2 * iommu.c: IOMMU specific routines for memory management.
4 * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
10 #include <linux/kernel.h>
11 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/highmem.h> /* pte_offset_map => kmap_atomic */
15 #include <linux/scatterlist.h>
17 #include <linux/of_device.h>
19 #include <asm/pgalloc.h>
20 #include <asm/pgtable.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <asm/bitext.h>
27 #include <asm/iommu.h>
31 * This can be sized dynamically, but we will do this
32 * only when we have a guidance about actual I/O pressures.
34 #define IOMMU_RNGE IOMMU_RNGE_256MB
35 #define IOMMU_START 0xF0000000
36 #define IOMMU_WINSIZE (256*1024*1024U)
37 #define IOMMU_NPTES (IOMMU_WINSIZE/PAGE_SIZE) /* 64K PTEs, 265KB */
38 #define IOMMU_ORDER 6 /* 4096 * (1<<6) */
41 extern int viking_mxcc_present
;
42 BTFIXUPDEF_CALL(void, flush_page_for_dma
, unsigned long)
43 #define flush_page_for_dma(page) BTFIXUP_CALL(flush_page_for_dma)(page)
44 extern int flush_page_for_dma_global
;
45 static int viking_flush
;
47 extern void viking_flush_page(unsigned long page
);
48 extern void viking_mxcc_flush_page(unsigned long page
);
51 * Values precomputed according to CPU type.
53 static unsigned int ioperm_noc
; /* Consistent mapping iopte flags */
54 static pgprot_t dvma_prot
; /* Consistent mapping pte flags */
56 #define IOPERM (IOPTE_CACHE | IOPTE_WRITE | IOPTE_VALID)
57 #define MKIOPTE(pfn, perm) (((((pfn)<<8) & IOPTE_PAGE) | (perm)) & ~IOPTE_WAZ)
59 static void __init
sbus_iommu_init(struct of_device
*op
)
61 struct iommu_struct
*iommu
;
62 unsigned int impl
, vers
;
63 unsigned long *bitmap
;
66 iommu
= kmalloc(sizeof(struct iommu_struct
), GFP_ATOMIC
);
68 prom_printf("Unable to allocate iommu structure\n");
72 iommu
->regs
= of_ioremap(&op
->resource
[0], 0, PAGE_SIZE
* 3,
75 prom_printf("Cannot map IOMMU registers\n");
78 impl
= (iommu
->regs
->control
& IOMMU_CTRL_IMPL
) >> 28;
79 vers
= (iommu
->regs
->control
& IOMMU_CTRL_VERS
) >> 24;
80 tmp
= iommu
->regs
->control
;
81 tmp
&= ~(IOMMU_CTRL_RNGE
);
82 tmp
|= (IOMMU_RNGE_256MB
| IOMMU_CTRL_ENAB
);
83 iommu
->regs
->control
= tmp
;
84 iommu_invalidate(iommu
->regs
);
85 iommu
->start
= IOMMU_START
;
86 iommu
->end
= 0xffffffff;
88 /* Allocate IOMMU page table */
89 /* Stupid alignment constraints give me a headache.
90 We need 256K or 512K or 1M or 2M area aligned to
91 its size and current gfp will fortunately give
93 tmp
= __get_free_pages(GFP_KERNEL
, IOMMU_ORDER
);
95 prom_printf("Unable to allocate iommu table [0x%08x]\n",
96 IOMMU_NPTES
*sizeof(iopte_t
));
99 iommu
->page_table
= (iopte_t
*)tmp
;
101 /* Initialize new table. */
102 memset(iommu
->page_table
, 0, IOMMU_NPTES
*sizeof(iopte_t
));
105 iommu
->regs
->base
= __pa((unsigned long) iommu
->page_table
) >> 4;
106 iommu_invalidate(iommu
->regs
);
108 bitmap
= kmalloc(IOMMU_NPTES
>>3, GFP_KERNEL
);
110 prom_printf("Unable to allocate iommu bitmap [%d]\n",
111 (int)(IOMMU_NPTES
>>3));
114 bit_map_init(&iommu
->usemap
, bitmap
, IOMMU_NPTES
);
115 /* To be coherent on HyperSparc, the page color of DVMA
116 * and physical addresses must match.
118 if (srmmu_modtype
== HyperSparc
)
119 iommu
->usemap
.num_colors
= vac_cache_size
>> PAGE_SHIFT
;
121 iommu
->usemap
.num_colors
= 1;
123 printk(KERN_INFO
"IOMMU: impl %d vers %d table 0x%p[%d B] map [%d b]\n",
124 impl
, vers
, iommu
->page_table
,
125 (int)(IOMMU_NPTES
*sizeof(iopte_t
)), (int)IOMMU_NPTES
);
127 op
->dev
.archdata
.iommu
= iommu
;
130 static int __init
iommu_init(void)
132 struct device_node
*dp
;
134 for_each_node_by_name(dp
, "iommu") {
135 struct of_device
*op
= of_find_device_by_node(dp
);
138 of_propagate_archdata(op
);
144 subsys_initcall(iommu_init
);
146 /* This begs to be btfixup-ed by srmmu. */
147 /* Flush the iotlb entries to ram. */
148 /* This could be better if we didn't have to flush whole pages. */
149 static void iommu_flush_iotlb(iopte_t
*iopte
, unsigned int niopte
)
154 start
= (unsigned long)iopte
;
155 end
= PAGE_ALIGN(start
+ niopte
*sizeof(iopte_t
));
157 if (viking_mxcc_present
) {
159 viking_mxcc_flush_page(start
);
162 } else if (viking_flush
) {
164 viking_flush_page(start
);
169 __flush_page_to_ram(start
);
175 static u32
iommu_get_one(struct device
*dev
, struct page
*page
, int npages
)
177 struct iommu_struct
*iommu
= dev
->archdata
.iommu
;
179 iopte_t
*iopte
, *iopte0
;
180 unsigned int busa
, busa0
;
183 /* page color = pfn of page */
184 ioptex
= bit_map_string_get(&iommu
->usemap
, npages
, page_to_pfn(page
));
187 busa0
= iommu
->start
+ (ioptex
<< PAGE_SHIFT
);
188 iopte0
= &iommu
->page_table
[ioptex
];
192 for (i
= 0; i
< npages
; i
++) {
193 iopte_val(*iopte
) = MKIOPTE(page_to_pfn(page
), IOPERM
);
194 iommu_invalidate_page(iommu
->regs
, busa
);
200 iommu_flush_iotlb(iopte0
, npages
);
205 static u32
iommu_get_scsi_one(struct device
*dev
, char *vaddr
, unsigned int len
)
212 off
= (unsigned long)vaddr
& ~PAGE_MASK
;
213 npages
= (off
+ len
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
214 page
= virt_to_page((unsigned long)vaddr
& PAGE_MASK
);
215 busa
= iommu_get_one(dev
, page
, npages
);
219 static __u32
iommu_get_scsi_one_noflush(struct device
*dev
, char *vaddr
, unsigned long len
)
221 return iommu_get_scsi_one(dev
, vaddr
, len
);
224 static __u32
iommu_get_scsi_one_gflush(struct device
*dev
, char *vaddr
, unsigned long len
)
226 flush_page_for_dma(0);
227 return iommu_get_scsi_one(dev
, vaddr
, len
);
230 static __u32
iommu_get_scsi_one_pflush(struct device
*dev
, char *vaddr
, unsigned long len
)
232 unsigned long page
= ((unsigned long) vaddr
) & PAGE_MASK
;
234 while(page
< ((unsigned long)(vaddr
+ len
))) {
235 flush_page_for_dma(page
);
238 return iommu_get_scsi_one(dev
, vaddr
, len
);
241 static void iommu_get_scsi_sgl_noflush(struct device
*dev
, struct scatterlist
*sg
, int sz
)
247 n
= (sg
->length
+ sg
->offset
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
248 sg
->dvma_address
= iommu_get_one(dev
, sg_page(sg
), n
) + sg
->offset
;
249 sg
->dvma_length
= (__u32
) sg
->length
;
254 static void iommu_get_scsi_sgl_gflush(struct device
*dev
, struct scatterlist
*sg
, int sz
)
258 flush_page_for_dma(0);
261 n
= (sg
->length
+ sg
->offset
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
262 sg
->dvma_address
= iommu_get_one(dev
, sg_page(sg
), n
) + sg
->offset
;
263 sg
->dvma_length
= (__u32
) sg
->length
;
268 static void iommu_get_scsi_sgl_pflush(struct device
*dev
, struct scatterlist
*sg
, int sz
)
270 unsigned long page
, oldpage
= 0;
276 n
= (sg
->length
+ sg
->offset
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
279 * We expect unmapped highmem pages to be not in the cache.
280 * XXX Is this a good assumption?
281 * XXX What if someone else unmaps it here and races us?
283 if ((page
= (unsigned long) page_address(sg_page(sg
))) != 0) {
284 for (i
= 0; i
< n
; i
++) {
285 if (page
!= oldpage
) { /* Already flushed? */
286 flush_page_for_dma(page
);
293 sg
->dvma_address
= iommu_get_one(dev
, sg_page(sg
), n
) + sg
->offset
;
294 sg
->dvma_length
= (__u32
) sg
->length
;
299 static void iommu_release_one(struct device
*dev
, u32 busa
, int npages
)
301 struct iommu_struct
*iommu
= dev
->archdata
.iommu
;
305 BUG_ON(busa
< iommu
->start
);
306 ioptex
= (busa
- iommu
->start
) >> PAGE_SHIFT
;
307 for (i
= 0; i
< npages
; i
++) {
308 iopte_val(iommu
->page_table
[ioptex
+ i
]) = 0;
309 iommu_invalidate_page(iommu
->regs
, busa
);
312 bit_map_clear(&iommu
->usemap
, ioptex
, npages
);
315 static void iommu_release_scsi_one(struct device
*dev
, __u32 vaddr
, unsigned long len
)
320 off
= vaddr
& ~PAGE_MASK
;
321 npages
= (off
+ len
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
322 iommu_release_one(dev
, vaddr
& PAGE_MASK
, npages
);
325 static void iommu_release_scsi_sgl(struct device
*dev
, struct scatterlist
*sg
, int sz
)
332 n
= (sg
->length
+ sg
->offset
+ PAGE_SIZE
-1) >> PAGE_SHIFT
;
333 iommu_release_one(dev
, sg
->dvma_address
& PAGE_MASK
, n
);
334 sg
->dvma_address
= 0x21212121;
340 static int iommu_map_dma_area(struct device
*dev
, dma_addr_t
*pba
, unsigned long va
,
341 unsigned long addr
, int len
)
343 struct iommu_struct
*iommu
= dev
->archdata
.iommu
;
344 unsigned long page
, end
;
345 iopte_t
*iopte
= iommu
->page_table
;
349 BUG_ON((va
& ~PAGE_MASK
) != 0);
350 BUG_ON((addr
& ~PAGE_MASK
) != 0);
351 BUG_ON((len
& ~PAGE_MASK
) != 0);
353 /* page color = physical address */
354 ioptex
= bit_map_string_get(&iommu
->usemap
, len
>> PAGE_SHIFT
,
369 if (viking_mxcc_present
)
370 viking_mxcc_flush_page(page
);
371 else if (viking_flush
)
372 viking_flush_page(page
);
374 __flush_page_to_ram(page
);
376 pgdp
= pgd_offset(&init_mm
, addr
);
377 pmdp
= pmd_offset(pgdp
, addr
);
378 ptep
= pte_offset_map(pmdp
, addr
);
380 set_pte(ptep
, mk_pte(virt_to_page(page
), dvma_prot
));
382 iopte_val(*iopte
++) =
383 MKIOPTE(page_to_pfn(virt_to_page(page
)), ioperm_noc
);
387 /* P3: why do we need this?
389 * DAVEM: Because there are several aspects, none of which
390 * are handled by a single interface. Some cpus are
391 * completely not I/O DMA coherent, and some have
392 * virtually indexed caches. The driver DMA flushing
393 * methods handle the former case, but here during
394 * IOMMU page table modifications, and usage of non-cacheable
395 * cpu mappings of pages potentially in the cpu caches, we have
396 * to handle the latter case as well.
399 iommu_flush_iotlb(first
, len
>> PAGE_SHIFT
);
401 iommu_invalidate(iommu
->regs
);
403 *pba
= iommu
->start
+ (ioptex
<< PAGE_SHIFT
);
407 static void iommu_unmap_dma_area(struct device
*dev
, unsigned long busa
, int len
)
409 struct iommu_struct
*iommu
= dev
->archdata
.iommu
;
410 iopte_t
*iopte
= iommu
->page_table
;
412 int ioptex
= (busa
- iommu
->start
) >> PAGE_SHIFT
;
414 BUG_ON((busa
& ~PAGE_MASK
) != 0);
415 BUG_ON((len
& ~PAGE_MASK
) != 0);
420 iopte_val(*iopte
++) = 0;
424 iommu_invalidate(iommu
->regs
);
425 bit_map_clear(&iommu
->usemap
, ioptex
, len
>> PAGE_SHIFT
);
429 static char *iommu_lockarea(char *vaddr
, unsigned long len
)
434 static void iommu_unlockarea(char *vaddr
, unsigned long len
)
438 void __init
ld_mmu_iommu(void)
440 viking_flush
= (BTFIXUPVAL_CALL(flush_page_for_dma
) == (unsigned long)viking_flush_page
);
441 BTFIXUPSET_CALL(mmu_lockarea
, iommu_lockarea
, BTFIXUPCALL_RETO0
);
442 BTFIXUPSET_CALL(mmu_unlockarea
, iommu_unlockarea
, BTFIXUPCALL_NOP
);
444 if (!BTFIXUPVAL_CALL(flush_page_for_dma
)) {
445 /* IO coherent chip */
446 BTFIXUPSET_CALL(mmu_get_scsi_one
, iommu_get_scsi_one_noflush
, BTFIXUPCALL_RETO0
);
447 BTFIXUPSET_CALL(mmu_get_scsi_sgl
, iommu_get_scsi_sgl_noflush
, BTFIXUPCALL_NORM
);
448 } else if (flush_page_for_dma_global
) {
449 /* flush_page_for_dma flushes everything, no matter of what page is it */
450 BTFIXUPSET_CALL(mmu_get_scsi_one
, iommu_get_scsi_one_gflush
, BTFIXUPCALL_NORM
);
451 BTFIXUPSET_CALL(mmu_get_scsi_sgl
, iommu_get_scsi_sgl_gflush
, BTFIXUPCALL_NORM
);
453 BTFIXUPSET_CALL(mmu_get_scsi_one
, iommu_get_scsi_one_pflush
, BTFIXUPCALL_NORM
);
454 BTFIXUPSET_CALL(mmu_get_scsi_sgl
, iommu_get_scsi_sgl_pflush
, BTFIXUPCALL_NORM
);
456 BTFIXUPSET_CALL(mmu_release_scsi_one
, iommu_release_scsi_one
, BTFIXUPCALL_NORM
);
457 BTFIXUPSET_CALL(mmu_release_scsi_sgl
, iommu_release_scsi_sgl
, BTFIXUPCALL_NORM
);
460 BTFIXUPSET_CALL(mmu_map_dma_area
, iommu_map_dma_area
, BTFIXUPCALL_NORM
);
461 BTFIXUPSET_CALL(mmu_unmap_dma_area
, iommu_unmap_dma_area
, BTFIXUPCALL_NORM
);
464 if (viking_mxcc_present
|| srmmu_modtype
== HyperSparc
) {
465 dvma_prot
= __pgprot(SRMMU_CACHE
| SRMMU_ET_PTE
| SRMMU_PRIV
);
466 ioperm_noc
= IOPTE_CACHE
| IOPTE_WRITE
| IOPTE_VALID
;
468 dvma_prot
= __pgprot(SRMMU_ET_PTE
| SRMMU_PRIV
);
469 ioperm_noc
= IOPTE_WRITE
| IOPTE_VALID
;