swapfile: swapon randomize if nonrot
[linux-2.6/mini2440.git] / drivers / net / epic100.c
blobf9b37c80dda61f7eb84ca32a26dc93789d57c678
1 /* epic100.c: A SMC 83c170 EPIC/100 Fast Ethernet driver for Linux. */
2 /*
3 Written/copyright 1997-2001 by Donald Becker.
5 This software may be used and distributed according to the terms of
6 the GNU General Public License (GPL), incorporated herein by reference.
7 Drivers based on or derived from this code fall under the GPL and must
8 retain the authorship, copyright and license notice. This file is not
9 a complete program and may only be used when the entire operating
10 system is licensed under the GPL.
12 This driver is for the SMC83c170/175 "EPIC" series, as used on the
13 SMC EtherPower II 9432 PCI adapter, and several CardBus cards.
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
20 Information and updates available at
21 http://www.scyld.com/network/epic100.html
22 [this link no longer provides anything useful -jgarzik]
24 ---------------------------------------------------------------------
28 #define DRV_NAME "epic100"
29 #define DRV_VERSION "2.1"
30 #define DRV_RELDATE "Sept 11, 2006"
32 /* The user-configurable values.
33 These may be modified when a driver module is loaded.*/
35 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */
37 /* Used to pass the full-duplex flag, etc. */
38 #define MAX_UNITS 8 /* More are supported, limit only on options */
39 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
40 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
42 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
43 Setting to > 1518 effectively disables this feature. */
44 static int rx_copybreak;
46 /* Operational parameters that are set at compile time. */
48 /* Keep the ring sizes a power of two for operational efficiency.
49 The compiler will convert <unsigned>'%'<2^N> into a bit mask.
50 Making the Tx ring too large decreases the effectiveness of channel
51 bonding and packet priority.
52 There are no ill effects from too-large receive rings. */
53 #define TX_RING_SIZE 256
54 #define TX_QUEUE_LEN 240 /* Limit ring entries actually used. */
55 #define RX_RING_SIZE 256
56 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct epic_tx_desc)
57 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct epic_rx_desc)
59 /* Operational parameters that usually are not changed. */
60 /* Time in jiffies before concluding the transmitter is hung. */
61 #define TX_TIMEOUT (2*HZ)
63 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
65 /* Bytes transferred to chip before transmission starts. */
66 /* Initial threshold, increased on underflow, rounded down to 4 byte units. */
67 #define TX_FIFO_THRESH 256
68 #define RX_FIFO_THRESH 1 /* 0-3, 0==32, 64,96, or 3==128 bytes */
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/string.h>
73 #include <linux/timer.h>
74 #include <linux/errno.h>
75 #include <linux/ioport.h>
76 #include <linux/slab.h>
77 #include <linux/interrupt.h>
78 #include <linux/pci.h>
79 #include <linux/delay.h>
80 #include <linux/netdevice.h>
81 #include <linux/etherdevice.h>
82 #include <linux/skbuff.h>
83 #include <linux/init.h>
84 #include <linux/spinlock.h>
85 #include <linux/ethtool.h>
86 #include <linux/mii.h>
87 #include <linux/crc32.h>
88 #include <linux/bitops.h>
89 #include <asm/io.h>
90 #include <asm/uaccess.h>
92 /* These identify the driver base version and may not be removed. */
93 static char version[] __devinitdata =
94 DRV_NAME ".c:v1.11 1/7/2001 Written by Donald Becker <becker@scyld.com>\n";
95 static char version2[] __devinitdata =
96 " (unofficial 2.4.x kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
98 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
99 MODULE_DESCRIPTION("SMC 83c170 EPIC series Ethernet driver");
100 MODULE_LICENSE("GPL");
102 module_param(debug, int, 0);
103 module_param(rx_copybreak, int, 0);
104 module_param_array(options, int, NULL, 0);
105 module_param_array(full_duplex, int, NULL, 0);
106 MODULE_PARM_DESC(debug, "EPIC/100 debug level (0-5)");
107 MODULE_PARM_DESC(options, "EPIC/100: Bits 0-3: media type, bit 4: full duplex");
108 MODULE_PARM_DESC(rx_copybreak, "EPIC/100 copy breakpoint for copy-only-tiny-frames");
109 MODULE_PARM_DESC(full_duplex, "EPIC/100 full duplex setting(s) (1)");
112 Theory of Operation
114 I. Board Compatibility
116 This device driver is designed for the SMC "EPIC/100", the SMC
117 single-chip Ethernet controllers for PCI. This chip is used on
118 the SMC EtherPower II boards.
120 II. Board-specific settings
122 PCI bus devices are configured by the system at boot time, so no jumpers
123 need to be set on the board. The system BIOS will assign the
124 PCI INTA signal to a (preferably otherwise unused) system IRQ line.
125 Note: Kernel versions earlier than 1.3.73 do not support shared PCI
126 interrupt lines.
128 III. Driver operation
130 IIIa. Ring buffers
132 IVb. References
134 http://www.smsc.com/main/tools/discontinued/83c171.pdf
135 http://www.smsc.com/main/tools/discontinued/83c175.pdf
136 http://scyld.com/expert/NWay.html
137 http://www.national.com/pf/DP/DP83840A.html
139 IVc. Errata
144 enum chip_capability_flags { MII_PWRDWN=1, TYPE2_INTR=2, NO_MII=4 };
146 #define EPIC_TOTAL_SIZE 0x100
147 #define USE_IO_OPS 1
149 typedef enum {
150 SMSC_83C170_0,
151 SMSC_83C170,
152 SMSC_83C175,
153 } chip_t;
156 struct epic_chip_info {
157 const char *name;
158 int drv_flags; /* Driver use, intended as capability flags. */
162 /* indexed by chip_t */
163 static const struct epic_chip_info pci_id_tbl[] = {
164 { "SMSC EPIC/100 83c170", TYPE2_INTR | NO_MII | MII_PWRDWN },
165 { "SMSC EPIC/100 83c170", TYPE2_INTR },
166 { "SMSC EPIC/C 83c175", TYPE2_INTR | MII_PWRDWN },
170 static struct pci_device_id epic_pci_tbl[] = {
171 { 0x10B8, 0x0005, 0x1092, 0x0AB4, 0, 0, SMSC_83C170_0 },
172 { 0x10B8, 0x0005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, SMSC_83C170 },
173 { 0x10B8, 0x0006, PCI_ANY_ID, PCI_ANY_ID,
174 PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, SMSC_83C175 },
175 { 0,}
177 MODULE_DEVICE_TABLE (pci, epic_pci_tbl);
180 #ifndef USE_IO_OPS
181 #undef inb
182 #undef inw
183 #undef inl
184 #undef outb
185 #undef outw
186 #undef outl
187 #define inb readb
188 #define inw readw
189 #define inl readl
190 #define outb writeb
191 #define outw writew
192 #define outl writel
193 #endif
195 /* Offsets to registers, using the (ugh) SMC names. */
196 enum epic_registers {
197 COMMAND=0, INTSTAT=4, INTMASK=8, GENCTL=0x0C, NVCTL=0x10, EECTL=0x14,
198 PCIBurstCnt=0x18,
199 TEST1=0x1C, CRCCNT=0x20, ALICNT=0x24, MPCNT=0x28, /* Rx error counters. */
200 MIICtrl=0x30, MIIData=0x34, MIICfg=0x38,
201 LAN0=64, /* MAC address. */
202 MC0=80, /* Multicast filter table. */
203 RxCtrl=96, TxCtrl=112, TxSTAT=0x74,
204 PRxCDAR=0x84, RxSTAT=0xA4, EarlyRx=0xB0, PTxCDAR=0xC4, TxThresh=0xDC,
207 /* Interrupt register bits, using my own meaningful names. */
208 enum IntrStatus {
209 TxIdle=0x40000, RxIdle=0x20000, IntrSummary=0x010000,
210 PCIBusErr170=0x7000, PCIBusErr175=0x1000, PhyEvent175=0x8000,
211 RxStarted=0x0800, RxEarlyWarn=0x0400, CntFull=0x0200, TxUnderrun=0x0100,
212 TxEmpty=0x0080, TxDone=0x0020, RxError=0x0010,
213 RxOverflow=0x0008, RxFull=0x0004, RxHeader=0x0002, RxDone=0x0001,
215 enum CommandBits {
216 StopRx=1, StartRx=2, TxQueued=4, RxQueued=8,
217 StopTxDMA=0x20, StopRxDMA=0x40, RestartTx=0x80,
220 #define EpicRemoved 0xffffffff /* Chip failed or removed (CardBus) */
222 #define EpicNapiEvent (TxEmpty | TxDone | \
223 RxDone | RxStarted | RxEarlyWarn | RxOverflow | RxFull)
224 #define EpicNormalEvent (0x0000ffff & ~EpicNapiEvent)
226 static const u16 media2miictl[16] = {
227 0, 0x0C00, 0x0C00, 0x2000, 0x0100, 0x2100, 0, 0,
228 0, 0, 0, 0, 0, 0, 0, 0 };
231 * The EPIC100 Rx and Tx buffer descriptors. Note that these
232 * really ARE host-endian; it's not a misannotation. We tell
233 * the card to byteswap them internally on big-endian hosts -
234 * look for #ifdef CONFIG_BIG_ENDIAN in epic_open().
237 struct epic_tx_desc {
238 u32 txstatus;
239 u32 bufaddr;
240 u32 buflength;
241 u32 next;
244 struct epic_rx_desc {
245 u32 rxstatus;
246 u32 bufaddr;
247 u32 buflength;
248 u32 next;
251 enum desc_status_bits {
252 DescOwn=0x8000,
255 #define PRIV_ALIGN 15 /* Required alignment mask */
256 struct epic_private {
257 struct epic_rx_desc *rx_ring;
258 struct epic_tx_desc *tx_ring;
259 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
260 struct sk_buff* tx_skbuff[TX_RING_SIZE];
261 /* The addresses of receive-in-place skbuffs. */
262 struct sk_buff* rx_skbuff[RX_RING_SIZE];
264 dma_addr_t tx_ring_dma;
265 dma_addr_t rx_ring_dma;
267 /* Ring pointers. */
268 spinlock_t lock; /* Group with Tx control cache line. */
269 spinlock_t napi_lock;
270 struct napi_struct napi;
271 unsigned int reschedule_in_poll;
272 unsigned int cur_tx, dirty_tx;
274 unsigned int cur_rx, dirty_rx;
275 u32 irq_mask;
276 unsigned int rx_buf_sz; /* Based on MTU+slack. */
278 struct pci_dev *pci_dev; /* PCI bus location. */
279 int chip_id, chip_flags;
281 struct net_device_stats stats;
282 struct timer_list timer; /* Media selection timer. */
283 int tx_threshold;
284 unsigned char mc_filter[8];
285 signed char phys[4]; /* MII device addresses. */
286 u16 advertising; /* NWay media advertisement */
287 int mii_phy_cnt;
288 struct mii_if_info mii;
289 unsigned int tx_full:1; /* The Tx queue is full. */
290 unsigned int default_port:4; /* Last dev->if_port value. */
293 static int epic_open(struct net_device *dev);
294 static int read_eeprom(long ioaddr, int location);
295 static int mdio_read(struct net_device *dev, int phy_id, int location);
296 static void mdio_write(struct net_device *dev, int phy_id, int loc, int val);
297 static void epic_restart(struct net_device *dev);
298 static void epic_timer(unsigned long data);
299 static void epic_tx_timeout(struct net_device *dev);
300 static void epic_init_ring(struct net_device *dev);
301 static int epic_start_xmit(struct sk_buff *skb, struct net_device *dev);
302 static int epic_rx(struct net_device *dev, int budget);
303 static int epic_poll(struct napi_struct *napi, int budget);
304 static irqreturn_t epic_interrupt(int irq, void *dev_instance);
305 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
306 static const struct ethtool_ops netdev_ethtool_ops;
307 static int epic_close(struct net_device *dev);
308 static struct net_device_stats *epic_get_stats(struct net_device *dev);
309 static void set_rx_mode(struct net_device *dev);
313 static int __devinit epic_init_one (struct pci_dev *pdev,
314 const struct pci_device_id *ent)
316 static int card_idx = -1;
317 long ioaddr;
318 int chip_idx = (int) ent->driver_data;
319 int irq;
320 struct net_device *dev;
321 struct epic_private *ep;
322 int i, ret, option = 0, duplex = 0;
323 void *ring_space;
324 dma_addr_t ring_dma;
326 /* when built into the kernel, we only print version if device is found */
327 #ifndef MODULE
328 static int printed_version;
329 if (!printed_version++)
330 printk (KERN_INFO "%s" KERN_INFO "%s",
331 version, version2);
332 #endif
334 card_idx++;
336 ret = pci_enable_device(pdev);
337 if (ret)
338 goto out;
339 irq = pdev->irq;
341 if (pci_resource_len(pdev, 0) < EPIC_TOTAL_SIZE) {
342 dev_err(&pdev->dev, "no PCI region space\n");
343 ret = -ENODEV;
344 goto err_out_disable;
347 pci_set_master(pdev);
349 ret = pci_request_regions(pdev, DRV_NAME);
350 if (ret < 0)
351 goto err_out_disable;
353 ret = -ENOMEM;
355 dev = alloc_etherdev(sizeof (*ep));
356 if (!dev) {
357 dev_err(&pdev->dev, "no memory for eth device\n");
358 goto err_out_free_res;
360 SET_NETDEV_DEV(dev, &pdev->dev);
362 #ifdef USE_IO_OPS
363 ioaddr = pci_resource_start (pdev, 0);
364 #else
365 ioaddr = pci_resource_start (pdev, 1);
366 ioaddr = (long) pci_ioremap_bar(pdev, 1);
367 if (!ioaddr) {
368 dev_err(&pdev->dev, "ioremap failed\n");
369 goto err_out_free_netdev;
371 #endif
373 pci_set_drvdata(pdev, dev);
374 ep = netdev_priv(dev);
375 ep->mii.dev = dev;
376 ep->mii.mdio_read = mdio_read;
377 ep->mii.mdio_write = mdio_write;
378 ep->mii.phy_id_mask = 0x1f;
379 ep->mii.reg_num_mask = 0x1f;
381 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
382 if (!ring_space)
383 goto err_out_iounmap;
384 ep->tx_ring = (struct epic_tx_desc *)ring_space;
385 ep->tx_ring_dma = ring_dma;
387 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
388 if (!ring_space)
389 goto err_out_unmap_tx;
390 ep->rx_ring = (struct epic_rx_desc *)ring_space;
391 ep->rx_ring_dma = ring_dma;
393 if (dev->mem_start) {
394 option = dev->mem_start;
395 duplex = (dev->mem_start & 16) ? 1 : 0;
396 } else if (card_idx >= 0 && card_idx < MAX_UNITS) {
397 if (options[card_idx] >= 0)
398 option = options[card_idx];
399 if (full_duplex[card_idx] >= 0)
400 duplex = full_duplex[card_idx];
403 dev->base_addr = ioaddr;
404 dev->irq = irq;
406 spin_lock_init(&ep->lock);
407 spin_lock_init(&ep->napi_lock);
408 ep->reschedule_in_poll = 0;
410 /* Bring the chip out of low-power mode. */
411 outl(0x4200, ioaddr + GENCTL);
412 /* Magic?! If we don't set this bit the MII interface won't work. */
413 /* This magic is documented in SMSC app note 7.15 */
414 for (i = 16; i > 0; i--)
415 outl(0x0008, ioaddr + TEST1);
417 /* Turn on the MII transceiver. */
418 outl(0x12, ioaddr + MIICfg);
419 if (chip_idx == 1)
420 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
421 outl(0x0200, ioaddr + GENCTL);
423 /* Note: the '175 does not have a serial EEPROM. */
424 for (i = 0; i < 3; i++)
425 ((__le16 *)dev->dev_addr)[i] = cpu_to_le16(inw(ioaddr + LAN0 + i*4));
427 if (debug > 2) {
428 dev_printk(KERN_DEBUG, &pdev->dev, "EEPROM contents:\n");
429 for (i = 0; i < 64; i++)
430 printk(" %4.4x%s", read_eeprom(ioaddr, i),
431 i % 16 == 15 ? "\n" : "");
434 ep->pci_dev = pdev;
435 ep->chip_id = chip_idx;
436 ep->chip_flags = pci_id_tbl[chip_idx].drv_flags;
437 ep->irq_mask =
438 (ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
439 | CntFull | TxUnderrun | EpicNapiEvent;
441 /* Find the connected MII xcvrs.
442 Doing this in open() would allow detecting external xcvrs later, but
443 takes much time and no cards have external MII. */
445 int phy, phy_idx = 0;
446 for (phy = 1; phy < 32 && phy_idx < sizeof(ep->phys); phy++) {
447 int mii_status = mdio_read(dev, phy, MII_BMSR);
448 if (mii_status != 0xffff && mii_status != 0x0000) {
449 ep->phys[phy_idx++] = phy;
450 dev_info(&pdev->dev,
451 "MII transceiver #%d control "
452 "%4.4x status %4.4x.\n",
453 phy, mdio_read(dev, phy, 0), mii_status);
456 ep->mii_phy_cnt = phy_idx;
457 if (phy_idx != 0) {
458 phy = ep->phys[0];
459 ep->mii.advertising = mdio_read(dev, phy, MII_ADVERTISE);
460 dev_info(&pdev->dev,
461 "Autonegotiation advertising %4.4x link "
462 "partner %4.4x.\n",
463 ep->mii.advertising, mdio_read(dev, phy, 5));
464 } else if ( ! (ep->chip_flags & NO_MII)) {
465 dev_warn(&pdev->dev,
466 "***WARNING***: No MII transceiver found!\n");
467 /* Use the known PHY address of the EPII. */
468 ep->phys[0] = 3;
470 ep->mii.phy_id = ep->phys[0];
473 /* Turn off the MII xcvr (175 only!), leave the chip in low-power mode. */
474 if (ep->chip_flags & MII_PWRDWN)
475 outl(inl(ioaddr + NVCTL) & ~0x483C, ioaddr + NVCTL);
476 outl(0x0008, ioaddr + GENCTL);
478 /* The lower four bits are the media type. */
479 if (duplex) {
480 ep->mii.force_media = ep->mii.full_duplex = 1;
481 dev_info(&pdev->dev, "Forced full duplex requested.\n");
483 dev->if_port = ep->default_port = option;
485 /* The Epic-specific entries in the device structure. */
486 dev->open = &epic_open;
487 dev->hard_start_xmit = &epic_start_xmit;
488 dev->stop = &epic_close;
489 dev->get_stats = &epic_get_stats;
490 dev->set_multicast_list = &set_rx_mode;
491 dev->do_ioctl = &netdev_ioctl;
492 dev->ethtool_ops = &netdev_ethtool_ops;
493 dev->watchdog_timeo = TX_TIMEOUT;
494 dev->tx_timeout = &epic_tx_timeout;
495 netif_napi_add(dev, &ep->napi, epic_poll, 64);
497 ret = register_netdev(dev);
498 if (ret < 0)
499 goto err_out_unmap_rx;
501 printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %pM\n",
502 dev->name, pci_id_tbl[chip_idx].name, ioaddr, dev->irq,
503 dev->dev_addr);
505 out:
506 return ret;
508 err_out_unmap_rx:
509 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
510 err_out_unmap_tx:
511 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
512 err_out_iounmap:
513 #ifndef USE_IO_OPS
514 iounmap(ioaddr);
515 err_out_free_netdev:
516 #endif
517 free_netdev(dev);
518 err_out_free_res:
519 pci_release_regions(pdev);
520 err_out_disable:
521 pci_disable_device(pdev);
522 goto out;
525 /* Serial EEPROM section. */
527 /* EEPROM_Ctrl bits. */
528 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
529 #define EE_CS 0x02 /* EEPROM chip select. */
530 #define EE_DATA_WRITE 0x08 /* EEPROM chip data in. */
531 #define EE_WRITE_0 0x01
532 #define EE_WRITE_1 0x09
533 #define EE_DATA_READ 0x10 /* EEPROM chip data out. */
534 #define EE_ENB (0x0001 | EE_CS)
536 /* Delay between EEPROM clock transitions.
537 This serves to flush the operation to the PCI bus.
540 #define eeprom_delay() inl(ee_addr)
542 /* The EEPROM commands include the alway-set leading bit. */
543 #define EE_WRITE_CMD (5 << 6)
544 #define EE_READ64_CMD (6 << 6)
545 #define EE_READ256_CMD (6 << 8)
546 #define EE_ERASE_CMD (7 << 6)
548 static void epic_disable_int(struct net_device *dev, struct epic_private *ep)
550 long ioaddr = dev->base_addr;
552 outl(0x00000000, ioaddr + INTMASK);
555 static inline void __epic_pci_commit(long ioaddr)
557 #ifndef USE_IO_OPS
558 inl(ioaddr + INTMASK);
559 #endif
562 static inline void epic_napi_irq_off(struct net_device *dev,
563 struct epic_private *ep)
565 long ioaddr = dev->base_addr;
567 outl(ep->irq_mask & ~EpicNapiEvent, ioaddr + INTMASK);
568 __epic_pci_commit(ioaddr);
571 static inline void epic_napi_irq_on(struct net_device *dev,
572 struct epic_private *ep)
574 long ioaddr = dev->base_addr;
576 /* No need to commit possible posted write */
577 outl(ep->irq_mask | EpicNapiEvent, ioaddr + INTMASK);
580 static int __devinit read_eeprom(long ioaddr, int location)
582 int i;
583 int retval = 0;
584 long ee_addr = ioaddr + EECTL;
585 int read_cmd = location |
586 (inl(ee_addr) & 0x40 ? EE_READ64_CMD : EE_READ256_CMD);
588 outl(EE_ENB & ~EE_CS, ee_addr);
589 outl(EE_ENB, ee_addr);
591 /* Shift the read command bits out. */
592 for (i = 12; i >= 0; i--) {
593 short dataval = (read_cmd & (1 << i)) ? EE_WRITE_1 : EE_WRITE_0;
594 outl(EE_ENB | dataval, ee_addr);
595 eeprom_delay();
596 outl(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
597 eeprom_delay();
599 outl(EE_ENB, ee_addr);
601 for (i = 16; i > 0; i--) {
602 outl(EE_ENB | EE_SHIFT_CLK, ee_addr);
603 eeprom_delay();
604 retval = (retval << 1) | ((inl(ee_addr) & EE_DATA_READ) ? 1 : 0);
605 outl(EE_ENB, ee_addr);
606 eeprom_delay();
609 /* Terminate the EEPROM access. */
610 outl(EE_ENB & ~EE_CS, ee_addr);
611 return retval;
614 #define MII_READOP 1
615 #define MII_WRITEOP 2
616 static int mdio_read(struct net_device *dev, int phy_id, int location)
618 long ioaddr = dev->base_addr;
619 int read_cmd = (phy_id << 9) | (location << 4) | MII_READOP;
620 int i;
622 outl(read_cmd, ioaddr + MIICtrl);
623 /* Typical operation takes 25 loops. */
624 for (i = 400; i > 0; i--) {
625 barrier();
626 if ((inl(ioaddr + MIICtrl) & MII_READOP) == 0) {
627 /* Work around read failure bug. */
628 if (phy_id == 1 && location < 6
629 && inw(ioaddr + MIIData) == 0xffff) {
630 outl(read_cmd, ioaddr + MIICtrl);
631 continue;
633 return inw(ioaddr + MIIData);
636 return 0xffff;
639 static void mdio_write(struct net_device *dev, int phy_id, int loc, int value)
641 long ioaddr = dev->base_addr;
642 int i;
644 outw(value, ioaddr + MIIData);
645 outl((phy_id << 9) | (loc << 4) | MII_WRITEOP, ioaddr + MIICtrl);
646 for (i = 10000; i > 0; i--) {
647 barrier();
648 if ((inl(ioaddr + MIICtrl) & MII_WRITEOP) == 0)
649 break;
651 return;
655 static int epic_open(struct net_device *dev)
657 struct epic_private *ep = netdev_priv(dev);
658 long ioaddr = dev->base_addr;
659 int i;
660 int retval;
662 /* Soft reset the chip. */
663 outl(0x4001, ioaddr + GENCTL);
665 napi_enable(&ep->napi);
666 if ((retval = request_irq(dev->irq, &epic_interrupt, IRQF_SHARED, dev->name, dev))) {
667 napi_disable(&ep->napi);
668 return retval;
671 epic_init_ring(dev);
673 outl(0x4000, ioaddr + GENCTL);
674 /* This magic is documented in SMSC app note 7.15 */
675 for (i = 16; i > 0; i--)
676 outl(0x0008, ioaddr + TEST1);
678 /* Pull the chip out of low-power mode, enable interrupts, and set for
679 PCI read multiple. The MIIcfg setting and strange write order are
680 required by the details of which bits are reset and the transceiver
681 wiring on the Ositech CardBus card.
683 #if 0
684 outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
685 #endif
686 if (ep->chip_flags & MII_PWRDWN)
687 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
689 /* Tell the chip to byteswap descriptors on big-endian hosts */
690 #ifdef CONFIG_BIG_ENDIAN
691 outl(0x4432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
692 inl(ioaddr + GENCTL);
693 outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
694 #else
695 outl(0x4412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
696 inl(ioaddr + GENCTL);
697 outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
698 #endif
700 udelay(20); /* Looks like EPII needs that if you want reliable RX init. FIXME: pci posting bug? */
702 for (i = 0; i < 3; i++)
703 outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
705 ep->tx_threshold = TX_FIFO_THRESH;
706 outl(ep->tx_threshold, ioaddr + TxThresh);
708 if (media2miictl[dev->if_port & 15]) {
709 if (ep->mii_phy_cnt)
710 mdio_write(dev, ep->phys[0], MII_BMCR, media2miictl[dev->if_port&15]);
711 if (dev->if_port == 1) {
712 if (debug > 1)
713 printk(KERN_INFO "%s: Using the 10base2 transceiver, MII "
714 "status %4.4x.\n",
715 dev->name, mdio_read(dev, ep->phys[0], MII_BMSR));
717 } else {
718 int mii_lpa = mdio_read(dev, ep->phys[0], MII_LPA);
719 if (mii_lpa != 0xffff) {
720 if ((mii_lpa & LPA_100FULL) || (mii_lpa & 0x01C0) == LPA_10FULL)
721 ep->mii.full_duplex = 1;
722 else if (! (mii_lpa & LPA_LPACK))
723 mdio_write(dev, ep->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART);
724 if (debug > 1)
725 printk(KERN_INFO "%s: Setting %s-duplex based on MII xcvr %d"
726 " register read of %4.4x.\n", dev->name,
727 ep->mii.full_duplex ? "full" : "half",
728 ep->phys[0], mii_lpa);
732 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
733 outl(ep->rx_ring_dma, ioaddr + PRxCDAR);
734 outl(ep->tx_ring_dma, ioaddr + PTxCDAR);
736 /* Start the chip's Rx process. */
737 set_rx_mode(dev);
738 outl(StartRx | RxQueued, ioaddr + COMMAND);
740 netif_start_queue(dev);
742 /* Enable interrupts by setting the interrupt mask. */
743 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
744 | CntFull | TxUnderrun
745 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
747 if (debug > 1)
748 printk(KERN_DEBUG "%s: epic_open() ioaddr %lx IRQ %d status %4.4x "
749 "%s-duplex.\n",
750 dev->name, ioaddr, dev->irq, (int)inl(ioaddr + GENCTL),
751 ep->mii.full_duplex ? "full" : "half");
753 /* Set the timer to switch to check for link beat and perhaps switch
754 to an alternate media type. */
755 init_timer(&ep->timer);
756 ep->timer.expires = jiffies + 3*HZ;
757 ep->timer.data = (unsigned long)dev;
758 ep->timer.function = &epic_timer; /* timer handler */
759 add_timer(&ep->timer);
761 return 0;
764 /* Reset the chip to recover from a PCI transaction error.
765 This may occur at interrupt time. */
766 static void epic_pause(struct net_device *dev)
768 long ioaddr = dev->base_addr;
769 struct epic_private *ep = netdev_priv(dev);
771 netif_stop_queue (dev);
773 /* Disable interrupts by clearing the interrupt mask. */
774 outl(0x00000000, ioaddr + INTMASK);
775 /* Stop the chip's Tx and Rx DMA processes. */
776 outw(StopRx | StopTxDMA | StopRxDMA, ioaddr + COMMAND);
778 /* Update the error counts. */
779 if (inw(ioaddr + COMMAND) != 0xffff) {
780 ep->stats.rx_missed_errors += inb(ioaddr + MPCNT);
781 ep->stats.rx_frame_errors += inb(ioaddr + ALICNT);
782 ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
785 /* Remove the packets on the Rx queue. */
786 epic_rx(dev, RX_RING_SIZE);
789 static void epic_restart(struct net_device *dev)
791 long ioaddr = dev->base_addr;
792 struct epic_private *ep = netdev_priv(dev);
793 int i;
795 /* Soft reset the chip. */
796 outl(0x4001, ioaddr + GENCTL);
798 printk(KERN_DEBUG "%s: Restarting the EPIC chip, Rx %d/%d Tx %d/%d.\n",
799 dev->name, ep->cur_rx, ep->dirty_rx, ep->dirty_tx, ep->cur_tx);
800 udelay(1);
802 /* This magic is documented in SMSC app note 7.15 */
803 for (i = 16; i > 0; i--)
804 outl(0x0008, ioaddr + TEST1);
806 #ifdef CONFIG_BIG_ENDIAN
807 outl(0x0432 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
808 #else
809 outl(0x0412 | (RX_FIFO_THRESH<<8), ioaddr + GENCTL);
810 #endif
811 outl(dev->if_port == 1 ? 0x13 : 0x12, ioaddr + MIICfg);
812 if (ep->chip_flags & MII_PWRDWN)
813 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
815 for (i = 0; i < 3; i++)
816 outl(le16_to_cpu(((__le16*)dev->dev_addr)[i]), ioaddr + LAN0 + i*4);
818 ep->tx_threshold = TX_FIFO_THRESH;
819 outl(ep->tx_threshold, ioaddr + TxThresh);
820 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
821 outl(ep->rx_ring_dma + (ep->cur_rx%RX_RING_SIZE)*
822 sizeof(struct epic_rx_desc), ioaddr + PRxCDAR);
823 outl(ep->tx_ring_dma + (ep->dirty_tx%TX_RING_SIZE)*
824 sizeof(struct epic_tx_desc), ioaddr + PTxCDAR);
826 /* Start the chip's Rx process. */
827 set_rx_mode(dev);
828 outl(StartRx | RxQueued, ioaddr + COMMAND);
830 /* Enable interrupts by setting the interrupt mask. */
831 outl((ep->chip_flags & TYPE2_INTR ? PCIBusErr175 : PCIBusErr170)
832 | CntFull | TxUnderrun
833 | RxError | RxHeader | EpicNapiEvent, ioaddr + INTMASK);
835 printk(KERN_DEBUG "%s: epic_restart() done, cmd status %4.4x, ctl %4.4x"
836 " interrupt %4.4x.\n",
837 dev->name, (int)inl(ioaddr + COMMAND), (int)inl(ioaddr + GENCTL),
838 (int)inl(ioaddr + INTSTAT));
839 return;
842 static void check_media(struct net_device *dev)
844 struct epic_private *ep = netdev_priv(dev);
845 long ioaddr = dev->base_addr;
846 int mii_lpa = ep->mii_phy_cnt ? mdio_read(dev, ep->phys[0], MII_LPA) : 0;
847 int negotiated = mii_lpa & ep->mii.advertising;
848 int duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040;
850 if (ep->mii.force_media)
851 return;
852 if (mii_lpa == 0xffff) /* Bogus read */
853 return;
854 if (ep->mii.full_duplex != duplex) {
855 ep->mii.full_duplex = duplex;
856 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d link"
857 " partner capability of %4.4x.\n", dev->name,
858 ep->mii.full_duplex ? "full" : "half", ep->phys[0], mii_lpa);
859 outl(ep->mii.full_duplex ? 0x7F : 0x79, ioaddr + TxCtrl);
863 static void epic_timer(unsigned long data)
865 struct net_device *dev = (struct net_device *)data;
866 struct epic_private *ep = netdev_priv(dev);
867 long ioaddr = dev->base_addr;
868 int next_tick = 5*HZ;
870 if (debug > 3) {
871 printk(KERN_DEBUG "%s: Media monitor tick, Tx status %8.8x.\n",
872 dev->name, (int)inl(ioaddr + TxSTAT));
873 printk(KERN_DEBUG "%s: Other registers are IntMask %4.4x "
874 "IntStatus %4.4x RxStatus %4.4x.\n",
875 dev->name, (int)inl(ioaddr + INTMASK),
876 (int)inl(ioaddr + INTSTAT), (int)inl(ioaddr + RxSTAT));
879 check_media(dev);
881 ep->timer.expires = jiffies + next_tick;
882 add_timer(&ep->timer);
885 static void epic_tx_timeout(struct net_device *dev)
887 struct epic_private *ep = netdev_priv(dev);
888 long ioaddr = dev->base_addr;
890 if (debug > 0) {
891 printk(KERN_WARNING "%s: Transmit timeout using MII device, "
892 "Tx status %4.4x.\n",
893 dev->name, (int)inw(ioaddr + TxSTAT));
894 if (debug > 1) {
895 printk(KERN_DEBUG "%s: Tx indices: dirty_tx %d, cur_tx %d.\n",
896 dev->name, ep->dirty_tx, ep->cur_tx);
899 if (inw(ioaddr + TxSTAT) & 0x10) { /* Tx FIFO underflow. */
900 ep->stats.tx_fifo_errors++;
901 outl(RestartTx, ioaddr + COMMAND);
902 } else {
903 epic_restart(dev);
904 outl(TxQueued, dev->base_addr + COMMAND);
907 dev->trans_start = jiffies;
908 ep->stats.tx_errors++;
909 if (!ep->tx_full)
910 netif_wake_queue(dev);
913 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
914 static void epic_init_ring(struct net_device *dev)
916 struct epic_private *ep = netdev_priv(dev);
917 int i;
919 ep->tx_full = 0;
920 ep->dirty_tx = ep->cur_tx = 0;
921 ep->cur_rx = ep->dirty_rx = 0;
922 ep->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
924 /* Initialize all Rx descriptors. */
925 for (i = 0; i < RX_RING_SIZE; i++) {
926 ep->rx_ring[i].rxstatus = 0;
927 ep->rx_ring[i].buflength = ep->rx_buf_sz;
928 ep->rx_ring[i].next = ep->rx_ring_dma +
929 (i+1)*sizeof(struct epic_rx_desc);
930 ep->rx_skbuff[i] = NULL;
932 /* Mark the last entry as wrapping the ring. */
933 ep->rx_ring[i-1].next = ep->rx_ring_dma;
935 /* Fill in the Rx buffers. Handle allocation failure gracefully. */
936 for (i = 0; i < RX_RING_SIZE; i++) {
937 struct sk_buff *skb = dev_alloc_skb(ep->rx_buf_sz);
938 ep->rx_skbuff[i] = skb;
939 if (skb == NULL)
940 break;
941 skb_reserve(skb, 2); /* 16 byte align the IP header. */
942 ep->rx_ring[i].bufaddr = pci_map_single(ep->pci_dev,
943 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
944 ep->rx_ring[i].rxstatus = DescOwn;
946 ep->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
948 /* The Tx buffer descriptor is filled in as needed, but we
949 do need to clear the ownership bit. */
950 for (i = 0; i < TX_RING_SIZE; i++) {
951 ep->tx_skbuff[i] = NULL;
952 ep->tx_ring[i].txstatus = 0x0000;
953 ep->tx_ring[i].next = ep->tx_ring_dma +
954 (i+1)*sizeof(struct epic_tx_desc);
956 ep->tx_ring[i-1].next = ep->tx_ring_dma;
957 return;
960 static int epic_start_xmit(struct sk_buff *skb, struct net_device *dev)
962 struct epic_private *ep = netdev_priv(dev);
963 int entry, free_count;
964 u32 ctrl_word;
965 unsigned long flags;
967 if (skb_padto(skb, ETH_ZLEN))
968 return 0;
970 /* Caution: the write order is important here, set the field with the
971 "ownership" bit last. */
973 /* Calculate the next Tx descriptor entry. */
974 spin_lock_irqsave(&ep->lock, flags);
975 free_count = ep->cur_tx - ep->dirty_tx;
976 entry = ep->cur_tx % TX_RING_SIZE;
978 ep->tx_skbuff[entry] = skb;
979 ep->tx_ring[entry].bufaddr = pci_map_single(ep->pci_dev, skb->data,
980 skb->len, PCI_DMA_TODEVICE);
981 if (free_count < TX_QUEUE_LEN/2) {/* Typical path */
982 ctrl_word = 0x100000; /* No interrupt */
983 } else if (free_count == TX_QUEUE_LEN/2) {
984 ctrl_word = 0x140000; /* Tx-done intr. */
985 } else if (free_count < TX_QUEUE_LEN - 1) {
986 ctrl_word = 0x100000; /* No Tx-done intr. */
987 } else {
988 /* Leave room for an additional entry. */
989 ctrl_word = 0x140000; /* Tx-done intr. */
990 ep->tx_full = 1;
992 ep->tx_ring[entry].buflength = ctrl_word | skb->len;
993 ep->tx_ring[entry].txstatus =
994 ((skb->len >= ETH_ZLEN ? skb->len : ETH_ZLEN) << 16)
995 | DescOwn;
997 ep->cur_tx++;
998 if (ep->tx_full)
999 netif_stop_queue(dev);
1001 spin_unlock_irqrestore(&ep->lock, flags);
1002 /* Trigger an immediate transmit demand. */
1003 outl(TxQueued, dev->base_addr + COMMAND);
1005 dev->trans_start = jiffies;
1006 if (debug > 4)
1007 printk(KERN_DEBUG "%s: Queued Tx packet size %d to slot %d, "
1008 "flag %2.2x Tx status %8.8x.\n",
1009 dev->name, (int)skb->len, entry, ctrl_word,
1010 (int)inl(dev->base_addr + TxSTAT));
1012 return 0;
1015 static void epic_tx_error(struct net_device *dev, struct epic_private *ep,
1016 int status)
1018 struct net_device_stats *stats = &ep->stats;
1020 #ifndef final_version
1021 /* There was an major error, log it. */
1022 if (debug > 1)
1023 printk(KERN_DEBUG "%s: Transmit error, Tx status %8.8x.\n",
1024 dev->name, status);
1025 #endif
1026 stats->tx_errors++;
1027 if (status & 0x1050)
1028 stats->tx_aborted_errors++;
1029 if (status & 0x0008)
1030 stats->tx_carrier_errors++;
1031 if (status & 0x0040)
1032 stats->tx_window_errors++;
1033 if (status & 0x0010)
1034 stats->tx_fifo_errors++;
1037 static void epic_tx(struct net_device *dev, struct epic_private *ep)
1039 unsigned int dirty_tx, cur_tx;
1042 * Note: if this lock becomes a problem we can narrow the locked
1043 * region at the cost of occasionally grabbing the lock more times.
1045 cur_tx = ep->cur_tx;
1046 for (dirty_tx = ep->dirty_tx; cur_tx - dirty_tx > 0; dirty_tx++) {
1047 struct sk_buff *skb;
1048 int entry = dirty_tx % TX_RING_SIZE;
1049 int txstatus = ep->tx_ring[entry].txstatus;
1051 if (txstatus & DescOwn)
1052 break; /* It still hasn't been Txed */
1054 if (likely(txstatus & 0x0001)) {
1055 ep->stats.collisions += (txstatus >> 8) & 15;
1056 ep->stats.tx_packets++;
1057 ep->stats.tx_bytes += ep->tx_skbuff[entry]->len;
1058 } else
1059 epic_tx_error(dev, ep, txstatus);
1061 /* Free the original skb. */
1062 skb = ep->tx_skbuff[entry];
1063 pci_unmap_single(ep->pci_dev, ep->tx_ring[entry].bufaddr,
1064 skb->len, PCI_DMA_TODEVICE);
1065 dev_kfree_skb_irq(skb);
1066 ep->tx_skbuff[entry] = NULL;
1069 #ifndef final_version
1070 if (cur_tx - dirty_tx > TX_RING_SIZE) {
1071 printk(KERN_WARNING
1072 "%s: Out-of-sync dirty pointer, %d vs. %d, full=%d.\n",
1073 dev->name, dirty_tx, cur_tx, ep->tx_full);
1074 dirty_tx += TX_RING_SIZE;
1076 #endif
1077 ep->dirty_tx = dirty_tx;
1078 if (ep->tx_full && cur_tx - dirty_tx < TX_QUEUE_LEN - 4) {
1079 /* The ring is no longer full, allow new TX entries. */
1080 ep->tx_full = 0;
1081 netif_wake_queue(dev);
1085 /* The interrupt handler does all of the Rx thread work and cleans up
1086 after the Tx thread. */
1087 static irqreturn_t epic_interrupt(int irq, void *dev_instance)
1089 struct net_device *dev = dev_instance;
1090 struct epic_private *ep = netdev_priv(dev);
1091 long ioaddr = dev->base_addr;
1092 unsigned int handled = 0;
1093 int status;
1095 status = inl(ioaddr + INTSTAT);
1096 /* Acknowledge all of the current interrupt sources ASAP. */
1097 outl(status & EpicNormalEvent, ioaddr + INTSTAT);
1099 if (debug > 4) {
1100 printk(KERN_DEBUG "%s: Interrupt, status=%#8.8x new "
1101 "intstat=%#8.8x.\n", dev->name, status,
1102 (int)inl(ioaddr + INTSTAT));
1105 if ((status & IntrSummary) == 0)
1106 goto out;
1108 handled = 1;
1110 if ((status & EpicNapiEvent) && !ep->reschedule_in_poll) {
1111 spin_lock(&ep->napi_lock);
1112 if (netif_rx_schedule_prep(&ep->napi)) {
1113 epic_napi_irq_off(dev, ep);
1114 __netif_rx_schedule(&ep->napi);
1115 } else
1116 ep->reschedule_in_poll++;
1117 spin_unlock(&ep->napi_lock);
1119 status &= ~EpicNapiEvent;
1121 /* Check uncommon events all at once. */
1122 if (status & (CntFull | TxUnderrun | PCIBusErr170 | PCIBusErr175)) {
1123 if (status == EpicRemoved)
1124 goto out;
1126 /* Always update the error counts to avoid overhead later. */
1127 ep->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1128 ep->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1129 ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1131 if (status & TxUnderrun) { /* Tx FIFO underflow. */
1132 ep->stats.tx_fifo_errors++;
1133 outl(ep->tx_threshold += 128, ioaddr + TxThresh);
1134 /* Restart the transmit process. */
1135 outl(RestartTx, ioaddr + COMMAND);
1137 if (status & PCIBusErr170) {
1138 printk(KERN_ERR "%s: PCI Bus Error! status %4.4x.\n",
1139 dev->name, status);
1140 epic_pause(dev);
1141 epic_restart(dev);
1143 /* Clear all error sources. */
1144 outl(status & 0x7f18, ioaddr + INTSTAT);
1147 out:
1148 if (debug > 3) {
1149 printk(KERN_DEBUG "%s: exit interrupt, intr_status=%#4.4x.\n",
1150 dev->name, status);
1153 return IRQ_RETVAL(handled);
1156 static int epic_rx(struct net_device *dev, int budget)
1158 struct epic_private *ep = netdev_priv(dev);
1159 int entry = ep->cur_rx % RX_RING_SIZE;
1160 int rx_work_limit = ep->dirty_rx + RX_RING_SIZE - ep->cur_rx;
1161 int work_done = 0;
1163 if (debug > 4)
1164 printk(KERN_DEBUG " In epic_rx(), entry %d %8.8x.\n", entry,
1165 ep->rx_ring[entry].rxstatus);
1167 if (rx_work_limit > budget)
1168 rx_work_limit = budget;
1170 /* If we own the next entry, it's a new packet. Send it up. */
1171 while ((ep->rx_ring[entry].rxstatus & DescOwn) == 0) {
1172 int status = ep->rx_ring[entry].rxstatus;
1174 if (debug > 4)
1175 printk(KERN_DEBUG " epic_rx() status was %8.8x.\n", status);
1176 if (--rx_work_limit < 0)
1177 break;
1178 if (status & 0x2006) {
1179 if (debug > 2)
1180 printk(KERN_DEBUG "%s: epic_rx() error status was %8.8x.\n",
1181 dev->name, status);
1182 if (status & 0x2000) {
1183 printk(KERN_WARNING "%s: Oversized Ethernet frame spanned "
1184 "multiple buffers, status %4.4x!\n", dev->name, status);
1185 ep->stats.rx_length_errors++;
1186 } else if (status & 0x0006)
1187 /* Rx Frame errors are counted in hardware. */
1188 ep->stats.rx_errors++;
1189 } else {
1190 /* Malloc up new buffer, compatible with net-2e. */
1191 /* Omit the four octet CRC from the length. */
1192 short pkt_len = (status >> 16) - 4;
1193 struct sk_buff *skb;
1195 if (pkt_len > PKT_BUF_SZ - 4) {
1196 printk(KERN_ERR "%s: Oversized Ethernet frame, status %x "
1197 "%d bytes.\n",
1198 dev->name, status, pkt_len);
1199 pkt_len = 1514;
1201 /* Check if the packet is long enough to accept without copying
1202 to a minimally-sized skbuff. */
1203 if (pkt_len < rx_copybreak
1204 && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
1205 skb_reserve(skb, 2); /* 16 byte align the IP header */
1206 pci_dma_sync_single_for_cpu(ep->pci_dev,
1207 ep->rx_ring[entry].bufaddr,
1208 ep->rx_buf_sz,
1209 PCI_DMA_FROMDEVICE);
1210 skb_copy_to_linear_data(skb, ep->rx_skbuff[entry]->data, pkt_len);
1211 skb_put(skb, pkt_len);
1212 pci_dma_sync_single_for_device(ep->pci_dev,
1213 ep->rx_ring[entry].bufaddr,
1214 ep->rx_buf_sz,
1215 PCI_DMA_FROMDEVICE);
1216 } else {
1217 pci_unmap_single(ep->pci_dev,
1218 ep->rx_ring[entry].bufaddr,
1219 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1220 skb_put(skb = ep->rx_skbuff[entry], pkt_len);
1221 ep->rx_skbuff[entry] = NULL;
1223 skb->protocol = eth_type_trans(skb, dev);
1224 netif_receive_skb(skb);
1225 ep->stats.rx_packets++;
1226 ep->stats.rx_bytes += pkt_len;
1228 work_done++;
1229 entry = (++ep->cur_rx) % RX_RING_SIZE;
1232 /* Refill the Rx ring buffers. */
1233 for (; ep->cur_rx - ep->dirty_rx > 0; ep->dirty_rx++) {
1234 entry = ep->dirty_rx % RX_RING_SIZE;
1235 if (ep->rx_skbuff[entry] == NULL) {
1236 struct sk_buff *skb;
1237 skb = ep->rx_skbuff[entry] = dev_alloc_skb(ep->rx_buf_sz);
1238 if (skb == NULL)
1239 break;
1240 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1241 ep->rx_ring[entry].bufaddr = pci_map_single(ep->pci_dev,
1242 skb->data, ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1243 work_done++;
1245 /* AV: shouldn't we add a barrier here? */
1246 ep->rx_ring[entry].rxstatus = DescOwn;
1248 return work_done;
1251 static void epic_rx_err(struct net_device *dev, struct epic_private *ep)
1253 long ioaddr = dev->base_addr;
1254 int status;
1256 status = inl(ioaddr + INTSTAT);
1258 if (status == EpicRemoved)
1259 return;
1260 if (status & RxOverflow) /* Missed a Rx frame. */
1261 ep->stats.rx_errors++;
1262 if (status & (RxOverflow | RxFull))
1263 outw(RxQueued, ioaddr + COMMAND);
1266 static int epic_poll(struct napi_struct *napi, int budget)
1268 struct epic_private *ep = container_of(napi, struct epic_private, napi);
1269 struct net_device *dev = ep->mii.dev;
1270 int work_done = 0;
1271 long ioaddr = dev->base_addr;
1273 rx_action:
1275 epic_tx(dev, ep);
1277 work_done += epic_rx(dev, budget);
1279 epic_rx_err(dev, ep);
1281 if (work_done < budget) {
1282 unsigned long flags;
1283 int more;
1285 /* A bit baroque but it avoids a (space hungry) spin_unlock */
1287 spin_lock_irqsave(&ep->napi_lock, flags);
1289 more = ep->reschedule_in_poll;
1290 if (!more) {
1291 __netif_rx_complete(napi);
1292 outl(EpicNapiEvent, ioaddr + INTSTAT);
1293 epic_napi_irq_on(dev, ep);
1294 } else
1295 ep->reschedule_in_poll--;
1297 spin_unlock_irqrestore(&ep->napi_lock, flags);
1299 if (more)
1300 goto rx_action;
1303 return work_done;
1306 static int epic_close(struct net_device *dev)
1308 long ioaddr = dev->base_addr;
1309 struct epic_private *ep = netdev_priv(dev);
1310 struct sk_buff *skb;
1311 int i;
1313 netif_stop_queue(dev);
1314 napi_disable(&ep->napi);
1316 if (debug > 1)
1317 printk(KERN_DEBUG "%s: Shutting down ethercard, status was %2.2x.\n",
1318 dev->name, (int)inl(ioaddr + INTSTAT));
1320 del_timer_sync(&ep->timer);
1322 epic_disable_int(dev, ep);
1324 free_irq(dev->irq, dev);
1326 epic_pause(dev);
1328 /* Free all the skbuffs in the Rx queue. */
1329 for (i = 0; i < RX_RING_SIZE; i++) {
1330 skb = ep->rx_skbuff[i];
1331 ep->rx_skbuff[i] = NULL;
1332 ep->rx_ring[i].rxstatus = 0; /* Not owned by Epic chip. */
1333 ep->rx_ring[i].buflength = 0;
1334 if (skb) {
1335 pci_unmap_single(ep->pci_dev, ep->rx_ring[i].bufaddr,
1336 ep->rx_buf_sz, PCI_DMA_FROMDEVICE);
1337 dev_kfree_skb(skb);
1339 ep->rx_ring[i].bufaddr = 0xBADF00D0; /* An invalid address. */
1341 for (i = 0; i < TX_RING_SIZE; i++) {
1342 skb = ep->tx_skbuff[i];
1343 ep->tx_skbuff[i] = NULL;
1344 if (!skb)
1345 continue;
1346 pci_unmap_single(ep->pci_dev, ep->tx_ring[i].bufaddr,
1347 skb->len, PCI_DMA_TODEVICE);
1348 dev_kfree_skb(skb);
1351 /* Green! Leave the chip in low-power mode. */
1352 outl(0x0008, ioaddr + GENCTL);
1354 return 0;
1357 static struct net_device_stats *epic_get_stats(struct net_device *dev)
1359 struct epic_private *ep = netdev_priv(dev);
1360 long ioaddr = dev->base_addr;
1362 if (netif_running(dev)) {
1363 /* Update the error counts. */
1364 ep->stats.rx_missed_errors += inb(ioaddr + MPCNT);
1365 ep->stats.rx_frame_errors += inb(ioaddr + ALICNT);
1366 ep->stats.rx_crc_errors += inb(ioaddr + CRCCNT);
1369 return &ep->stats;
1372 /* Set or clear the multicast filter for this adaptor.
1373 Note that we only use exclusion around actually queueing the
1374 new frame, not around filling ep->setup_frame. This is non-deterministic
1375 when re-entered but still correct. */
1377 static void set_rx_mode(struct net_device *dev)
1379 long ioaddr = dev->base_addr;
1380 struct epic_private *ep = netdev_priv(dev);
1381 unsigned char mc_filter[8]; /* Multicast hash filter */
1382 int i;
1384 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1385 outl(0x002C, ioaddr + RxCtrl);
1386 /* Unconditionally log net taps. */
1387 memset(mc_filter, 0xff, sizeof(mc_filter));
1388 } else if ((dev->mc_count > 0) || (dev->flags & IFF_ALLMULTI)) {
1389 /* There is apparently a chip bug, so the multicast filter
1390 is never enabled. */
1391 /* Too many to filter perfectly -- accept all multicasts. */
1392 memset(mc_filter, 0xff, sizeof(mc_filter));
1393 outl(0x000C, ioaddr + RxCtrl);
1394 } else if (dev->mc_count == 0) {
1395 outl(0x0004, ioaddr + RxCtrl);
1396 return;
1397 } else { /* Never executed, for now. */
1398 struct dev_mc_list *mclist;
1400 memset(mc_filter, 0, sizeof(mc_filter));
1401 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
1402 i++, mclist = mclist->next) {
1403 unsigned int bit_nr =
1404 ether_crc_le(ETH_ALEN, mclist->dmi_addr) & 0x3f;
1405 mc_filter[bit_nr >> 3] |= (1 << bit_nr);
1408 /* ToDo: perhaps we need to stop the Tx and Rx process here? */
1409 if (memcmp(mc_filter, ep->mc_filter, sizeof(mc_filter))) {
1410 for (i = 0; i < 4; i++)
1411 outw(((u16 *)mc_filter)[i], ioaddr + MC0 + i*4);
1412 memcpy(ep->mc_filter, mc_filter, sizeof(mc_filter));
1414 return;
1417 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1419 struct epic_private *np = netdev_priv(dev);
1421 strcpy (info->driver, DRV_NAME);
1422 strcpy (info->version, DRV_VERSION);
1423 strcpy (info->bus_info, pci_name(np->pci_dev));
1426 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1428 struct epic_private *np = netdev_priv(dev);
1429 int rc;
1431 spin_lock_irq(&np->lock);
1432 rc = mii_ethtool_gset(&np->mii, cmd);
1433 spin_unlock_irq(&np->lock);
1435 return rc;
1438 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1440 struct epic_private *np = netdev_priv(dev);
1441 int rc;
1443 spin_lock_irq(&np->lock);
1444 rc = mii_ethtool_sset(&np->mii, cmd);
1445 spin_unlock_irq(&np->lock);
1447 return rc;
1450 static int netdev_nway_reset(struct net_device *dev)
1452 struct epic_private *np = netdev_priv(dev);
1453 return mii_nway_restart(&np->mii);
1456 static u32 netdev_get_link(struct net_device *dev)
1458 struct epic_private *np = netdev_priv(dev);
1459 return mii_link_ok(&np->mii);
1462 static u32 netdev_get_msglevel(struct net_device *dev)
1464 return debug;
1467 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1469 debug = value;
1472 static int ethtool_begin(struct net_device *dev)
1474 unsigned long ioaddr = dev->base_addr;
1475 /* power-up, if interface is down */
1476 if (! netif_running(dev)) {
1477 outl(0x0200, ioaddr + GENCTL);
1478 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1480 return 0;
1483 static void ethtool_complete(struct net_device *dev)
1485 unsigned long ioaddr = dev->base_addr;
1486 /* power-down, if interface is down */
1487 if (! netif_running(dev)) {
1488 outl(0x0008, ioaddr + GENCTL);
1489 outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1493 static const struct ethtool_ops netdev_ethtool_ops = {
1494 .get_drvinfo = netdev_get_drvinfo,
1495 .get_settings = netdev_get_settings,
1496 .set_settings = netdev_set_settings,
1497 .nway_reset = netdev_nway_reset,
1498 .get_link = netdev_get_link,
1499 .get_msglevel = netdev_get_msglevel,
1500 .set_msglevel = netdev_set_msglevel,
1501 .begin = ethtool_begin,
1502 .complete = ethtool_complete
1505 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1507 struct epic_private *np = netdev_priv(dev);
1508 long ioaddr = dev->base_addr;
1509 struct mii_ioctl_data *data = if_mii(rq);
1510 int rc;
1512 /* power-up, if interface is down */
1513 if (! netif_running(dev)) {
1514 outl(0x0200, ioaddr + GENCTL);
1515 outl((inl(ioaddr + NVCTL) & ~0x003C) | 0x4800, ioaddr + NVCTL);
1518 /* all non-ethtool ioctls (the SIOC[GS]MIIxxx ioctls) */
1519 spin_lock_irq(&np->lock);
1520 rc = generic_mii_ioctl(&np->mii, data, cmd, NULL);
1521 spin_unlock_irq(&np->lock);
1523 /* power-down, if interface is down */
1524 if (! netif_running(dev)) {
1525 outl(0x0008, ioaddr + GENCTL);
1526 outl((inl(ioaddr + NVCTL) & ~0x483C) | 0x0000, ioaddr + NVCTL);
1528 return rc;
1532 static void __devexit epic_remove_one (struct pci_dev *pdev)
1534 struct net_device *dev = pci_get_drvdata(pdev);
1535 struct epic_private *ep = netdev_priv(dev);
1537 pci_free_consistent(pdev, TX_TOTAL_SIZE, ep->tx_ring, ep->tx_ring_dma);
1538 pci_free_consistent(pdev, RX_TOTAL_SIZE, ep->rx_ring, ep->rx_ring_dma);
1539 unregister_netdev(dev);
1540 #ifndef USE_IO_OPS
1541 iounmap((void*) dev->base_addr);
1542 #endif
1543 pci_release_regions(pdev);
1544 free_netdev(dev);
1545 pci_disable_device(pdev);
1546 pci_set_drvdata(pdev, NULL);
1547 /* pci_power_off(pdev, -1); */
1551 #ifdef CONFIG_PM
1553 static int epic_suspend (struct pci_dev *pdev, pm_message_t state)
1555 struct net_device *dev = pci_get_drvdata(pdev);
1556 long ioaddr = dev->base_addr;
1558 if (!netif_running(dev))
1559 return 0;
1560 epic_pause(dev);
1561 /* Put the chip into low-power mode. */
1562 outl(0x0008, ioaddr + GENCTL);
1563 /* pci_power_off(pdev, -1); */
1564 return 0;
1568 static int epic_resume (struct pci_dev *pdev)
1570 struct net_device *dev = pci_get_drvdata(pdev);
1572 if (!netif_running(dev))
1573 return 0;
1574 epic_restart(dev);
1575 /* pci_power_on(pdev); */
1576 return 0;
1579 #endif /* CONFIG_PM */
1582 static struct pci_driver epic_driver = {
1583 .name = DRV_NAME,
1584 .id_table = epic_pci_tbl,
1585 .probe = epic_init_one,
1586 .remove = __devexit_p(epic_remove_one),
1587 #ifdef CONFIG_PM
1588 .suspend = epic_suspend,
1589 .resume = epic_resume,
1590 #endif /* CONFIG_PM */
1594 static int __init epic_init (void)
1596 /* when a module, this is printed whether or not devices are found in probe */
1597 #ifdef MODULE
1598 printk (KERN_INFO "%s" KERN_INFO "%s",
1599 version, version2);
1600 #endif
1602 return pci_register_driver(&epic_driver);
1606 static void __exit epic_cleanup (void)
1608 pci_unregister_driver (&epic_driver);
1612 module_init(epic_init);
1613 module_exit(epic_cleanup);