306 up_write(&mm
->mmap_sem
);
308 up_write(&oldmm
->mmap_sem
);
311 kmem_cache_free(vm_area_cachep
, tmp
);
314 vm_unacct_memory(charge
);
318 static inline int mm_alloc_pgd(struct mm_struct
* mm
)
320 mm
->pgd
= pgd_alloc(mm
);
321 if (unlikely(!mm
->pgd
))
326 static inline void mm_free_pgd(struct mm_struct
* mm
)
331 #define dup_mmap(mm, oldmm) (0)
332 #define mm_alloc_pgd(mm) (0)
333 #define mm_free_pgd(mm)
334 #endif /* CONFIG_MMU */
336 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
338 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
339 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
341 #include <linux/init_task.h>
343 static struct mm_struct
* mm_init(struct mm_struct
* mm
)
345 atomic_set(&mm
->mm_users
, 1);
346 atomic_set(&mm
->mm_count
, 1);
347 init_rwsem(&mm
->mmap_sem
);
348 INIT_LIST_HEAD(&mm
->mmlist
);
349 mm
->flags
= (current
->mm
) ? current
->mm
->flags
350 : MMF_DUMP_FILTER_DEFAULT
;
351 mm
->core_waiters
= 0;
353 set_mm_counter(mm
, file_rss
, 0);
354 set_mm_counter(mm
, anon_rss
, 0);
355 spin_lock_init(&mm
->page_table_lock
);
356 rwlock_init(&mm
->ioctx_list_lock
);
357 mm
->ioctx_list
= NULL
;
358 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
359 mm
->cached_hole_size
= ~0UL;
361 if (likely(!mm_alloc_pgd(mm
))) {
370 * Allocate and initialize an mm_struct.
372 struct mm_struct
* mm_alloc(void)
374 struct mm_struct
* mm
;
378 memset(mm
, 0, sizeof(*mm
));
385 * Called when the last reference to the mm
386 * is dropped: either by a lazy thread or by
387 * mmput. Free the page directory and the mm.
389 void fastcall
__mmdrop(struct mm_struct
*mm
)
391 BUG_ON(mm
== &init_mm
);
398 * Decrement the use count and release all resources for an mm.
400 void mmput(struct mm_struct
*mm
)
404 if (atomic_dec_and_test(&mm
->mm_users
)) {
407 if (!list_empty(&mm
->mmlist
)) {
408 spin_lock(&mmlist_lock
);
409 list_del(&mm
->mmlist
);
410 spin_unlock(&mmlist_lock
);
416 EXPORT_SYMBOL_GPL(mmput
);
419 * get_task_mm - acquire a reference to the task's mm
421 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
422 * this kernel workthread has transiently adopted a user mm with use_mm,
423 * to do its AIO) is not set and if so returns a reference to it, after
424 * bumping up the use count. User must release the mm via mmput()
425 * after use. Typically used by /proc and ptrace.
427 struct mm_struct
*get_task_mm(struct task_struct
*task
)
429 struct mm_struct
*mm
;
434 if (task
->flags
& PF_BORROWED_MM
)
437 atomic_inc(&mm
->mm_users
);
442 EXPORT_SYMBOL_GPL(get_task_mm
);
444 /* Please note the differences between mmput and mm_release.
445 * mmput is called whenever we stop holding onto a mm_struct,
446 * error success whatever.
448 * mm_release is called after a mm_struct has been removed
449 * from the current process.
451 * This difference is important for error handling, when we
452 * only half set up a mm_struct for a new process and need to restore
453 * the old one. Because we mmput the new mm_struct before
454 * restoring the old one. . .
455 * Eric Biederman 10 January 1998
457 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
459 struct completion
*vfork_done
= tsk
->vfork_done
;
461 /* Get rid of any cached register state */
462 deactivate_mm(tsk
, mm
);
464 /* notify parent sleeping on vfork() */
466 tsk
->vfork_done
= NULL
;
467 complete(vfork_done
);
471 * If we're exiting normally, clear a user-space tid field if
472 * requested. We leave this alone when dying by signal, to leave
473 * the value intact in a core dump, and to save the unnecessary
474 * trouble otherwise. Userland only wants this done for a sys_exit.
476 if (tsk
->clear_child_tid
477 && !(tsk
->flags
& PF_SIGNALED
)
478 && atomic_read(&mm
->mm_users
) > 1) {
479 u32 __user
* tidptr
= tsk
->clear_child_tid
;
480 tsk
->clear_child_tid
= NULL
;
483 * We don't check the error code - if userspace has
484 * not set up a proper pointer then tough luck.
487 sys_futex(tidptr
, FUTEX_WAKE
, 1, NULL
, NULL
, 0);
492 * Allocate a new mm structure and copy contents from the
493 * mm structure of the passed in task structure.
495 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
497 struct mm_struct
*mm
, *oldmm
= current
->mm
;
507 memcpy(mm
, oldmm
, sizeof(*mm
));
509 /* Initializing for Swap token stuff */
510 mm
->token_priority
= 0;
511 mm
->last_interval
= 0;
516 if (init_new_context(tsk
, mm
))
519 err
= dup_mmap(mm
, oldmm
);
523 mm
->hiwater_rss
= get_mm_rss(mm
);
524 mm
->hiwater_vm
= mm
->total_vm
;
536 * If init_new_context() failed, we cannot use mmput() to free the mm
537 * because it calls destroy_context()
544 static int copy_mm(unsigned long clone_flags
, struct task_struct
* tsk
)
546 struct mm_struct
* mm
, *oldmm
;
549 tsk
->min_flt
= tsk
->maj_flt
= 0;
550 tsk
->nvcsw
= tsk
->nivcsw
= 0;
553 tsk
->active_mm
= NULL
;
556 * Are we cloning a kernel thread?
558 * We need to steal a active VM for that..
564 if (clone_flags
& CLONE_VM
) {
565 atomic_inc(&oldmm
->mm_users
);
576 /* Initializing for Swap token stuff */
577 mm
->token_priority
= 0;
578 mm
->last_interval
= 0;
588 static struct fs_struct
*__copy_fs_struct(struct fs_struct
*old
)
590 struct fs_struct
*fs
= kmem_cache_alloc(fs_cachep
, GFP_KERNEL
);
591 /* We don't need to lock fs - think why ;-) */
593 atomic_set(&fs
->count
, 1);
594 rwlock_init(&fs
->lock
);
595 fs
->umask
= old
->umask
;
596 read_lock(&old
->lock
);
597 fs
->rootmnt
= mntget(old
->rootmnt
);
598 fs
->root
= dget(old
->root
);
599 fs
->pwdmnt
= mntget(old
->pwdmnt
);
600 fs
->pwd
= dget(old
->pwd
);
602 fs
->altrootmnt
= mntget(old
->altrootmnt
);
603 fs
->altroot
= dget(old
->altroot
);
605 fs
->altrootmnt
= NULL
;
608 read_unlock(&old
->lock
);
613 struct fs_struct
*copy_fs_struct(struct fs_struct
*old
)
615 return __copy_fs_struct(old
);
618 EXPORT_SYMBOL_GPL(copy_fs_struct
);
620 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
622 if (clone_flags
& CLONE_FS
) {
623 atomic_inc(¤t
->fs
->count
);
626 tsk
->fs
= __copy_fs_struct(current
->fs
);
632 static int count_open_files(struct fdtable
*fdt
)
634 int size
= fdt
->max_fds
;
637 /* Find the last open fd */
638 for (i
= size
/(8*sizeof(long)); i
> 0; ) {
639 if (fdt
->open_fds
->fds_bits
[--i
])
642 i
= (i
+1) * 8 * sizeof(long);
646 static struct files_struct
*alloc_files(void)
648 struct files_struct
*newf
;
651 newf
= kmem_cache_alloc(files_cachep
, GFP_KERNEL
);
655 atomic_set(&newf
->count
, 1);
657 spin_lock_init(&newf
->file_lock
);
660 fdt
->max_fds
= NR_OPEN_DEFAULT
;
661 fdt
->close_on_exec
= (fd_set
*)&newf
->close_on_exec_init
;
662 fdt
->open_fds
= (fd_set
*)&newf
->open_fds_init
;
663 fdt
->fd
= &newf
->fd_array
[0];
664 INIT_RCU_HEAD(&fdt
->rcu
);
666 rcu_assign_pointer(newf
->fdt
, fdt
);
672 * Allocate a new files structure and copy contents from the
673 * passed in files structure.
674 * errorp will be valid only when the returned files_struct is NULL.
676 static struct files_struct
*dup_fd(struct files_struct
*oldf
, int *errorp
)
678 struct files_struct
*newf
;
679 struct file
**old_fds
, **new_fds
;
680 int open_files
, size
, i
;
681 struct fdtable
*old_fdt
, *new_fdt
;
684 newf
= alloc_files();
688 spin_lock(&oldf
->file_lock
);
689 old_fdt
= files_fdtable(oldf
);
690 new_fdt
= files_fdtable(newf
);
691 open_files
= count_open_files(old_fdt
);
694 * Check whether we need to allocate a larger fd array and fd set.
695 * Note: we're not a clone task, so the open count won't change.
697 if (open_files
> new_fdt
->max_fds
) {
698 new_fdt
->max_fds
= 0;
699 spin_unlock(&oldf
->file_lock
);
700 spin_lock(&newf
->file_lock
);
701 *errorp
= expand_files(newf
, open_files
-1);
702 spin_unlock(&newf
->file_lock
);
705 new_fdt
= files_fdtable(newf
);
707 * Reacquire the oldf lock and a pointer to its fd table
708 * who knows it may have a new bigger fd table. We need
709 * the latest pointer.
711 spin_lock(&oldf
->file_lock
);
712 old_fdt
= files_fdtable(oldf
);
715 old_fds
= old_fdt
->fd
;
716 new_fds
= new_fdt
->fd
;
718 memcpy(new_fdt
->open_fds
->fds_bits
,
719 old_fdt
->open_fds
->fds_bits
, open_files
/8);
720 memcpy(new_fdt
->close_on_exec
->fds_bits
,
721 old_fdt
->close_on_exec
->fds_bits
, open_files
/8);
723 for (i
= open_files
; i
!= 0; i
--) {
724 struct file
*f
= *old_fds
++;
729 * The fd may be claimed in the fd bitmap but not yet
730 * instantiated in the files array if a sibling thread
731 * is partway through open(). So make sure that this
732 * fd is available to the new process.
734 FD_CLR(open_files
- i
, new_fdt
->open_fds
);
736 rcu_assign_pointer(*new_fds
++, f
);
738 spin_unlock(&oldf
->file_lock
);
740 /* compute the remainder to be cleared */
741 size
= (new_fdt
->max_fds
- open_files
) * sizeof(struct file
*);
743 /* This is long word aligned thus could use a optimized version */
744 memset(new_fds
, 0, size
);
746 if (new_fdt
->max_fds
> open_files
) {
747 int left
= (new_fdt
->max_fds
-open_files
)/8;
748 int start
= open_files
/ (8 * sizeof(unsigned long));
750 memset(&new_fdt
->open_fds
->fds_bits
[start
], 0, left
);
751 memset(&new_fdt
->close_on_exec
->fds_bits
[start
], 0, left
);
757 kmem_cache_free(files_cachep
, newf
);
762 static int copy_files(unsigned long clone_flags
, struct task_struct
* tsk
)
764 struct files_struct
*oldf
, *newf
;
768 * A background process may not have any files ...
770 oldf
= current
->files
;
774 if (clone_flags
& CLONE_FILES
) {
775 atomic_inc(&oldf
->count
);
780 * Note: we may be using current for both targets (See exec.c)
781 * This works because we cache current->files (old) as oldf. Don't
785 newf
= dup_fd(oldf
, &error
);
795 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
798 struct io_context
*ioc
= current
->io_context
;
803 * Share io context with parent, if CLONE_IO is set
805 if (clone_flags
& CLONE_IO
) {
806 tsk
->io_context
= ioc_task_link(ioc
);
807 if (unlikely(!tsk
->io_context
))
809 } else if (ioprio_valid(ioc
->ioprio
)) {
810 tsk
->io_context
= alloc_io_context(GFP_KERNEL
, -1);
811 if (unlikely(!tsk
->io_context
))
814 tsk
->io_context
->ioprio
= ioc
->ioprio
;
821 * Helper to unshare the files of the current task.
822 * We don't want to expose copy_files internals to
823 * the exec layer of the kernel.
826 int unshare_files(void)
828 struct files_struct
*files
= current
->files
;
833 /* This can race but the race causes us to copy when we don't
834 need to and drop the copy */
835 if(atomic_read(&files
->count
) == 1)
837 atomic_inc(&files
->count
);
840 rc
= copy_files(0, current
);
842 current
->files
= files
;
846 EXPORT_SYMBOL(unshare_files
);
848 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
850 struct sighand_struct
*sig
;
852 if (clone_flags
& (CLONE_SIGHAND
| CLONE_THREAD
)) {
853 atomic_inc(¤t
->sighand
->count
);
856 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
857 rcu_assign_pointer(tsk
->sighand
, sig
);
860 atomic_set(&sig
->count
, 1);
861 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
865 void __cleanup_sighand(struct sighand_struct
*sighand
)
867 if (atomic_dec_and_test(&sighand
->count
))
868 kmem_cache_free(sighand_cachep
, sighand
);
871 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
873 struct signal_struct
*sig
;
876 if (clone_flags
& CLONE_THREAD
) {
877 atomic_inc(¤t
->signal
->count
);
878 atomic_inc(¤t
->signal
->live
);
881 sig
= kmem_cache_alloc(signal_cachep
, GFP_KERNEL
);
886 ret
= copy_thread_group_keys(tsk
);
888 kmem_cache_free(signal_cachep
, sig
);
892 atomic_set(&sig
->count
, 1);
893 atomic_set(&sig
->live
, 1);
894 init_waitqueue_head(&sig
->wait_chldexit
);
896 sig
->group_exit_code
= 0;
897 sig
->group_exit_task
= NULL
;
898 sig
->group_stop_count
= 0;
899 sig
->curr_target
= NULL
;
900 init_sigpending(&sig
->shared_pending
);
901 INIT_LIST_HEAD(&sig
->posix_timers
);
903 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
904 sig
->it_real_incr
.tv64
= 0;
905 sig
->real_timer
.function
= it_real_fn
;
908 sig
->it_virt_expires
= cputime_zero
;
909 sig
->it_virt_incr
= cputime_zero
;
910 sig
->it_prof_expires
= cputime_zero
;
911 sig
->it_prof_incr
= cputime_zero
;
913 sig
->leader
= 0; /* session leadership doesn't inherit */
914 sig
->tty_old_pgrp
= NULL
;
916 sig
->utime
= sig
->stime
= sig
->cutime
= sig
->cstime
= cputime_zero
;
917 sig
->gtime
= cputime_zero
;
918 sig
->cgtime
= cputime_zero
;
919 sig
->nvcsw
= sig
->nivcsw
= sig
->cnvcsw
= sig
->cnivcsw
= 0;
920 sig
->min_flt
= sig
->maj_flt
= sig
->cmin_flt
= sig
->cmaj_flt
= 0;
921 sig
->inblock
= sig
->oublock
= sig
->cinblock
= sig
->coublock
= 0;
922 sig
->sum_sched_runtime
= 0;
923 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
924 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
925 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
926 taskstats_tgid_init(sig
);
928 task_lock(current
->group_leader
);
929 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
930 task_unlock(current
->group_leader
);
932 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
934 * New sole thread in the process gets an expiry time
935 * of the whole CPU time limit.
937 tsk
->it_prof_expires
=
938 secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
940 acct_init_pacct(&sig
->pacct
);
947 void __cleanup_signal(struct signal_struct
*sig
)
949 exit_thread_group_keys(sig
);
950 kmem_cache_free(signal_cachep
, sig
);
953 static void cleanup_signal(struct task_struct
*tsk
)
955 struct signal_struct
*sig
= tsk
->signal
;
957 atomic_dec(&sig
->live
);
959 if (atomic_dec_and_test(&sig
->count
))
960 __cleanup_signal(sig
);
963 static void copy_flags(unsigned long clone_flags
, struct task_struct
*p
)
965 unsigned long new_flags
= p
->flags
;
967 new_flags
&= ~PF_SUPERPRIV
;
968 new_flags
|= PF_FORKNOEXEC
;
969 if (!(clone_flags
& CLONE_PTRACE
))
971 p
->flags
= new_flags
;
972 clear_freeze_flag(p
);
975 asmlinkage
long sys_set_tid_address(int __user
*tidptr
)
977 current
->clear_child_tid
= tidptr
;
979 return task_pid_vnr(current
);
982 static void rt_mutex_init_task(struct task_struct
*p
)
984 spin_lock_init(&p
->pi_lock
);
985 #ifdef CONFIG_RT_MUTEXES
986 plist_head_init(&p
->pi_waiters
, &p
->pi_lock
);
987 p
->pi_blocked_on
= NULL
;
992 * This creates a new process as a copy of the old one,
993 * but does not actually start it yet.
995 * It copies the registers, and all the appropriate
996 * parts of the process environment (as per the clone
997 * flags). The actual kick-off is left to the caller.
999 static struct task_struct
*copy_process(unsigned long clone_flags
,
1000 unsigned long stack_start
,
1001 struct pt_regs
*regs
,
1002 unsigned long stack_size
,
1003 int __user
*child_tidptr
,
1007 struct task_struct
*p
;
1008 int cgroup_callbacks_done
= 0;
1010 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1011 return ERR_PTR(-EINVAL
);
1014 * Thread groups must share signals as well, and detached threads
1015 * can only be started up within the thread group.
1017 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1018 return ERR_PTR(-EINVAL
);
1021 * Shared signal handlers imply shared VM. By way of the above,
1022 * thread groups also imply shared VM. Blocking this case allows
1023 * for various simplifications in other code.
1025 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1026 return ERR_PTR(-EINVAL
);
1028 retval
= security_task_create(clone_flags
);
1033 p
= dup_task_struct(current
);
1037 rt_mutex_init_task(p
);
1039 #ifdef CONFIG_TRACE_IRQFLAGS
1040 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1041 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1044 if (atomic_read(&p
->user
->processes
) >=
1045 p
->signal
->rlim
[RLIMIT_NPROC
].rlim_cur
) {
1046 if (!capable(CAP_SYS_ADMIN
) && !capable(CAP_SYS_RESOURCE
) &&
1047 p
->user
!= current
->nsproxy
->user_ns
->root_user
)
1051 atomic_inc(&p
->user
->__count
);
1052 atomic_inc(&p
->user
->processes
);
1053 get_group_info(p
->group_info
);
1056 * If multiple threads are within copy_process(), then this check
1057 * triggers too late. This doesn't hurt, the check is only there
1058 * to stop root fork bombs.
1060 if (nr_threads
>= max_threads
)
1061 goto bad_fork_cleanup_count
;
1063 if (!try_module_get(task_thread_info(p
)->exec_domain
->module
))
1064 goto bad_fork_cleanup_count
;
1066 if (p
->binfmt
&& !try_module_get(p
->binfmt
->module
))
1067 goto bad_fork_cleanup_put_domain
;
1070 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1071 copy_flags(clone_flags
, p
);
1072 INIT_LIST_HEAD(&p
->children
);
1073 INIT_LIST_HEAD(&p
->sibling
);
1074 #ifdef CONFIG_PREEMPT_RCU
1075 p
->rcu_read_lock_nesting
= 0;
1076 p
->rcu_flipctr_idx
= 0;
1077 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1078 p
->vfork_done
= NULL
;
1079 spin_lock_init(&p
->alloc_lock
);
1081 clear_tsk_thread_flag(p
, TIF_SIGPENDING
);
1082 init_sigpending(&p
->pending
);
1084 p
->utime
= cputime_zero
;
1085 p
->stime
= cputime_zero
;
1086 p
->gtime
= cputime_zero
;
1087 p
->utimescaled
= cputime_zero
;
1088 p
->stimescaled
= cputime_zero
;
1089 p
->prev_utime
= cputime_zero
;
1090 p
->prev_stime
= cputime_zero
;
1092 #ifdef CONFIG_DETECT_SOFTLOCKUP
1093 p
->last_switch_count
= 0;
1094 p
->last_switch_timestamp
= 0;
1097 #ifdef CONFIG_TASK_XACCT
1098 p
->rchar
= 0; /* I/O counter: bytes read */
1099 p
->wchar
= 0; /* I/O counter: bytes written */
1100 p
->syscr
= 0; /* I/O counter: read syscalls */
1101 p
->syscw
= 0; /* I/O counter: write syscalls */
1103 task_io_accounting_init(p
);
1104 acct_clear_integrals(p
);
1106 p
->it_virt_expires
= cputime_zero
;
1107 p
->it_prof_expires
= cputime_zero
;
1108 p
->it_sched_expires
= 0;
1109 INIT_LIST_HEAD(&p
->cpu_timers
[0]);
1110 INIT_LIST_HEAD(&p
->cpu_timers
[1]);
1111 INIT_LIST_HEAD(&p
->cpu_timers
[2]);
1113 p
->lock_depth
= -1; /* -1 = no lock */
1114 do_posix_clock_monotonic_gettime(&p
->start_time
);
1115 p
->real_start_time
= p
->start_time
;
1116 monotonic_to_bootbased(&p
->real_start_time
);
1117 #ifdef CONFIG_SECURITY
1120 p
->io_context
= NULL
;
1121 p
->audit_context
= NULL
;
1124 p
->mempolicy
= mpol_copy(p
->mempolicy
);
1125 if (IS_ERR(p
->mempolicy
)) {
1126 retval
= PTR_ERR(p
->mempolicy
);
1127 p
->mempolicy
= NULL
;
1128 goto bad_fork_cleanup_cgroup
;
1130 mpol_fix_fork_child_flag(p
);
1132 #ifdef CONFIG_TRACE_IRQFLAGS
1134 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1135 p
->hardirqs_enabled
= 1;
1137 p
->hardirqs_enabled
= 0;
1139 p
->hardirq_enable_ip
= 0;
1140 p
->hardirq_enable_event
= 0;
1141 p
->hardirq_disable_ip
= _THIS_IP_
;
1142 p
->hardirq_disable_event
= 0;
1143 p
->softirqs_enabled
= 1;
1144 p
->softirq_enable_ip
= _THIS_IP_
;
1145 p
->softirq_enable_event
= 0;
1146 p
->softirq_disable_ip
= 0;
1147 p
->softirq_disable_event
= 0;
1148 p
->hardirq_context
= 0;
1149 p
->softirq_context
= 0;
1151 #ifdef CONFIG_LOCKDEP
1152 p
->lockdep_depth
= 0; /* no locks held yet */
1153 p
->curr_chain_key
= 0;
1154 p
->lockdep_recursion
= 0;
1157 #ifdef CONFIG_DEBUG_MUTEXES
1158 p
->blocked_on
= NULL
; /* not blocked yet */
1161 /* Perform scheduler related setup. Assign this task to a CPU. */
1162 sched_fork(p
, clone_flags
);
1164 if ((retval
= security_task_alloc(p
)))
1165 goto bad_fork_cleanup_policy
;
1166 if ((retval
= audit_alloc(p
)))
1167 goto bad_fork_cleanup_security
;
1168 /* copy all the process information */
1169 if ((retval
= copy_semundo(clone_flags
, p
)))
1170 goto bad_fork_cleanup_audit
;
1171 if ((retval
= copy_files(clone_flags
, p
)))
1172 goto bad_fork_cleanup_semundo
;
1173 if ((retval
= copy_fs(clone_flags
, p
)))
1174 goto bad_fork_cleanup_files
;
1175 if ((retval
= copy_sighand(clone_flags
, p
)))
1176 goto bad_fork_cleanup_fs
;
1177 if ((retval
= copy_signal(clone_flags
, p
)))
1178 goto bad_fork_cleanup_sighand
;
1179 if ((retval
= copy_mm(clone_flags
, p
)))
1180 goto bad_fork_cleanup_signal
;
1181 if ((retval
= copy_keys(clone_flags
, p
)))
1182 goto bad_fork_cleanup_mm
;
1183 if ((retval
= copy_namespaces(clone_flags
, p
)))
1184 goto bad_fork_cleanup_keys
;
1185 if ((retval
= copy_io(clone_flags
, p
)))
1186 goto bad_fork_cleanup_namespaces
;
1187 retval
= copy_thread(0, clone_flags
, stack_start
, stack_size
, p
, regs
);
1189 goto bad_fork_cleanup_io
;
1191 if (pid
!= &init_struct_pid
) {
1193 pid
= alloc_pid(task_active_pid_ns(p
));
1195 goto bad_fork_cleanup_io
;
1197 if (clone_flags
& CLONE_NEWPID
) {
1198 retval
= pid_ns_prepare_proc(task_active_pid_ns(p
));
1200 goto bad_fork_free_pid
;
1204 p
->pid
= pid_nr(pid
);
1206 if (clone_flags
& CLONE_THREAD
)
1207 p
->tgid
= current
->tgid
;
1209 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1211 * Clear TID on mm_release()?
1213 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1215 p
->robust_list
= NULL
;
1216 #ifdef CONFIG_COMPAT
1217 p
->compat_robust_list
= NULL
;
1219 INIT_LIST_HEAD(&p
->pi_state_list
);
1220 p
->pi_state_cache
= NULL
;
1223 * sigaltstack should be cleared when sharing the same VM
1225 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1226 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1229 * Syscall tracing should be turned off in the child regardless
1232 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1233 #ifdef TIF_SYSCALL_EMU
1234 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1236 clear_all_latency_tracing(p
);
1238 /* Our parent execution domain becomes current domain
1239 These must match for thread signalling to apply */
1240 p
->parent_exec_id
= p
->self_exec_id
;
1242 /* ok, now we should be set up.. */
1243 p
->exit_signal
= (clone_flags
& CLONE_THREAD
) ? -1 : (clone_flags
& CSIGNAL
);
1244 p
->pdeath_signal
= 0;
1248 * Ok, make it visible to the rest of the system.
1249 * We dont wake it up yet.
1251 p
->group_leader
= p
;
1252 INIT_LIST_HEAD(&p
->thread_group
);
1253 INIT_LIST_HEAD(&p
->ptrace_children
);
1254 INIT_LIST_HEAD(&p
->ptrace_list
);
1256 /* Now that the task is set up, run cgroup callbacks if
1257 * necessary. We need to run them before the task is visible
1258 * on the tasklist. */
1259 cgroup_fork_callbacks(p
);
1260 cgroup_callbacks_done
= 1;
1262 /* Need tasklist lock for parent etc handling! */
1263 write_lock_irq(&tasklist_lock
);
1266 * The task hasn't been attached yet, so its cpus_allowed mask will
1267 * not be changed, nor will its assigned CPU.
1269 * The cpus_allowed mask of the parent may have changed after it was
1270 * copied first time - so re-copy it here, then check the child's CPU
1271 * to ensure it is on a valid CPU (and if not, just force it back to
1272 * parent's CPU). This avoids alot of nasty races.
1274 p
->cpus_allowed
= current
->cpus_allowed
;
1275 p
->rt
.nr_cpus_allowed
= current
->rt
.nr_cpus_allowed
;
1276 if (unlikely(!cpu_isset(task_cpu(p
), p
->cpus_allowed
) ||
1277 !cpu_online(task_cpu(p
))))
1278 set_task_cpu(p
, smp_processor_id());
1280 /* CLONE_PARENT re-uses the old parent */
1281 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
))
1282 p
->real_parent
= current
->real_parent
;
1284 p
->real_parent
= current
;
1285 p
->parent
= p
->real_parent
;
1287 spin_lock(¤t
->sighand
->siglock
);
1290 * Process group and session signals need to be delivered to just the
1291 * parent before the fork or both the parent and the child after the
1292 * fork. Restart if a signal comes in before we add the new process to
1293 * it's process group.
1294 * A fatal signal pending means that current will exit, so the new
1295 * thread can't slip out of an OOM kill (or normal SIGKILL).
1297 recalc_sigpending();
1298 if (signal_pending(current
)) {
1299 spin_unlock(¤t
->sighand
->siglock
);
1300 write_unlock_irq(&tasklist_lock
);
1301 retval
= -ERESTARTNOINTR
;
1302 goto bad_fork_free_pid
;
1305 if (clone_flags
& CLONE_THREAD
) {
1306 p
->group_leader
= current
->group_leader
;
1307 list_add_tail_rcu(&p
->thread_group
, &p
->group_leader
->thread_group
);
1309 if (!cputime_eq(current
->signal
->it_virt_expires
,
1311 !cputime_eq(current
->signal
->it_prof_expires
,
1313 current
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
||
1314 !list_empty(¤t
->signal
->cpu_timers
[0]) ||
1315 !list_empty(¤t
->signal
->cpu_timers
[1]) ||
1316 !list_empty(¤t
->signal
->cpu_timers
[2])) {
1318 * Have child wake up on its first tick to check
1319 * for process CPU timers.
1321 p
->it_prof_expires
= jiffies_to_cputime(1);
1325 if (likely(p
->pid
)) {
1327 if (unlikely(p
->ptrace
& PT_PTRACED
))
1328 __ptrace_link(p
, current
->parent
);
1330 if (thread_group_leader(p
)) {
1331 if (clone_flags
& CLONE_NEWPID
)
1332 p
->nsproxy
->pid_ns
->child_reaper
= p
;
1334 p
->signal
->tty
= current
->signal
->tty
;
1335 set_task_pgrp(p
, task_pgrp_nr(current
));
1336 set_task_session(p
, task_session_nr(current
));
1337 attach_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1338 attach_pid(p
, PIDTYPE_SID
, task_session(current
));
1339 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1340 __get_cpu_var(process_counts
)++;
1342 attach_pid(p
, PIDTYPE_PID
, pid
);
1347 spin_unlock(¤t
->sighand
->siglock
);
1348 write_unlock_irq(&tasklist_lock
);
1349 proc_fork_connector(p
);
1350 cgroup_post_fork(p
);
1354 if (pid
!= &init_struct_pid
)
1356 bad_fork_cleanup_io
:
1357 put_io_context(p
->io_context
);
1358 bad_fork_cleanup_namespaces
:
1359 exit_task_namespaces(p
);
1360 bad_fork_cleanup_keys
:
1362 bad_fork_cleanup_mm
:
1365 bad_fork_cleanup_signal
:
1367 bad_fork_cleanup_sighand
:
1368 __cleanup_sighand(p
->sighand
);
1369 bad_fork_cleanup_fs
:
1370 exit_fs(p
); /* blocking */
1371 bad_fork_cleanup_files
:
1372 exit_files(p
); /* blocking */
1373 bad_fork_cleanup_semundo
:
1375 bad_fork_cleanup_audit
:
1377 bad_fork_cleanup_security
:
1378 security_task_free(p
);
1379 bad_fork_cleanup_policy
:
1381 mpol_free(p
->mempolicy
);
1382 bad_fork_cleanup_cgroup
:
1384 cgroup_exit(p
, cgroup_callbacks_done
);
1385 delayacct_tsk_free(p
);
1387 module_put(p
->binfmt
->module
);
1388 bad_fork_cleanup_put_domain
:
1389 module_put(task_thread_info(p
)->exec_domain
->module
);
1390 bad_fork_cleanup_count
:
1391 put_group_info(p
->group_info
);
1392 atomic_dec(&p
->user
->processes
);
1397 return ERR_PTR(retval
);
1400 noinline
struct pt_regs
* __devinit
__attribute__((weak
)) idle_regs(struct pt_regs
*regs
)
1402 memset(regs
, 0, sizeof(struct pt_regs
));
1406 struct task_struct
* __cpuinit
fork_idle(int cpu
)
1408 struct task_struct
*task
;
1409 struct pt_regs regs
;
1411 task
= copy_process(CLONE_VM
, 0, idle_regs(®s
), 0, NULL
,
1414 init_idle(task
, cpu
);
1419 static int fork_traceflag(unsigned clone_flags
)
1421 if (clone_flags
& CLONE_UNTRACED
)
1423 else if (clone_flags
& CLONE_VFORK
) {
1424 if (current
->ptrace
& PT_TRACE_VFORK
)
1425 return PTRACE_EVENT_VFORK
;
1426 } else if ((clone_flags
& CSIGNAL
) != SIGCHLD
) {
1427 if (current
->ptrace
& PT_TRACE_CLONE
)
1428 return PTRACE_EVENT_CLONE
;
1429 } else if (current
->ptrace
& PT_TRACE_FORK
)
1430 return PTRACE_EVENT_FORK
;
1436 * Ok, this is the main fork-routine.
1438 * It copies the process, and if successful kick-starts
1439 * it and waits for it to finish using the VM if required.
1441 long do_fork(unsigned long clone_flags
,
1442 unsigned long stack_start
,
1443 struct pt_regs
*regs
,
1444 unsigned long stack_size
,
1445 int __user
*parent_tidptr
,
1446 int __user
*child_tidptr
)
1448 struct task_struct
*p
;
1452 if (unlikely(current
->ptrace
)) {
1453 trace
= fork_traceflag (clone_flags
);
1455 clone_flags
|= CLONE_PTRACE
;
1458 p
= copy_process(clone_flags
, stack_start
, regs
, stack_size
,
1459 child_tidptr
, NULL
);
1461 * Do this prior waking up the new thread - the thread pointer
1462 * might get invalid after that point, if the thread exits quickly.
1465 struct completion vfork
;
1468 * this is enough to call pid_nr_ns here, but this if
1469 * improves optimisation of regular fork()
1471 nr
= (clone_flags
& CLONE_NEWPID
) ?
1472 task_pid_nr_ns(p
, current
->nsproxy
->pid_ns
) :
1475 if (clone_flags
& CLONE_PARENT_SETTID
)
1476 put_user(nr
, parent_tidptr
);
1478 if (clone_flags
& CLONE_VFORK
) {
1479 p
->vfork_done
= &vfork
;
1480 init_completion(&vfork
);
1483 if ((p
->ptrace
& PT_PTRACED
) || (clone_flags
& CLONE_STOPPED
)) {
1485 * We'll start up with an immediate SIGSTOP.
1487 sigaddset(&p
->pending
.signal
, SIGSTOP
);
1488 set_tsk_thread_flag(p
, TIF_SIGPENDING
);
1491 if (!(clone_flags
& CLONE_STOPPED
))
1492 wake_up_new_task(p
, clone_flags
);
1494 p
->state
= TASK_STOPPED
;
1496 if (unlikely (trace
)) {
1497 current
->ptrace_message
= nr
;
1498 ptrace_notify ((trace
<< 8) | SIGTRAP
);
1501 if (clone_flags
& CLONE_VFORK
) {
1502 freezer_do_not_count();
1503 wait_for_completion(&vfork
);
1505 if (unlikely (current
->ptrace
& PT_TRACE_VFORK_DONE
)) {
1506 current
->ptrace_message
= nr
;
1507 ptrace_notify ((PTRACE_EVENT_VFORK_DONE
<< 8) | SIGTRAP
);
1516 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1517 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1520 static void sighand_ctor(struct kmem_cache
*cachep
, void *data
)
1522 struct sighand_struct
*sighand
= data
;
1524 spin_lock_init(&sighand
->siglock
);
1525 init_waitqueue_head(&sighand
->signalfd_wqh
);
1528 void __init
proc_caches_init(void)
1530 sighand_cachep
= kmem_cache_create("sighand_cache",
1531 sizeof(struct sighand_struct
), 0,
1532 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
,
1534 signal_cachep
= kmem_cache_create("signal_cache",
1535 sizeof(struct signal_struct
), 0,
1536 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1537 files_cachep
= kmem_cache_create("files_cache",
1538 sizeof(struct files_struct
), 0,
1539 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1540 fs_cachep
= kmem_cache_create("fs_cache",
1541 sizeof(struct fs_struct
), 0,
1542 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1543 vm_area_cachep
= kmem_cache_create("vm_area_struct",
1544 sizeof(struct vm_area_struct
), 0,
1546 mm_cachep
= kmem_cache_create("mm_struct",
1547 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1548 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
1552 * Check constraints on flags passed to the unshare system call and
1553 * force unsharing of additional process context as appropriate.
1555 static void check_unshare_flags(unsigned long *flags_ptr
)
1558 * If unsharing a thread from a thread group, must also
1561 if (*flags_ptr
& CLONE_THREAD
)
1562 *flags_ptr
|= CLONE_VM
;
1565 * If unsharing vm, must also unshare signal handlers.
1567 if (*flags_ptr
& CLONE_VM
)
1568 *flags_ptr
|= CLONE_SIGHAND
;
1571 * If unsharing signal handlers and the task was created
1572 * using CLONE_THREAD, then must unshare the thread
1574 if ((*flags_ptr
& CLONE_SIGHAND
) &&
1575 (atomic_read(¤t
->signal
->count
) > 1))
1576 *flags_ptr
|= CLONE_THREAD
;
1579 * If unsharing namespace, must also unshare filesystem information.
1581 if (*flags_ptr
& CLONE_NEWNS
)
1582 *flags_ptr
|= CLONE_FS
;
1586 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1588 static int unshare_thread(unsigned long unshare_flags
)
1590 if (unshare_flags
& CLONE_THREAD
)
1597 * Unshare the filesystem structure if it is being shared
1599 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1601 struct fs_struct
*fs
= current
->fs
;
1603 if ((unshare_flags
& CLONE_FS
) &&
1604 (fs
&& atomic_read(&fs
->count
) > 1)) {
1605 *new_fsp
= __copy_fs_struct(current
->fs
);
1614 * Unsharing of sighand is not supported yet
1616 static int unshare_sighand(unsigned long unshare_flags
, struct sighand_struct
**new_sighp
)
1618 struct sighand_struct
*sigh
= current
->sighand
;
1620 if ((unshare_flags
& CLONE_SIGHAND
) && atomic_read(&sigh
->count
) > 1)
1627 * Unshare vm if it is being shared
1629 static int unshare_vm(unsigned long unshare_flags
, struct mm_struct
**new_mmp
)
1631 struct mm_struct
*mm
= current
->mm
;
1633 if ((unshare_flags
& CLONE_VM
) &&
1634 (mm
&& atomic_read(&mm
->mm_users
) > 1)) {
1642 * Unshare file descriptor table if it is being shared
1644 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1646 struct files_struct
*fd
= current
->files
;
1649 if ((unshare_flags
& CLONE_FILES
) &&
1650 (fd
&& atomic_read(&fd
->count
) > 1)) {
1651 *new_fdp
= dup_fd(fd
, &error
);
1660 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1663 static int unshare_semundo(unsigned long unshare_flags
, struct sem_undo_list
**new_ulistp
)
1665 if (unshare_flags
& CLONE_SYSVSEM
)
1672 * unshare allows a process to 'unshare' part of the process
1673 * context which was originally shared using clone. copy_*
1674 * functions used by do_fork() cannot be used here directly
1675 * because they modify an inactive task_struct that is being
1676 * constructed. Here we are modifying the current, active,
1679 asmlinkage
long sys_unshare(unsigned long unshare_flags
)
1682 struct fs_struct
*fs
, *new_fs
= NULL
;
1683 struct sighand_struct
*new_sigh
= NULL
;
1684 struct mm_struct
*mm
, *new_mm
= NULL
, *active_mm
= NULL
;
1685 struct files_struct
*fd
, *new_fd
= NULL
;
1686 struct sem_undo_list
*new_ulist
= NULL
;
1687 struct nsproxy
*new_nsproxy
= NULL
;
1689 check_unshare_flags(&unshare_flags
);
1691 /* Return -EINVAL for all unsupported flags */
1693 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1694 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1695 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWUSER
|
1697 goto bad_unshare_out
;
1699 if ((err
= unshare_thread(unshare_flags
)))
1700 goto bad_unshare_out
;
1701 if ((err
= unshare_fs(unshare_flags
, &new_fs
)))
1702 goto bad_unshare_cleanup_thread
;
1703 if ((err
= unshare_sighand(unshare_flags
, &new_sigh
)))
1704 goto bad_unshare_cleanup_fs
;
1705 if ((err
= unshare_vm(unshare_flags
, &new_mm
)))
1706 goto bad_unshare_cleanup_sigh
;
1707 if ((err
= unshare_fd(unshare_flags
, &new_fd
)))
1708 goto bad_unshare_cleanup_vm
;
1709 if ((err
= unshare_semundo(unshare_flags
, &new_ulist
)))
1710 goto bad_unshare_cleanup_fd
;
1711 if ((err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
1713 goto bad_unshare_cleanup_semundo
;
1715 if (new_fs
|| new_mm
|| new_fd
|| new_ulist
|| new_nsproxy
) {
1718 switch_task_namespaces(current
, new_nsproxy
);
1726 current
->fs
= new_fs
;
1732 active_mm
= current
->active_mm
;
1733 current
->mm
= new_mm
;
1734 current
->active_mm
= new_mm
;
1735 activate_mm(active_mm
, new_mm
);
1740 fd
= current
->files
;
1741 current
->files
= new_fd
;
1745 task_unlock(current
);
1749 put_nsproxy(new_nsproxy
);
1751 bad_unshare_cleanup_semundo
:
1752 bad_unshare_cleanup_fd
:
1754 put_files_struct(new_fd
);
1756 bad_unshare_cleanup_vm
:
1760 bad_unshare_cleanup_sigh
:
1762 if (atomic_dec_and_test(&new_sigh
->count
))
1763 kmem_cache_free(sighand_cachep
, new_sigh
);
1765 bad_unshare_cleanup_fs
:
1767 put_fs_struct(new_fs
);
1769 bad_unshare_cleanup_thread
: