2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
46 * struct regulatory_request - receipt of last regulatory request
48 * @wiphy: this is set if this request's initiator is
49 * %REGDOM_SET_BY_COUNTRY_IE or %REGDOM_SET_BY_DRIVER. This
50 * can be used by the wireless core to deal with conflicts
51 * and potentially inform users of which devices specifically
52 * cased the conflicts.
53 * @initiator: indicates who sent this request, could be any of
54 * of those set in reg_set_by, %REGDOM_SET_BY_*
55 * @alpha2: the ISO / IEC 3166 alpha2 country code of the requested
56 * regulatory domain. We have a few special codes:
57 * 00 - World regulatory domain
58 * 99 - built by driver but a specific alpha2 cannot be determined
59 * 98 - result of an intersection between two regulatory domains
60 * @intersect: indicates whether the wireless core should intersect
61 * the requested regulatory domain with the presently set regulatory
63 * @country_ie_checksum: checksum of the last processed and accepted
65 * @country_ie_env: lets us know if the AP is telling us we are outdoor,
66 * indoor, or if it doesn't matter
68 struct regulatory_request
{
70 enum reg_set_by initiator
;
73 u32 country_ie_checksum
;
74 enum environment_cap country_ie_env
;
77 /* Receipt of information from last regulatory request */
78 static struct regulatory_request
*last_request
;
80 /* To trigger userspace events */
81 static struct platform_device
*reg_pdev
;
83 /* Keep the ordering from large to small */
84 static u32 supported_bandwidths
[] = {
89 /* Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2 */
92 static const struct ieee80211_regdomain
*cfg80211_regdomain
;
94 /* We use this as a place for the rd structure built from the
95 * last parsed country IE to rest until CRDA gets back to us with
96 * what it thinks should apply for the same country */
97 static const struct ieee80211_regdomain
*country_ie_regdomain
;
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom
= {
104 REG_RULE(2412-10, 2462+10, 40, 6, 20,
105 NL80211_RRF_PASSIVE_SCAN
|
106 NL80211_RRF_NO_IBSS
),
110 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
113 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
114 static char *ieee80211_regdom
= "US";
115 module_param(ieee80211_regdom
, charp
, 0444);
116 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
118 /* We assume 40 MHz bandwidth for the old regulatory work.
119 * We make emphasis we are using the exact same frequencies
122 static const struct ieee80211_regdomain us_regdom
= {
126 /* IEEE 802.11b/g, channels 1..11 */
127 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
128 /* IEEE 802.11a, channel 36 */
129 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
130 /* IEEE 802.11a, channel 40 */
131 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
132 /* IEEE 802.11a, channel 44 */
133 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
134 /* IEEE 802.11a, channels 48..64 */
135 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
136 /* IEEE 802.11a, channels 149..165, outdoor */
137 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
141 static const struct ieee80211_regdomain jp_regdom
= {
145 /* IEEE 802.11b/g, channels 1..14 */
146 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
147 /* IEEE 802.11a, channels 34..48 */
148 REG_RULE(5170-10, 5240+10, 40, 6, 20,
149 NL80211_RRF_PASSIVE_SCAN
),
150 /* IEEE 802.11a, channels 52..64 */
151 REG_RULE(5260-10, 5320+10, 40, 6, 20,
152 NL80211_RRF_NO_IBSS
|
157 static const struct ieee80211_regdomain eu_regdom
= {
159 /* This alpha2 is bogus, we leave it here just for stupid
160 * backward compatibility */
163 /* IEEE 802.11b/g, channels 1..13 */
164 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
165 /* IEEE 802.11a, channel 36 */
166 REG_RULE(5180-10, 5180+10, 40, 6, 23,
167 NL80211_RRF_PASSIVE_SCAN
),
168 /* IEEE 802.11a, channel 40 */
169 REG_RULE(5200-10, 5200+10, 40, 6, 23,
170 NL80211_RRF_PASSIVE_SCAN
),
171 /* IEEE 802.11a, channel 44 */
172 REG_RULE(5220-10, 5220+10, 40, 6, 23,
173 NL80211_RRF_PASSIVE_SCAN
),
174 /* IEEE 802.11a, channels 48..64 */
175 REG_RULE(5240-10, 5320+10, 40, 6, 20,
176 NL80211_RRF_NO_IBSS
|
178 /* IEEE 802.11a, channels 100..140 */
179 REG_RULE(5500-10, 5700+10, 40, 6, 30,
180 NL80211_RRF_NO_IBSS
|
185 static const struct ieee80211_regdomain
*static_regdom(char *alpha2
)
187 if (alpha2
[0] == 'U' && alpha2
[1] == 'S')
189 if (alpha2
[0] == 'J' && alpha2
[1] == 'P')
191 if (alpha2
[0] == 'E' && alpha2
[1] == 'U')
193 /* Default, as per the old rules */
197 static bool is_old_static_regdom(const struct ieee80211_regdomain
*rd
)
199 if (rd
== &us_regdom
|| rd
== &jp_regdom
|| rd
== &eu_regdom
)
204 static inline bool is_old_static_regdom(const struct ieee80211_regdomain
*rd
)
210 static void reset_regdomains(void)
212 /* avoid freeing static information or freeing something twice */
213 if (cfg80211_regdomain
== cfg80211_world_regdom
)
214 cfg80211_regdomain
= NULL
;
215 if (cfg80211_world_regdom
== &world_regdom
)
216 cfg80211_world_regdom
= NULL
;
217 if (cfg80211_regdomain
== &world_regdom
)
218 cfg80211_regdomain
= NULL
;
219 if (is_old_static_regdom(cfg80211_regdomain
))
220 cfg80211_regdomain
= NULL
;
222 kfree(cfg80211_regdomain
);
223 kfree(cfg80211_world_regdom
);
225 cfg80211_world_regdom
= &world_regdom
;
226 cfg80211_regdomain
= NULL
;
229 /* Dynamic world regulatory domain requested by the wireless
230 * core upon initialization */
231 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
233 BUG_ON(!last_request
);
237 cfg80211_world_regdom
= rd
;
238 cfg80211_regdomain
= rd
;
241 bool is_world_regdom(const char *alpha2
)
245 if (alpha2
[0] == '0' && alpha2
[1] == '0')
250 static bool is_alpha2_set(const char *alpha2
)
254 if (alpha2
[0] != 0 && alpha2
[1] != 0)
259 static bool is_alpha_upper(char letter
)
262 if (letter
>= 65 && letter
<= 90)
267 static bool is_unknown_alpha2(const char *alpha2
)
271 /* Special case where regulatory domain was built by driver
272 * but a specific alpha2 cannot be determined */
273 if (alpha2
[0] == '9' && alpha2
[1] == '9')
278 static bool is_intersected_alpha2(const char *alpha2
)
282 /* Special case where regulatory domain is the
283 * result of an intersection between two regulatory domain
285 if (alpha2
[0] == '9' && alpha2
[1] == '8')
290 static bool is_an_alpha2(const char *alpha2
)
294 if (is_alpha_upper(alpha2
[0]) && is_alpha_upper(alpha2
[1]))
299 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
301 if (!alpha2_x
|| !alpha2_y
)
303 if (alpha2_x
[0] == alpha2_y
[0] &&
304 alpha2_x
[1] == alpha2_y
[1])
309 static bool regdom_changed(const char *alpha2
)
311 if (!cfg80211_regdomain
)
313 if (alpha2_equal(cfg80211_regdomain
->alpha2
, alpha2
))
319 * country_ie_integrity_changes - tells us if the country IE has changed
320 * @checksum: checksum of country IE of fields we are interested in
322 * If the country IE has not changed you can ignore it safely. This is
323 * useful to determine if two devices are seeing two different country IEs
324 * even on the same alpha2. Note that this will return false if no IE has
325 * been set on the wireless core yet.
327 static bool country_ie_integrity_changes(u32 checksum
)
329 /* If no IE has been set then the checksum doesn't change */
330 if (unlikely(!last_request
->country_ie_checksum
))
332 if (unlikely(last_request
->country_ie_checksum
!= checksum
))
337 /* This lets us keep regulatory code which is updated on a regulatory
338 * basis in userspace. */
339 static int call_crda(const char *alpha2
)
341 char country_env
[9 + 2] = "COUNTRY=";
347 if (!is_world_regdom((char *) alpha2
))
348 printk(KERN_INFO
"cfg80211: Calling CRDA for country: %c%c\n",
349 alpha2
[0], alpha2
[1]);
351 printk(KERN_INFO
"cfg80211: Calling CRDA to update world "
352 "regulatory domain\n");
354 country_env
[8] = alpha2
[0];
355 country_env
[9] = alpha2
[1];
357 return kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, envp
);
360 /* Used by nl80211 before kmalloc'ing our regulatory domain */
361 bool reg_is_valid_request(const char *alpha2
)
366 return alpha2_equal(last_request
->alpha2
, alpha2
);
369 /* Sanity check on a regulatory rule */
370 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
372 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
375 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
378 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
381 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
383 if (freq_diff
<= 0 || freq_range
->max_bandwidth_khz
> freq_diff
)
389 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
391 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
394 if (!rd
->n_reg_rules
)
397 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
400 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
401 reg_rule
= &rd
->reg_rules
[i
];
402 if (!is_valid_reg_rule(reg_rule
))
409 /* Returns value in KHz */
410 static u32
freq_max_bandwidth(const struct ieee80211_freq_range
*freq_range
,
414 for (i
= 0; i
< ARRAY_SIZE(supported_bandwidths
); i
++) {
415 u32 start_freq_khz
= freq
- supported_bandwidths
[i
]/2;
416 u32 end_freq_khz
= freq
+ supported_bandwidths
[i
]/2;
417 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
418 end_freq_khz
<= freq_range
->end_freq_khz
)
419 return supported_bandwidths
[i
];
425 * freq_in_rule_band - tells us if a frequency is in a frequency band
426 * @freq_range: frequency rule we want to query
427 * @freq_khz: frequency we are inquiring about
429 * This lets us know if a specific frequency rule is or is not relevant to
430 * a specific frequency's band. Bands are device specific and artificial
431 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
432 * safe for now to assume that a frequency rule should not be part of a
433 * frequency's band if the start freq or end freq are off by more than 2 GHz.
434 * This resolution can be lowered and should be considered as we add
435 * regulatory rule support for other "bands".
437 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
440 #define ONE_GHZ_IN_KHZ 1000000
441 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
443 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
446 #undef ONE_GHZ_IN_KHZ
449 /* Converts a country IE to a regulatory domain. A regulatory domain
450 * structure has a lot of information which the IE doesn't yet have,
451 * so for the other values we use upper max values as we will intersect
452 * with our userspace regulatory agent to get lower bounds. */
453 static struct ieee80211_regdomain
*country_ie_2_rd(
458 struct ieee80211_regdomain
*rd
= NULL
;
462 u32 num_rules
= 0, size_of_regd
= 0;
463 u8
*triplets_start
= NULL
;
464 u8 len_at_triplet
= 0;
465 /* the last channel we have registered in a subband (triplet) */
466 int last_sub_max_channel
= 0;
468 *checksum
= 0xDEADBEEF;
470 /* Country IE requirements */
471 BUG_ON(country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
||
472 country_ie_len
& 0x01);
474 alpha2
[0] = country_ie
[0];
475 alpha2
[1] = country_ie
[1];
478 * Third octet can be:
482 * anything else we assume is no restrictions
484 if (country_ie
[2] == 'I')
485 flags
= NL80211_RRF_NO_OUTDOOR
;
486 else if (country_ie
[2] == 'O')
487 flags
= NL80211_RRF_NO_INDOOR
;
492 triplets_start
= country_ie
;
493 len_at_triplet
= country_ie_len
;
495 *checksum
^= ((flags
^ alpha2
[0] ^ alpha2
[1]) << 8);
497 /* We need to build a reg rule for each triplet, but first we must
498 * calculate the number of reg rules we will need. We will need one
499 * for each channel subband */
500 while (country_ie_len
>= 3) {
501 struct ieee80211_country_ie_triplet
*triplet
=
502 (struct ieee80211_country_ie_triplet
*) country_ie
;
503 int cur_sub_max_channel
= 0, cur_channel
= 0;
505 if (triplet
->ext
.reg_extension_id
>=
506 IEEE80211_COUNTRY_EXTENSION_ID
) {
512 cur_channel
= triplet
->chans
.first_channel
;
513 cur_sub_max_channel
= ieee80211_channel_to_frequency(
514 cur_channel
+ triplet
->chans
.num_channels
);
516 /* Basic sanity check */
517 if (cur_sub_max_channel
< cur_channel
)
520 /* Do not allow overlapping channels. Also channels
521 * passed in each subband must be monotonically
523 if (last_sub_max_channel
) {
524 if (cur_channel
<= last_sub_max_channel
)
526 if (cur_sub_max_channel
<= last_sub_max_channel
)
530 /* When dot11RegulatoryClassesRequired is supported
531 * we can throw ext triplets as part of this soup,
532 * for now we don't care when those change as we
533 * don't support them */
534 *checksum
^= ((cur_channel
^ cur_sub_max_channel
) << 8) |
535 ((cur_sub_max_channel
^ cur_sub_max_channel
) << 16) |
536 ((triplet
->chans
.max_power
^ cur_sub_max_channel
) << 24);
538 last_sub_max_channel
= cur_sub_max_channel
;
544 /* Note: this is not a IEEE requirement but
545 * simply a memory requirement */
546 if (num_rules
> NL80211_MAX_SUPP_REG_RULES
)
550 country_ie
= triplets_start
;
551 country_ie_len
= len_at_triplet
;
553 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
554 (num_rules
* sizeof(struct ieee80211_reg_rule
));
556 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
560 rd
->n_reg_rules
= num_rules
;
561 rd
->alpha2
[0] = alpha2
[0];
562 rd
->alpha2
[1] = alpha2
[1];
564 /* This time around we fill in the rd */
565 while (country_ie_len
>= 3) {
567 struct ieee80211_country_ie_triplet
*triplet
=
568 (struct ieee80211_country_ie_triplet
*) country_ie
;
569 struct ieee80211_reg_rule
*reg_rule
= NULL
;
570 struct ieee80211_freq_range
*freq_range
= NULL
;
571 struct ieee80211_power_rule
*power_rule
= NULL
;
573 /* Must parse if dot11RegulatoryClassesRequired is true,
574 * we don't support this yet */
575 if (triplet
->ext
.reg_extension_id
>=
576 IEEE80211_COUNTRY_EXTENSION_ID
) {
582 reg_rule
= &rd
->reg_rules
[i
];
583 freq_range
= ®_rule
->freq_range
;
584 power_rule
= ®_rule
->power_rule
;
586 reg_rule
->flags
= flags
;
589 if (triplet
->chans
.first_channel
<= 14)
590 end_channel
= triplet
->chans
.first_channel
+
591 triplet
->chans
.num_channels
;
594 * 5 GHz -- For example in country IEs if the first
595 * channel given is 36 and the number of channels is 4
596 * then the individual channel numbers defined for the
597 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
598 * and not 36, 37, 38, 39.
600 * See: http://tinyurl.com/11d-clarification
602 end_channel
= triplet
->chans
.first_channel
+
603 (4 * (triplet
->chans
.num_channels
- 1));
605 /* The +10 is since the regulatory domain expects
606 * the actual band edge, not the center of freq for
607 * its start and end freqs, assuming 20 MHz bandwidth on
608 * the channels passed */
609 freq_range
->start_freq_khz
=
610 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
611 triplet
->chans
.first_channel
) - 10);
612 freq_range
->end_freq_khz
=
613 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
616 /* Large arbitrary values, we intersect later */
617 /* Increment this if we ever support >= 40 MHz channels
619 freq_range
->max_bandwidth_khz
= MHZ_TO_KHZ(40);
620 power_rule
->max_antenna_gain
= DBI_TO_MBI(100);
621 power_rule
->max_eirp
= DBM_TO_MBM(100);
627 BUG_ON(i
> NL80211_MAX_SUPP_REG_RULES
);
634 /* Helper for regdom_intersect(), this does the real
635 * mathematical intersection fun */
636 static int reg_rules_intersect(
637 const struct ieee80211_reg_rule
*rule1
,
638 const struct ieee80211_reg_rule
*rule2
,
639 struct ieee80211_reg_rule
*intersected_rule
)
641 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
642 struct ieee80211_freq_range
*freq_range
;
643 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
644 struct ieee80211_power_rule
*power_rule
;
647 freq_range1
= &rule1
->freq_range
;
648 freq_range2
= &rule2
->freq_range
;
649 freq_range
= &intersected_rule
->freq_range
;
651 power_rule1
= &rule1
->power_rule
;
652 power_rule2
= &rule2
->power_rule
;
653 power_rule
= &intersected_rule
->power_rule
;
655 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
656 freq_range2
->start_freq_khz
);
657 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
658 freq_range2
->end_freq_khz
);
659 freq_range
->max_bandwidth_khz
= min(freq_range1
->max_bandwidth_khz
,
660 freq_range2
->max_bandwidth_khz
);
662 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
663 if (freq_range
->max_bandwidth_khz
> freq_diff
)
664 freq_range
->max_bandwidth_khz
= freq_diff
;
666 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
667 power_rule2
->max_eirp
);
668 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
669 power_rule2
->max_antenna_gain
);
671 intersected_rule
->flags
= (rule1
->flags
| rule2
->flags
);
673 if (!is_valid_reg_rule(intersected_rule
))
680 * regdom_intersect - do the intersection between two regulatory domains
681 * @rd1: first regulatory domain
682 * @rd2: second regulatory domain
684 * Use this function to get the intersection between two regulatory domains.
685 * Once completed we will mark the alpha2 for the rd as intersected, "98",
686 * as no one single alpha2 can represent this regulatory domain.
688 * Returns a pointer to the regulatory domain structure which will hold the
689 * resulting intersection of rules between rd1 and rd2. We will
690 * kzalloc() this structure for you.
692 static struct ieee80211_regdomain
*regdom_intersect(
693 const struct ieee80211_regdomain
*rd1
,
694 const struct ieee80211_regdomain
*rd2
)
698 unsigned int num_rules
= 0, rule_idx
= 0;
699 const struct ieee80211_reg_rule
*rule1
, *rule2
;
700 struct ieee80211_reg_rule
*intersected_rule
;
701 struct ieee80211_regdomain
*rd
;
702 /* This is just a dummy holder to help us count */
703 struct ieee80211_reg_rule irule
;
705 /* Uses the stack temporarily for counter arithmetic */
706 intersected_rule
= &irule
;
708 memset(intersected_rule
, 0, sizeof(struct ieee80211_reg_rule
));
713 /* First we get a count of the rules we'll need, then we actually
714 * build them. This is to so we can malloc() and free() a
715 * regdomain once. The reason we use reg_rules_intersect() here
716 * is it will return -EINVAL if the rule computed makes no sense.
717 * All rules that do check out OK are valid. */
719 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
720 rule1
= &rd1
->reg_rules
[x
];
721 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
722 rule2
= &rd2
->reg_rules
[y
];
723 if (!reg_rules_intersect(rule1
, rule2
,
726 memset(intersected_rule
, 0,
727 sizeof(struct ieee80211_reg_rule
));
734 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
735 ((num_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
737 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
741 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
742 rule1
= &rd1
->reg_rules
[x
];
743 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
744 rule2
= &rd2
->reg_rules
[y
];
745 /* This time around instead of using the stack lets
746 * write to the target rule directly saving ourselves
748 intersected_rule
= &rd
->reg_rules
[rule_idx
];
749 r
= reg_rules_intersect(rule1
, rule2
,
751 /* No need to memset here the intersected rule here as
752 * we're not using the stack anymore */
759 if (rule_idx
!= num_rules
) {
764 rd
->n_reg_rules
= num_rules
;
771 /* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
772 * want to just have the channel structure use these */
773 static u32
map_regdom_flags(u32 rd_flags
)
775 u32 channel_flags
= 0;
776 if (rd_flags
& NL80211_RRF_PASSIVE_SCAN
)
777 channel_flags
|= IEEE80211_CHAN_PASSIVE_SCAN
;
778 if (rd_flags
& NL80211_RRF_NO_IBSS
)
779 channel_flags
|= IEEE80211_CHAN_NO_IBSS
;
780 if (rd_flags
& NL80211_RRF_DFS
)
781 channel_flags
|= IEEE80211_CHAN_RADAR
;
782 return channel_flags
;
785 static int freq_reg_info_regd(struct wiphy
*wiphy
,
788 const struct ieee80211_reg_rule
**reg_rule
,
789 const struct ieee80211_regdomain
*custom_regd
)
792 bool band_rule_found
= false;
793 const struct ieee80211_regdomain
*regd
;
794 u32 max_bandwidth
= 0;
796 regd
= custom_regd
? custom_regd
: cfg80211_regdomain
;
798 /* Follow the driver's regulatory domain, if present, unless a country
799 * IE has been processed */
800 if (last_request
->initiator
!= REGDOM_SET_BY_COUNTRY_IE
&&
807 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
808 const struct ieee80211_reg_rule
*rr
;
809 const struct ieee80211_freq_range
*fr
= NULL
;
810 const struct ieee80211_power_rule
*pr
= NULL
;
812 rr
= ®d
->reg_rules
[i
];
813 fr
= &rr
->freq_range
;
814 pr
= &rr
->power_rule
;
816 /* We only need to know if one frequency rule was
817 * was in center_freq's band, that's enough, so lets
818 * not overwrite it once found */
819 if (!band_rule_found
)
820 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
822 max_bandwidth
= freq_max_bandwidth(fr
, center_freq
);
824 if (max_bandwidth
&& *bandwidth
<= max_bandwidth
) {
826 *bandwidth
= max_bandwidth
;
831 if (!band_rule_found
)
834 return !max_bandwidth
;
838 * freq_reg_info - get regulatory information for the given frequency
839 * @wiphy: the wiphy for which we want to process this rule for
840 * @center_freq: Frequency in KHz for which we want regulatory information for
841 * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
842 * you can set this to 0. If this frequency is allowed we then set
843 * this value to the maximum allowed bandwidth.
844 * @reg_rule: the regulatory rule which we have for this frequency
846 * Use this function to get the regulatory rule for a specific frequency on
847 * a given wireless device. If the device has a specific regulatory domain
848 * it wants to follow we respect that unless a country IE has been received
849 * and processed already.
851 * Returns 0 if it was able to find a valid regulatory rule which does
852 * apply to the given center_freq otherwise it returns non-zero. It will
853 * also return -ERANGE if we determine the given center_freq does not even have
854 * a regulatory rule for a frequency range in the center_freq's band. See
855 * freq_in_rule_band() for our current definition of a band -- this is purely
856 * subjective and right now its 802.11 specific.
858 static int freq_reg_info(struct wiphy
*wiphy
, u32 center_freq
, u32
*bandwidth
,
859 const struct ieee80211_reg_rule
**reg_rule
)
861 return freq_reg_info_regd(wiphy
, center_freq
,
862 bandwidth
, reg_rule
, NULL
);
865 static void handle_channel(struct wiphy
*wiphy
, enum ieee80211_band band
,
866 unsigned int chan_idx
)
870 u32 max_bandwidth
= 0;
871 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
872 const struct ieee80211_power_rule
*power_rule
= NULL
;
873 struct ieee80211_supported_band
*sband
;
874 struct ieee80211_channel
*chan
;
876 sband
= wiphy
->bands
[band
];
877 BUG_ON(chan_idx
>= sband
->n_channels
);
878 chan
= &sband
->channels
[chan_idx
];
880 flags
= chan
->orig_flags
;
882 r
= freq_reg_info(wiphy
, MHZ_TO_KHZ(chan
->center_freq
),
883 &max_bandwidth
, ®_rule
);
886 /* This means no regulatory rule was found in the country IE
887 * with a frequency range on the center_freq's band, since
888 * IEEE-802.11 allows for a country IE to have a subset of the
889 * regulatory information provided in a country we ignore
890 * disabling the channel unless at least one reg rule was
891 * found on the center_freq's band. For details see this
894 * http://tinyurl.com/11d-clarification
897 last_request
->initiator
== REGDOM_SET_BY_COUNTRY_IE
) {
898 #ifdef CONFIG_CFG80211_REG_DEBUG
899 printk(KERN_DEBUG
"cfg80211: Leaving channel %d MHz "
900 "intact on %s - no rule found in band on "
902 chan
->center_freq
, wiphy_name(wiphy
));
905 /* In this case we know the country IE has at least one reg rule
906 * for the band so we respect its band definitions */
907 #ifdef CONFIG_CFG80211_REG_DEBUG
908 if (last_request
->initiator
== REGDOM_SET_BY_COUNTRY_IE
)
909 printk(KERN_DEBUG
"cfg80211: Disabling "
910 "channel %d MHz on %s due to "
912 chan
->center_freq
, wiphy_name(wiphy
));
914 flags
|= IEEE80211_CHAN_DISABLED
;
920 power_rule
= ®_rule
->power_rule
;
922 chan
->flags
= flags
| map_regdom_flags(reg_rule
->flags
);
923 chan
->max_antenna_gain
= min(chan
->orig_mag
,
924 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
));
925 chan
->max_bandwidth
= KHZ_TO_MHZ(max_bandwidth
);
927 chan
->max_power
= min(chan
->orig_mpwr
,
928 (int) MBM_TO_DBM(power_rule
->max_eirp
));
930 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
933 static void handle_band(struct wiphy
*wiphy
, enum ieee80211_band band
)
936 struct ieee80211_supported_band
*sband
;
938 BUG_ON(!wiphy
->bands
[band
]);
939 sband
= wiphy
->bands
[band
];
941 for (i
= 0; i
< sband
->n_channels
; i
++)
942 handle_channel(wiphy
, band
, i
);
945 static bool ignore_reg_update(struct wiphy
*wiphy
, enum reg_set_by setby
)
949 if (setby
== REGDOM_SET_BY_CORE
&&
950 wiphy
->fw_handles_regulatory
)
955 static void update_all_wiphy_regulatory(enum reg_set_by setby
)
957 struct cfg80211_registered_device
*drv
;
959 list_for_each_entry(drv
, &cfg80211_drv_list
, list
)
960 if (!ignore_reg_update(&drv
->wiphy
, setby
))
961 wiphy_update_regulatory(&drv
->wiphy
, setby
);
964 void wiphy_update_regulatory(struct wiphy
*wiphy
, enum reg_set_by setby
)
966 enum ieee80211_band band
;
967 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
968 if (wiphy
->bands
[band
])
969 handle_band(wiphy
, band
);
971 if (wiphy
->reg_notifier
)
972 wiphy
->reg_notifier(wiphy
, setby
);
975 static void handle_channel_custom(struct wiphy
*wiphy
,
976 enum ieee80211_band band
,
977 unsigned int chan_idx
,
978 const struct ieee80211_regdomain
*regd
)
981 u32 max_bandwidth
= 0;
982 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
983 const struct ieee80211_power_rule
*power_rule
= NULL
;
984 struct ieee80211_supported_band
*sband
;
985 struct ieee80211_channel
*chan
;
987 sband
= wiphy
->bands
[band
];
988 BUG_ON(chan_idx
>= sband
->n_channels
);
989 chan
= &sband
->channels
[chan_idx
];
991 r
= freq_reg_info_regd(wiphy
, MHZ_TO_KHZ(chan
->center_freq
),
992 &max_bandwidth
, ®_rule
, regd
);
995 chan
->flags
= IEEE80211_CHAN_DISABLED
;
999 power_rule
= ®_rule
->power_rule
;
1001 chan
->flags
|= map_regdom_flags(reg_rule
->flags
);
1002 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1003 chan
->max_bandwidth
= KHZ_TO_MHZ(max_bandwidth
);
1004 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1007 static void handle_band_custom(struct wiphy
*wiphy
, enum ieee80211_band band
,
1008 const struct ieee80211_regdomain
*regd
)
1011 struct ieee80211_supported_band
*sband
;
1013 BUG_ON(!wiphy
->bands
[band
]);
1014 sband
= wiphy
->bands
[band
];
1016 for (i
= 0; i
< sband
->n_channels
; i
++)
1017 handle_channel_custom(wiphy
, band
, i
, regd
);
1020 /* Used by drivers prior to wiphy registration */
1021 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1022 const struct ieee80211_regdomain
*regd
)
1024 enum ieee80211_band band
;
1025 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1026 if (wiphy
->bands
[band
])
1027 handle_band_custom(wiphy
, band
, regd
);
1030 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1032 static int reg_copy_regd(const struct ieee80211_regdomain
**dst_regd
,
1033 const struct ieee80211_regdomain
*src_regd
)
1035 struct ieee80211_regdomain
*regd
;
1036 int size_of_regd
= 0;
1039 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
1040 ((src_regd
->n_reg_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
1042 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
1046 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
1048 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
1049 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
1050 sizeof(struct ieee80211_reg_rule
));
1056 /* Return value which can be used by ignore_request() to indicate
1057 * it has been determined we should intersect two regulatory domains */
1058 #define REG_INTERSECT 1
1060 /* This has the logic which determines when a new request
1061 * should be ignored. */
1062 static int ignore_request(struct wiphy
*wiphy
, enum reg_set_by set_by
,
1065 /* All initial requests are respected */
1070 case REGDOM_SET_BY_INIT
:
1072 case REGDOM_SET_BY_CORE
:
1074 * Always respect new wireless core hints, should only happen
1075 * when updating the world regulatory domain at init.
1078 case REGDOM_SET_BY_COUNTRY_IE
:
1079 if (unlikely(!is_an_alpha2(alpha2
)))
1081 if (last_request
->initiator
== REGDOM_SET_BY_COUNTRY_IE
) {
1082 if (last_request
->wiphy
!= wiphy
) {
1084 * Two cards with two APs claiming different
1085 * different Country IE alpha2s. We could
1086 * intersect them, but that seems unlikely
1087 * to be correct. Reject second one for now.
1089 if (!alpha2_equal(alpha2
,
1090 cfg80211_regdomain
->alpha2
))
1094 /* Two consecutive Country IE hints on the same wiphy.
1095 * This should be picked up early by the driver/stack */
1096 if (WARN_ON(!alpha2_equal(cfg80211_regdomain
->alpha2
,
1101 return REG_INTERSECT
;
1102 case REGDOM_SET_BY_DRIVER
:
1103 if (last_request
->initiator
== REGDOM_SET_BY_CORE
)
1105 return REG_INTERSECT
;
1106 case REGDOM_SET_BY_USER
:
1107 if (last_request
->initiator
== REGDOM_SET_BY_COUNTRY_IE
)
1108 return REG_INTERSECT
;
1109 /* If the user knows better the user should set the regdom
1110 * to their country before the IE is picked up */
1111 if (last_request
->initiator
== REGDOM_SET_BY_USER
&&
1112 last_request
->intersect
)
1120 /* Caller must hold &cfg80211_drv_mutex */
1121 int __regulatory_hint(struct wiphy
*wiphy
, enum reg_set_by set_by
,
1123 u32 country_ie_checksum
,
1124 enum environment_cap env
)
1126 struct regulatory_request
*request
;
1127 bool intersect
= false;
1130 r
= ignore_request(wiphy
, set_by
, alpha2
);
1132 if (r
== REG_INTERSECT
) {
1133 if (set_by
== REGDOM_SET_BY_DRIVER
) {
1134 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1140 /* If the regulatory domain being requested by the
1141 * driver has already been set just copy it to the
1143 if (r
== -EALREADY
&& set_by
== REGDOM_SET_BY_DRIVER
) {
1144 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1154 request
= kzalloc(sizeof(struct regulatory_request
),
1159 request
->alpha2
[0] = alpha2
[0];
1160 request
->alpha2
[1] = alpha2
[1];
1161 request
->initiator
= set_by
;
1162 request
->wiphy
= wiphy
;
1163 request
->intersect
= intersect
;
1164 request
->country_ie_checksum
= country_ie_checksum
;
1165 request
->country_ie_env
= env
;
1167 kfree(last_request
);
1168 last_request
= request
;
1170 /* When r == REG_INTERSECT we do need to call CRDA */
1175 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1176 * AND if CRDA is NOT present nothing will happen, if someone
1177 * wants to bother with 11d with OLD_REG you can add a timer.
1178 * If after x amount of time nothing happens you can call:
1180 * return set_regdom(country_ie_regdomain);
1182 * to intersect with the static rd
1184 return call_crda(alpha2
);
1187 void regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
1191 mutex_lock(&cfg80211_drv_mutex
);
1192 __regulatory_hint(wiphy
, REGDOM_SET_BY_DRIVER
, alpha2
, 0, ENVIRON_ANY
);
1193 mutex_unlock(&cfg80211_drv_mutex
);
1195 EXPORT_SYMBOL(regulatory_hint
);
1197 static bool reg_same_country_ie_hint(struct wiphy
*wiphy
,
1198 u32 country_ie_checksum
)
1200 if (!last_request
->wiphy
)
1202 if (likely(last_request
->wiphy
!= wiphy
))
1203 return !country_ie_integrity_changes(country_ie_checksum
);
1204 /* We should not have let these through at this point, they
1205 * should have been picked up earlier by the first alpha2 check
1207 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum
)))
1212 void regulatory_hint_11d(struct wiphy
*wiphy
,
1216 struct ieee80211_regdomain
*rd
= NULL
;
1219 enum environment_cap env
= ENVIRON_ANY
;
1224 mutex_lock(&cfg80211_drv_mutex
);
1226 /* IE len must be evenly divisible by 2 */
1227 if (country_ie_len
& 0x01)
1230 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
1233 /* Pending country IE processing, this can happen after we
1234 * call CRDA and wait for a response if a beacon was received before
1235 * we were able to process the last regulatory_hint_11d() call */
1236 if (country_ie_regdomain
)
1239 alpha2
[0] = country_ie
[0];
1240 alpha2
[1] = country_ie
[1];
1242 if (country_ie
[2] == 'I')
1243 env
= ENVIRON_INDOOR
;
1244 else if (country_ie
[2] == 'O')
1245 env
= ENVIRON_OUTDOOR
;
1247 /* We will run this for *every* beacon processed for the BSSID, so
1248 * we optimize an early check to exit out early if we don't have to
1250 if (likely(last_request
->wiphy
)) {
1251 struct cfg80211_registered_device
*drv_last_ie
;
1253 drv_last_ie
= wiphy_to_dev(last_request
->wiphy
);
1255 /* Lets keep this simple -- we trust the first AP
1256 * after we intersect with CRDA */
1257 if (likely(last_request
->wiphy
== wiphy
)) {
1258 /* Ignore IEs coming in on this wiphy with
1259 * the same alpha2 and environment cap */
1260 if (likely(alpha2_equal(drv_last_ie
->country_ie_alpha2
,
1262 env
== drv_last_ie
->env
)) {
1265 /* the wiphy moved on to another BSSID or the AP
1266 * was reconfigured. XXX: We need to deal with the
1267 * case where the user suspends and goes to goes
1268 * to another country, and then gets IEs from an
1269 * AP with different settings */
1272 /* Ignore IEs coming in on two separate wiphys with
1273 * the same alpha2 and environment cap */
1274 if (likely(alpha2_equal(drv_last_ie
->country_ie_alpha2
,
1276 env
== drv_last_ie
->env
)) {
1279 /* We could potentially intersect though */
1284 rd
= country_ie_2_rd(country_ie
, country_ie_len
, &checksum
);
1288 /* This will not happen right now but we leave it here for the
1289 * the future when we want to add suspend/resume support and having
1290 * the user move to another country after doing so, or having the user
1291 * move to another AP. Right now we just trust the first AP. This is why
1292 * this is marked as likley(). If we hit this before we add this support
1293 * we want to be informed of it as it would indicate a mistake in the
1295 if (likely(WARN_ON(reg_same_country_ie_hint(wiphy
, checksum
))))
1298 /* We keep this around for when CRDA comes back with a response so
1299 * we can intersect with that */
1300 country_ie_regdomain
= rd
;
1302 __regulatory_hint(wiphy
, REGDOM_SET_BY_COUNTRY_IE
,
1303 country_ie_regdomain
->alpha2
, checksum
, env
);
1306 mutex_unlock(&cfg80211_drv_mutex
);
1308 EXPORT_SYMBOL(regulatory_hint_11d
);
1310 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
1313 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1314 const struct ieee80211_freq_range
*freq_range
= NULL
;
1315 const struct ieee80211_power_rule
*power_rule
= NULL
;
1317 printk(KERN_INFO
"\t(start_freq - end_freq @ bandwidth), "
1318 "(max_antenna_gain, max_eirp)\n");
1320 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1321 reg_rule
= &rd
->reg_rules
[i
];
1322 freq_range
= ®_rule
->freq_range
;
1323 power_rule
= ®_rule
->power_rule
;
1325 /* There may not be documentation for max antenna gain
1326 * in certain regions */
1327 if (power_rule
->max_antenna_gain
)
1328 printk(KERN_INFO
"\t(%d KHz - %d KHz @ %d KHz), "
1329 "(%d mBi, %d mBm)\n",
1330 freq_range
->start_freq_khz
,
1331 freq_range
->end_freq_khz
,
1332 freq_range
->max_bandwidth_khz
,
1333 power_rule
->max_antenna_gain
,
1334 power_rule
->max_eirp
);
1336 printk(KERN_INFO
"\t(%d KHz - %d KHz @ %d KHz), "
1338 freq_range
->start_freq_khz
,
1339 freq_range
->end_freq_khz
,
1340 freq_range
->max_bandwidth_khz
,
1341 power_rule
->max_eirp
);
1345 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
1348 if (is_intersected_alpha2(rd
->alpha2
)) {
1349 struct wiphy
*wiphy
= NULL
;
1350 struct cfg80211_registered_device
*drv
;
1352 if (last_request
->initiator
== REGDOM_SET_BY_COUNTRY_IE
) {
1353 if (last_request
->wiphy
) {
1354 wiphy
= last_request
->wiphy
;
1355 drv
= wiphy_to_dev(wiphy
);
1356 printk(KERN_INFO
"cfg80211: Current regulatory "
1357 "domain updated by AP to: %c%c\n",
1358 drv
->country_ie_alpha2
[0],
1359 drv
->country_ie_alpha2
[1]);
1361 printk(KERN_INFO
"cfg80211: Current regulatory "
1362 "domain intersected: \n");
1364 printk(KERN_INFO
"cfg80211: Current regulatory "
1365 "domain intersected: \n");
1366 } else if (is_world_regdom(rd
->alpha2
))
1367 printk(KERN_INFO
"cfg80211: World regulatory "
1368 "domain updated:\n");
1370 if (is_unknown_alpha2(rd
->alpha2
))
1371 printk(KERN_INFO
"cfg80211: Regulatory domain "
1372 "changed to driver built-in settings "
1373 "(unknown country)\n");
1375 printk(KERN_INFO
"cfg80211: Regulatory domain "
1376 "changed to country: %c%c\n",
1377 rd
->alpha2
[0], rd
->alpha2
[1]);
1382 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
1384 printk(KERN_INFO
"cfg80211: Regulatory domain: %c%c\n",
1385 rd
->alpha2
[0], rd
->alpha2
[1]);
1389 #ifdef CONFIG_CFG80211_REG_DEBUG
1390 static void reg_country_ie_process_debug(
1391 const struct ieee80211_regdomain
*rd
,
1392 const struct ieee80211_regdomain
*country_ie_regdomain
,
1393 const struct ieee80211_regdomain
*intersected_rd
)
1395 printk(KERN_DEBUG
"cfg80211: Received country IE:\n");
1396 print_regdomain_info(country_ie_regdomain
);
1397 printk(KERN_DEBUG
"cfg80211: CRDA thinks this should applied:\n");
1398 print_regdomain_info(rd
);
1399 if (intersected_rd
) {
1400 printk(KERN_DEBUG
"cfg80211: We intersect both of these "
1402 print_regdomain_info(rd
);
1405 printk(KERN_DEBUG
"cfg80211: Intersection between both failed\n");
1408 static inline void reg_country_ie_process_debug(
1409 const struct ieee80211_regdomain
*rd
,
1410 const struct ieee80211_regdomain
*country_ie_regdomain
,
1411 const struct ieee80211_regdomain
*intersected_rd
)
1416 /* Takes ownership of rd only if it doesn't fail */
1417 static int __set_regdom(const struct ieee80211_regdomain
*rd
)
1419 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
1420 struct cfg80211_registered_device
*drv
= NULL
;
1421 struct wiphy
*wiphy
= NULL
;
1422 /* Some basic sanity checks first */
1424 if (is_world_regdom(rd
->alpha2
)) {
1425 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
1427 update_world_regdomain(rd
);
1431 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
1432 !is_unknown_alpha2(rd
->alpha2
))
1438 /* Lets only bother proceeding on the same alpha2 if the current
1439 * rd is non static (it means CRDA was present and was used last)
1440 * and the pending request came in from a country IE */
1441 if (last_request
->initiator
!= REGDOM_SET_BY_COUNTRY_IE
) {
1442 /* If someone else asked us to change the rd lets only bother
1443 * checking if the alpha2 changes if CRDA was already called */
1444 if (!is_old_static_regdom(cfg80211_regdomain
) &&
1445 !regdom_changed(rd
->alpha2
))
1449 wiphy
= last_request
->wiphy
;
1451 /* Now lets set the regulatory domain, update all driver channels
1452 * and finally inform them of what we have done, in case they want
1453 * to review or adjust their own settings based on their own
1454 * internal EEPROM data */
1456 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
1459 if (!is_valid_rd(rd
)) {
1460 printk(KERN_ERR
"cfg80211: Invalid "
1461 "regulatory domain detected:\n");
1462 print_regdomain_info(rd
);
1466 if (!last_request
->intersect
) {
1469 if (last_request
->initiator
!= REGDOM_SET_BY_DRIVER
) {
1471 cfg80211_regdomain
= rd
;
1475 /* For a driver hint, lets copy the regulatory domain the
1476 * driver wanted to the wiphy to deal with conflicts */
1478 BUG_ON(last_request
->wiphy
->regd
);
1480 r
= reg_copy_regd(&last_request
->wiphy
->regd
, rd
);
1485 cfg80211_regdomain
= rd
;
1489 /* Intersection requires a bit more work */
1491 if (last_request
->initiator
!= REGDOM_SET_BY_COUNTRY_IE
) {
1493 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
1494 if (!intersected_rd
)
1497 /* We can trash what CRDA provided now.
1498 * However if a driver requested this specific regulatory
1499 * domain we keep it for its private use */
1500 if (last_request
->initiator
== REGDOM_SET_BY_DRIVER
)
1501 last_request
->wiphy
->regd
= rd
;
1508 cfg80211_regdomain
= intersected_rd
;
1514 * Country IE requests are handled a bit differently, we intersect
1515 * the country IE rd with what CRDA believes that country should have
1518 BUG_ON(!country_ie_regdomain
);
1520 if (rd
!= country_ie_regdomain
) {
1521 /* Intersect what CRDA returned and our what we
1522 * had built from the Country IE received */
1524 intersected_rd
= regdom_intersect(rd
, country_ie_regdomain
);
1526 reg_country_ie_process_debug(rd
, country_ie_regdomain
,
1529 kfree(country_ie_regdomain
);
1530 country_ie_regdomain
= NULL
;
1532 /* This would happen when CRDA was not present and
1533 * OLD_REGULATORY was enabled. We intersect our Country
1534 * IE rd and what was set on cfg80211 originally */
1535 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
1538 if (!intersected_rd
)
1541 drv
= wiphy_to_dev(wiphy
);
1543 drv
->country_ie_alpha2
[0] = rd
->alpha2
[0];
1544 drv
->country_ie_alpha2
[1] = rd
->alpha2
[1];
1545 drv
->env
= last_request
->country_ie_env
;
1547 BUG_ON(intersected_rd
== rd
);
1553 cfg80211_regdomain
= intersected_rd
;
1559 /* Use this call to set the current regulatory domain. Conflicts with
1560 * multiple drivers can be ironed out later. Caller must've already
1561 * kmalloc'd the rd structure. Caller must hold cfg80211_drv_mutex */
1562 int set_regdom(const struct ieee80211_regdomain
*rd
)
1566 /* Note that this doesn't update the wiphys, this is done below */
1567 r
= __set_regdom(rd
);
1573 /* This would make this whole thing pointless */
1574 if (!last_request
->intersect
)
1575 BUG_ON(rd
!= cfg80211_regdomain
);
1577 /* update all wiphys now with the new established regulatory domain */
1578 update_all_wiphy_regulatory(last_request
->initiator
);
1580 print_regdomain(cfg80211_regdomain
);
1585 /* Caller must hold cfg80211_drv_mutex */
1586 void reg_device_remove(struct wiphy
*wiphy
)
1589 if (!last_request
|| !last_request
->wiphy
)
1591 if (last_request
->wiphy
!= wiphy
)
1593 last_request
->wiphy
= NULL
;
1594 last_request
->country_ie_env
= ENVIRON_ANY
;
1597 int regulatory_init(void)
1601 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
1602 if (IS_ERR(reg_pdev
))
1603 return PTR_ERR(reg_pdev
);
1605 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
1606 cfg80211_regdomain
= static_regdom(ieee80211_regdom
);
1608 printk(KERN_INFO
"cfg80211: Using static regulatory domain info\n");
1609 print_regdomain_info(cfg80211_regdomain
);
1610 /* The old code still requests for a new regdomain and if
1611 * you have CRDA you get it updated, otherwise you get
1612 * stuck with the static values. We ignore "EU" code as
1613 * that is not a valid ISO / IEC 3166 alpha2 */
1614 if (ieee80211_regdom
[0] != 'E' || ieee80211_regdom
[1] != 'U')
1615 err
= __regulatory_hint(NULL
, REGDOM_SET_BY_CORE
,
1616 ieee80211_regdom
, 0, ENVIRON_ANY
);
1618 cfg80211_regdomain
= cfg80211_world_regdom
;
1620 err
= __regulatory_hint(NULL
, REGDOM_SET_BY_CORE
, "00", 0, ENVIRON_ANY
);
1622 printk(KERN_ERR
"cfg80211: calling CRDA failed - "
1623 "unable to update world regulatory domain, "
1624 "using static definition\n");
1630 void regulatory_exit(void)
1632 mutex_lock(&cfg80211_drv_mutex
);
1636 kfree(country_ie_regdomain
);
1637 country_ie_regdomain
= NULL
;
1639 kfree(last_request
);
1641 platform_device_unregister(reg_pdev
);
1643 mutex_unlock(&cfg80211_drv_mutex
);