cfg80211: add wiphy_apply_custom_regulatory()
[linux-2.6/mini2440.git] / net / wireless / reg.c
blob0d6059502b406ff99cba6b25d083c0b53d7b68d7
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 /**
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/random.h>
38 #include <linux/nl80211.h>
39 #include <linux/platform_device.h>
40 #include <net/wireless.h>
41 #include <net/cfg80211.h>
42 #include "core.h"
43 #include "reg.h"
45 /**
46 * struct regulatory_request - receipt of last regulatory request
48 * @wiphy: this is set if this request's initiator is
49 * %REGDOM_SET_BY_COUNTRY_IE or %REGDOM_SET_BY_DRIVER. This
50 * can be used by the wireless core to deal with conflicts
51 * and potentially inform users of which devices specifically
52 * cased the conflicts.
53 * @initiator: indicates who sent this request, could be any of
54 * of those set in reg_set_by, %REGDOM_SET_BY_*
55 * @alpha2: the ISO / IEC 3166 alpha2 country code of the requested
56 * regulatory domain. We have a few special codes:
57 * 00 - World regulatory domain
58 * 99 - built by driver but a specific alpha2 cannot be determined
59 * 98 - result of an intersection between two regulatory domains
60 * @intersect: indicates whether the wireless core should intersect
61 * the requested regulatory domain with the presently set regulatory
62 * domain.
63 * @country_ie_checksum: checksum of the last processed and accepted
64 * country IE
65 * @country_ie_env: lets us know if the AP is telling us we are outdoor,
66 * indoor, or if it doesn't matter
68 struct regulatory_request {
69 struct wiphy *wiphy;
70 enum reg_set_by initiator;
71 char alpha2[2];
72 bool intersect;
73 u32 country_ie_checksum;
74 enum environment_cap country_ie_env;
77 /* Receipt of information from last regulatory request */
78 static struct regulatory_request *last_request;
80 /* To trigger userspace events */
81 static struct platform_device *reg_pdev;
83 /* Keep the ordering from large to small */
84 static u32 supported_bandwidths[] = {
85 MHZ_TO_KHZ(40),
86 MHZ_TO_KHZ(20),
89 /* Central wireless core regulatory domains, we only need two,
90 * the current one and a world regulatory domain in case we have no
91 * information to give us an alpha2 */
92 static const struct ieee80211_regdomain *cfg80211_regdomain;
94 /* We use this as a place for the rd structure built from the
95 * last parsed country IE to rest until CRDA gets back to us with
96 * what it thinks should apply for the same country */
97 static const struct ieee80211_regdomain *country_ie_regdomain;
99 /* We keep a static world regulatory domain in case of the absence of CRDA */
100 static const struct ieee80211_regdomain world_regdom = {
101 .n_reg_rules = 1,
102 .alpha2 = "00",
103 .reg_rules = {
104 REG_RULE(2412-10, 2462+10, 40, 6, 20,
105 NL80211_RRF_PASSIVE_SCAN |
106 NL80211_RRF_NO_IBSS),
110 static const struct ieee80211_regdomain *cfg80211_world_regdom =
111 &world_regdom;
113 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
114 static char *ieee80211_regdom = "US";
115 module_param(ieee80211_regdom, charp, 0444);
116 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
118 /* We assume 40 MHz bandwidth for the old regulatory work.
119 * We make emphasis we are using the exact same frequencies
120 * as before */
122 static const struct ieee80211_regdomain us_regdom = {
123 .n_reg_rules = 6,
124 .alpha2 = "US",
125 .reg_rules = {
126 /* IEEE 802.11b/g, channels 1..11 */
127 REG_RULE(2412-10, 2462+10, 40, 6, 27, 0),
128 /* IEEE 802.11a, channel 36 */
129 REG_RULE(5180-10, 5180+10, 40, 6, 23, 0),
130 /* IEEE 802.11a, channel 40 */
131 REG_RULE(5200-10, 5200+10, 40, 6, 23, 0),
132 /* IEEE 802.11a, channel 44 */
133 REG_RULE(5220-10, 5220+10, 40, 6, 23, 0),
134 /* IEEE 802.11a, channels 48..64 */
135 REG_RULE(5240-10, 5320+10, 40, 6, 23, 0),
136 /* IEEE 802.11a, channels 149..165, outdoor */
137 REG_RULE(5745-10, 5825+10, 40, 6, 30, 0),
141 static const struct ieee80211_regdomain jp_regdom = {
142 .n_reg_rules = 3,
143 .alpha2 = "JP",
144 .reg_rules = {
145 /* IEEE 802.11b/g, channels 1..14 */
146 REG_RULE(2412-10, 2484+10, 40, 6, 20, 0),
147 /* IEEE 802.11a, channels 34..48 */
148 REG_RULE(5170-10, 5240+10, 40, 6, 20,
149 NL80211_RRF_PASSIVE_SCAN),
150 /* IEEE 802.11a, channels 52..64 */
151 REG_RULE(5260-10, 5320+10, 40, 6, 20,
152 NL80211_RRF_NO_IBSS |
153 NL80211_RRF_DFS),
157 static const struct ieee80211_regdomain eu_regdom = {
158 .n_reg_rules = 6,
159 /* This alpha2 is bogus, we leave it here just for stupid
160 * backward compatibility */
161 .alpha2 = "EU",
162 .reg_rules = {
163 /* IEEE 802.11b/g, channels 1..13 */
164 REG_RULE(2412-10, 2472+10, 40, 6, 20, 0),
165 /* IEEE 802.11a, channel 36 */
166 REG_RULE(5180-10, 5180+10, 40, 6, 23,
167 NL80211_RRF_PASSIVE_SCAN),
168 /* IEEE 802.11a, channel 40 */
169 REG_RULE(5200-10, 5200+10, 40, 6, 23,
170 NL80211_RRF_PASSIVE_SCAN),
171 /* IEEE 802.11a, channel 44 */
172 REG_RULE(5220-10, 5220+10, 40, 6, 23,
173 NL80211_RRF_PASSIVE_SCAN),
174 /* IEEE 802.11a, channels 48..64 */
175 REG_RULE(5240-10, 5320+10, 40, 6, 20,
176 NL80211_RRF_NO_IBSS |
177 NL80211_RRF_DFS),
178 /* IEEE 802.11a, channels 100..140 */
179 REG_RULE(5500-10, 5700+10, 40, 6, 30,
180 NL80211_RRF_NO_IBSS |
181 NL80211_RRF_DFS),
185 static const struct ieee80211_regdomain *static_regdom(char *alpha2)
187 if (alpha2[0] == 'U' && alpha2[1] == 'S')
188 return &us_regdom;
189 if (alpha2[0] == 'J' && alpha2[1] == 'P')
190 return &jp_regdom;
191 if (alpha2[0] == 'E' && alpha2[1] == 'U')
192 return &eu_regdom;
193 /* Default, as per the old rules */
194 return &us_regdom;
197 static bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
199 if (rd == &us_regdom || rd == &jp_regdom || rd == &eu_regdom)
200 return true;
201 return false;
203 #else
204 static inline bool is_old_static_regdom(const struct ieee80211_regdomain *rd)
206 return false;
208 #endif
210 static void reset_regdomains(void)
212 /* avoid freeing static information or freeing something twice */
213 if (cfg80211_regdomain == cfg80211_world_regdom)
214 cfg80211_regdomain = NULL;
215 if (cfg80211_world_regdom == &world_regdom)
216 cfg80211_world_regdom = NULL;
217 if (cfg80211_regdomain == &world_regdom)
218 cfg80211_regdomain = NULL;
219 if (is_old_static_regdom(cfg80211_regdomain))
220 cfg80211_regdomain = NULL;
222 kfree(cfg80211_regdomain);
223 kfree(cfg80211_world_regdom);
225 cfg80211_world_regdom = &world_regdom;
226 cfg80211_regdomain = NULL;
229 /* Dynamic world regulatory domain requested by the wireless
230 * core upon initialization */
231 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
233 BUG_ON(!last_request);
235 reset_regdomains();
237 cfg80211_world_regdom = rd;
238 cfg80211_regdomain = rd;
241 bool is_world_regdom(const char *alpha2)
243 if (!alpha2)
244 return false;
245 if (alpha2[0] == '0' && alpha2[1] == '0')
246 return true;
247 return false;
250 static bool is_alpha2_set(const char *alpha2)
252 if (!alpha2)
253 return false;
254 if (alpha2[0] != 0 && alpha2[1] != 0)
255 return true;
256 return false;
259 static bool is_alpha_upper(char letter)
261 /* ASCII A - Z */
262 if (letter >= 65 && letter <= 90)
263 return true;
264 return false;
267 static bool is_unknown_alpha2(const char *alpha2)
269 if (!alpha2)
270 return false;
271 /* Special case where regulatory domain was built by driver
272 * but a specific alpha2 cannot be determined */
273 if (alpha2[0] == '9' && alpha2[1] == '9')
274 return true;
275 return false;
278 static bool is_intersected_alpha2(const char *alpha2)
280 if (!alpha2)
281 return false;
282 /* Special case where regulatory domain is the
283 * result of an intersection between two regulatory domain
284 * structures */
285 if (alpha2[0] == '9' && alpha2[1] == '8')
286 return true;
287 return false;
290 static bool is_an_alpha2(const char *alpha2)
292 if (!alpha2)
293 return false;
294 if (is_alpha_upper(alpha2[0]) && is_alpha_upper(alpha2[1]))
295 return true;
296 return false;
299 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
301 if (!alpha2_x || !alpha2_y)
302 return false;
303 if (alpha2_x[0] == alpha2_y[0] &&
304 alpha2_x[1] == alpha2_y[1])
305 return true;
306 return false;
309 static bool regdom_changed(const char *alpha2)
311 if (!cfg80211_regdomain)
312 return true;
313 if (alpha2_equal(cfg80211_regdomain->alpha2, alpha2))
314 return false;
315 return true;
319 * country_ie_integrity_changes - tells us if the country IE has changed
320 * @checksum: checksum of country IE of fields we are interested in
322 * If the country IE has not changed you can ignore it safely. This is
323 * useful to determine if two devices are seeing two different country IEs
324 * even on the same alpha2. Note that this will return false if no IE has
325 * been set on the wireless core yet.
327 static bool country_ie_integrity_changes(u32 checksum)
329 /* If no IE has been set then the checksum doesn't change */
330 if (unlikely(!last_request->country_ie_checksum))
331 return false;
332 if (unlikely(last_request->country_ie_checksum != checksum))
333 return true;
334 return false;
337 /* This lets us keep regulatory code which is updated on a regulatory
338 * basis in userspace. */
339 static int call_crda(const char *alpha2)
341 char country_env[9 + 2] = "COUNTRY=";
342 char *envp[] = {
343 country_env,
344 NULL
347 if (!is_world_regdom((char *) alpha2))
348 printk(KERN_INFO "cfg80211: Calling CRDA for country: %c%c\n",
349 alpha2[0], alpha2[1]);
350 else
351 printk(KERN_INFO "cfg80211: Calling CRDA to update world "
352 "regulatory domain\n");
354 country_env[8] = alpha2[0];
355 country_env[9] = alpha2[1];
357 return kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, envp);
360 /* Used by nl80211 before kmalloc'ing our regulatory domain */
361 bool reg_is_valid_request(const char *alpha2)
363 if (!last_request)
364 return false;
366 return alpha2_equal(last_request->alpha2, alpha2);
369 /* Sanity check on a regulatory rule */
370 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
372 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
373 u32 freq_diff;
375 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
376 return false;
378 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
379 return false;
381 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
383 if (freq_diff <= 0 || freq_range->max_bandwidth_khz > freq_diff)
384 return false;
386 return true;
389 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
391 const struct ieee80211_reg_rule *reg_rule = NULL;
392 unsigned int i;
394 if (!rd->n_reg_rules)
395 return false;
397 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
398 return false;
400 for (i = 0; i < rd->n_reg_rules; i++) {
401 reg_rule = &rd->reg_rules[i];
402 if (!is_valid_reg_rule(reg_rule))
403 return false;
406 return true;
409 /* Returns value in KHz */
410 static u32 freq_max_bandwidth(const struct ieee80211_freq_range *freq_range,
411 u32 freq)
413 unsigned int i;
414 for (i = 0; i < ARRAY_SIZE(supported_bandwidths); i++) {
415 u32 start_freq_khz = freq - supported_bandwidths[i]/2;
416 u32 end_freq_khz = freq + supported_bandwidths[i]/2;
417 if (start_freq_khz >= freq_range->start_freq_khz &&
418 end_freq_khz <= freq_range->end_freq_khz)
419 return supported_bandwidths[i];
421 return 0;
425 * freq_in_rule_band - tells us if a frequency is in a frequency band
426 * @freq_range: frequency rule we want to query
427 * @freq_khz: frequency we are inquiring about
429 * This lets us know if a specific frequency rule is or is not relevant to
430 * a specific frequency's band. Bands are device specific and artificial
431 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
432 * safe for now to assume that a frequency rule should not be part of a
433 * frequency's band if the start freq or end freq are off by more than 2 GHz.
434 * This resolution can be lowered and should be considered as we add
435 * regulatory rule support for other "bands".
437 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
438 u32 freq_khz)
440 #define ONE_GHZ_IN_KHZ 1000000
441 if (abs(freq_khz - freq_range->start_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
442 return true;
443 if (abs(freq_khz - freq_range->end_freq_khz) <= (2 * ONE_GHZ_IN_KHZ))
444 return true;
445 return false;
446 #undef ONE_GHZ_IN_KHZ
449 /* Converts a country IE to a regulatory domain. A regulatory domain
450 * structure has a lot of information which the IE doesn't yet have,
451 * so for the other values we use upper max values as we will intersect
452 * with our userspace regulatory agent to get lower bounds. */
453 static struct ieee80211_regdomain *country_ie_2_rd(
454 u8 *country_ie,
455 u8 country_ie_len,
456 u32 *checksum)
458 struct ieee80211_regdomain *rd = NULL;
459 unsigned int i = 0;
460 char alpha2[2];
461 u32 flags = 0;
462 u32 num_rules = 0, size_of_regd = 0;
463 u8 *triplets_start = NULL;
464 u8 len_at_triplet = 0;
465 /* the last channel we have registered in a subband (triplet) */
466 int last_sub_max_channel = 0;
468 *checksum = 0xDEADBEEF;
470 /* Country IE requirements */
471 BUG_ON(country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN ||
472 country_ie_len & 0x01);
474 alpha2[0] = country_ie[0];
475 alpha2[1] = country_ie[1];
478 * Third octet can be:
479 * 'I' - Indoor
480 * 'O' - Outdoor
482 * anything else we assume is no restrictions
484 if (country_ie[2] == 'I')
485 flags = NL80211_RRF_NO_OUTDOOR;
486 else if (country_ie[2] == 'O')
487 flags = NL80211_RRF_NO_INDOOR;
489 country_ie += 3;
490 country_ie_len -= 3;
492 triplets_start = country_ie;
493 len_at_triplet = country_ie_len;
495 *checksum ^= ((flags ^ alpha2[0] ^ alpha2[1]) << 8);
497 /* We need to build a reg rule for each triplet, but first we must
498 * calculate the number of reg rules we will need. We will need one
499 * for each channel subband */
500 while (country_ie_len >= 3) {
501 struct ieee80211_country_ie_triplet *triplet =
502 (struct ieee80211_country_ie_triplet *) country_ie;
503 int cur_sub_max_channel = 0, cur_channel = 0;
505 if (triplet->ext.reg_extension_id >=
506 IEEE80211_COUNTRY_EXTENSION_ID) {
507 country_ie += 3;
508 country_ie_len -= 3;
509 continue;
512 cur_channel = triplet->chans.first_channel;
513 cur_sub_max_channel = ieee80211_channel_to_frequency(
514 cur_channel + triplet->chans.num_channels);
516 /* Basic sanity check */
517 if (cur_sub_max_channel < cur_channel)
518 return NULL;
520 /* Do not allow overlapping channels. Also channels
521 * passed in each subband must be monotonically
522 * increasing */
523 if (last_sub_max_channel) {
524 if (cur_channel <= last_sub_max_channel)
525 return NULL;
526 if (cur_sub_max_channel <= last_sub_max_channel)
527 return NULL;
530 /* When dot11RegulatoryClassesRequired is supported
531 * we can throw ext triplets as part of this soup,
532 * for now we don't care when those change as we
533 * don't support them */
534 *checksum ^= ((cur_channel ^ cur_sub_max_channel) << 8) |
535 ((cur_sub_max_channel ^ cur_sub_max_channel) << 16) |
536 ((triplet->chans.max_power ^ cur_sub_max_channel) << 24);
538 last_sub_max_channel = cur_sub_max_channel;
540 country_ie += 3;
541 country_ie_len -= 3;
542 num_rules++;
544 /* Note: this is not a IEEE requirement but
545 * simply a memory requirement */
546 if (num_rules > NL80211_MAX_SUPP_REG_RULES)
547 return NULL;
550 country_ie = triplets_start;
551 country_ie_len = len_at_triplet;
553 size_of_regd = sizeof(struct ieee80211_regdomain) +
554 (num_rules * sizeof(struct ieee80211_reg_rule));
556 rd = kzalloc(size_of_regd, GFP_KERNEL);
557 if (!rd)
558 return NULL;
560 rd->n_reg_rules = num_rules;
561 rd->alpha2[0] = alpha2[0];
562 rd->alpha2[1] = alpha2[1];
564 /* This time around we fill in the rd */
565 while (country_ie_len >= 3) {
566 int end_channel = 0;
567 struct ieee80211_country_ie_triplet *triplet =
568 (struct ieee80211_country_ie_triplet *) country_ie;
569 struct ieee80211_reg_rule *reg_rule = NULL;
570 struct ieee80211_freq_range *freq_range = NULL;
571 struct ieee80211_power_rule *power_rule = NULL;
573 /* Must parse if dot11RegulatoryClassesRequired is true,
574 * we don't support this yet */
575 if (triplet->ext.reg_extension_id >=
576 IEEE80211_COUNTRY_EXTENSION_ID) {
577 country_ie += 3;
578 country_ie_len -= 3;
579 continue;
582 reg_rule = &rd->reg_rules[i];
583 freq_range = &reg_rule->freq_range;
584 power_rule = &reg_rule->power_rule;
586 reg_rule->flags = flags;
588 /* 2 GHz */
589 if (triplet->chans.first_channel <= 14)
590 end_channel = triplet->chans.first_channel +
591 triplet->chans.num_channels;
592 else
594 * 5 GHz -- For example in country IEs if the first
595 * channel given is 36 and the number of channels is 4
596 * then the individual channel numbers defined for the
597 * 5 GHz PHY by these parameters are: 36, 40, 44, and 48
598 * and not 36, 37, 38, 39.
600 * See: http://tinyurl.com/11d-clarification
602 end_channel = triplet->chans.first_channel +
603 (4 * (triplet->chans.num_channels - 1));
605 /* The +10 is since the regulatory domain expects
606 * the actual band edge, not the center of freq for
607 * its start and end freqs, assuming 20 MHz bandwidth on
608 * the channels passed */
609 freq_range->start_freq_khz =
610 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
611 triplet->chans.first_channel) - 10);
612 freq_range->end_freq_khz =
613 MHZ_TO_KHZ(ieee80211_channel_to_frequency(
614 end_channel) + 10);
616 /* Large arbitrary values, we intersect later */
617 /* Increment this if we ever support >= 40 MHz channels
618 * in IEEE 802.11 */
619 freq_range->max_bandwidth_khz = MHZ_TO_KHZ(40);
620 power_rule->max_antenna_gain = DBI_TO_MBI(100);
621 power_rule->max_eirp = DBM_TO_MBM(100);
623 country_ie += 3;
624 country_ie_len -= 3;
625 i++;
627 BUG_ON(i > NL80211_MAX_SUPP_REG_RULES);
630 return rd;
634 /* Helper for regdom_intersect(), this does the real
635 * mathematical intersection fun */
636 static int reg_rules_intersect(
637 const struct ieee80211_reg_rule *rule1,
638 const struct ieee80211_reg_rule *rule2,
639 struct ieee80211_reg_rule *intersected_rule)
641 const struct ieee80211_freq_range *freq_range1, *freq_range2;
642 struct ieee80211_freq_range *freq_range;
643 const struct ieee80211_power_rule *power_rule1, *power_rule2;
644 struct ieee80211_power_rule *power_rule;
645 u32 freq_diff;
647 freq_range1 = &rule1->freq_range;
648 freq_range2 = &rule2->freq_range;
649 freq_range = &intersected_rule->freq_range;
651 power_rule1 = &rule1->power_rule;
652 power_rule2 = &rule2->power_rule;
653 power_rule = &intersected_rule->power_rule;
655 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
656 freq_range2->start_freq_khz);
657 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
658 freq_range2->end_freq_khz);
659 freq_range->max_bandwidth_khz = min(freq_range1->max_bandwidth_khz,
660 freq_range2->max_bandwidth_khz);
662 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
663 if (freq_range->max_bandwidth_khz > freq_diff)
664 freq_range->max_bandwidth_khz = freq_diff;
666 power_rule->max_eirp = min(power_rule1->max_eirp,
667 power_rule2->max_eirp);
668 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
669 power_rule2->max_antenna_gain);
671 intersected_rule->flags = (rule1->flags | rule2->flags);
673 if (!is_valid_reg_rule(intersected_rule))
674 return -EINVAL;
676 return 0;
680 * regdom_intersect - do the intersection between two regulatory domains
681 * @rd1: first regulatory domain
682 * @rd2: second regulatory domain
684 * Use this function to get the intersection between two regulatory domains.
685 * Once completed we will mark the alpha2 for the rd as intersected, "98",
686 * as no one single alpha2 can represent this regulatory domain.
688 * Returns a pointer to the regulatory domain structure which will hold the
689 * resulting intersection of rules between rd1 and rd2. We will
690 * kzalloc() this structure for you.
692 static struct ieee80211_regdomain *regdom_intersect(
693 const struct ieee80211_regdomain *rd1,
694 const struct ieee80211_regdomain *rd2)
696 int r, size_of_regd;
697 unsigned int x, y;
698 unsigned int num_rules = 0, rule_idx = 0;
699 const struct ieee80211_reg_rule *rule1, *rule2;
700 struct ieee80211_reg_rule *intersected_rule;
701 struct ieee80211_regdomain *rd;
702 /* This is just a dummy holder to help us count */
703 struct ieee80211_reg_rule irule;
705 /* Uses the stack temporarily for counter arithmetic */
706 intersected_rule = &irule;
708 memset(intersected_rule, 0, sizeof(struct ieee80211_reg_rule));
710 if (!rd1 || !rd2)
711 return NULL;
713 /* First we get a count of the rules we'll need, then we actually
714 * build them. This is to so we can malloc() and free() a
715 * regdomain once. The reason we use reg_rules_intersect() here
716 * is it will return -EINVAL if the rule computed makes no sense.
717 * All rules that do check out OK are valid. */
719 for (x = 0; x < rd1->n_reg_rules; x++) {
720 rule1 = &rd1->reg_rules[x];
721 for (y = 0; y < rd2->n_reg_rules; y++) {
722 rule2 = &rd2->reg_rules[y];
723 if (!reg_rules_intersect(rule1, rule2,
724 intersected_rule))
725 num_rules++;
726 memset(intersected_rule, 0,
727 sizeof(struct ieee80211_reg_rule));
731 if (!num_rules)
732 return NULL;
734 size_of_regd = sizeof(struct ieee80211_regdomain) +
735 ((num_rules + 1) * sizeof(struct ieee80211_reg_rule));
737 rd = kzalloc(size_of_regd, GFP_KERNEL);
738 if (!rd)
739 return NULL;
741 for (x = 0; x < rd1->n_reg_rules; x++) {
742 rule1 = &rd1->reg_rules[x];
743 for (y = 0; y < rd2->n_reg_rules; y++) {
744 rule2 = &rd2->reg_rules[y];
745 /* This time around instead of using the stack lets
746 * write to the target rule directly saving ourselves
747 * a memcpy() */
748 intersected_rule = &rd->reg_rules[rule_idx];
749 r = reg_rules_intersect(rule1, rule2,
750 intersected_rule);
751 /* No need to memset here the intersected rule here as
752 * we're not using the stack anymore */
753 if (r)
754 continue;
755 rule_idx++;
759 if (rule_idx != num_rules) {
760 kfree(rd);
761 return NULL;
764 rd->n_reg_rules = num_rules;
765 rd->alpha2[0] = '9';
766 rd->alpha2[1] = '8';
768 return rd;
771 /* XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
772 * want to just have the channel structure use these */
773 static u32 map_regdom_flags(u32 rd_flags)
775 u32 channel_flags = 0;
776 if (rd_flags & NL80211_RRF_PASSIVE_SCAN)
777 channel_flags |= IEEE80211_CHAN_PASSIVE_SCAN;
778 if (rd_flags & NL80211_RRF_NO_IBSS)
779 channel_flags |= IEEE80211_CHAN_NO_IBSS;
780 if (rd_flags & NL80211_RRF_DFS)
781 channel_flags |= IEEE80211_CHAN_RADAR;
782 return channel_flags;
785 static int freq_reg_info_regd(struct wiphy *wiphy,
786 u32 center_freq,
787 u32 *bandwidth,
788 const struct ieee80211_reg_rule **reg_rule,
789 const struct ieee80211_regdomain *custom_regd)
791 int i;
792 bool band_rule_found = false;
793 const struct ieee80211_regdomain *regd;
794 u32 max_bandwidth = 0;
796 regd = custom_regd ? custom_regd : cfg80211_regdomain;
798 /* Follow the driver's regulatory domain, if present, unless a country
799 * IE has been processed */
800 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE &&
801 wiphy->regd)
802 regd = wiphy->regd;
804 if (!regd)
805 return -EINVAL;
807 for (i = 0; i < regd->n_reg_rules; i++) {
808 const struct ieee80211_reg_rule *rr;
809 const struct ieee80211_freq_range *fr = NULL;
810 const struct ieee80211_power_rule *pr = NULL;
812 rr = &regd->reg_rules[i];
813 fr = &rr->freq_range;
814 pr = &rr->power_rule;
816 /* We only need to know if one frequency rule was
817 * was in center_freq's band, that's enough, so lets
818 * not overwrite it once found */
819 if (!band_rule_found)
820 band_rule_found = freq_in_rule_band(fr, center_freq);
822 max_bandwidth = freq_max_bandwidth(fr, center_freq);
824 if (max_bandwidth && *bandwidth <= max_bandwidth) {
825 *reg_rule = rr;
826 *bandwidth = max_bandwidth;
827 break;
831 if (!band_rule_found)
832 return -ERANGE;
834 return !max_bandwidth;
838 * freq_reg_info - get regulatory information for the given frequency
839 * @wiphy: the wiphy for which we want to process this rule for
840 * @center_freq: Frequency in KHz for which we want regulatory information for
841 * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
842 * you can set this to 0. If this frequency is allowed we then set
843 * this value to the maximum allowed bandwidth.
844 * @reg_rule: the regulatory rule which we have for this frequency
846 * Use this function to get the regulatory rule for a specific frequency on
847 * a given wireless device. If the device has a specific regulatory domain
848 * it wants to follow we respect that unless a country IE has been received
849 * and processed already.
851 * Returns 0 if it was able to find a valid regulatory rule which does
852 * apply to the given center_freq otherwise it returns non-zero. It will
853 * also return -ERANGE if we determine the given center_freq does not even have
854 * a regulatory rule for a frequency range in the center_freq's band. See
855 * freq_in_rule_band() for our current definition of a band -- this is purely
856 * subjective and right now its 802.11 specific.
858 static int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
859 const struct ieee80211_reg_rule **reg_rule)
861 return freq_reg_info_regd(wiphy, center_freq,
862 bandwidth, reg_rule, NULL);
865 static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
866 unsigned int chan_idx)
868 int r;
869 u32 flags;
870 u32 max_bandwidth = 0;
871 const struct ieee80211_reg_rule *reg_rule = NULL;
872 const struct ieee80211_power_rule *power_rule = NULL;
873 struct ieee80211_supported_band *sband;
874 struct ieee80211_channel *chan;
876 sband = wiphy->bands[band];
877 BUG_ON(chan_idx >= sband->n_channels);
878 chan = &sband->channels[chan_idx];
880 flags = chan->orig_flags;
882 r = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq),
883 &max_bandwidth, &reg_rule);
885 if (r) {
886 /* This means no regulatory rule was found in the country IE
887 * with a frequency range on the center_freq's band, since
888 * IEEE-802.11 allows for a country IE to have a subset of the
889 * regulatory information provided in a country we ignore
890 * disabling the channel unless at least one reg rule was
891 * found on the center_freq's band. For details see this
892 * clarification:
894 * http://tinyurl.com/11d-clarification
896 if (r == -ERANGE &&
897 last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
898 #ifdef CONFIG_CFG80211_REG_DEBUG
899 printk(KERN_DEBUG "cfg80211: Leaving channel %d MHz "
900 "intact on %s - no rule found in band on "
901 "Country IE\n",
902 chan->center_freq, wiphy_name(wiphy));
903 #endif
904 } else {
905 /* In this case we know the country IE has at least one reg rule
906 * for the band so we respect its band definitions */
907 #ifdef CONFIG_CFG80211_REG_DEBUG
908 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
909 printk(KERN_DEBUG "cfg80211: Disabling "
910 "channel %d MHz on %s due to "
911 "Country IE\n",
912 chan->center_freq, wiphy_name(wiphy));
913 #endif
914 flags |= IEEE80211_CHAN_DISABLED;
915 chan->flags = flags;
917 return;
920 power_rule = &reg_rule->power_rule;
922 chan->flags = flags | map_regdom_flags(reg_rule->flags);
923 chan->max_antenna_gain = min(chan->orig_mag,
924 (int) MBI_TO_DBI(power_rule->max_antenna_gain));
925 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
926 if (chan->orig_mpwr)
927 chan->max_power = min(chan->orig_mpwr,
928 (int) MBM_TO_DBM(power_rule->max_eirp));
929 else
930 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
933 static void handle_band(struct wiphy *wiphy, enum ieee80211_band band)
935 unsigned int i;
936 struct ieee80211_supported_band *sband;
938 BUG_ON(!wiphy->bands[band]);
939 sband = wiphy->bands[band];
941 for (i = 0; i < sband->n_channels; i++)
942 handle_channel(wiphy, band, i);
945 static bool ignore_reg_update(struct wiphy *wiphy, enum reg_set_by setby)
947 if (!last_request)
948 return true;
949 if (setby == REGDOM_SET_BY_CORE &&
950 wiphy->fw_handles_regulatory)
951 return true;
952 return false;
955 static void update_all_wiphy_regulatory(enum reg_set_by setby)
957 struct cfg80211_registered_device *drv;
959 list_for_each_entry(drv, &cfg80211_drv_list, list)
960 if (!ignore_reg_update(&drv->wiphy, setby))
961 wiphy_update_regulatory(&drv->wiphy, setby);
964 void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
966 enum ieee80211_band band;
967 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
968 if (wiphy->bands[band])
969 handle_band(wiphy, band);
971 if (wiphy->reg_notifier)
972 wiphy->reg_notifier(wiphy, setby);
975 static void handle_channel_custom(struct wiphy *wiphy,
976 enum ieee80211_band band,
977 unsigned int chan_idx,
978 const struct ieee80211_regdomain *regd)
980 int r;
981 u32 max_bandwidth = 0;
982 const struct ieee80211_reg_rule *reg_rule = NULL;
983 const struct ieee80211_power_rule *power_rule = NULL;
984 struct ieee80211_supported_band *sband;
985 struct ieee80211_channel *chan;
987 sband = wiphy->bands[band];
988 BUG_ON(chan_idx >= sband->n_channels);
989 chan = &sband->channels[chan_idx];
991 r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
992 &max_bandwidth, &reg_rule, regd);
994 if (r) {
995 chan->flags = IEEE80211_CHAN_DISABLED;
996 return;
999 power_rule = &reg_rule->power_rule;
1001 chan->flags |= map_regdom_flags(reg_rule->flags);
1002 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1003 chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
1004 chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1007 static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
1008 const struct ieee80211_regdomain *regd)
1010 unsigned int i;
1011 struct ieee80211_supported_band *sband;
1013 BUG_ON(!wiphy->bands[band]);
1014 sband = wiphy->bands[band];
1016 for (i = 0; i < sband->n_channels; i++)
1017 handle_channel_custom(wiphy, band, i, regd);
1020 /* Used by drivers prior to wiphy registration */
1021 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
1022 const struct ieee80211_regdomain *regd)
1024 enum ieee80211_band band;
1025 for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
1026 if (wiphy->bands[band])
1027 handle_band_custom(wiphy, band, regd);
1030 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
1032 static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
1033 const struct ieee80211_regdomain *src_regd)
1035 struct ieee80211_regdomain *regd;
1036 int size_of_regd = 0;
1037 unsigned int i;
1039 size_of_regd = sizeof(struct ieee80211_regdomain) +
1040 ((src_regd->n_reg_rules + 1) * sizeof(struct ieee80211_reg_rule));
1042 regd = kzalloc(size_of_regd, GFP_KERNEL);
1043 if (!regd)
1044 return -ENOMEM;
1046 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
1048 for (i = 0; i < src_regd->n_reg_rules; i++)
1049 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
1050 sizeof(struct ieee80211_reg_rule));
1052 *dst_regd = regd;
1053 return 0;
1056 /* Return value which can be used by ignore_request() to indicate
1057 * it has been determined we should intersect two regulatory domains */
1058 #define REG_INTERSECT 1
1060 /* This has the logic which determines when a new request
1061 * should be ignored. */
1062 static int ignore_request(struct wiphy *wiphy, enum reg_set_by set_by,
1063 const char *alpha2)
1065 /* All initial requests are respected */
1066 if (!last_request)
1067 return 0;
1069 switch (set_by) {
1070 case REGDOM_SET_BY_INIT:
1071 return -EINVAL;
1072 case REGDOM_SET_BY_CORE:
1074 * Always respect new wireless core hints, should only happen
1075 * when updating the world regulatory domain at init.
1077 return 0;
1078 case REGDOM_SET_BY_COUNTRY_IE:
1079 if (unlikely(!is_an_alpha2(alpha2)))
1080 return -EINVAL;
1081 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1082 if (last_request->wiphy != wiphy) {
1084 * Two cards with two APs claiming different
1085 * different Country IE alpha2s. We could
1086 * intersect them, but that seems unlikely
1087 * to be correct. Reject second one for now.
1089 if (!alpha2_equal(alpha2,
1090 cfg80211_regdomain->alpha2))
1091 return -EOPNOTSUPP;
1092 return -EALREADY;
1094 /* Two consecutive Country IE hints on the same wiphy.
1095 * This should be picked up early by the driver/stack */
1096 if (WARN_ON(!alpha2_equal(cfg80211_regdomain->alpha2,
1097 alpha2)))
1098 return 0;
1099 return -EALREADY;
1101 return REG_INTERSECT;
1102 case REGDOM_SET_BY_DRIVER:
1103 if (last_request->initiator == REGDOM_SET_BY_CORE)
1104 return 0;
1105 return REG_INTERSECT;
1106 case REGDOM_SET_BY_USER:
1107 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE)
1108 return REG_INTERSECT;
1109 /* If the user knows better the user should set the regdom
1110 * to their country before the IE is picked up */
1111 if (last_request->initiator == REGDOM_SET_BY_USER &&
1112 last_request->intersect)
1113 return -EOPNOTSUPP;
1114 return 0;
1117 return -EINVAL;
1120 /* Caller must hold &cfg80211_drv_mutex */
1121 int __regulatory_hint(struct wiphy *wiphy, enum reg_set_by set_by,
1122 const char *alpha2,
1123 u32 country_ie_checksum,
1124 enum environment_cap env)
1126 struct regulatory_request *request;
1127 bool intersect = false;
1128 int r = 0;
1130 r = ignore_request(wiphy, set_by, alpha2);
1132 if (r == REG_INTERSECT) {
1133 if (set_by == REGDOM_SET_BY_DRIVER) {
1134 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1135 if (r)
1136 return r;
1138 intersect = true;
1139 } else if (r) {
1140 /* If the regulatory domain being requested by the
1141 * driver has already been set just copy it to the
1142 * wiphy */
1143 if (r == -EALREADY && set_by == REGDOM_SET_BY_DRIVER) {
1144 r = reg_copy_regd(&wiphy->regd, cfg80211_regdomain);
1145 if (r)
1146 return r;
1147 r = -EALREADY;
1148 goto new_request;
1150 return r;
1153 new_request:
1154 request = kzalloc(sizeof(struct regulatory_request),
1155 GFP_KERNEL);
1156 if (!request)
1157 return -ENOMEM;
1159 request->alpha2[0] = alpha2[0];
1160 request->alpha2[1] = alpha2[1];
1161 request->initiator = set_by;
1162 request->wiphy = wiphy;
1163 request->intersect = intersect;
1164 request->country_ie_checksum = country_ie_checksum;
1165 request->country_ie_env = env;
1167 kfree(last_request);
1168 last_request = request;
1170 /* When r == REG_INTERSECT we do need to call CRDA */
1171 if (r < 0)
1172 return r;
1175 * Note: When CONFIG_WIRELESS_OLD_REGULATORY is enabled
1176 * AND if CRDA is NOT present nothing will happen, if someone
1177 * wants to bother with 11d with OLD_REG you can add a timer.
1178 * If after x amount of time nothing happens you can call:
1180 * return set_regdom(country_ie_regdomain);
1182 * to intersect with the static rd
1184 return call_crda(alpha2);
1187 void regulatory_hint(struct wiphy *wiphy, const char *alpha2)
1189 BUG_ON(!alpha2);
1191 mutex_lock(&cfg80211_drv_mutex);
1192 __regulatory_hint(wiphy, REGDOM_SET_BY_DRIVER, alpha2, 0, ENVIRON_ANY);
1193 mutex_unlock(&cfg80211_drv_mutex);
1195 EXPORT_SYMBOL(regulatory_hint);
1197 static bool reg_same_country_ie_hint(struct wiphy *wiphy,
1198 u32 country_ie_checksum)
1200 if (!last_request->wiphy)
1201 return false;
1202 if (likely(last_request->wiphy != wiphy))
1203 return !country_ie_integrity_changes(country_ie_checksum);
1204 /* We should not have let these through at this point, they
1205 * should have been picked up earlier by the first alpha2 check
1206 * on the device */
1207 if (WARN_ON(!country_ie_integrity_changes(country_ie_checksum)))
1208 return true;
1209 return false;
1212 void regulatory_hint_11d(struct wiphy *wiphy,
1213 u8 *country_ie,
1214 u8 country_ie_len)
1216 struct ieee80211_regdomain *rd = NULL;
1217 char alpha2[2];
1218 u32 checksum = 0;
1219 enum environment_cap env = ENVIRON_ANY;
1221 if (!last_request)
1222 return;
1224 mutex_lock(&cfg80211_drv_mutex);
1226 /* IE len must be evenly divisible by 2 */
1227 if (country_ie_len & 0x01)
1228 goto out;
1230 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
1231 goto out;
1233 /* Pending country IE processing, this can happen after we
1234 * call CRDA and wait for a response if a beacon was received before
1235 * we were able to process the last regulatory_hint_11d() call */
1236 if (country_ie_regdomain)
1237 goto out;
1239 alpha2[0] = country_ie[0];
1240 alpha2[1] = country_ie[1];
1242 if (country_ie[2] == 'I')
1243 env = ENVIRON_INDOOR;
1244 else if (country_ie[2] == 'O')
1245 env = ENVIRON_OUTDOOR;
1247 /* We will run this for *every* beacon processed for the BSSID, so
1248 * we optimize an early check to exit out early if we don't have to
1249 * do anything */
1250 if (likely(last_request->wiphy)) {
1251 struct cfg80211_registered_device *drv_last_ie;
1253 drv_last_ie = wiphy_to_dev(last_request->wiphy);
1255 /* Lets keep this simple -- we trust the first AP
1256 * after we intersect with CRDA */
1257 if (likely(last_request->wiphy == wiphy)) {
1258 /* Ignore IEs coming in on this wiphy with
1259 * the same alpha2 and environment cap */
1260 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1261 alpha2) &&
1262 env == drv_last_ie->env)) {
1263 goto out;
1265 /* the wiphy moved on to another BSSID or the AP
1266 * was reconfigured. XXX: We need to deal with the
1267 * case where the user suspends and goes to goes
1268 * to another country, and then gets IEs from an
1269 * AP with different settings */
1270 goto out;
1271 } else {
1272 /* Ignore IEs coming in on two separate wiphys with
1273 * the same alpha2 and environment cap */
1274 if (likely(alpha2_equal(drv_last_ie->country_ie_alpha2,
1275 alpha2) &&
1276 env == drv_last_ie->env)) {
1277 goto out;
1279 /* We could potentially intersect though */
1280 goto out;
1284 rd = country_ie_2_rd(country_ie, country_ie_len, &checksum);
1285 if (!rd)
1286 goto out;
1288 /* This will not happen right now but we leave it here for the
1289 * the future when we want to add suspend/resume support and having
1290 * the user move to another country after doing so, or having the user
1291 * move to another AP. Right now we just trust the first AP. This is why
1292 * this is marked as likley(). If we hit this before we add this support
1293 * we want to be informed of it as it would indicate a mistake in the
1294 * current design */
1295 if (likely(WARN_ON(reg_same_country_ie_hint(wiphy, checksum))))
1296 goto out;
1298 /* We keep this around for when CRDA comes back with a response so
1299 * we can intersect with that */
1300 country_ie_regdomain = rd;
1302 __regulatory_hint(wiphy, REGDOM_SET_BY_COUNTRY_IE,
1303 country_ie_regdomain->alpha2, checksum, env);
1305 out:
1306 mutex_unlock(&cfg80211_drv_mutex);
1308 EXPORT_SYMBOL(regulatory_hint_11d);
1310 static void print_rd_rules(const struct ieee80211_regdomain *rd)
1312 unsigned int i;
1313 const struct ieee80211_reg_rule *reg_rule = NULL;
1314 const struct ieee80211_freq_range *freq_range = NULL;
1315 const struct ieee80211_power_rule *power_rule = NULL;
1317 printk(KERN_INFO "\t(start_freq - end_freq @ bandwidth), "
1318 "(max_antenna_gain, max_eirp)\n");
1320 for (i = 0; i < rd->n_reg_rules; i++) {
1321 reg_rule = &rd->reg_rules[i];
1322 freq_range = &reg_rule->freq_range;
1323 power_rule = &reg_rule->power_rule;
1325 /* There may not be documentation for max antenna gain
1326 * in certain regions */
1327 if (power_rule->max_antenna_gain)
1328 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1329 "(%d mBi, %d mBm)\n",
1330 freq_range->start_freq_khz,
1331 freq_range->end_freq_khz,
1332 freq_range->max_bandwidth_khz,
1333 power_rule->max_antenna_gain,
1334 power_rule->max_eirp);
1335 else
1336 printk(KERN_INFO "\t(%d KHz - %d KHz @ %d KHz), "
1337 "(N/A, %d mBm)\n",
1338 freq_range->start_freq_khz,
1339 freq_range->end_freq_khz,
1340 freq_range->max_bandwidth_khz,
1341 power_rule->max_eirp);
1345 static void print_regdomain(const struct ieee80211_regdomain *rd)
1348 if (is_intersected_alpha2(rd->alpha2)) {
1349 struct wiphy *wiphy = NULL;
1350 struct cfg80211_registered_device *drv;
1352 if (last_request->initiator == REGDOM_SET_BY_COUNTRY_IE) {
1353 if (last_request->wiphy) {
1354 wiphy = last_request->wiphy;
1355 drv = wiphy_to_dev(wiphy);
1356 printk(KERN_INFO "cfg80211: Current regulatory "
1357 "domain updated by AP to: %c%c\n",
1358 drv->country_ie_alpha2[0],
1359 drv->country_ie_alpha2[1]);
1360 } else
1361 printk(KERN_INFO "cfg80211: Current regulatory "
1362 "domain intersected: \n");
1363 } else
1364 printk(KERN_INFO "cfg80211: Current regulatory "
1365 "domain intersected: \n");
1366 } else if (is_world_regdom(rd->alpha2))
1367 printk(KERN_INFO "cfg80211: World regulatory "
1368 "domain updated:\n");
1369 else {
1370 if (is_unknown_alpha2(rd->alpha2))
1371 printk(KERN_INFO "cfg80211: Regulatory domain "
1372 "changed to driver built-in settings "
1373 "(unknown country)\n");
1374 else
1375 printk(KERN_INFO "cfg80211: Regulatory domain "
1376 "changed to country: %c%c\n",
1377 rd->alpha2[0], rd->alpha2[1]);
1379 print_rd_rules(rd);
1382 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
1384 printk(KERN_INFO "cfg80211: Regulatory domain: %c%c\n",
1385 rd->alpha2[0], rd->alpha2[1]);
1386 print_rd_rules(rd);
1389 #ifdef CONFIG_CFG80211_REG_DEBUG
1390 static void reg_country_ie_process_debug(
1391 const struct ieee80211_regdomain *rd,
1392 const struct ieee80211_regdomain *country_ie_regdomain,
1393 const struct ieee80211_regdomain *intersected_rd)
1395 printk(KERN_DEBUG "cfg80211: Received country IE:\n");
1396 print_regdomain_info(country_ie_regdomain);
1397 printk(KERN_DEBUG "cfg80211: CRDA thinks this should applied:\n");
1398 print_regdomain_info(rd);
1399 if (intersected_rd) {
1400 printk(KERN_DEBUG "cfg80211: We intersect both of these "
1401 "and get:\n");
1402 print_regdomain_info(rd);
1403 return;
1405 printk(KERN_DEBUG "cfg80211: Intersection between both failed\n");
1407 #else
1408 static inline void reg_country_ie_process_debug(
1409 const struct ieee80211_regdomain *rd,
1410 const struct ieee80211_regdomain *country_ie_regdomain,
1411 const struct ieee80211_regdomain *intersected_rd)
1414 #endif
1416 /* Takes ownership of rd only if it doesn't fail */
1417 static int __set_regdom(const struct ieee80211_regdomain *rd)
1419 const struct ieee80211_regdomain *intersected_rd = NULL;
1420 struct cfg80211_registered_device *drv = NULL;
1421 struct wiphy *wiphy = NULL;
1422 /* Some basic sanity checks first */
1424 if (is_world_regdom(rd->alpha2)) {
1425 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1426 return -EINVAL;
1427 update_world_regdomain(rd);
1428 return 0;
1431 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
1432 !is_unknown_alpha2(rd->alpha2))
1433 return -EINVAL;
1435 if (!last_request)
1436 return -EINVAL;
1438 /* Lets only bother proceeding on the same alpha2 if the current
1439 * rd is non static (it means CRDA was present and was used last)
1440 * and the pending request came in from a country IE */
1441 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1442 /* If someone else asked us to change the rd lets only bother
1443 * checking if the alpha2 changes if CRDA was already called */
1444 if (!is_old_static_regdom(cfg80211_regdomain) &&
1445 !regdom_changed(rd->alpha2))
1446 return -EINVAL;
1449 wiphy = last_request->wiphy;
1451 /* Now lets set the regulatory domain, update all driver channels
1452 * and finally inform them of what we have done, in case they want
1453 * to review or adjust their own settings based on their own
1454 * internal EEPROM data */
1456 if (WARN_ON(!reg_is_valid_request(rd->alpha2)))
1457 return -EINVAL;
1459 if (!is_valid_rd(rd)) {
1460 printk(KERN_ERR "cfg80211: Invalid "
1461 "regulatory domain detected:\n");
1462 print_regdomain_info(rd);
1463 return -EINVAL;
1466 if (!last_request->intersect) {
1467 int r;
1469 if (last_request->initiator != REGDOM_SET_BY_DRIVER) {
1470 reset_regdomains();
1471 cfg80211_regdomain = rd;
1472 return 0;
1475 /* For a driver hint, lets copy the regulatory domain the
1476 * driver wanted to the wiphy to deal with conflicts */
1478 BUG_ON(last_request->wiphy->regd);
1480 r = reg_copy_regd(&last_request->wiphy->regd, rd);
1481 if (r)
1482 return r;
1484 reset_regdomains();
1485 cfg80211_regdomain = rd;
1486 return 0;
1489 /* Intersection requires a bit more work */
1491 if (last_request->initiator != REGDOM_SET_BY_COUNTRY_IE) {
1493 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1494 if (!intersected_rd)
1495 return -EINVAL;
1497 /* We can trash what CRDA provided now.
1498 * However if a driver requested this specific regulatory
1499 * domain we keep it for its private use */
1500 if (last_request->initiator == REGDOM_SET_BY_DRIVER)
1501 last_request->wiphy->regd = rd;
1502 else
1503 kfree(rd);
1505 rd = NULL;
1507 reset_regdomains();
1508 cfg80211_regdomain = intersected_rd;
1510 return 0;
1514 * Country IE requests are handled a bit differently, we intersect
1515 * the country IE rd with what CRDA believes that country should have
1518 BUG_ON(!country_ie_regdomain);
1520 if (rd != country_ie_regdomain) {
1521 /* Intersect what CRDA returned and our what we
1522 * had built from the Country IE received */
1524 intersected_rd = regdom_intersect(rd, country_ie_regdomain);
1526 reg_country_ie_process_debug(rd, country_ie_regdomain,
1527 intersected_rd);
1529 kfree(country_ie_regdomain);
1530 country_ie_regdomain = NULL;
1531 } else {
1532 /* This would happen when CRDA was not present and
1533 * OLD_REGULATORY was enabled. We intersect our Country
1534 * IE rd and what was set on cfg80211 originally */
1535 intersected_rd = regdom_intersect(rd, cfg80211_regdomain);
1538 if (!intersected_rd)
1539 return -EINVAL;
1541 drv = wiphy_to_dev(wiphy);
1543 drv->country_ie_alpha2[0] = rd->alpha2[0];
1544 drv->country_ie_alpha2[1] = rd->alpha2[1];
1545 drv->env = last_request->country_ie_env;
1547 BUG_ON(intersected_rd == rd);
1549 kfree(rd);
1550 rd = NULL;
1552 reset_regdomains();
1553 cfg80211_regdomain = intersected_rd;
1555 return 0;
1559 /* Use this call to set the current regulatory domain. Conflicts with
1560 * multiple drivers can be ironed out later. Caller must've already
1561 * kmalloc'd the rd structure. Caller must hold cfg80211_drv_mutex */
1562 int set_regdom(const struct ieee80211_regdomain *rd)
1564 int r;
1566 /* Note that this doesn't update the wiphys, this is done below */
1567 r = __set_regdom(rd);
1568 if (r) {
1569 kfree(rd);
1570 return r;
1573 /* This would make this whole thing pointless */
1574 if (!last_request->intersect)
1575 BUG_ON(rd != cfg80211_regdomain);
1577 /* update all wiphys now with the new established regulatory domain */
1578 update_all_wiphy_regulatory(last_request->initiator);
1580 print_regdomain(cfg80211_regdomain);
1582 return r;
1585 /* Caller must hold cfg80211_drv_mutex */
1586 void reg_device_remove(struct wiphy *wiphy)
1588 kfree(wiphy->regd);
1589 if (!last_request || !last_request->wiphy)
1590 return;
1591 if (last_request->wiphy != wiphy)
1592 return;
1593 last_request->wiphy = NULL;
1594 last_request->country_ie_env = ENVIRON_ANY;
1597 int regulatory_init(void)
1599 int err;
1601 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
1602 if (IS_ERR(reg_pdev))
1603 return PTR_ERR(reg_pdev);
1605 #ifdef CONFIG_WIRELESS_OLD_REGULATORY
1606 cfg80211_regdomain = static_regdom(ieee80211_regdom);
1608 printk(KERN_INFO "cfg80211: Using static regulatory domain info\n");
1609 print_regdomain_info(cfg80211_regdomain);
1610 /* The old code still requests for a new regdomain and if
1611 * you have CRDA you get it updated, otherwise you get
1612 * stuck with the static values. We ignore "EU" code as
1613 * that is not a valid ISO / IEC 3166 alpha2 */
1614 if (ieee80211_regdom[0] != 'E' || ieee80211_regdom[1] != 'U')
1615 err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE,
1616 ieee80211_regdom, 0, ENVIRON_ANY);
1617 #else
1618 cfg80211_regdomain = cfg80211_world_regdom;
1620 err = __regulatory_hint(NULL, REGDOM_SET_BY_CORE, "00", 0, ENVIRON_ANY);
1621 if (err)
1622 printk(KERN_ERR "cfg80211: calling CRDA failed - "
1623 "unable to update world regulatory domain, "
1624 "using static definition\n");
1625 #endif
1627 return 0;
1630 void regulatory_exit(void)
1632 mutex_lock(&cfg80211_drv_mutex);
1634 reset_regdomains();
1636 kfree(country_ie_regdomain);
1637 country_ie_regdomain = NULL;
1639 kfree(last_request);
1641 platform_device_unregister(reg_pdev);
1643 mutex_unlock(&cfg80211_drv_mutex);