5 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (uweigand@de.ibm.com)
9 * Derived from "arch/i386/mm/fault.c"
10 * Copyright (C) 1995 Linus Torvalds
13 #include <linux/signal.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/errno.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 #include <linux/ptrace.h>
20 #include <linux/mman.h>
22 #include <linux/smp.h>
23 #include <linux/smp_lock.h>
24 #include <linux/init.h>
25 #include <linux/console.h>
26 #include <linux/module.h>
27 #include <linux/hardirq.h>
28 #include <linux/kprobes.h>
30 #include <asm/system.h>
31 #include <asm/uaccess.h>
32 #include <asm/pgtable.h>
33 #include <asm/kdebug.h>
36 #define __FAIL_ADDR_MASK 0x7ffff000
37 #define __FIXUP_MASK 0x7fffffff
38 #define __SUBCODE_MASK 0x0200
39 #define __PF_RES_FIELD 0ULL
40 #else /* CONFIG_64BIT */
41 #define __FAIL_ADDR_MASK -4096L
42 #define __FIXUP_MASK ~0L
43 #define __SUBCODE_MASK 0x0600
44 #define __PF_RES_FIELD 0x8000000000000000ULL
45 #endif /* CONFIG_64BIT */
48 extern int sysctl_userprocess_debug
;
51 extern void die(const char *,struct pt_regs
*,long);
54 ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain
);
55 int register_page_fault_notifier(struct notifier_block
*nb
)
57 return atomic_notifier_chain_register(¬ify_page_fault_chain
, nb
);
60 int unregister_page_fault_notifier(struct notifier_block
*nb
)
62 return atomic_notifier_chain_unregister(¬ify_page_fault_chain
, nb
);
65 static inline int notify_page_fault(enum die_val val
, const char *str
,
66 struct pt_regs
*regs
, long err
, int trap
, int sig
)
68 struct die_args args
= {
75 return atomic_notifier_call_chain(¬ify_page_fault_chain
, val
, &args
);
78 static inline int notify_page_fault(enum die_val val
, const char *str
,
79 struct pt_regs
*regs
, long err
, int trap
, int sig
)
85 extern spinlock_t timerlist_lock
;
88 * Unlock any spinlocks which will prevent us from getting the
89 * message out (timerlist_lock is acquired through the
90 * console unblank code)
92 void bust_spinlocks(int yes
)
97 int loglevel_save
= console_loglevel
;
101 * OK, the message is on the console. Now we call printk()
102 * without oops_in_progress set so that printk will give klogd
103 * a poke. Hold onto your hats...
105 console_loglevel
= 15;
107 console_loglevel
= loglevel_save
;
112 * Check which address space is addressed by the access
113 * register in S390_lowcore.exc_access_id.
114 * Returns 1 for user space and 0 for kernel space.
116 static int __check_access_register(struct pt_regs
*regs
, int error_code
)
118 int areg
= S390_lowcore
.exc_access_id
;
121 /* Access via access register 0 -> kernel address */
123 save_access_regs(current
->thread
.acrs
);
124 if (regs
&& areg
< NUM_ACRS
&& current
->thread
.acrs
[areg
] <= 1)
126 * access register contains 0 -> kernel address,
127 * access register contains 1 -> user space address
129 return current
->thread
.acrs
[areg
];
131 /* Something unhealthy was done with the access registers... */
132 die("page fault via unknown access register", regs
, error_code
);
138 * Check which address space the address belongs to.
139 * Returns 1 for user space and 0 for kernel space.
141 static inline int check_user_space(struct pt_regs
*regs
, int error_code
)
144 * The lowest two bits of S390_lowcore.trans_exc_code indicate
145 * which paging table was used:
146 * 0: Primary Segment Table Descriptor
147 * 1: STD determined via access register
148 * 2: Secondary Segment Table Descriptor
149 * 3: Home Segment Table Descriptor
151 int descriptor
= S390_lowcore
.trans_exc_code
& 3;
152 if (unlikely(descriptor
== 1))
153 return __check_access_register(regs
, error_code
);
155 return current
->thread
.mm_segment
.ar4
;
156 return descriptor
!= 0;
160 * Send SIGSEGV to task. This is an external routine
161 * to keep the stack usage of do_page_fault small.
163 static void do_sigsegv(struct pt_regs
*regs
, unsigned long error_code
,
164 int si_code
, unsigned long address
)
168 #if defined(CONFIG_SYSCTL) || defined(CONFIG_PROCESS_DEBUG)
169 #if defined(CONFIG_SYSCTL)
170 if (sysctl_userprocess_debug
)
173 printk("User process fault: interruption code 0x%lX\n",
175 printk("failing address: %lX\n", address
);
179 si
.si_signo
= SIGSEGV
;
180 si
.si_code
= si_code
;
181 si
.si_addr
= (void __user
*) address
;
182 force_sig_info(SIGSEGV
, &si
, current
);
186 * This routine handles page faults. It determines the address,
187 * and the problem, and then passes it off to one of the appropriate
191 * 04 Protection -> Write-Protection (suprression)
192 * 10 Segment translation -> Not present (nullification)
193 * 11 Page translation -> Not present (nullification)
194 * 3b Region third trans. -> Not present (nullification)
196 static inline void __kprobes
197 do_exception(struct pt_regs
*regs
, unsigned long error_code
, int is_protection
)
199 struct task_struct
*tsk
;
200 struct mm_struct
*mm
;
201 struct vm_area_struct
* vma
;
202 unsigned long address
;
204 const struct exception_table_entry
*fixup
;
205 int si_code
= SEGV_MAPERR
;
210 if (notify_page_fault(DIE_PAGE_FAULT
, "page fault", regs
, error_code
, 14,
211 SIGSEGV
) == NOTIFY_STOP
)
215 * Check for low-address protection. This needs to be treated
216 * as a special case because the translation exception code
217 * field is not guaranteed to contain valid data in this case.
219 if (is_protection
&& !(S390_lowcore
.trans_exc_code
& 4)) {
221 /* Low-address protection hit in kernel mode means
222 NULL pointer write access in kernel mode. */
223 if (!(regs
->psw
.mask
& PSW_MASK_PSTATE
)) {
229 /* Low-address protection hit in user mode 'cannot happen'. */
230 die ("Low-address protection", regs
, error_code
);
235 * get the failing address
236 * more specific the segment and page table portion of
239 address
= S390_lowcore
.trans_exc_code
& __FAIL_ADDR_MASK
;
240 user_address
= check_user_space(regs
, error_code
);
243 * Verify that the fault happened in user space, that
244 * we are not in an interrupt and that there is a
247 if (user_address
== 0 || in_atomic() || !mm
)
251 * When we get here, the fault happened in the current
252 * task's user address space, so we can switch on the
253 * interrupts again and then search the VMAs
257 down_read(&mm
->mmap_sem
);
259 vma
= find_vma(mm
, address
);
262 if (vma
->vm_start
<= address
)
264 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
266 if (expand_stack(vma
, address
))
269 * Ok, we have a good vm_area for this memory access, so
273 si_code
= SEGV_ACCERR
;
274 if (!is_protection
) {
275 /* page not present, check vm flags */
276 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
279 if (!(vma
->vm_flags
& VM_WRITE
))
285 * If for any reason at all we couldn't handle the fault,
286 * make sure we exit gracefully rather than endlessly redo
289 switch (handle_mm_fault(mm
, vma
, address
, is_protection
)) {
296 case VM_FAULT_SIGBUS
:
304 up_read(&mm
->mmap_sem
);
306 * The instruction that caused the program check will
307 * be repeated. Don't signal single step via SIGTRAP.
309 clear_tsk_thread_flag(current
, TIF_SINGLE_STEP
);
313 * Something tried to access memory that isn't in our memory map..
314 * Fix it, but check if it's kernel or user first..
317 up_read(&mm
->mmap_sem
);
319 /* User mode accesses just cause a SIGSEGV */
320 if (regs
->psw
.mask
& PSW_MASK_PSTATE
) {
321 tsk
->thread
.prot_addr
= address
;
322 tsk
->thread
.trap_no
= error_code
;
323 do_sigsegv(regs
, error_code
, si_code
, address
);
328 /* Are we prepared to handle this kernel fault? */
329 fixup
= search_exception_tables(regs
->psw
.addr
& __FIXUP_MASK
);
331 regs
->psw
.addr
= fixup
->fixup
| PSW_ADDR_AMODE
;
336 * Oops. The kernel tried to access some bad page. We'll have to
337 * terminate things with extreme prejudice.
339 if (user_address
== 0)
340 printk(KERN_ALERT
"Unable to handle kernel pointer dereference"
341 " at virtual kernel address %p\n", (void *)address
);
343 printk(KERN_ALERT
"Unable to handle kernel paging request"
344 " at virtual user address %p\n", (void *)address
);
346 die("Oops", regs
, error_code
);
351 * We ran out of memory, or some other thing happened to us that made
352 * us unable to handle the page fault gracefully.
355 up_read(&mm
->mmap_sem
);
360 printk("VM: killing process %s\n", tsk
->comm
);
361 if (regs
->psw
.mask
& PSW_MASK_PSTATE
)
366 up_read(&mm
->mmap_sem
);
369 * Send a sigbus, regardless of whether we were in kernel
372 tsk
->thread
.prot_addr
= address
;
373 tsk
->thread
.trap_no
= error_code
;
374 force_sig(SIGBUS
, tsk
);
376 /* Kernel mode? Handle exceptions or die */
377 if (!(regs
->psw
.mask
& PSW_MASK_PSTATE
))
381 void do_protection_exception(struct pt_regs
*regs
, unsigned long error_code
)
383 regs
->psw
.addr
-= (error_code
>> 16);
384 do_exception(regs
, 4, 1);
387 void do_dat_exception(struct pt_regs
*regs
, unsigned long error_code
)
389 do_exception(regs
, error_code
& 0xff, 0);
394 * 'pfault' pseudo page faults routines.
396 static int pfault_disable
= 0;
398 static int __init
nopfault(char *str
)
404 __setup("nopfault", nopfault
);
415 } __attribute__ ((packed
)) pfault_refbk_t
;
417 int pfault_init(void)
419 pfault_refbk_t refbk
=
420 { 0x258, 0, 5, 2, __LC_CURRENT
, 1ULL << 48, 1ULL << 48,
426 __asm__
__volatile__(
427 " diag %1,%0,0x258\n"
431 ".section __ex_table,\"a\"\n"
435 #else /* CONFIG_64BIT */
437 #endif /* CONFIG_64BIT */
439 : "=d" (rc
) : "a" (&refbk
), "m" (refbk
) : "cc" );
444 void pfault_fini(void)
446 pfault_refbk_t refbk
=
447 { 0x258, 1, 5, 2, 0ULL, 0ULL, 0ULL, 0ULL };
451 __ctl_clear_bit(0,9);
452 __asm__
__volatile__(
455 ".section __ex_table,\"a\"\n"
459 #else /* CONFIG_64BIT */
461 #endif /* CONFIG_64BIT */
463 : : "a" (&refbk
), "m" (refbk
) : "cc" );
467 pfault_interrupt(struct pt_regs
*regs
, __u16 error_code
)
469 struct task_struct
*tsk
;
473 * Get the external interruption subcode & pfault
474 * initial/completion signal bit. VM stores this
475 * in the 'cpu address' field associated with the
476 * external interrupt.
478 subcode
= S390_lowcore
.cpu_addr
;
479 if ((subcode
& 0xff00) != __SUBCODE_MASK
)
483 * Get the token (= address of the task structure of the affected task).
485 tsk
= *(struct task_struct
**) __LC_PFAULT_INTPARM
;
487 if (subcode
& 0x0080) {
488 /* signal bit is set -> a page has been swapped in by VM */
489 if (xchg(&tsk
->thread
.pfault_wait
, -1) != 0) {
490 /* Initial interrupt was faster than the completion
491 * interrupt. pfault_wait is valid. Set pfault_wait
492 * back to zero and wake up the process. This can
493 * safely be done because the task is still sleeping
494 * and can't produce new pfaults. */
495 tsk
->thread
.pfault_wait
= 0;
496 wake_up_process(tsk
);
497 put_task_struct(tsk
);
500 /* signal bit not set -> a real page is missing. */
501 get_task_struct(tsk
);
502 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
503 if (xchg(&tsk
->thread
.pfault_wait
, 1) != 0) {
504 /* Completion interrupt was faster than the initial
505 * interrupt (swapped in a -1 for pfault_wait). Set
506 * pfault_wait back to zero and exit. This can be
507 * done safely because tsk is running in kernel
508 * mode and can't produce new pfaults. */
509 tsk
->thread
.pfault_wait
= 0;
510 set_task_state(tsk
, TASK_RUNNING
);
511 put_task_struct(tsk
);
513 set_tsk_need_resched(tsk
);